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Abstract 

 The novel benzimidazol-2-yl-fur-5-yl-(1,2,3)-triazolyl dimeric series with aliphatic 

and aromatic central linkers was successfully prepared with the aim of assessing binding 

affinity to DNA/RNA and antitrypanosomal activity. UV-Visible spectroscopy, thermal 

denaturation and circular dichroism studies indicated strong and selective interaction of 

heterocyclic bis-amidines with ctDNA and revealed minor groove binding as the 

dominant binding mode. The amidino fragment and 1,4-bis(oxymethylene)phenyl spacer 

were the main determinants of activity against Trypanosoma brucei. The bis-

benzimidazole imidazoline 15c, which had antitrypanosomal potency in the 

submicromolar range and DNA interacting properties, emerged as a candidate for further 

structural optimization to obtain more effective agents to combat trypanosome infections. 

 

Keywords: bis-benzimidazoles, ctDNA binding, UV-Vis, CD spectroscopy, thermal 

denaturation, Trypanosoma brucei 
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1. Introduction 

 Neglected tropical diseases (NTDs) affect more than 1 billion people, around 15% of 

the world's population [1]. Human African trypanosomiasis (HAT), or sleeping sickness, 

is one of the most deadly NTDs, with 65 million people at risk in 36 countries [1–4]. It is 

caused by two subspecies of the protozoan parasite Trypanosoma brucei, which are 

transmitted to humans through the bite of tsetse flies in sub-Saharan Africa. 

 Aromatic diamidines have had several applications in antiparasitic therapy, with 

well-known examples such as berenil and pentamidine [5–7]. Although the bis-

benzamidine derivative, pentamidine (Figure 1), has been used clinically against 

trypanosomiasis for over 70 years [8–10] it is not effective when given orally, can cause 

severe toxicity, and is unable to kill parasites which have breached the blood-brain barrier 

during stage 2 HAT [10–12]. A related diamidine, berenil, is not currently used in 

humans, but it is important for control of animal trypanosomal diseases, which inflict a 

huge economic burden in sub-Saharan Africa [13]. Additionally, pafuramidine (DB289), 

which is the oral prodrug of furamidine (DB75) was recently evaluated in phase III 

clinical trials [14]. Unfortunately, these trials had to be discontinued due to hepatic and 

renal toxicity [15]. Although aromatic diamidines have been used in the treatment of 

protozoal diseases for many years, their precise mechanism of action is not fully 

understood. Various targets have been suggested, including both mitochondrial and 

nuclear DNA, microtubules, acidocalcisomes, and a range of enzymes [10,12,16–19].  

 Current therapies for HAT are unsatisfactory and under threat from emerging 

resistance, what is frequently linked to the activity of transporters responsible for drug 

uptake [20,21]. This has prompted the search of benzimidazole derivatives that are more 

efficacious for combating this fatal infection [22–25]. As an example, 

amidinobenzimidazoles have been developed as potent anti-trypanosomal agents [26–29]. 

Additionally, it has been shown that introduction of nitrogen atoms into the aromatic 

system of furamidine changes the lipophilicity and polarity of the heterocyclic core, 

generating aza analogs that may cross the blood brain barrier (Figure 1) [12,19,21]. Thus, 

diphenyl furan-based and aza analogs have been developed as candidates for treatment of 

second-stage HAT. Diamidines containing a 1,2,3-triazole ring as the central core were 
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the first aromatic members of this class of molecule to show efficacy superior to that of 

melarsoprol [30].  

 

Fig. 1. Structure of compounds with potent antitrypanosomal activities and novel 

symmetric bis-benzimidazoles 13a–13f, 14a–14f, 15a–15f and 16a–16f. 

 Based on these studies, and in continuation of our recent work on the development of 

aromatic amidines as DNA-binding ligands [31,32] and anti-trypanosomal agents [33,34], 

we aimed here to expand the benzimidazole scaffold to 5-membered furyl and 1,2,3-

triazolyl moieties that may adopt helical topology to approximately match the curvature 

of DNA in the minor groove. Design strategy led to a symmetric series of bis-

(benzimidazol-2-yl-fur-5-yl-azole) derivatives connected via aliphatic and aromatic 

linkers (Figure 2). In this context, the influence of diverse linkers and the type of 5-

amidine and 5-halogen substituents in bis-benzimidazoles 13a–13f, 14a–14f, 15a–15f 

and 16a–16f on their DNA/RNA binding affinity and antiprotozoal activity has been 

explored. Here, we describe the synthesis of novel symmetric bis-benzimidazoles and 
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their DNA/RNA binding affinities as assessed by UV-Vis and CD spectroscopy, as well 

as thermal denaturation experiments. Antitrypanosomal potencies of the novel 

compounds were evaluated and their structure-activity relationship (SAR) is discussed. 

To better understand the mode of DNA binding, we performed molecular modelling of 

the most potent trypanocidal compound (15c) when bound to the minor groove of DNA. 

2. Results and Discussion 

2.1. Chemistry 

 Synthesis of novel symmetric bis-benzimidazol-2-yl-fur-5-yl-(1,2,3)-triazolyl 

derivatives (13a–13f, 14a–14f, 15a–15f and 16a–16f) was carried out as outlined in 

Scheme 1. A one-pot route in biphasic mixture HCl-H3PO4/CHCl3 was applied for 

efficient conversion of D-fructose (1) to 5-chloromethylfurfural (2), as described in 

literature [35,36], which then in reaction with sodium azide, gave rise to 5-

azidomethylfurfural (3). The key precursors, symmetric bis-triazolyl aldehydes connected 

through 1,3-propylene (8), oxydimethylene (9), 1,4-bis(oxymethylene)phenyl (10), 4,4’-

bis(oxymethylene)biphenyl (11) linkers were synthesized by Cu(I)-catalyzed 1,3-

cycloaddition of the azide 3 with corresponding terminal bis-alkynes (4–7), using 

microwave irradiation. A click reaction produced bis-(1,2,3-triazolyl) aldehydes 10 and 

11 linked through an aromatic spacer, with excellent yield (ca. 98%), while bis-(1,2,3-

triazolyl) aldehydes 8 and 9 connected through an aliphatic chain were obtained in lower 

yield (ca. 36%). Amidino-substituted o-phenylenediamines (12a–12c) were prepared by 

the Pinner method as previously reported in the literature [37]. Condensation of various 

o-phenylenediamines (12a–12f) with bis-(1,2,3-triazolyl) aldehydes (8–11) using 

NaHSO3 or p-benzoquinone, as an oxidative reagent, afforded the target bis-

benzimidazole derivatives with 5-amidino- (13a–13c, 14a–14c, 15a–15c and 16a–16c), 

5-fluoro- (13d–16d) and 5-chloro-substituted (13e–16e), as well as non-substituted 

benzimidazoles (13f–16f). 
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Scheme 1. Reagents and conditions: (i) HCl: H3PO4 = 4: 1, CCl3, 45 °C, 20 h; (ii) NaN3, 

AcCN, reflux, 24 h; (iii) terminal alkyne, Cu(0), CuSO4, t-BuOH: H2O = 1: 1, DMF, 

MW, 300 W, 80 °C, 1.5 h; (iv) NaHSO3/p-benzoquinone, EtOH, reflux, 6 h. 

2.2. Spectroscopic characterization of novel bis-benzimidazoles 

 The spectroscopic characterization of novel 5-amidino- and 5-halogen-substituted 

benzimidazoles (13a–13f, 14a–14f, 15a–15f and 16a–16f) was explored by UV-Vis 

spectroscopy. Absorption maxima and the corresponding molar extinction coefficients (ε) 



7 
 

are given in Table S1 (Supplementary Information). The changes of the UV-VIS spectra 

when the temperature was raised to 95 °C were negligible, and the reproducibility of UV-

Vis spectra upon cooling back to 25 °C was excellent. Solutions of the studied 

compounds were stable for many days at room temperature, confirming that all 

compounds were suitable for further biophysical and biological investigations. The 

absorbances of compound solutions were proportional to their concentrations between 2 x 

10-6 and 5 x 10-5 moldm−3 indicating that they would not aggregate by intermolecular 

stacking under the experimental conditions used.  

2.3. Spectrophotometric titrations of compounds with ds-polynucleotides  

 UV-Vis absorption measurement is a simple but effective method for detecting 

complex formation. In general, when a small molecule interacts with DNA/RNA and 

form a new complex, changes in absorbance and the position of the absorption maxima 

should occur [38,39]. The interaction of compounds 13a–13f, 14a–14f, 15a–15f and 

16a–16f towards ctDNA and polyA-polyU were investigated by UV-Vis spectroscopy in 

a solution of phosphate buffer and DMSO (0.1%). When aliquots of dissolved ctDNA 

were added to the compound solutions, a hypochromic effect (8-45%) was observed, 

indicating the disappearance of the free molecule and the formation of a new compound-

DNA complex (Figure S1, Supplementary Information).  

 Spectrophotometric titration of compounds 13a–13f and 14a–14f, which contain an 

aliphatic linker with both polynucleotides, resulted in a pronounced decrease of the 

absorption maxima at λ > 300 nm (Table 1, Figure S1, Supplementary Information). 

Except for 15c, which interacts with both polynucleotides, other compounds from the 

15a–15f series containing a 1,4-bis(oxymethylene)phenyl linker were selective for 

ctDNA. The only exceptions were compounds from the 16a–16f series, which did not 

display shifts in the UV-Vis absorption maxima. In the UV-Vis spectra of compounds 

14b, 14c, 13c, 13f and 15a−15c, decreases in absorption maxima were followed by 

bathochromic shifts (Δλ = 5-10 nm) upon addition of ctDNA. Further addition of the 

ctDNA resulted in increased absorption maxima (Figure S1). These results suggested that 

the above mentioned compounds could form at least two different types of complex. 

Therefore, binding constants (Ks) were calculated at the r ≥ 0.15 (r = 
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[compound]/[ctDNA]). At this ratio, changes in absorption maxima were too small for 

accurate calculation. 

 To assess the sequence selectivity of the compounds, the experiment was repeated 

with ds-RNA (polyA-polyU) (Figure S1). The addition of polyA-polyU to solutions of 

compounds containing an aliphatic linker, 13a–13f (with the exception of 13e) and 14a–

14f, induced a hypochromic (10-52%) effect in their UV-Vis spectra. Furthermore, the 

hypochromic effect was accompanied by a small bathochromic (2-8 nm) shift in the UV-

Vis spectra of the unsubstituted amidine and imidazoline derivatives 14a, 14c, 13a and 

13c, as a result of complex formation. Titration of compounds with an aromatic linker, 

15a–15f (with the exception of 15c) and 16a−16f, with polyA-polyU did not show any 

changes in UV-Vis spectra. 

Table 1 

Hypochromic effects (H/%)a, binding constants (logKs)b and ratios nc 

([compound]/[polynucleotide phosphate]) calculated from the UV-VIS titrations of 

compounds with ds-DNA/RNA (at pH 7, PBS, I = 0.015 M). 

Compd 
ctDNA polyA-polyU 

H/%c log Ks n H/%c log Ks n 

13a 13.3f 6.61 0.05 45.9 5.70 0.3d 

13b 24.0f 6.33 0.09 32.3 5.69 0.58 

13c 17.0f 7.62 0.05 32.1 6.83 0.42 

13d 45.8 6.56 0.15d 26.6 7.12 0.84 

13e 27.2 7.04 0.05d NB NB NB 

13f 44.6 6.55 0.19 9.9 6.54 0.13d 

14a 36.6 5.93 0.47 24.4 6.65 0.43d 

14b 20.5f 5.68 0.67 12.9 6.16 0.30d 

14c 28.1 6.23 0.89 3.4 7.17 0.85d 

14d 35.4 5.93 0.47 51.2 6.43 0.35 

14e 35.3 5.21 0.21 52.2 5.12 0.19 

14f 35.8 6.22 0.29 41.1 5.76 0.31 

15a 8.7 6.80 0.3d 11.3e - - 

15b 23.2f 7.31 0.9d 41.5e - - 

15c 5.9 f 6.05 0.18 10.7 - - 

15d 24.5 5.92 0.17 NB - - 

15e 26.7 6.33 0.65 NB - - 

15f 35.2 6.18 0.10 6.0e - - 
[a] Hypochromic effect calculated by Scatchard for compounds;  

H = (Abs(compound) –Abs(complex)) / Abs(compound) x 100 
[b] Titration data were processed according to the Scatchard equation 
[c] Accuracy of n ± 10-30%, consequently logKs values vary in the same order of magnitude. 
[d] n = fix 
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[e] Hypochromic effect calculated from experimental data: (Abs(compound) –Abs(complex)) / Abs(compound) x 100 

− = changes were too small for accurate calculation of binding constants  
[f] mixed binding mode, binding constant were calculated in range r ≥ 0.1  

NB = no bindng 

 Overall, the results of spectrophotometric titration of the 13a–13f, 14a–14f and 15a–

15f series of compounds showed that they had higher affinity for ctDNA than for polyA-

polyU. Since compounds 16a–16f did not show affinity for either polynucleotide, it can 

be concluded that the 4,4’-bis(oxymethylene)biphenyl linker had a detrimental effect on 

the interaction. Therefore, these compounds were not evaluated in further DNA/RNA 

binding assays.  

2.4. Thermal denaturation experiments 

 The evaluation of the DNA/RNA melting temperature (Tm) as a result of ligand 

intercalation or minor grove binding can be used as an indicator of the interaction 

between compounds and polynucleotides [40–42]. Temperature-dependent DNA 

denaturation is associated with changes to the absorbance spectrum of the biomolecule as 

the result of the breakage of hydrogen bonds between base pairs. Accordingly, to assess 

the binding affinity of synthesized compounds towards DNA/RNA, the Tm values of 

ctDNA and polyA-polyU, in the absence and presence of the symmetrical bis-

benzimidazoles, were measured (Table 2). 

Table 2 

ΔTm values of compounds with ctDNA and polyA-polyU upon addition of compounds at 

different ratio ra (PBS, pH = 7).b  

Compd 
ctDNA polyA-polyU 

0.1 0.3 0.5 0.1 0.3 0.5 

13a 13.56 12.96 13.84 1.51 

33.49c 

0.61 

37.3c 

9.27 

27.6c 

13b 13.77 14.48 14.77 0.90 

49.71c 

0.53 

49.71c 

0.82 

44.01c 

13c 13.48 13.79 19.12 1.58 1.75 

18.95c 

2.70 

17.05c 

13d 0.81 1.28 1.97 0.80 1.27 2.03 



10 
 

13e 2.09 4.06 2.49 - - - 

13f 2.61 1.16 3.21 0.30 0.30 0.20 

14a 9.19 10.43 12.47 2.22 3.47 

32.83c 

3.25 

30.67c 

14b 8.06 9.70 11.07 1.28 2.01 1.61 

14c 12.38 12.68 12.54 3.47 4.01 

40.8c 

ND 

14d 0.37 0.46 0.13 0.99 0.99 

16.17c 

1.00 

27.08c 

14e 0.73 1.18 2.61 0.99 

33.45 c 

0.58 

33.45c 

0.56 

34.57c 

14f 0.56 0.72 1.11 0.56 0.37 

35.49c 

0.58 

33.04c 

15a 9.53 10.69 12.32 - - - 

15b 7.98 10.96 12.16 - - - 

15c 8.17 8.94 ND 2.73 2.21 - 

15d 0.51 1.19 3.36 - - - 

15e 0.72 1.50 2.02 - - - 

15f 2.82 3.20 2.56 - - - 
a r = [compound]/[polynucleotide] 
bError in ΔTm: ±0.5 °C. 
c Biphasic melting curve, values for both melting midpoints were given when possible 

− = no binding  

 Generally, the denaturation experiments indicated a higher affinity of the compounds 

to ctDNA than to the polyA-polyU polynucleotide. This was also confirmed with 

spectrophotometric titrations. Furthermore, amidine derivatives 13a–13c, 14a–14c and 

15a–15c showed higher stabilization of ctDNA compared to non-amidines 13d–13f, 

14d–14f and 15d–15f, confirming the impact of the amidine moiety on DNA/RNA 

interactions. Thus, a significant binding affinity was found for 13a–13c, 14a–14c and 

15a–15c, which showed the highest ΔTm values (> 9 °C) for ctDNA (r = 0.3). 

Conversely, all compounds showed slight enhancement in thermal stabilities for polyA-

polyU. Moreover, while melting transitions in ctDNA experiments were typically 

monophasic, in the polyA-polyU experiments, strong biphasic transitions occurred, with 

the exception of 14b, 13f, 13d and 15c (Table 2). This indicates a secondary binding 

mode, i.e. agglomeration of these compounds along the polynucleotide. 
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2.5. Circular Dichroism (CD) experiments 

 Circular dichroism (CD) experiments can be used to determine binding and 

conformational changes of polynucleotides. The peak observed at 275 nm relates to – 

stacking of the DNA bases, and the peak at 245 nm indicates the helicity, which is 

characteristic of DNA in right-handed B form. The binding mode of achiral small 

molecules within the chiral DNA/RNA helix can result in an induced CD spectrum 

(ICD). Compounds that bind into the minor groove of DNA can induce a new peak in the 

spectrum, arising from the coupling of electronic transition moments of the ligand and 

DNA bases in an achiral environment 43,44. 

The results of CD studies indicated clear changes in the CD spectra for amidine 

derivatives 13a–13c, 14a–14c and 15a–15c (Figure S2, Supplementary Information); the 

negative band showed slight hyperchromicity, while the positive band exhibited 

significant hypochromicity and a bathochromic shift associated with the partial disruption 

of the polynucleotide helical chirality caused by the binding of a small molecule. 

Importantly, a strong induced CD signal (ICD) in the range of 300–500 nm appeared. 

Furthermore, the positive ICD band suggests that the compounds are positioned along the 

minor groove, identifying this as the dominant binding mode. 
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Fig. 2. Induced CD spectra of dimeric compound 15a (a), compound 15b (b) and 

compound 15c (c) with ctDNA (r = 0–0.7). 

 

Conversely, when non-amidine derivatives 13d–13f, 14d–14f and 15d–15f were 

combined with ctDNA, there was little or no perturbation of base stacking, with the 

helicity bands retaining their basic shape (Figure S2, Supplementary Information).  

These findings are in agreement with UV-Vis titrations and denaturation 

experiments, which also indicated the lower affinity of these compounds compared to 

amidine derivatives. Most likely, the lack of the amidine groups, which are able to form 

additional H-bonds with bases, decreases the possibility that stable complexes could 
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form. The strongly non-linear dependence of the ICD intensity at > 300 nm is in 

agreement with the calculated values of the UV-Vis titrations and ratios obtained in 

denaturation experiments. The binding mode of the novel compounds was further 

investigated by measuring their induced CD in the presence of polyA-polyU. In contrast 

to ctDNA, the addition of polyA-polyU to unsubstituted amidine derivatives (Figure S2, 

Supplementary Information) resulted in hypochromicity and a bathochromic shift of the 

CD band at 263 nm. Positive ICD bands appeared at 300 nm, indicating groove binding 

as the dominant binding mode. Isopropylamidine derivatives showed low affinity for 

polyA-polyU. Interestingly, the ICD spectra of imidazoline derivatives 13c, 14c and 15c 

showed a negative signal at > 300 nm, which may indicate intercalation as a possible 

binding mode. Moreover, minimal changes in CD spectra upon addition of non-amidine 

compounds to polyA-polyU were observed. This is in agreement with the results on UV-

Vis titration and denaturation experiments.  

2.6. Screening of the antitrypanosomal activity and structure-activity relationship (SAR) 

Results of the in vitro testing of novel bis-benzimidazol-2-yl-fur-5-yl-(1,2,3)-

triazolyl derivatives 13a–13f, 14a–14f, 15a–15f and 16a–16f and nifurtimox, as a 

reference drug, against bloodstream form T. brucei are summarized in Table 3. The 

cytotoxicity of the most active compounds (IC50 < 5 M) was also assessed using the rat 

myoblast cell line L6. 

Table 3 

Antitrypanosomal activitya of compounds 13a–13f, 14a–14f, 15a–15f and 16a–16f 

against Trypanosoma brucei strain.  

 

Compd R X 
T. brucei L6 cells SIc 

IC50 /μM IC90 /μM IC50 /μM  

13a 
 

CH2 3.6  0.4 5.5  0.2 198 + 3 55 

13b 
 

CH2 5.1  0.2 8.2  1.0 104 + 3 20 



14 
 

13c 

 

CH2 3.9  0.3 5.4  0.1 216 + 21 55 

13d F CH2 4.0  0.2 8.9  0.6 221 + 12 55 

13e Cl CH2 3.0  0.3 7.2  0.7 >300 >100 

13f H CH2 15 - - - 

14a 
 

O 3.3  0.3 4.7  0.1 88.6 + 2.1 25 

14b 
 

O 7.9  0.1 10.8  0.1 - - 

14c 

 

O 3.8  1.0 6.0  0.4 122 + 3 30 

14d F O 7.9  0.3 >25 - - 

14e Cl O 6.4  0.6 11.8  1.1 - - 

14f H O 15 - - - 

15a 
  

1.3   0.1 5.6  0.4 39.6 + 2.0 30 

15b 
 

 
1.5  0.1 2.8  0.4 121 + 5 80 

15c 

 
 

0.75  0.15 1.5  0.1 60.7 + 3.1 80 

15d F 
 

3.4  0.2 6.7  1.0 219 + 41 65 

15e Cl 
 

1.4  0.2 2.5  0.4 >270 >190 

15f H 
 

15 - - - 

16a 
  10 - - - 

16b 
 

 10 - - - 

16c 

 
 10 - - - 

16d F  15 - - - 

16e Cl  0.37  0.06 9.7  0.03 30.4 + 6.1 80 

16f H  10 - - - 

Nifurtimox - - 4.4 ± 0.7b -   
a In vitro activity against bloodstream form of T. brucei expressed as the concentration that inhibited growth by 50% (IC50) and 90% 

(IC90). Data are the mean of triplicate experiments ± SEM. 
b Taken from ref. [45]. 
c Selectivity index: IC50 Tb/L6 cells. 

 

The effects of both substituents at the 5-position on the benzimidazole moiety and 

varied aliphatic and aromatic central linkers were investigated (Figure 3). With the 

exception of the 5-unsubstituted benzimidazoles 13f, 14f and 15f and the bis-

benzimidazoles 16a–16d and 16f, which have a 1,4-bis(oxymethylene)phenyl linker, all 
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compounds showed good activity against T. brucei, with IC50 values ranging from 0.75 

µM to 7.9 µM. Among the 5-amidinobenzimidazoles, non-substituted amidines and 

imidazolines exhibited better potencies than their N-isopropyl-substituted counterparts. 

Similarly, non-substituted amidine 13a, 15a and imidazoline 13c, 15c benzimidazoles 

were generally the most active compounds, and were also more potent than nifurtimox. 

From non-amidine substituted benzimidazoles, antitrypanosomal activities decreased in 

the following order: Cl > F > H. 5-unsubstituted benzimidazoles 13f−16f had no 

significant potency against T. brucei (IC50 > 10 µM), revealing that 5-substitutions in the 

benzimidazole are crucial for activity. Assessment of the effect of central linkers in the 

symmetric bis-benzimidazoles on antitrypanosomal potencies, showed that compounds 

bearing propylene (13a–13f) and oxydimethylene (14a–14f) linkers exhibited comparable 

activities, indicating that the aliphatic spacer was not a determinant of the activity. 

However, the placement of aromatic linkers did significantly affected potency against T. 

brucei. For example, compounds with 1,4-bis(oxymethylene)phenyl were devoid of 

activity. The only exception was 5-chlorobenzimidazole 16c, which exerted a strong 

inhibitory effect (IC50 = 0.37 µM), although its IC90 value of 9.7 µM was relatively high 

compared to the majority of the 5-substituted bis-benzimidazoles. In contrast, the 4,4’-

bis(oxymethylene)biphenyl linker increased the trypanocidal activity (IC50 = 0.75-3.4 

µM) of 5-substituted benzimidazoles 15a–15e. Compound 15c, which contains both the 

imidazoline fragment and the 1,4-dimethoxyphenyl spacer had potent activity (IC50 = 

0.75 µM, IC90 = 1.5 µM). The compounds displayed only moderate or negligible 

cytotoxicity when tested against L6 cells, with selectivity indices ranging from 20 (13b) 

to beyond 270 (15e). 
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Fig. 3. Structure-activity relationship (SAR) of novel bis-benzimidazoles series with 

diverse aliphatic and aromatic linkers. 

We found a correlation between binding affinities to ctDNA and antitrypanosomal 

activity in the novel bis-benzimidazoles. For example, compounds from the 16a–16f 

series that were inactive also showed no affinity to the polynucleotides. Similarly, 

unsubstituted benzimidazoles 13f−16f, which had the lowest affinity for ctDNA relative 

to corresponding analogs, displayed no significant antitrypanosomal potency. In contrast, 

amidines and imidazolines, which showed the highest and most selective binding affinity 

to ctDNA, also displayed the best activity against T. brucei. Structural requirements that 

were found to influence antitrypanosomal activity and binding affinity to ctDNA are 

presented in Figure 3. 

2.7. Molecular modelling of bis-benzimidazole derivative 15c  

 To additionally verify suggested interactions of 15c, the compound that exhibited the 

most potent antitrypanocidal activity, binding into the DNA minor groove was further 

analysed using in silico molecular studies. Two B-DNA oligomers with different base 

pair sequences, the 12 bp DNA d[(CGCGAATTCGCG)]2 (pdb: 1BNA) and 14 bp DNA 

d[(CTACCGATAAGCAG)]2 (pdb: 5XOG), were used as DNA templates. It was found 

that compound 15c fits nicely into the minor groove of both B-DNA models (Figure 4a 

and 4b). The complex was stabilized with hydrogen bonds and electrostatic interactions 

with different nucleotide units, phosphate groups, sugars and bases. In the 14 bp DNA-

15c complex the ligand has interacted with DNA through  hydrogen-bonds with 

phosphate group at A10 and with T8 O2 in one run, and with H-bonds T26 O2, T8 O2 
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and with phosphate group at C23 in the other run. During MD simulations of the 12 bp 

DNA-15c complex the ligand established hydrogen bonds with phosphate groups at T7, 

A17 and terminal G12. It should be noted that the shape of the 12-mer DNA after binding 

of 15c was preserved during the simulation in accordance with previous results [46,47] 

(Figure 4c).  

 Molecular modelling studies revealed that compound 15c could tightly bind within 

the ctDNA minor groove, whereas 15c could not bind as efficiently to the much narrower 

polyA-polyU, as is evident from the thermal denaturation and CD spectroscopy results 

(Table 2, Figure 2c).  

a) 

 

c) 

 

 

 

 

b) 

 

Fig. 4. Complex of 15c with 14 bp DNA d[(CTACCGATAAGCAG)]2 (a). The ligand is 

shown in stick representation and the oligonucleotide is represented by its electrostatic 

potential surface with phosphate group at A10 and with T8 O2 that interact with 15c 

through hydrogen bonds (blue dotted line). Compound 15c bound into the minor groove 
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of 12 bp DNA d[(CGCGAATTCGCG)]2 (b). The ligand is shown in stick representation 

and the oligonucleotide is represented by its electrostatic potential surface with phosphate 

group at T7, A17 and G12 interacting with 15c through hydrogen bonds (blue dotted 

line). Aligment of the 12 bp DNA structures before (orange) and after (violet) binding the 

compound 15c (c). 

  

3. Conclusions 

We report here an efficient pathway for the construction of the dimeric 

benzimidazole-furan-1,2,3-triazole series 13a–13f, 14a–14f, 15a–15f and 16a–16f. These 

contain symmetric units connected via varied aliphatic and aromatic central linkers. 

DNA/RNA binding assays showed that bis-5-amidinobenzimidazoles 13a–13c, 14a–14c 

and 15a–15c had the highest affinity and selectivity for ctDNA. The strong interactions 

with ctDNA were supported by spectrophotometric titrations that exhibited a steady 

decrease in absorbance, accompanied with blue shift. Furthermore, thermal denaturation 

experiments, which identified ΔTm values for ctDNA above 9 °C, and changes in the CD 

spectra for bis-5-amidinobenzimidazoles were consistent with non-intercalative and 

minor-groove binding, as dominant binding mode. Results of antitrypanosomal 

evaluations showed that bis-5-amidinobenzimidazoles 15a–15c, with a 1,4-

bis(oxymethylene)phenyl spacer, exerted the highest activity against T. brucei.  

Overall, the results revealed that amidino fragments at the 5-position of the 

benzimidazole ring play a key role in binding affinity to ctDNA, while the 5-substituent 

and linker are crucial determinants of antiprotozoal activity. We found that imidazoline 

and 1,4-bis(oxymethylene)phenyl were favourable for strong antiprotozoal activity. Bis-

benzimidazole imidazoline 15c, which contains a 1,4-bis(oxymethylene)phenyl, was the 

most potent derivative with 6-fold higher activity than nifurtimox. Taken together, our 

results suggest that compound 15c binds to ctDNA via a groove binding mode and that 

this DNA interacting property may be responsible for its antitrypanosomal potency. 

Moreover, molecular modelling revealed that compound 15c adopts a concave shape that 

fits into the minor groove of DNA. The demonstration of DNA binding affinity and 
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antitrypanosomal potency of this type of compounds, together with their low toxicity 

against mammalian cells, also suggests that bis-amidinobenzimidazole-furan-azole 

analogs provide an interesting framework for future structural optimization to obtain 

promising agents for treatment of human African trypanosomiasis (HAT).  

4. Experimental 

4.1. General 

 All solvents were purified using recommended drying agents and/or distilled over 3 

Å molecular sieves. For monitoring the progress of a reaction and for comparison 

purposes, thin layer chromatography (TLC) was performed on pre-coated Merck silica 

gel 60F-254 plates using an appropriate solvent system and the spots were detected under 

UV light (254 nm). For column chromatography, silica gel (Fluka, 0.063-0.2 mm) was 

employed, and glass columns slurry-packed under gravity. Melting points (uncorrected) 

were determined with Kofler micro hot-stage (Reichert, Wien). 1H and 13C NMR spectra 

were acquired on a Bruker 300 and 600 MHz NMR spectrometer, or 300 MHz Agilent 

Technologies DD2 NMR spectrometer. All data were recorded in DMSO-d6 at 298 K. 

Chemical shifts were referenced to the residual solvent signal of DMSO at  2.50 ppm for 

1H and  39.50 ppm for 13C. Individual resonances were assigned on the basis of their 

chemical shifts, signal intensities, multiplicity of resonances and H−H coupling 

constants. High performance liquid chromatography was performed on an Agilent 1100 

series system with UV detection (photodiode array detector) using Zorbax C18 reverse-

phase analytical column (2.1 x 30 mm, 3.5 µm). All compounds used for biological 

evaluation showed > 95 % purity in this HPLC system. Microwave-assisted syntheses 

were performed in a Milestone start S microwave oven using glass cuvettes at 80 °C and 

800 W under pressure of 1 bar.  

4.2. Experimental procedures for the preparation of compounds 

Compound 5-(chloromethyl)furan-2-carbaldehyde (2) 36, 1,4-bis(prop-2-yn-1-

yloxy)benzene (6) 48, 4,4'-bis(prop-2-yn-1-yloxy)-1,1'-biphenyl (7) 49, 3,4-

diaminobenzimidamide (12a) 37, 3,4-diamino-N-isopropylbenzimidamide (12b) 37, 
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4-(4,5-dihydro-1H-imidazol-2-yl)benzene-1,2-diamine (12c) 37 were prepared 

according to known procedures. 

4.2.1. 5-(Azidomethyl)furan-2-carbaldehyde (3). Compound 2 (634 mg, 4.39 mmol) and 

NaN3 (1.14 g, 17.54 mmol) were stirred in acetonitrile (20 mL) under reflux over night. 

The solvent was evaporated to dryness and the residue was purified by column 

chromatography (CH2Cl2 as eluent) to obtain 3 as yellow oil (640.1 mg, 97%). 1H NMR 

(300 MHz, DMSO) δ 9.59 (1H, s, CHO), 7.53 (1H, d, J = 3.5 Hz, H3'), 6.78 (1H, d, J = 

3.5 Hz, H4'), 4.63 (2H, s, CH2). 13C NMR (75 MHz, DMSO) δ 178.50, 156.04, 152.50, 

123.89, 112.68, 36.82. 

4.2.2. General procedure for the synthesis of compounds 8–11 

The corresponding terminal alkyne (4–7) was dissolved in 0.5 mL DMF and t-BuOH: 

H2O = 1: 1 (2-3 mL). Cu(0) (0.5 eq), 1M CuSO4 (1 eq) and azido-derivative 3 (2.2 eq) 

were added to the reaction mixture and stirred under microwave irradiation for 1.5 h at 80 

°C and 300 W. The solvent was evaporated and the residue was purified by column 

chromatography using CH2Cl2: CH3OH= 100: 1 as an initial eluent. 

4.2.2.1. 1,3-Bis{[1-(5-formylfuran-2-yl)methylene]-1H-1,2,3-triazole-4-yl}propane (8). 

Compound 8 was prepared using the above mentioned procedure from 1,6-heptadiin 4 

(0.25mL, 2.17 mmol) to obtain 8 as white powder (407.6 mg, 48%, m.p. = 142–144 C). 

1H NMR (300 MHz, DMSO) δ 9.56 (2H, s, CHO), 7.95 (2H, s, H5''), 7.52 (2H, d, J = 3.5 

Hz, H3'), 6.76 (2H, d, J = 3.5 Hz, H4'), 5.74 (2H, s, CH2), 2.66 (4H, t, J = 7.5 Hz, 

CH2CH2CH2), 1.89 (2H, dd, J = 15.0, 7.4 Hz, , CH2CH2CH2. 13C NMR (75 MHz, 

DMSO) δ 178.39, 154.90, 152.37, 146.87, 124.04, 122.39, 112.23, 45.67, 28.62, 24.42. 

4.2.2.2. Bis{[1-(5-formylfuran-2-yl)methyl])-1H-1,2,3-triazole-4-yl}dimethylene ether 

(9). Compound 9 was prepared using the above mentioned procedure from propargyl 

ether 5 (0.21 mL, 2.05 mmol) to obtain 9 as yellow powder (178.1 mg, 23%, m.p. = 102–

105 C). 1H NMR (600 MHz, DMSO) δ 9.56 (2H, s, CHO), 8.19 (2H, s, H5''), 7.52 (2H, 

d, J = 3.5 Hz, H3'), 6.78 (2H, d, J = 3.5 Hz, H4'), 5.79 (4H, s, CH2), 4.58 (4H, s, CH2).13C 
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NMR (75 MHz, DMSO) δ 178.40, 154.65, 152.41, 144.05, 124.48, 123.97, 112.35, 

62.63, 45.74.  

4.2.2.3. 1,4-Bis{[(1-((5-formylfuran-2-yl)methylene)-1H-1,2,3-triazole-4 

yl]methyleneoxy}benzene (10). Compound 10 was prepared using the above mentioned 

procedure from 6 (150 mg, 0.81 mmol) to obtain 10 as white powder (386.8 mg, 98%, 

m.p. = 163–165 C). 1H NMR (300 MHz, DMSO) δ 9.57 (2H, s, CHO), 8.28 (2H, s, 

H5''), 7.53 (2H, d, J = 3.6 Hz, H3'), 6.96 (4H, s, Ph), 6.80 (2H, d, J = 3.5 Hz, H4'), 5.82 

(4H, s, CH2), 5.08 (2H, s, CH2).13C NMR (75 MHz, DMSO) δ 178.40, 154.59, 152.43, 

152.28, 143.29, 124.86, 123.99, 115.60, 112.42, 61.40, 45.78. 

4.2.2.4. 4,4-Bis{[1-(5-formylfuran-2-yl)methylene)-1H-1,2,3-triazole-4-

yl]methyleneoxy}-1,1-biphenyl (11). Compound 11 was prepared using the above 

mentioned procedure from 7 (150 mg, 0.57 mmol) to obtain 11 as white powder (311.7 

mg, 97%, m.p. = 216–218 C). 1H NMR (300 MHz, DMSO) δ 9.57 (2H, s, CHO), 8.33 

(2H, s, H5''), 7.58–7.51 (6H, m, J = 6.0, 5.1 Hz, H3'; Ph), 7.09 (4H, d, J = 8.8 Hz, Ph), 

6.81 (2H, d, J = 3.6 Hz, H4'), 5.83 (4H, s, CH2), 5.19 (4H, s, CH2).13C NMR (151 MHz, 

DMSO) δ 178.39, 157.14, 154.55, 152.44, 143.12, 132.58, 127.24, 124.95, 123.95, 

115.10, 112.44, 61.02, 45.80.  

4.2.3. General procedure for the synthesis of compounds 13a–13b, 14a–14c, 15a–15b 

and 16a–16e  

The reaction mixture of dimeric bis-triazolylfuraldehyde derivatives (8–11), o-

phenylenediamine (12a–12f) and water solution of NaHSO3 (40%, 1 mL) was dissolved 

in 15 mL EtOH and stirred under reflux for 6–8 h. After completition of the reaction 

NaHSO3 was filtered and the reaction mixture was evaporated to dryness. Water was 

added (5 mL) and the mixture was stirred over night and filtered. The crude residue was 

dissolved in HCl saturated MeOH (8–10 mL) and stirred over night. Addition of ether 

resulted in precipitation of products 13a–13b, 14a–14c, 15a–15b and 16a–16e.  

4.2.3.1. 1,3-Bis{1-[((5-(5-amidino)benzimidazol-2-yl)furan-2-yl)methylene]-1H-1,2,3-

triazole-4-yl}propane hydrochloride (13a). Compound 13a was prepared using the above 
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described method from 8 (150 mg, 0.38 mmol) and 12a (155.8 mg, 0.84 mmol) to obtain 

13a as brown powder (178.2 mg, 55%, m.p. = 197–200 C). 1H NMR (300 MHz, 

DMSO) δ 9.34 (2H, s, NH), 9.00 (2H, s, NH), 8.10 (2H, s, H4), 8.03 (2H, s, H5''), 7.75 

(2H, d, J = 8.5 Hz, H7), 7.68 (2H, dd, J = 8.4, 1.3 Hz, H6), 7.40 (2H, d, J = 3.4 Hz, H3'), 

6.83 (2H, d, J = 3.4 Hz, H4'), 5.75 (4H, s, CH2), 2.68 (4H, t, J = 7.4 Hz, CH2), 1.99–1.87 

(2H, m, CH2).13C NMR (75 MHz, DMSO) δ 165.72, 152.29, 146.93, 142.93, 139.56, 

136.52, 123.42, 122.81, 122.40, 115.75, 115.66, 114.72, 112.86, 45.68, 28.61, 24.48. 

Anal. calcd. for C33H30N14O2 × 4 HCl × 1.1 H2O (Mr = 820.35): C 48.32, H 4.45, N 

23.90; found: C 48.14, H 4.79, N 24.02%.  

4.2.3.2. 1,3-Bis{1-[((5-(5-N-isopropylamidino)benzimidazol-2-yl)furan-2-yl)methylene]-

1H-1,2,3-triazole-4-yl}propane hydrochloride (13b). Compound 13b was prepared using 

the above described method from 8 (100 mg, 0.25 mmol) and 12b (118.64 mg, 0.56 

mmol) to obtain 13b as brown powder (69.7 mg, 30%, m.p. = 258–261 C). 1H NMR 

(300 MHz, DMSO) δ 9.61 (2H, d, J = 7.2 Hz, NH), 9.47 (2H, s, NH), 9.10 (2H, s, NH), 

8.11 (2H, s, H4), 8.00 (2H, s, H5''), 7.77 (2H, d, J = 8.1 Hz, H7), 7.66–7.54 (4H, m, H6; 

H3'), 6.86 (2H, s, H4'), 5.77 (4H, s, CH2), 4.19–3.97 (2H, m, CH), 2.67 (4H, t, J = 6.5 Hz, 

CH2), 1.98–1.87 (2H, m, CH), 1.29 (12H, d, J = 5.9 Hz, CH3CHCH3).13C NMR (75 

MHz, DMSO) δ 162.04, 151.65, 146.82, 144.69, 143.67, 123.60, 123.06, 122.22, 115.78, 

114.54, 112.53, 69.67, 45.60, 44.96, 28.52, 24.39, 21.18. Anal. calcd. for C39H42N14O2 × 

4 HCl × 0.7 H2O (Mr = 897.31): C 52.20, H 5.32, N 21.85; found: C 52.59, H 5.61, N 

21.66%.  

4.2.3.3. 1,3-Bis{1-[((5-(5-imidazolin-2-yl)benzimidazol-2-yl)furan-2-yl)methylene]-1H-

1,2,3-triazole-4-yl}propane hydrochloride (13c). Compound 13c was prepared using the 

above described method from 8 (150 mg, 0.38 mmol) and 12c (192.12 mg, 0.84 mmol) to 

obtain 13c as light brown powder (163.0 mg, 48%, m.p. > 250 C). 1H NMR (300 MHz, 

DMSO) δ 10.80 (4H, s, NH), 8.39 (2H, s, H5''), 8.09 (2H, s, H4), 7.94 (2H, dd, J = 8.6, 

1.4 Hz, H6), 7.79 (2H, d, J = 8.5 Hz, H7), 7.57 (2H, d, J = 3.5 Hz, H3'), 6.86 (2H, d, J = 

3.4 Hz, H4'), 5.77 (4H, s, CH2), 4.01 (8H, s, CH2CH2), 2.68 (4H, t, J = 7.5 Hz, CH2), 1.95 

(2H, dt, J = 14.6, 7.3 Hz, CH2).13C NMR (75 MHz, DMSO) δ 165.49, 152.43, 147.36, 

145.73, 144.03, 141.29, 138.03, 123.90, 122.80, 117.05, 116.88, 115.53, 113.16, 46.17, 
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44.72, 29.04, 24.93. Anal. calcd. for C37H34N14O2 × 4 HCl × 1.9 H2O (Mr = 858.02): C 

51.79, H 4.53, N 22.85; found: C 51.96, H 4.74, N 22.63%.  

4.2.3.4. Bis{1-[((5-(5-amidino)benzimidazol-2-yl)furan-2-yl)methylene]-1H-1,2,3-

triazole-4-yl}dimethylene ether hydrochloride (14a). Compound 14a was prepared using 

the above described method from 9 (150 mg, 0.38 mmol) and 12a (141.8 mg, 0.84 mmol) 

to obtain 14a as brown solid (69.4 mg, 22%, m.p. > 205 C). 1H NMR (600 MHz, 

DMSO) δ 9.38 (4H, s, NH), 9.09 (4H, s, NH), 8.29 (2H, s, H5''), 8.12 (2H, s, H4), 7.75 

(2H, d, J = 8.3 Hz, H7), 7.70 (2H, d, J = 8.4 Hz, H6), 7.46 (2H, d, J = 3.1 Hz, H3'), 6.86 

(2H, d, J = 3.3 Hz, H4'), 5.81 (4H, s, CH2), 4.59 (4H, s, CH2).13C NMR (75 MHz, 

DMSO) δ 165.90, 151.31, 145.36, 144.33, 144.10, 124.33, 122.65, 121.98, 114.04, 

112.73, 62.69, 45.77. Anal. calcd. for C32H28N14O3 × 4 HCl × 0.5 H2O (Mr = 811.51): C 

47.36, H 4.10, N 24.16; found: C 47.59, H 3.87, N 24.19%. A232 

4.2.3.5. Bis{1-[((5-(5-N-isopropylamidino)benzimidazol-2-yl)furan-2-yl)methylene]-1H-

1,2,3-triazole-4-yl}dimethylene ether hydrochloride (14b). Compound 14b was prepared 

using the above described method from 9 (150 mg, 0.38 mmol) and 12b (168.82 mg, 0.84 

mmol) to obtain 14b as grey powder (134.2 mg, 54%, m.p. = 217–221 C). 1H NMR (600 

MHz, DMSO) δ 9.56 (2H, d, J = 7.2 Hz, NH), 9.43 (2H, s, NH), 9.09 (2H, s, NH), 8.32 

(2H s, H5''), 8.00 (2H, s, H4), 7.73 (2H, d, J = 8.4 Hz, H7), 7.59 (2H, dd, J = 8.6, 1.1 Hz, 

H6), 7.50 (2H, d, J = 3.1 Hz, H3'), 6.85 (2H, d, J = 3.3 Hz, H4'), 5.81 (4H, s, CH2), 4.60 

(4H, s, CH2), 4.18–4.11 (2H, m, CH), 1.30 (6H, d, J = 6.3 Hz, CH3CHCH3).13C NMR 

(151 MHz, DMSO) δ 162.16, 151.28, 145.03, 144.26, 144.08, 134.06, 124.38, 123.42, 

122.89, 114.11, 112.62, 62.67, 45.74, 45.02, 21.27. Anal. calcd. for C38H40N14O3 × 4 HCl 

× 0.2 H2O (Mr = 820.18): C 55.65, H 5.92, N 23.91; found: C 55.34, H 6.15, N 24.06%.  

4.2.3.6. 1,4-Bis{[1-(((5-(5-amidino)benzimidazol-2-yl)furan-2-yl)methylene)-1H-1,2,3-

triazole-4-yl]methyleneoxy}benzene hydrochloride (15a). Compound 15a was prepared 

using the above described method from 10 (100 mg, 0.20 mmol) and 12a (83.99 mg, 0.45 

mmol) to obtain 15a as white powder (158.2 mg, 87%, m.p. = 261–263 C). 1H NMR 

(600 MHz, DMSO) δ 9.41 (4H, s, NH), 9.12 (4H, s, NH), 8.39 (2H, s, H5''), 8.14 (2H. s, 

H4), 7.79 (2H, d, J = 8.4 Hz, H7), 7.73 (2H, d, J = 8.3 Hz, H6), 7.54 (2H, d, J = 2.7 Hz, 
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H3'), 6.95 (4H, s, Ph), 6.90 (2H, d, J = 3.0 Hz, H4'), 5.85 (4H, s, CH2), 5.06 (4H s, 

CH2).13C NMR (75 MHz, DMSO) δ 165.82, 152.30, 151.61, 143.78, 143.35, 124.77, 

123.01, 122.38, 115.99, 115.58, 114.78, 112.93, 61.41, 45.82. Anal. calcd. for 

C38H32N14O4 × 4 HCl × 0.9 H2O (Mr = 910.82): C 50.11, H 4.18, N 22.11; found: C 

49.81, H 4.22, N 22.03%. 

4.2.3.7. 1,4-Bis{[1-(((5-(5-N-isopropylamidino)benzimidazol-2-yl)furan-2-yl)methylene)-

1H-1,2,3-triazole-4-yl]methyleneoxy}benzene hydrochloride (15b). Compound 15b was 

prepared using the above described method from 10 (100 mg, 0.20 mmol) and 12b (76.33 

mg, 0.45 mmol) to obtain 15b as white powder (121.7 mg, 61%, m.p. = 234–236 C). 1H 

NMR (600 MHz, DMSO) δ 9.59 (2H, d, J = 7.9 Hz, NH), 9.46 (2H, s, NH), 9.08 (2H, s, 

NH), 8.41 (2H, s, H5''), 8.01 (2H, s, H4), 7.78 (2H, d, J = 8.5 Hz, H7), 7.61 (2H, dd, J = 

8.5, 1.1 Hz, H6), 7.57 (2H, d, J = 3.1 Hz, H3'), 6.96 (4H, s, Ph), 6.90 (2H, d, J = 3.3 Hz, 

H4'), 5.85 (4H, s, CH2), 5.07 (4H, s, CH2), 4.10 (2H, td, J = 13.0, 6.4 Hz, CH), 1.30 

(12H, d, J = 6.4 Hz, CH3CHCH3).13C NMR (75 MHz, DMSO) δ 162.16, 152.32, 151.59, 

144.76, 143.82, 143.35, 124.81, 123.82, 123.26, 115.94, 115.61, 114.72, 112.93, 111.30, 

61.43, 45.83, 45.09, 21.30. Anal. calcd. for C44H44N14O4 × 4 HCl × 1.2 H2O (Mr = 

1000.38): C 52.83, H 5.08, N 19.60; found: C 53.05, H 5.07, N 19.47%.  

4.2.3.8. 1,4-Bis{[1-(((5-(5-imidazolin-2-yl)benzimidazol-2-yl)furan-2-yl)methylene)-1H-

1,2,3-triazole-4-yl]methyleneoxy}benzene hydrochloride (15c). Compound 15c was 

prepared using the above described method from 10 (100 mg, 0.20 mmol) and 12c 

(103.02 mg, 0.45 mmol) to obtain 15c as brown crystals (93.6 mg, 47%, m.p. >250 C). 

1H NMR (300 MHz, DMSO) δ 10.61 (4H, s, NH), 8.35 (2H, s, H5''), 8.31 (2H, s, H4), 

7.84 (2H, d, J = 8.5 Hz, H7), 7.77 (2H, d, J = 8.0 Hz, H6), 7.40 (2H, d, J = 3.2 Hz, H3'), 

6.95 (4H, s, Ph), 6.86 (2H, d, J = 3.4 Hz, H4'), 5.83 (4H, s, CH2), 5.06 (4H, s, CH2), 4.01 

(8H, s, CH2CH2).13C NMR (75 MHz, DMSO) δ 165.31, 152.29, 150.95, 146.19, 144.99, 

143.31, 124.65, 122.65, 115.61, 115.56, 113.43, 112.72, 61.41, 45.83, 44.22. Anal. calcd. 

for C42H36N14O4 × 4 HCl × 2.8 H2O (Mr = 997.12): C 50.59, H 4.61, N 19.66; found: C 

50.82, H 4.43, N 19.75%. 
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4.2.3.9. 4,4-Bis{[1-(((5-(5-amidino)benzimidazol-2-yl)furan-2-yl)methylene)-1H-1,2,3-

triazole-4-yl]methyleneoxy}-1,1'-biphenyl hydrochloride (16a). Compound 16a was 

prepared using the above described method from 11 (150 mg, 0.27 mmol) and 12a 

(108.25 mg, 0.58 mmol) to obtain 16a as white powder (181.7 mg, 31%, m.p. = 260–263 

C). 1H NMR (600 MHz, DMSO) δ 9.40 (4H, s, NH), 9.11 (4H, s, NH), 8.43 (2H, s, 

H5''), 8.14 (2H, s, H4), 7.78 (2H, d, J = 8.5 Hz, H7), 7.72 (2H, d, J = 8.5 Hz, H6), 7.54–

7.48 (6H, m, Ph; H3'), 7.08 (4H, d, J = 8.6 Hz, Ph), 6.90 (2H, d, J = 3.2 Hz, H4'), 5.86 

(4H, s, CH2), 5.19 (4H, s, CH2).13C NMR (75 MHz, DMSO) δ 165.86, 157.14, 151.42, 

144.11, 143.18, 132.54, 127.23, 124.89, 122.84, 122.20, 115.10, 114.39, 112.91, 61.04, 

45.84. Anal. calcd. for C44H36N14O4 × 4 HCl × 1.5 H2O (Mr = 997.73): C 52.97, H 4.34, 

N 19.65; found: C 53.18, H 4.22, N 19.97%.  

4.2.3.10.  4,4-Bis{[1-(((5-(5-N-isopropylamidino)benzimidazol-2-yl)furan-2-

yl)methylene)-1H-1,2,3-triazole-4-yl]methyleneoxy}-1,1'-biphenyl hydrochloride (16b). 

Compound 16b was prepared using the above described method from 11 (70 mg, 0.12 

mmol) and 12b (46.19 mg, 0.25 mmol) to obtain 16b as light brown powder (36.3 mg, 

28%, m.p. = 236–238 C). 1H NMR (600 MHz, DMSO) δ 9.56 (2H, d, J = 7.6 Hz, NH), 

9.42 (2H, s, NH), 9.02 (2H, s, NH), 8.43 (2H, s, H5''), 7.99 (2H, s, H4), 7.76 (2H, d, J = 

8.4 Hz, H7), 7.59 (2H, d, J = 8.3 Hz, H6), 7.51 (4H, d, J = 8.6 Hz, Ph), 7.48 (2H, d, J = 

3.1 Hz, H3'), 7.08 (4H, d, J = 8.6 Hz, Ph), 6.89 (2H, d, J = 3.2 Hz, H4'), 5.85 (4H, s, 

CH2), 5.19 (4H, s, CH2), 4.08 (2H, dt, J = 20.9, 6.7 Hz, H), 1.30 (12H, d, J = 6.3 Hz, 

CH3CHCH3).13C NMR (75 MHz, DMSO) δ 162.42, 157.24, 151.24, 145.35, 144.57, 

143.26, 132.65, 127.34, 124.95, 123.53, 122.94, 116.23, 115.20, 114.90, 113.87, 112.96, 

61.11, 45.93, 45.14, 21.35. Anal. calcd. for C50H48N14O4 × 4 HCl × 1.6 H2O (Mr = 

1083.69): C 55.42, H 5.13, N 18.09; found: C 55.62, H 4.39, N 17.72%.  

4.2.4. General procedure for the synthesis of compounds 14c and 16c  

The reaction mixture of dimeric bis-triazolylfuraldehyde derivatives (9, 11), o-

phenylenediamine 12c (2eq) and p-benzoquinone (2 eq) was dissolved in 15 mL EtOH 

and stirred under reflux for 6–8 h. The reaction mixture was cooled at room temperature, 

diethyl ether was added, and the resulting solid was filtered off. 
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4.2.4.1. Bis{1-[((5-(5-imidazolin-2-yl)benzimidazol-2-yl)furan-2-yl)methylene]-1H-1,2,3-

triazole-4-yl}dimethylene ether hydrochloride (14c). Compound 14c was prepared using 

the above described method from 9 (100 mg, 0.25 mmol) and 12c (115.41 mg, 0.50 

mmol) to obtain 14c as brown powder (57.9 mg, 26%, m.p. > 250 C). 1H NMR (300 

MHz, DMSO) δ 10.64 (2H, bs, NH), 8.39–8.22 (4H, m, H4; H5''), 7.88–7.70 (4H, m, H7; 

H6), 7.39 (2H, d, J = 2.0 Hz, H3'), 6.84 (2H, d, J = 3.4 Hz, H4'), 5.80 (4H, s, CH2), 4.59 

(4H. s, CH2), 4.01 (8H, s, CH2CH2).13C NMR (75 MHz, DMSO) δ 165.57, 151.16, 

146.40, 145.03, 144.27, 124.47, 122.80, 115.81, 113.57, 112.86, 62.84, 45.94, 44.43. 

Anal. calcd. for C36H32N14O3 × 4 HCl × 2.7 H2O (Mr = 903.23): C 47.87, H 4.62, N 

21.11; found: C 48.78, H 4.56, N 21.10%.  

4.2.4.2. 4,4-Bis{[1-(((5-(5-imidazolin-2-yl)benzimidazol-2-yl)furan-2-yl)methylene)-1H-

1,2,3-triazole-4-yl]methyleneoxy}-1,1'-biphenyl hydrochloride (16c). Compound 16c was 

prepared using the above described method from 11 (150 mg, 0.26 mmol) and 12c 

(133.69 mg, 0.58 mmol) to obtain 16c as white powder (79.1 mg, 29%, m.p. = 246–248 

C). 1H NMR (300 MHz, DMSO) δ 10.71 (4H, s, NH), 8.44 (2H, s, H5''), 8.36 (2H, s, 

H4), 7.90 (2H, d, J = 8.0 Hz, H7), 7.80 (2H, d, J = 8.4 Hz, H6), 7.53–7.43 (6H, m, Ph; 

H3'), 7.07 (4H, d, J = 8.4 Hz, Ph), 6.89 (2H, d, J = 2.8 Hz, H4'), 5.86 (4H, s, CH2), 5.18 

(4H, s, CH2), 4.01 (8H, s, CH2CH2). 13C NMR (75 MHz, DMSO) δ 165.18, 157.08, 

151.17, 144.47, 143.13, 132.49, 127.15, 124.79, 122.93, 116.80, 115.89, 115.59, 115.07, 

114.01, 112.76, 61.02, 45.82, 44.20. Anal. calcd. for C48H40N14O4 × 4 HCl × 1.4 H2O 

(Mr = 1048.00): C 55.01, H 4.50, N 18.71; found: C 54.87, H 4.67, N 18.54%.  

4.2.5. General procedure for the synthesis of compounds 13d–13f, 14d–14f, 15d–15f and 

16d–16f  

 The reaction mixture of dimeric bis-triazolylfuraldehyde derivatives (8–11), o-

phenylenediamine (12d, 12e, 12f) and 40 % NaHSO3 was dissolved in 15 mL EtOH and 

stirred under reflux for 6–8 h. After completition of the reaction NaHSO3 was filtered and 

the reaction mixture was evaporated to dryness. Water was added (5 mL) and the mixture 

was stirred over night and filtered. The crude residue was dissolved in acetone addition of 

water resulted in precipitation of products 13d–13f, 14d–14f, 15d–15f and 16d–16f. 
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4.2.5.1. 1,3-Bis{1-[(5-(5-fluorobenzimidazol-2-yl)furan-2-yl)methylene]-1H-1,2,3-

triazol-4-yl}propane (13d). Compound 13d was prepared using the above described 

method from 8 (150 mg, 0.38 mmol) and 12d (105.95 mg, 0.84 mmol) to obtain 13d as 

brown powder (161.4 mg, 70%, m.p. = 146–149 C). 1H NMR (600 MHz, DMSO) δ 

13.05 (2H, bs, NH), 7.96 (2H, s, H5''), 7.64–7.21 (4H, m, H4; H7), 7.18 (2H, s, H3'), 7.06 

(2H, s, H6), 6.77 (2H, d, J = 2.5 Hz, H4'), 5.72 (4H, s, CH2), 2.67 (4H, t, J = 7.3 Hz, 

CH2), 1.95–1.89 (2H, m, CH2). 13C NMR (75 MHz, DMSO) δ 160.32; 157.20 (d, JCF = 

235.8 Hz), 150.34, 146.92, 145.51, 144.36, 142.74, 127.74, 122.02, 112.32, 111.60, 

110.67; 110.31 (, JCF = 27.0 Hz), 45.71, 28.70, 24.52. Anal. calcd. for C31H24N10F2O2 × 

3.2 H2O (Mr = 664.24): C 56.05, H 4.61, N 21.09; found: C 56.17, H 4.73, N 21.21%.  

4.2.5.2. 1,3-Bis{1-[(5-(5-chlorobenzimidazol-2-yl)furan-2-yl)methylene]-1H-1,2,3-

triazol-4-yl}propane (13e). Compound 13e was prepared using the above described 

method from 8 (150 mg, 0.38 mmol) and 12e (119.97 mg, 0.84 mmol) to obtain 13e as 

brown powder (61.9 mg, 25%, m.p. = 158–161 C).  1H NMR (600 MHz, DMSO) δ 

13.43–12.79 (2H, m, NH), 7.97 (2H, s, H5''), 7.70–7.45 (4H, m, H4; H7), 7.21 (4H, d, J = 

3.2 Hz, H6, H3'), 6.79 (2H, d, J = 3.1 Hz, H4'), 5.73 (4H, s, CH2), 2.67 (4H, t, J = 7.4 Hz, 

CH2), 1.93 (2H, dt, J = 14.8, 7.4 Hz, CH2). 13C NMR (75 MHz, DMSO) δ 150.54, 

146.92, 145.34, 144.36, 122.62, 122.02, 112.38, 112.02, 45.70, 28.69, 24.52. Anal. calcd. 

for C31H24N10Cl2O2 × 2.2 H2O (Mr = 679.13): C 54.83, H 4.21, N 20.62; found: C 55.06, 

H 4.36, N 20.48%.   

4.2.5.3. 1,3-Bis{1-[(5-(benzimidazol-2-yl)furan-2-yl)methylene]-1H-1,2,3-triazol-4-

yl}propane (13f). Compound 13f was prepared using the above described method from 8 

(130 mg, 0.33 mmol) and 12f (78.42 mg, 0.72 mmol) to obtain 13f as yellow powder 

(185.8 mg, 99%, m.p. = 154–156 C). 1H NMR (300 MHz, DMSO) δ 7.96 (2H, s, H5''), 

7.65–7.46 (4H, m, J = 5.6, 3.0 Hz, H4; H7), 7.24–7.16 (6H, m, H5; H6; H3'), 6.77 (2H, d, 

J = 3.1 Hz, H4'), 5.72 (4H, s, CH2), 2.67 (4H, t, J = 7.4 Hz, CH2), 2.03–1.81 (2H, m, 

CH2).13C NMR (75 MHz, DMSO) δ 150.26, 146.92, 145.67, 143.01, 122.45, 122.02, 

112.31, 111.50, 45.72, 28.70, 24.53. Anal. calcd. for C31H26N10O2 × 3.9 H2O (Mr = 

639.07): C 58.26, H 5.30, N 21.92; found: C 58.00, H 5.53, N 22.24%.  
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4.2.5.4. Bis{1-[(5-(5-fluorobenzimidazol-2-yl)furan-2-yl)methylene]-1H-1,2,3-triazol-4-

yl}dimethylene ether (14d). Compound 14d was prepared using the above described 

method from 9 (145 mg, 0.37 mmol) and 12d (96.90 mg, 0.77 mmol) to obtain 14d as 

yellow powder (187.4 mg, 84%, m.p. = 162–165 C. 1H NMR (300 MHz, DMSO) δ 8.21 

(2H, s, H5''), 7.55 (2H, dd, J = 8.8, 4.8 Hz, H4), 7.36 (2H, dd, J = 9.4, 2.3 Hz, H7), 7.20 

(2H, d, J = 3.4 Hz, H3'), 7.07 (2H, td, J = 9.9, 2.4 Hz, H6), 6.80 (2H, d, J = 3.4 Hz, H4'), 

5.77 (4H, s, CH2), 4.59 (4H, s, CH2). 13C NMR (151 MHz, DMSO) δ 159.60; 158.03 (d, 

JCF = 235.9 Hz), 150.31, 145.18, 144.08, 124.12, 112.49, 111.94, 110.76; 110.59 (d, JCF 

= 25.5 Hz), 62.71, 45.76. Anal. calcd. for C30H22N10F2O3 × 0.1 H2O (Mr = 612.21): C 

58.86, H 3.64, N 22.88; found: C 58.62, H 3.35, N 23.00%.  

4.2.5.5. Bis{1-[(5-(5-chlorobenzimidazol-2-yl)furan-2-yl)methylene]-1H-1,2,3-triazol-4-

yl}dimethylene ether (14e). Compound 14e was prepared using the above described 

method from 9 (150 mg, 0.38 mmol) and 12e (113.31 mg, 0.79 mmol) to obtain 14e as 

yellow powder (235.1 mg, 96%, m.p. = 144–147 C. 1H NMR (300 MHz, DMSO) δ 8.20 

(2H, s, H5''), 7.62–7.51 (4H, m, H4; H7), 7.24–7.19 (4H, m, H6; H3'), 6.80 (2H, d, J = 

3.4 Hz, H4'), 5.77 (4H, s, CH2), 4.59 (4H, s, CH2). 13C NMR (75 MHz, DMSO) δ 150.33, 

145.39, 144.30, 144.09, 126.62, 124.15, 122.61, 112.52, 112.02, 62.71, 45.78. Anal. 

calcd. for C30H22N10Cl2O3 × 0.4 H2O (Mr = 656.06): C 54.92, H 3.44, N 21.35; found: C 

55.16, H 3.59, N 21.42%.  

4.2.5.6. Bis{1-[(5-(benzimidazol-2-yl)furan-2-yl)methylene]-1H-1,2,3-triazol-4-

yl}dimethylene ether (14f). Compound 14f was prepared using the above described 

method from 9 (150 mg, 0.38 mmol) and 12f (85.43 mg, 0.79 mmol) to obtain 14f as 

yellow powder (180.2 mg, 87%, m.p. = 227–231 C. 1H NMR (300 MHz, DMSO) δ 

12.94 (2H, bs, NH), 8.21 (2H, s, H5''), 7.57–7.49 (4H, m, H4; H7), 7.25– 7.13 (6H, m, 

H5; H6; H3'), 6.79 (2H, d, J = 3.4 Hz, H4'), 5.77 (4H, s, CH2), 4.59 (4H, s, CH2). 13C 

NMR (75 MHz, DMSO) δ 149.97, 145.87, 144.10, 143.02, 124.15, 122.37, 112.43, 

111.35, 62.73, 45.81. Anal. calcd. for C30H24N10O3 × 3.2 H2O (Mr = 632.04): C 57.01, H 

4.88, N 22.16; found: C 56.74, H 4.96, N 22.15%.  
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4.2.5.7. 1,4-Bis{[1-((5-(5-fluorobenzimidazol-2-yl)furan-2-yl)methylene)-1H-1,2,3-

triazol-4-yl]methyleneoxy}benzene (15d). Compound 15d was prepared using the above 

described method from 10 (150 mg, 0.31 mmol) and 12d (77.45 mg, 0.68 mmol) to 

obtain 15d as light brown powder (195.4 mg, 90%, m.p. = 152–154 C). 1H NMR (300 

MHz, DMSO) δ 8.29 (2H, s, H5''), 7.55 (2H, dd, J = 8.5, 4.7 Hz, H4), 7.35 (2H, dd, J = 

9.2, 1.7 Hz, H7), 7.20 (2H, d, J = 3.1 Hz, H3'), 7.06 (2H, td, J = 9.3, 1.6 Hz, H6), 6.95 

(4H, s, Ph), 6.82 (2H, d, J = 3.1 Hz, H4'), 5.80 (4H, s, CH2), 5.06 (4H, s, CH2). 13C NMR 

(151 MHz, DMSO) δ 159.61; 158.05 (d, JCF = 235.4 Hz), 152.31, 150.22, 145.49, 

144.30, 143.35, 124.62, 115.58, 112.63, 111.80, 110.72; 110.56 (d, JCF = 24.2 Hz), 61.42, 

45.88. Anal. calcd. for C36H26F2N10O4 × 1.6 H2O (Mr = 729.49): C 59.27, H 4.03, N 

19.20; found: C 59.47, H 3.76, N 19.19%.  

4.2.5.8. 1,4-Bis{[1-((5-(5-chlorobenzimidazol-2-yl)furan-2-yl)methylene)-1H-1,2,3-

triazol-4-yl]methyleneoxy}benzene (15d). (15e). Compound 15e was prepared using the 

above described method from 10 (150 mg, 0.31 mmol) and 12e (51.62 mg, 0.68 mmol) to 

obtain 15e as white powder (135.3 mg, 60%, m.p. = 160–162 C).  1H NMR (300 MHz, 

DMSO) δ 8.29 (2H, s, H5''), 7.66–7.52 (4H, m, H4; H/), 7.25–7.20 (4H, m, H6; H3'), 

6.95 (4H. s, Ph), 6.83 (2H, d, J = 3.4 Hz, H4'), 5.81 (4H. s, CH2), 5.06 (4H, s, CH2).13C 

NMR (75 MHz, DMSO) δ 152.29, 150.40, 145.25, 143.32, 126.74, 124.54, 122.73, 

115.56, 112.63, 112.22, 61.42, 45.83. Anal. calcd. for C36H26Cl2N10O4 × 0.9 H2O (Mr = 

749.79): C 57.67, H 3.74, N 18.68; found: C 57.95, H 3.71, N 18.53%.  

4.2.5.9. 1,4-Bis{[1-((5-(benzimidazol-2-yl)furan-2-yl)methylene)-1H-1,2,3-triazol-4-

yl]methyleneoxy}benzene (15f). Compound 15f was prepared using the above described 

method from 10 (150 mg, 0.31 mmol) and 12f (73.06 mg, 0.68 mmol) to obtain 15f as 

white powder (196.7 mg, 95%, m.p. = 155–157 C). 1H NMR (600 MHz, DMSO) δ 8.30 

(2H, s, H5''), 7.55 (4H, s, H4; H7), 7.21–7.18 (6H, m, H6; H5; H3'), 6.95 (4H, s, CH2), 

6.81 (2H, d, J = 3.0 Hz, H4'), 5.80 (4H. s, CH2), 5.06 (4H, s, CH2).13C NMR (75 MHz, 

DMSO) δ 152.30, 149.96, 145.89, 143.33, 124.54, 122.41, 115.58, 112.52, 111.40, 61.44, 

45.87. Anal. calcd. for C36H28Cl2N10O4 × 3.1 H2O (Mr = 720.53): C 60.01, H 4.78, N 

19.43; found: C 59.86, H 4.61, N 19.38%. 
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4.2.5.10. 4,4'-Bis{[1-((5-(5-fluorobenzimidazol-2-yl)furan-2-yl)methylene)-1H-1,2,3-

triazol-4-yl]methylenoxy}-1,1'-biphenyl (16d). Compound 16d was prepared using the 

above described method from 11 (150 mg, 0.26 mmol) and 12d (67.03 mg, 0.52 mmol) to 

obtain 16d as light brown powder (120.5 mg, 53%, m.p. = 175–179 C). 1H NMR (300 

MHz, DMSO) δ 13.06 (2H, s, NH), 8.35 (2H, s, H5''), 7.65–7.59 (2H, m, H4), 7.50 (4H, 

d, J = 8.6 Hz, Ph), 7.41 (2H, d, J = 9.9 Hz, H7), 7.28 (2H, dd, J = 8.6, 3.0 Hz, H6), 7.21–

7.17 (2H, m, H3'), 7.07 (4H, d, J = 8.6 Hz, Ph), 6.82 (2H, s, H4'), 5.81 (4H, s, CH2), 5.18 

(4H, s, CH2). 13C NMR (75 MHz, DMSO) δ 157.03, 153.85, 149.84, 145.54, 143.06, 

132.49, 131.27, 128.43, 127.01, 124.28, 115.03, 112.24, 111.32, 61.10, 45.75. Anal. 

calcd. for C42H30F2N10O4 × 5.1 H2O (Mr = 868.64): C 58.07, H 4.66, N 16.12; found: C 

57.85, H 4.64, N 16.26%.  

4.2.5.11. 4,4'-Bis{[1-((5-(5-chlorobenzimidazol-2-yl)furan-2-yl)methylene)-1H-1,2,3-

triazol-4-yl]methyleneoxy}-1,1'-biphenyl (16e). Compound 16e was prepared using the 

above described method from 11 (160 mg, 0.28 mmol) and 12e (88.91 mg, 0.62 mmol) to 

obtain 16e as white powder (120.5 mg, 53%, m.p. = 173–176 C). 1H NMR (300 MHz, 

DMSO) δ 13.12 (2H, d, J = 14.5 Hz, NH), 8.35 (2H, s, H5''), 7.66–7.60 (2H, m, H4), 

7.57–7.44 (6H, m, H7; Ph), 7.29–7.18 (4H, m, H6; H3'), 7.07 (4H, d, J = 8.4 Hz, Ph), 

6.83 (2H, d, J = 3.0 Hz, H4'), 5.82 (4H, s, CH2), 5.18 (4H, s, CH2). 13C NMR (151 MHz, 

DMSO) δ 157.15, 150.34, 145.52, 144.55, 143.18, 142.42, 132.55, 127.25, 127.11, 

126.30, 124.78, 122.97, 120.14, 118.24, 115.10, 112.68, 111.17, 61.03, 45.89. Anal. 

calcd. for C42H30Cl2N10O4 × 4.3 H2O (Mr = 887.13): C 56.86, H 4.38, N 15.79; found: C 

56.66, H 4.64, N 15.56%.  

4.2.5.12. 4,4'-Bis{[1-((5-(benzimidazol-2-yl)furan-2-yl)methylene)-1H-1,2,3-triazol-4-

yl]methyleneoxy}-1,1'-biphenyl (16f). Compound 16f was prepared using the above 

described method from 11 (100 mg, 0.18 mmol) and 12ef (42.14 mg, 0.39 mmol) to 

obtain 16f as light brown powder (120.14 mg, 90%, m.p. = 171–173 C). 1H NMR (600 

MHz, DMSO) δ 8.37 (2H, s, H5''), 7.59–7.56 (4H, m, H4; H7), 7.49 (4H, d, J = 8.6 Hz, 

Ph), 7.23–7.21 (6H, m, H5; H6; H3'), 7.07 (4H, d, J = 8.7 Hz, Ph), 6.84 (2H, d, J = 3.2 

Hz, H4'), 5.82 (4H, s, CH2), 5.18 (4H, s, CH2). 13C NMR (75 MHz, DMSO) δ 157.13, 

150.21, 145.45, 143.18, 136.67, 132.54, 127.21, 124.72, 122.69, 115.09, 112.64, 112.48, 
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111.89, 61.05, 45.89. Anal. calcd. for C42H32N10O4 × 3.3 H2O (Mr = 800.23): C 63.04, H 

4.86, N 17.50; found: C 62.85, H 4.64, N 17.62%.  

4.3. Spectroscopic experiments 

4.3.1. Polynucleotides 

 Poly A–poly U and calf thymus DNA (ctDNA) were purchased from Sigma-Aldrich. 

Polynucleotides were dissolved in PBS buffer, I = 0.05 mol dm−3, pH 7.0. The calf 

thymus ctDNA was additionally sonicated and filtered through a 0.45 mm filter. The 

polynucleotide concentration was spectroscopically determined as the concentration of 

nucleobases 50. 

4.3.2. UV-Visible Spectroscopy 

All UV-visible absorbance measurements were conducted on a Perkin Elmer 

Lambda 25 spectrophotometer. A quartz cell with a 1 cm path length was used for all 

absorbance studies. Compound stock solutions were 1 mM. The DNA/RNA at increasing 

ratios was then titrated into the compound buffer solution (0.6-1.5·10−5 mol dm−3) and the 

corresponding absorption spectra were recorded under the same conditions. All data were 

graphed and analyzed using Origin software 9.0. The stability constants (Ks) and [bound 

compound]/[polynucleotide phosphate] ratio (n) were calculated according to the 

Scatchard equation 51,52. Values for Ks and n are given in Table 1; all have satisfying 

correlation coefficients (0.99). 

4.3.3. Thermal Melting (Tm) 

Tm experiments were conducted with a Perkin Elmer Lambda 25 spectrophotometer 

in 1 cm quartz cuvettes. The absorbance of the DNA-compound complex was monitored 

at 260 nm as a function of temperature. The absorbance of the ligands was subtracted 

from every curve, and the absorbance scale was normalized. The ΔTm values were 

calculated by subtracting Tm of the free nucleic acid from Tm of the complex. Every 

reported ΔTm value was the average of at least two measurements. The error of ΔTm is 

±0.5 °C. All data was graphed and analyzed using Origin software 9.0.  
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4.3.4. Circular Dichroism(CD) 

The CD spectra of DNA/RNA (concentration in cuvette 2·10-5 M) were recorded 

with a JASCO J-800 spectrometer at different ratios r = 0.1, 0.3, 0.5, 0.7 (r = 

[compound]/ [polynucleotide]) at 25◦C in aqueous buffer solution (pH = 7, PBS, I = 0.05 

mol dm−3). Titrations were carried out by addition of aliquots of 1 mM stock solutions of 

the relevant compound (at increasing ratios) to the buffered polynucleotide (DNA/RNA) 

solution in a 1 cm quartz cuvette and scanned over a wavelength range 220-450 nm. All 

data were graphed and analyzed using Origin software 9.0. 

4.4. Antitrypanosomal screening 

 Bloodstream form T. brucei (strain 221) were grown in modified Iscove’s medium, 

as described [53] and growth inhibition assays were performed using 96-well microtiter 

plates. The compound concentrations that inhibited growth by 50% (IC50) and 90% (IC90) 

were determined. Parasites were initially sub-cultured at 2.5 × 104 mL−1, compounds 

were added at range of concentrations, and the plates incubated at 37 °C. Resazurin was 

added after 48 h, the plates incubated for a further 16 hours, and then read in a 

Spectramax plate reader. The data were analysed using GraphPad Prism. Each drug 

concentration was tested in triplicate. 

For cytotoxicity assays, L6 cells (a rat myoblast line) were seeded into 96-well microtiter 

plates at 1 x 104 mL-1 in 200 L of growth medium, and different compound 

concentrations were added. The plates were then incubated for 6 days at 37 oC and 20 L 

resazurin added to each well. After further 8 hours incubation, the fluorescence was 

determined using a Spectramax plate reader, as outlined above. 

4.5. In silico molecular modelling 

 Interactions between 15c and DNA were studied using two different 

nucleotides: Drew-Dickerson dodecamer (12 bp DNA) d[(CGCGAATTCGCG)]2 

encoded in Protein Data Bank (PDB) [54] as 1BNA [55] and the 14 bp B-DNA 

d[(CTACCGATAAGCAG)]2 extracted from the crystalographically determined structure 

of the complex between DNA and RNA polymerase (pdb: 5XOG) [56]. The ligand was 
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accommodated into the ds-DNA minor groove visually by using the program InsightII. 

The AMBER ff14SB force field [57] and the general AMBER force field gaff [58] were 

used to parameterize the ligand–DNA complexes. Geometry optimization and molecular 

dynamics (MD) simulations were accomplished by using the AMBER16 program 

package [59]. The simulation was accomplished by using periodic boundary conditions 

(PBC). The particle mesh Ewald (PME) method was used for calculation of the long-

range electrostatic interactions, and in the direct space the pairwise interactions were 

calculated within the cut-off distance of 10 Å. Each of the complexes were placed in the 

center of a octahedron filled with TIP3P-type water molecules, and Cl- and Na+ ions were 

added to neutralize the systems. The solvated complexes were geometry optimized by 

using steepest descent and conjugate gradient methods, 1500 steps of each, and 

equilibrated for 1.5 ns. During the first stage of equilibration (30 ps) the temperature was 

linearly increased from 0 to 300 K and the volume was held constant. In the second stage 

temperature and pressure were held fixed (300 K and 1 atm, respectively) and the 

solution density was optimized. The equilibrated 15c–DNA complexes were subjected to 

productive molecular dynamics simulation using NPT condition and the time step of 2 fs, 

except SHAKE (constrains bonds involving hydrogen atoms) [60] no restraints were 

used. In the case of the 15c complex with 14 bp 70 ns and in the case of the complex with 

dodecamer 160 ns of the productive MD simulations was accomplished. The temperature 

was held constant using Langevin thermostat [61] with a collision frequency of 1 ps−1. 

Pressure was regulated by a Berendsen barostat [62]. 
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