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Stem cells contained within the dental mesenchymal stromal cell (MSC) population are

crucial for tissue homeostasis. Assuring their genomic stability is therefore essential.

Exposure of stem cells to ionizing radiation (IR) is potentially detrimental for normal

tissue homeostasis. Although it has been established that exposure to high doses

of ionizing radiation (IR) has severe adverse effects on MSCs, knowledge about the

impact of low doses of IR is lacking. Here we investigated the effect of low doses of

X-irradiation with medical imaging beam settings (<0.1 Gray; 900 mGray per hour), in

vitro, on pediatric dental mesenchymal stromal cells containing dental pulp stem cells

from deciduous teeth, dental follicle progenitor cells and stem cells from the apical

papilla. DNA double strand break (DSB) formation and repair kinetics were monitored

by immunocytochemistry of γH2AX and 53BP1 as well as cell cycle progression by flow

cytometry and cellular senescence by senescence-associated β-galactosidase assay

and ELISA. Increased DNA DSB repair foci, after exposure to low doses of X-rays,

were measured as early as 30min post-irradiation. The number of DSBs returned to

baseline levels 24 h after irradiation. Cell cycle analysis revealed marginal effects of IR

on cell cycle progression, although a slight G2/M phase arrest was seen in dental pulp

stromal cells from deciduous teeth 72 h after irradiation. Despite this cell cycle arrest, no

radiation-induced senescence was observed. In conclusion, low X-ray IR doses (< 0.1

Gray; 900 mGray per hour), were able to induce significant increases in the number of

DNA DSBs repair foci, but cell cycle progression seems to be minimally affected. This

highlights the need for more detailed and extensive studies on the effects of exposure to

low IR doses on different mesenchymal stromal cells.

Keywords: dental stem cell, DNA damage response, DNA double strand break, low dose radiation exposure, cell

cycle, cellular senescence
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INTRODUCTION

Stem cells contained within the dental mesenchymal stromal
cell (MSCs) population are of paramount importance for tissue
homeostasis which are potentially important targets of ionizing
radiation (IR) exposure. They can accumulate genotoxic damage
following IR exposure, which is either repaired efficiently, or they
can accumulate irreversible damage. This irreversible damage can
trigger apoptosis or senescence, and misrepaired or unrepaired
DNA damage can persist and could potentially lead to malignant
transformation of the stem cells (1). Changes in the functionality
of MSCs could therefore be considered as a predictive indicator
for future health hazards (2, 3).

In 2000, Gronthos et al. identified and isolated odontogenic
progenitor cells from the dental pulp from adult patients (4).
These cells were dubbed dental pulp stem cells (DPSCs). In the
following years, several more types of dental stem cells were
described, such as the dental follicle stem cells (DFSCs), stem
cells from the apical papilla (SCAPs), pulp stem cells from
human exfoliated deciduous teeth (SHEDs), and periodontal
ligament stem cells (PDLSCs) (5–8). However, the International
Society for Cellular Therapy has prompt to define the isolation
of mesenchymal stem cells as non-clonal cultures of stromal
cells containing stem cells with different multipotent properties,
committed progenitors, and differentiated cells (9–11). An
overview of these cells and their potential use in dentistry is given
by Bansal and Jain (12).

Today, one of the greatest challenges in radiation protection
is unraveling the detrimental effects of exposure to low doses of
IR. This is important because people are exposed to low dose IR
on a daily basis, either from natural sources, or from man-made
sources, such as medical diagnostics (13). Although there are
epidemiological data on exposure to doses higher than 100 mGy
(e.g., from atomic bomb survivors, medically and occupationally
exposed populations and environmentally exposed groups), no
conclusive data exists on exposure to low doses of IR (14).
Currently, risk estimation for low dose exposure is based on
linear extrapolation from these high dose data. This model is
the famous linear-no-threshold (LNT) model (15–17). The LNT
model assumes that there is a linear relationship between IR dose
and the excessive cancer risk. When applying the LNT model,
the following is assumed: (1) that there is a linear relationship
between IR dose and the amount of radiation-induced DNA
double strand breaks (DSB), (2) that each DNA DSB has the
probability of inducing cellular transformations, and (3) that
each transformation has the same probability of resulting in
carcinogenesis (18). However, in the low dose range (<100
mGy), other phenomena than a linear response can occur. There
is evidence that low doses of IR could have beneficial effects,
such as hormesis and adaptive responses (19, 20). Hormesis
occurs when exposure to low IR doses produces a favorable
effect, whereas high IR doses result in detrimental effects (21).
Adaptive responses occur when a very low dose, or priming dose,
stimulates cells which results in increased resistance to a second,
larger dose of the same trigger at a later time point. This could
include the activation of genes associated with DNA damage
repair, stress scavenging, cell cycle control and apoptosis (19, 20).

DNA DSBs are the most crucial DNA lesions that are
associated with increased cancer risk and IR exposure. If
not repaired correctly, DSBs can cause genomic instability,
mutations, chromosome aberrations and translocations, and cell
death (22–25). To protect the DNA against these types of damage,
eukaryotes have developed the DNA damage response (DDR)
(24, 25). In short, cellular responses to IR-induced DNA DSBs
are triggered by the activation of the ataxia telangiectasia mutated
(ATM) kinase. The phosphorylation of histone H2AX on serine
139 (γH2AX) in the vicinity of the DNA DSB is one of the
earliest ATM-dependent responses, although other kinases are
also capable of phosphorylating histone H2AX on serine 139
(23, 26, 27). γH2AX forms so called DNA damage foci in the
nucleus, or in the case of IR-induced DNA damage “IR-induced
foci” (IRIF). In general, IRIF are distinct sub-nuclear structures
to which the DDR proteins re-localize. After phosphorylation,
γH2AX initiates a signaling cascade leading to the recruitment of
multiple DDR proteins, including tumor suppressor p53-binding
protein 1 (53BP1) (22, 24, 28, 29).

53BP1 is a known DNA DSB sensor and a mediator and
effector in the DDR to DSBs (24, 30, 31). Similar to γH2AX,
53BP1 has several functions in the DDR, such as recruitment of
DSB repair proteins, checkpoint signaling, determining the DSB
repair pathway and synapsis of distal DNA ends during non-
homologous end-joining (reviewed in Panier and Boulton) (30).

Evidence shows that both γH2AX and 53BP1 show a
quantitative relationship between the number of foci and the
number of DNA DSBs (24, 29, 32, 33). Although γH2AX is a
powerful tool to monitor DNA DSBs, artifacts do occur even
in the absence of DSBs (25). Both γH2AX and 53BP1 foci can
be visualized using immunofluorescence microscopy and are
detectable within minutes following exposure to IR (29, 34).
Therefore, using an immunostaining protocol for simultaneous
detection of γH2AX and 53BP1 allows for better estimation of
the amount of DSBs present and it reduces the impact of artifacts,
since it is known that γH2AX and 53BP1 co-localize in IRIF
(24, 35, 36).

DNA DSB could be efficiently repaired by the DDR, although
misrepair can occur. However, DNA DSBs could persist. This
could lead to cell cycle arrest, premature cellular senescence, or
apoptosis. As part of the DDR, cells halt their passage through
the cell cycle, allowing DDR proteins to repair DNA damage. If
this damage persists, the cell cycle could be irreversibly arrested.
This cell cycle arrest can occur in all phases of the cell cycle,
but it was found that most cells are most sensitive to IR-
induced DNA damage in the G2/M phase (37–39). Cellular
senescence is a state of irreversible growth arrest. This growth
arrest occurs in the G1 phase of the cell cycle, therefore cellular
senescence is linked with changes in cell cycle progression.
A hallmark of senescent cells is the increased β-galactosidase
activity in comparison to normal cells. This can be detected
by the so-called X-gal assay, which is considered as the gold
standard for senescence testing (40, 41). Senescent cells also
display a senescence-associated secretory phenotype (SASP),
which consists of several chemokines, cytokines, and regulatory
factors. Some of these SASP factors are linked with IR exposure,
such as IL-6, IL-8, IGFBP-2, and IGFBP-3 (42, 43). IL-6 and
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IL-8 interact with their surface receptors, which initiates several
intracellular pathways. Besides that, they can both induce or
reinforce senescence in damaged cells in a paracrine/autocrine
manner (42, 43). IGFBP-2 and IGFBP-3 interact with insulin-like
growth factor (IGF). They sequester IGF so it cannot bind to its
receptor, which eventually leads to inhibition of cell proliferation
(44). It is known that premature cellular senescence can be caused
by several stresses, such as (persisting) DNA damage or reactive
oxygen species (45). It has been reported before that exposure to
(high) IR doses can cause premature cellular senescence. This was
observed both in mesenchymal stem cells and normal tissue cells
(46–51). For low doses of IR, data is more scarce (3, 52). Besides
senescence, quiescence is also an important process in stem cells.
Quiescence is characterized by a cell cycle arrest in the G0 phase.
This phase is similar to the G1 phase, however cells do not
progress into the S phase. Unlike senescence, quiescence is a state
of reversible growth arrest. Quiescence occurs in cells that require
a strict proliferation regime, such as stem cells. It allows stem cells
to assure genomic integrity until they are needed for tissue repair,
which is when they are stimulated to reprise the normal cell cycle
(53). Evidence on the effects of IR on quiescence in mesenchymal
stem cells are scarce (54, 55). Finally, cells can undergo apoptosis
or programmed cell death. Like premature cellular senescence, it
is a response to extensive cellular stress and mostly occurs when
DNA damage repair is slow and/or incomplete (56).

The aim of this study is to investigate the effects of low
dose X-ray exposure with medical imaging beam settings (< 100
mGy; 900 mGy/h) on SHED, DFSCs, and SCAPs extracted
from pediatric patients. DNA DSB formation and repair, cell
cycle progression, cellular quiescence, and cellular senescence
were monitored at several time points after exposure. Our data
evidences that, although low doses of IR induce significant
amounts of DNA DSBs, DNA damage is effectively repaired and
does not affect cell cycle progression, nor induces premature
cellular senescence in dental mesenchymal stromal cells.

MATERIALS AND METHODS

Ethical Approval for the Use of
Donor-Derived Dental Mesenchymal
Stromal Cells
The cells were gifted by Prof. Benjamin Salmon (Dental Medicine
Department of the Bretonneau Hospital (Paris, France). All
experiments and methods were performed in accordance with
relevant guidelines and regulations. All experimental protocols
were approved by a named institutional/licensing committee.
Ethical approval was obtained at the Comité d’Evaluation de
l’Ethique des projets de Reserche Biomédicale Paris Nord,
N◦16-021 in France.

Culturing Dental Stem Cells
Three types of dental mesenchymal stromal cells from different
pediatric donors were used in this experiment: dental pulp
stem cells from deciduous teeth (SHED−3 donors), dental
follicle stem cells (DFSC−2 donors), and stem cells from the
apical papilla (SCAP−3 donors). These cells were extracted

TABLE 1 | Overview of dental stromal cell donors.

Age Gender

Donor 1 12 Male

Donor 2 11 Female

Donor 3 8 Female

from teeth as previously described (4, 5, 8). Yet, criteria
recommended by The International Society for Cellular Therapy
were not systematically verified and our findings rely on the
extensive expertise of Prof. Benjamin Salmon (57–61) First, teeth
were decontaminated using a povidone-iodine solution. Second,
they were sectioned and exposed pulp tissues were collected.
Third, their tissues were enzymatically digested using a type I
collagenase and dispase solution. Finally, the cells were ready to
be cultured. After extraction, the cells were seeded at a density of
104 cells per cm². They were grown in Dulbecco’s Modified Eagle
Medium (DMEM) containing 1 g/l D-glucose, GlutaMAXTM

and 10% fetal bovine serum (FBS) at 37◦C with 5% CO2 in a
humidified incubator. Themediumwas refreshed every 2–3 days.
At 70–80% confluence the cells were passaged and seeded again
at 104 cells per cm², or frozen in liquid nitrogen for later use.
To be sure that the stem cells keep their phenotype, all stem
cells were used between passage 1 and 5. Once enough cells were
obtained they were seeded either into 8-chamber Labtek II slides
at 2 x 104 cells per well or in 24-well plates at 4 × 104 cells
per well (Greiner Bio-One, Frickenhausen, Germany) 24 h before
irradiation. Six wells in each Labtek were used, resulting in six
technical replicates. Each Labtek represented one time point per
dose. In the 24-well plates cells were seeded in triplicates. For
each cell type (SHED, SCAP, or DFSC), cells from three donor
children were used (N = 3). For each experiment, the cell type
from one donor child was considered as being one biological
replicate (Table 1).

X-irradiation Conditions
Samples were irradiated at the Belgian Nuclear Research Centre
(SCK CEN) with a XStrahl 320 kV Generator (Surrey, UK).
In this experimental design, it is of importance to mimic
commercially available Cone Beam Computed Tomography
devices as closely as possible. To this end X-rays with RQR9 beam
settings were used since it can be used to simulate entrance beams
used in diagnostic radiology. The X-ray tube used a tube voltage
of 120 kiloVolt and a current of 1.8 milliAmpere. The X-ray beam
was filtered by 2.9mm of aluminum. Using these parameters low
doses and lower dose rates can be achieved which allows the
simulation of diagnostic examinations. Using a dose rate of 900
mGy per hour the samples were irradiated with doses of 100 ±

1.9, 50± 0.9, 20± 0.38, 10± 0.19, and 5± 0.10 mGy.

Immunocytochemical Staining for γH2AX
and 53BP1
At specific time points after irradiation exposure (0.5, 1, 4, and
24 h) the culture medium was removed from the LabteksTM

(NuncTM, ThermoFisher Scientific, Waltham, MA, USA). Then
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the cells were washed twice using 1x phosphate buffered saline
(PBS). After washing, they were fixed in 2% paraformaldehyde
(PFA) in 1x PBS for at least 15min at room temperature (RT).
Next the PFA was removed and the cells were washed twice
with 1x PBS.

Fixed stem cells were double stained for γH2AX and 53BP1,
both markers for DNA DSBs. The 1x PBS was removed and
then the cells were permeabilized by incubating them in 0.25%
Triton X-100 in 1x PBS for 3min at RT. Then the cells
were washed three times in 1x PBS on a rocking platform.
Next the cells were blocked in pre-immunized goat serum
(PIG). The PIG was diluted (1:5) in Tris-HCl – NaCl blocking

buffer (50mM Tris-HCl, 150mM NaCl, 0.1% Tween 20, 0.5%
blocking reagent (FP1012, Perkin Elmer) (TNB). The cells
were blocked for 1 h at RT on a rocking platform, during
which the primary antibody solution was prepared. Primary
antibodies were diluted in TNB, the mouse anti-human γH2AX
monoclonal antibody (05-636, Millipore, Massachusetts, USA)
was diluted 1:300 and the rabbit anti-human 53BP1 polyclonal
antibody (NB100-304, Novus Biological, Abingdon, UK) was
diluted 1:1,000. After blocking, the cells were incubated with the
primary antibody solution for 1 h at 37◦C on a rocking platform.
After incubation, the cells were washed three times using 1x
PBS. Next the secondary antibody solution was prepared. An

FIGURE 1 | DNA double strand break formation and repair kinetics. (A) Dental pulp stromal cells from deciduous teeth show a significantly increased number of DNA

double strand breaks following irradiation with 50 and 100 mGy 30min and 1 h after radiation exposure. (B) The number of co-localized foci, observed in stromal cells

from the apical papilla after exposure to 100 mGy, was significantly increased compared to 0 mGy 30min, 1 and 4 h after irradiation (P < 0.0001, P < 0.0001, P =

0.0267, respectively). 50 mGy irradiated samples showed more foci 30min and 1 h p.i (P = 0.0018, P = 0.0004, respectively). (C) In dental follicle stromal cells, more

foci were observed 30min, 1 and 4 h after exposure to 100 mGy (P < 0.0001, P < 0.0001, P = 0.0374, respectively). Thirty minutes and one hour after exposure to

50 mGy and 30min after exposure to 20 mGy the amount of co-localized foci was increased as well in DFSC (P < 0.0001, P = 0.0015, P = 0.0030, respectively). The

number of foci returns to control levels 24 h after irradiation. (D–G) Representative image from stromal cells from the apical papilla taken 60min after irradiation with

100 mGy. The nucleus (D) shows five clear γH2AX (E) and 53BP1 (F) foci, which co-localize (G). *P ≤ 0.05; **P ≤ 0.001; ****P < 0.0001.
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Alexa fluor 488-labeled goat anti-mouse antibody (A11001, Life
Technologies, Oregon, USA) and an Alexa fluor 568-labeled goat
anti-rabbit antibody (A11011, Life Technologies, Oregon, USA)
were diluted 1:300 and 1:1,000 in TNB, respectively. The cells
were incubated with the secondary antibody solution for another
hour at 37◦C on a rocking platform. After this final incubation
step, the cells were washed twice using 1x PBS. Next the
chambers were removed from the Labteks R©. Then the samples
were mounted using Prolong R© Diamond Antifade Mountant
with 4’,6-diamidino-2-phenylindole (DAPI) (P36962, Molecular
ProbesTM by Life Technologies, Oregon, USA) as nuclear counter
stain. After mounting, the samples were stored at −20◦C
until imaging.

Images were acquired with a Nikon Eclipse Ti fluorescence
microscope using a 40x dry objective (Nikon, Tokyo, Japan).
Per technical replicate (n = 6 = number of chamber of a
LabtekTM used) at least 250 cells were counted. Afterwards,
the images were analyzed using Fiji open source software
(62). Fiji allows for analysis of each separate nucleus based
on the DAPI signal. Within each nucleus, the intensity signal
for the Alexa fluorophores were analyzed, after which the
number of co-localized γH2AX and 53BP1 foci per nucleus were
determined in a fully automated manner by using the Cellblocks
tool (63).

Cell Cycle Analysis
Cell cycle analysis was performed 1, 4, 24, and 72 h after
X-irradiation as described before (46). In short, dental stem
cells were treated with 10µM of BrdU for 1 h. Afterwards,
the cells were fixed with ice-cold 70% ethanol and stored for
a minimum of 24 h. Next, the cells were permeabilized and
stained with rat anti-BrdU antibody, diluted 1 in 600 (AB6326,
Abcam, Cambridge, UK). They were also stained with 10µg/ml
of a 7-amino-actinomycin D (7-AAD) solution (Sigma-Aldrich).
Samples were analyzed on a BD Accuri C6 flow cytometer, with

TABLE 2 | Linear dose response relationship of co-localized γH2AX and 53BP1

foci in dental stromal cells.

Cell type Time after

irradiation

Slope

(foci/mGy)

R²-value P-value

Dental pulp stromal cells from

deciduous teeth

(SHEDs)

30min 0.020 0.97 0.0003

1 h 0.022 0.99 <0.0001

4 h 0.008 0.96 0.0005

24 h −0.002 0.18 0.40

Dental follicle stromal cells

(DFSCs)

30min 0.026 0.99 <0.0001

1 h 0.020 0.91 0.003

4 h 0.008 0.75 0.025

24 h −0.0001 0.013 0.83

Stromal cells from the apical

papilla

(SCAPs)

30min 0.019 0.98 0.0002

1 h 0.022 0.99 <0.0001

4 h 0.009 0.94 0.0012

24 h 0.005 0.47 0.13

a maximum flow speed of 300 events per second. At least 20,000
cells were counted per sample.

Quiescence Assay
G0 phase cells were identified 1, 4, 24, and 72 h after X-irradiation
using a quiescence assay. Dental stem cells were fixed with ice-
cold 70% ethanol following X-irradiation. Next, the cells were
washed twice with 5% FBS (Gibco, Massachusetts, USA) and
0.25% Triton X-100 (Sigma-Aldrich, Missouri, USA) in 1x PBS
(PFT). Next, the cells were stained with 10µg/ml 7-AAD (A9400-
1MG, Sigma-Aldrich, Missouri, USA) and 0.4µg/ml pyronin Y
(83200-5G, Sigma-Aldrich, Missouri, USA) for 20min at RT.
Samples were analyzed on a BD Accuri C6 flow cytometer, with
a maximum flow speed of 300 events per second. At least 20,000
cells were counted per sample (64).

β-galactosidase Assay
Senescence was assessed 1, 3, 7, and 14 days after X-irradiation
using the senescence-associated β-galactosidase assay (ab65351,
Abcam, Cambridge, UK) (41). Cells were fixed for 15min at RT
using the fixative solution provided with the kit. Next the cells
were washed twice with 1x PBS. Then, the cells were stained
with 1 mg/ml X-gal solution at 37◦C for 18 h. Afterwards, the
staining was stopped by adding 1MNa2CO3. Next, the cells were
incubated for 1 h at RT with a Giemsa dye, diluted 1:50 in 0.2M
acetate buffer (pH = 3.36). Finally, the cells were washed twice
with Milli-Q water and allowed to air dry. At least 300 cells
per sample were analyzed using a Nikon Eclipse Ti bright field
microscope using a 5x dry objective (Nikon, Tokyo, Japan).

Enzyme-Linked Immunosorbent Assay:
IL-6, IL-8, IGFBP-2, and IGFBP-3
For senescence assays on cytokine secretion, supernatant was
collected 1, 3, 7, and 14 days following irradiation. Dental stem
cells were grown in 12-well plates. One milliliter of medium
was collected at each time point. After the supernatant was
collected, the cells were collected and counted by microscope.
Supernatant samples were used for the ELISA for the detection
of IL-6, IL-8, IGFBP-2, and IGFBP-3. ELISA was performed
following manufacturer’s instructions (DY206, DY208, DY674,
and DY675, R&D Systems). Briefly, 96-well plates were coated
overnight with a capture antibody. Next, the wells were washed
with washing buffer. Blocking buffer was added and the plate
was incubated for 1 h at RT. After blocking, the plate was
washed one with washing buffer. Next, the supernatant was
added and incubated for 2 h at RT. The plate was washed
again, after which the detection antibodies were added and the
plate was incubated for 2 h at RT. Next, the plate was washed
with washing buffer and a streptavidin-horse radish peroxidase-
labeled antibody was added and the plate was incubated
for 20min in the dark at RT. Then, the plate was washed
with washing buffer. Next, the substrate solution was added
and the plate was incubated for 20min in the dark at RT.
Afterwards, 2M H2SO4 was added to stop the substrate
reaction. The optical density was measured at 450 nm and
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570 nm using a spectrophotometer (CLARIOstar, BMG Labtech,
Offenburg, Germany).

Statistical Analysis
Statistical analyses were performed using GraphPad Prism 8.0.0
(GraphPad Software Inc., San Diego, USA). Graphs show mean
± standard error of the mean. Two-way analysis of variance
followed by post-hoc tests was performed to analyse both
time- and dose-dependent effects. P < 0.05 was considered
statistically significant.

RESULTS

Exposure to Low Doses of X-rays Induces
DSBs and Activates the DNA Damage
Response in Dental Mesenchymal Stromal
Cells
DNA DSB formation and repair kinetics were monitored in
dental mesenchymal stromal cells (SHED, DFSC, and SCAP),

that were isolated from pediatric donors, by microscopic analysis
of co-localized γH2AX and 53BP1 foci (N = 3). The number of
co-localized foci was determined 30min, 1, 4, and 24 h after X-
irradiation with 0, 5, 10, 20, 50, and 100 mGy (dose rate: 900
mGy/h; Figure 1). The number of co-localized foci increased
with increasing radiation dose. Typically, the peak response was
seen between 30 and 60min post-irradiation. After this period,
the number of foci decreased until baseline levels were reached
24 h after exposure. More specifically, in SHED, exposure to 100
mGy induced significantly more co-localized foci 30min and
1 h after irradiation compared to control cells (0 mGy) (P <

0.0001). A dose of 50 mGy also resulted in more co-localized
foci 1 h after irradiation compared to 0 mGy (P = 0.0303). In the
SCAPs, the number of co-localized foci, observed after exposure
to 100 mGy, was significantly increased compared to 0 mGy
30min, 1 and 4 h after irradiation (P < 0.0001, P < 0.0001, P =

0.0267, respectively). Furthermore, compared to control samples,
50 mGy irradiated samples showed more foci 30min and 1 h p.i
(P = 0.0018, P = 0.0004, respectively) and 20 mGy irradiated
samples showed more foci 1 h after irradiation (P = 0.0416). In

FIGURE 2 | Cell cycle analysis of dental pulp stromal cells from deciduous teeth. Dental pulp stromal cells from deciduous teeth (SHEDs) show a significantly

decreased number of G1/G0 phase cells 72 h following X-irradiation with 100 mGy. Coincidently, a significant increase in the number of G2/M phase cells was

observed. *P ≤ 0.05.
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DFSC, more γH2AX and 53BP1 co-localized foci were observed
30min, 1 h and 4 h after exposure to 100 mGy (P < 0.0001, P <

0.0001, P = 0.0374, respectively). Thirty minutes and one hour
after exposure to 50 mGy and 30min after exposure to 20 mGy
the amount of co-localized foci was increased as well in DFSC
(P < 0.0001, P = 0.0015, P = 0.0030, respectively). Furthermore,
linear regression plots show a linear dose response 30min, 1 h
and 4 h after irradiation. Moreover, the slope decreased over
time returning to a constant basal response 24 h after irradiation.
Our linear regression analysis also resulted in a slope of about
0.020 DNA DSBs per mGy (Table 2). No difference in radiation
sensitivity was observed between the different stromal cell types.

Cell Cycle Progression Is Not Influenced by
Low Doses of X-rays in Dental
Mesenchymal Stromal Cells
Analysis of the percentage of cells that reside in a specific phase
of the cell cycle has revealed that exposure to low doses of

FIGURE 3 | Dose response of the percentage of G0 phase dental pulp stromal

cells from deciduous teeth and stromal cells from the apical papilla following

low dose X-irradiation. The percentage of G0 phase cells is plotted against the

time after X-irradiation. Significances are summarized in the Table 3.

X-rays (< 100 mGy; 900 mGy/h) does not induce major cell
cycle changes in dental stromal cells (SHEDs sand SCAPs) (N
= 3 for each cell type), while a high dose of 2Gy of X-rays does
(500 mGy/min; Supplementary Figure 1). Except for a slightly
reduced number of G1/G0 phase cells 72 h after irradiation in
SHED (P = 0.019) and a slight increase in G2/M phase cells
72 h after irradiation in SHED (P = 0.040) following a dose
of 100 mGy, no changes were observed (Figure 2). We did
observe that the amount of G1/G0 phase cells increases over
time, whereas the amount of S- and G2/M phase cells decreases
over time, with almost no more cells in the S-phase after 72 h.
Positive controls after exposure to 2Gy of X-rays can be found in
Supplementary Figure 1.

Low Dose X-irradiation Rapidly Decreases
the Amount of Quiescent Cells
The effect of exposure to low doses of X-rays on cellular
quiescence, determined by measuring the percentage of G0 phase
cells, was most pronounced 1 h after irradiation with 100 mGy.
This was observed in SHEDs and SCAPs (N = 3). However,
SHEDs showed still significant dose-dependent decreases in the
percentage of quiescent cells 4 and 72 h after irradiation (Figure 3
and Table 3). In SCAPs, only a decrease was seen 1 h after
irradiation with 100 mGy (P = 0.030). It was also observed that
the number of G0 decreased significantly over time (Figure 3 and
Table 3).

Low Dose Radiation Does Not Induce
Premature Senescence in Dental
Mesenchymal Stromal Cells
Enzyme-linked immunosorbent assay (ELISA) for SASP markers
IL-6, IL-8, IGFBP-2, and IGFBP-3 showed no signs of radiation-
induced premature cellular senescence in SHEDs, DFSCs, and
SCAPs up to 14 days after exposure (N = 3 for each cell type).
Although the values for IL-6 and IL-8 in SHEDs increased
significantly 14 days after irradiation exposure, this was mostly
due to the time in culture, rather than a radiation-induced effect
(Ptime = 0.006 and Ptime = 0.004, respectively). Levels of IGFBP-
2 in SHEDs showed changes over time, but overall there was a
decreasing trend, which was not influenced by radiation dose

TABLE 3 | Significant differences in the percentage of quiescent cells in dental

stromal cells.

Comparison Dental pulp stromal

cells from

deciduous teeth

(P-value)

Stromal cells from

the apical papilla

(P-value)

1 h:CTRL vs. 50 mGy 0.0107 N.A.

1 h:CTRL vs. 100 mGy <0.0001 0.0296

1 h:20 mGy vs. 100 mGy 0.0011 N.A.

4 h:CTRL vs. 50 mGy 0.0072 N.A.

4 h:CTRL vs. 100 mGy 0.0064 N.A.

72 h: CTRL vs. 100 mGy 0.0025 N.A.

72 h:20 mGy vs. 100 mGy 0.0145 N.A.
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(Ptime = 0.022). Finally, in SHEDs, IGFBP-3 showed a time
dependent increase (Ptime = 0.005; Figure 4).

The data from SASP markers were confirmed by the
β-galactosidase assay (41). Data from dental stromal cells show
that there is an increase in the percentage of senescent cells, but
this increase is time-dependent. Low dose radiation exposure
(<100 mGy; 900 mGy/h) does not induce cellular senescence in
SHEDs, DFSCs, and SCAPs (N = 3 for each cell type; Figure 5).

DISCUSSION

Determining the biological effects of low dose IR exposure is
currently the greatest challenge in radiation protection. We
aimed to investigate the DDR and its consequences in human
dental mesenchymal stromal cells (i.e., SHEDs, DFSCs, and
SCAPs) after exposure to X-ray doses with the use of medical
imaging beam settings (<100 mGy; 900 mGy/h). SHEDs, DFSCs,
and SCAPs are dental mesenchymal stromal cells defined as

non-clonal cultures of stromal cells containing stem cells with
different multipotent properties, committed progenitors, and
differentiated cells. MSCs support the maintenance of other cells,
and the capacity of MSCs to differentiate into several cell types
makes the cells unique and full of possibilities (65). Therefore,
maintaining the genetic stability of MSCs is of paramount
importance. MSCs can accumulate genotoxic damage following
IR exposure, which is either repaired efficiently, or they can
accumulate irreversible damage. This persisting damage could
lead to malignant transformation of the stem cells (1).

The formation and repair kinetics of DNA DSBs was
monitored via γH2AX/53BP1 immunostaining. Additionally, the
impact of low dose radiation on cell cycle progression, cellular
quiescence and premature cellular senescence were investigated.
We report a significant increase in the amount of DNA DSBs
30min and 1 h after low dose IR exposure (<100 mGy; 900
mGy/h). As γ-H2AX foci may not always be associated with
DNA DSB, co-localization with repair proteins 53BP1 has thus
been used to further optimize the sensitivity of DNA DSB

FIGURE 4 | Senescence-associated secretory phenotype (SASP) proteins secretion in dental pulp stromal cells from deciduous teeth (SHEDs) following low dose

ionizing radiation exposure. The amount of interleukins (IL)-6 and IL-8, as well as the levels of insulin-like growth factor binding proteins (IGFBP)-2 and IGFBP-3 are

indicate as normalized by the amount of cells. Two-way analysis of variance shows that time after exposure is the major contributor to the observed effects

(Ptime = 0.023).
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FIGURE 5 | β-galactosidase assay in dental mesenchymal stromal cells. The

percentage of senescent cells are indicated as normalized to the levels of the

control samples at day 1 post-irradiation. Two-way analysis of variance shows

that time after exposure is the major contributor to the observed effects (Ptime
< 0.0001 for all cell types).

quantification (66, 67). Repair kinetics clearly showed that the
number of DSBs in dental stromal cells returned to baseline levels
24 h after IR exposure. Despite the DNA DSBs being repaired,

there is a possibility that misrepair has occurred as a consequence
of non-homologous end joining (68, 69). Furthermore, a slight
G2/M phase arrest was seen 72 h after irradiation in SHEDs, but
not in SCAPs or DFSCs. Next, IR exposure resulted in reduced
levels of G0 cells in SHEDs and SCAP. However, in SCAP the
decrease was only statistically significant 1 h after irradiation and
only for irradiation with 100 mGy. For SHEDs, on the other
hand, also 4 and 72 h after irradiation a statistically significant
decrease was observed. Finally, low dose X-ray exposure (<100
mGy; 900 mGy/h) did not result in radiation-induced premature
senescence in SHEDs, DFSCs, and SCAPs.

It is well-known that exposure to X-rays can induce
DNA DSBs, which are considered very harmful because
unrepaired/misrepaired DSBs could result in mutations,
chromosome rearrangements/aberrations, and loss of genetic
information (28, 66, 70, 71). Our results show that exposure to
low dose IR with medical imaging beam settings (< 100 mGy;
900 mGy/h) induces significant increases in the number of
DNA DSBs in dental mesenchymal stromal cells 30–60min after
irradiation (72). Similar results have been reported in human
mesenchymal stem cells before (3, 47, 73–77). However, some
studies report a persistent increase of γH2AX foci up to 48 h
after irradiation, which was not observed in our study (3, 73, 74).
Linear regression analysis showed that the number of DNA
DSBs increases linearly with the IR dose. The slopes in SHEDs,
DFSCs and SCAPs ranged from 0.019 to 0.026 DNA DSBs per
mGy. This is equivalent to 19–26 DNA DSBs per Gy, which is
consistent with data published previously (24, 78–81).

The formed DNA DSBs did not affect cell cycle progression
in SCAPs, but we did observe a slight G2/M phase arrest in
SHEDs 72 h following 100 mGy exposure. Although this increase
was minimal, it was statistically significant. This is in line with
previous publications indicating that cells exhibit G2/M phase
arrest following exposure to high IR doses (37–39, 47). However,
there are data indicating that exposure to high doses of IR results
in G1 arrest in mesenchymal stem cells (75). Furthermore, the
lack of cell cycle changes in SCAPs is in line with data from
Kurpinski et al., who also observed no changes in cell cycle
distribution in bone marrow mesenchymal stem cells following
X-irradiation with 100 mGy (82). Our data, taken together with
data from literature, indicate that the effect of X-irradiation on
cell cycle progression is cell type dependent.

Our cell cycle data reveal minimal changes in the G1/G0 phase
of the cell cycle. However, our data show for the first time a
significant decrease in the amount of quiescent or G0 phase cells
in SHEDs 72 h after X-irradiation with 100 mGy (dose rate: 900
mGy/h). This would indicate that if the amount of G1/G0 phase
remains constant, but the amount of G0 phase cells decreases,
that the amount of G1 phase cells increase proportionally to the
decrease of G0 phase cells. This indicates that low doses of IR
stimulate SHEDs to re-enter the cell cycle. It has been described
that certain extrinsic stresses such as IR-induced reactive oxygen
species, which are generated by radiolysis of water following IR
exposure, can stimulate stem cell to re-enter the cell cycle (83).
This could, at least partly, explain our observations.

Finally, we did not observe radiation-induced cellular
senescence following exposure to low doses of IR except for
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SHEDs where a slight increase in G2/M arrest was observed
72 h after irradiation with 100 mGy (dose rate: 900 mGy/h).
However, our data clearly showed a time-dependent induction
of senescence. This was seen both in results from the X-gal
assay, which is considered the gold standard, as in analysis of
the SASP. It has been reported before that high doses of IR
can induce cellular senescence in mesenchymal stem cells (47–
49, 51, 84). However, evidence of low dose IR-induced senescence
is scarce (3, 85) and contradict our data. On the other hand,
there are studies that support our findings (74, 86). Due to these
contradicting data and the fact that low dose radiation-induced
senescence is poorly investigated, it is impossible to conclude at
this time whether low doses of IR do cause cellular senescence
in these cell or not. More detailed studies on this matter are
warranted (13).

In addition, future research from our studywould benefit from
the investigation of cell apoptosis and cell proliferation. Indeed,
analysis of cell apoptosis would increase our understanding if
after DNA damage the processes of cell death are triggered
or not. Analysis of cell proliferation would confirm the results
shown with the analysis of the cell cycle and could highlight
a possible change in proliferation as a result of DNA damage.
Other techniques for investigating cellular senescence, such as
looking at different protein levels by Western Blotting, would
clarify the relationship between senescence and cell cycle status
after low dose IR. Differentiation potential after low dose IR
exposure would also be an additional point to investigate. In
conclusion, we found that exposure of dental mesenchymal
stromal cells to low doses of X-rays with medical imaging
beam settings (<100 mGy; 900 mGy/h) results in the induction
of DNA DSBs and that the number of DNA DSBs increases
linearly with the radiation dose. After 24 h, these DNA DSBs
are efficiently repaired and returned to baseline levels. Yet, how
these initial DNA DSBs affects long-term functionality of dental
mesenchymal stromal cells is inconclusive. We report for the first
time, to the best of our knowledge, that exposure to low IR doses
results in an acute dose-dependent decrease in the number of
quiescent SHEDs and SCAPs, which is still observed 72 h after
irradiation after X-irradiation in SHEDs. However, we did not
find adverse effects on cell cycle progression. No persistent cell
cycle changes, nor induction of premature cellular senescence
were observed. Although this is in line with previous studies,
there are also studies indicating that low doses of IR, albeit
with different beam qualities, can cause cell cycle arrest and
senescence. Our data highlight the need for more detailed and
extensive studies on the effects of exposure to low doses of IR as
used in CBCTs.
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