
Open Universiteit
www.ou.nl

MASTER'S THESIS

AUTOMATIC FEEDBACK ON COMMON LOGIC ERRORS

HOW TO USE UNIT TESTS TO PROVIDE FEEDBACK TO STUDENTS WHEN
REFACTORING

Toonen, M. (Meine)

Award date:
2021

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 09. Sep. 2021

https://research.ou.nl/en/studentTheses/22555561-6cac-4058-9c60-446a4b12312a

AUTOMATIC FEEDBACK ON

COMMON LOGIC ERRORS

HOW TO USE UNIT TESTS TO PROVIDE FEEDBACK

TO STUDENTS WHEN REFACTORING

by

Meine Toonen

To be defended publicly on Friday 29 January, 2021 at 10:30 AM.

Name: Meine Toonen

Student number:

 Course code: IM9906

AUTOMATIC FEEDBACK ON

COMMON LOGIC ERRORS

HOW TO USE UNIT TESTS TO PROVIDE FEEDBACK

TO STUDENTS WHEN REFACTORING

by

Meine Toonen

in partial fulfillment of the requirements for the degree of

Master of Science
in Software Engineering

Open University of the Netherlands,
Faculty of Science

Master’s Programme in Software Engineering

Student number: 852116309

Course code: IM9906

Graduation committee dhr. prof. dr. Johan Jeuring (chairman) Open University

dhr. dr. Bastiaan Heeren (first supervisor) Open University

mw. dr. Hieke Keuning (second supervisor) Utrecht University

ACKNOWLEDGEMENTS

During my first study at the Hague University, I missed something: a more theoretical ap-
proach to my learning. It was fun and I learned a lot, but I knew: someday I will wanted to
get my masters degree. And when the opportunity opened up to do it, I took it and went
towards my goal.

I would first like to thank my committee. Bastiaan, thanks for all of your (detailed!)
input, positive feedback and pleasant coaching skills. It was a joy creating my thesis under
you tutelage. Hieke, even though you were busy finishing your PhD and settling in your new
job, you found the time to provide feedback, and even helped labelling! Much appreciated.
And Johan, thank you for your feedback and suggestions into the broader aspects of my
research. You all helped driving me to create a better research, thank you for that.

And lastly Sara. Where would I be without you? Probably still Gouda. I loved sparring
about research, Machine Learning, trees and forests. Thank you for helping and challeng-
ing me, and allowing me to be a better student. I love you and Apekop.

This was a fun journey.

Meine Toonen
Culemborg, 2021

- Arriving somewhere, but not here -

SW

i

CONTENTS

Acknowledgements i

Abstract iii

1 Introduction 1

2 Context 3
2.1 Literature . 3
2.2 Current state of the refactor tutor . 7
2.3 Problem analysis . 9

3 Research 11
3.1 Research questions . 11
3.2 Research method and validation . 13
3.3 Research contribution . 17

4 Results 18
4.1 Common logic errors when refactoring . 18
4.2 Labelling of common logic errors . 27
4.3 Writing unit tests to identify common logic errors 35
4.4 Validate trained models . 37
4.5 Validation by teachers . 39
4.6 Intermission - an example . 43

5 Discussion 47
5.1 Solutions . 47
5.2 Limitations . 49
5.3 Future work. 50

6 Conclusion 53

Bibliography 55

Appendices 58
A Errors . 58
B Exercises . 61
C Examples . 64
D Questionnaire . 72

ii

ABSTRACT

Because of time constraints, higher education teachers spend little time teaching about
code quality. To bridge this gap, teachers can use Intelligent Tutoring Systems: applica-
tions designed to help training some skill by providing feedback on exercises. This research
studies how unit tests can help identify common logic errors students make when they
practise refactoring in a tutor, and how unit tests can help to provide feedback on those
errors.

This research continues to study an existing tutor: the refactor tutor. Using a literature
review as a starting point, we identified common logic errors made in a previous study
on the refactor tutor. We labelled the errors, and validated them by letting multiple experts
check those labels. We developed unit tests for exercises from that study, and trained binary
decision trees to identify six common logic errors. Using a questionnaire, we consulted
with teachers to verify that the feedback on the recognised common logic error, is on par
with what the teachers would give. Using various verification methods, we determined
that at least two common logic errors can be recognised, and that we can provide valuable
feedback on those errors.

We showed that unit tests are a viable option to recognise common logic errors, and
therefore tutors can use these tests for providing feedback to students who are refactor-
ing. If a tutor should implement this, teachers would spend less time correcting common
mistakes and providing feedback to students, but students are still able to learn from their
mistakes.

iii

1
INTRODUCTION

Creating software is a diverse craft, ranging from design, implementation and maintenance
– and everything in between. According to Bruce [2018], the number of students in Com-
puter Science and Software Engineering is rapidly rising and teachers have trouble keeping
up with these numbers. The consequence of this, is that some aspects of software devel-
opment are neglected: in a study done by Kirk et al. [2020], it is shown that code quality is
one of those aspects that receive less attention. According to Boehm et al. [1976], bad code
quality leads to difficult to maintain software, resulting in steep increases of maintenance
costs. Luckily, teachers can employ Intelligent Tutoring Systems: software specifically de-
signed to teach some skill, without heavy reliance on the supervision of teachers.

In this research we study a tutor aimed at teaching refactoring: the Refactor Tutor. This
is a simple web application, developed by Keuning et al. [2020]. This tutor presents the
learner – students Computer Science or Software Engineering, after one or two courses of
programming – with a total of six exercises. Each exercise is a functionally correct method,
which the student has to improve the quality of. At each step the student can ask for feed-
back, and the progress is checked. The tutor provides guidance on the refactoring steps the
students have to make, by giving feedback automatically, and providing a way students can
actively check their progress. It has some rudimentary unit tests to check for the correct-
ness of the submission, but provides little feedback when an error is made.

Throughout this thesis we use the term “common logic error”. There are two parts to this
term: the first – common – describes those errors that often occur in a previous study. This
ensures that we have enough data to make determinations about the errors. The second
part – logic – concerns the type of error. Logic here means that it can be observed by unit
tests, as opposed to style errors: errors dealing with indents, capitalization and variable
names.

The second definition we use is about the term refactoring. We adhere to the definition
given by Fowler [2018]: “Refactoring is the process of changing a software system in a way
that does not alter the external behaviour of the code yet improves its internal structure”.

This study is aimed at providing students feedback on commonly made mistakes when
they practise refactoring. Our hypothesis is that students often make the same mistakes
when refactoring, and that we can observe these mistakes by employing unit tests. When
we know recognize a common error, we can provide feedback to the student, and the stu-
dent can make an improvement and learn from its mistake. When feedback on common

1

1. Introduction

errors can be given automatically, teachers have to spent less time educating on those er-
rors. This reduces the workload, and frees up time for other areas in the curriculum.

By performing a literature study, we collected common errors students make when pro-
gramming in general. Using these errors as a hierarchy, we created a list of errors students
make when they practise refactoring. We labelled those errors, and we verified those la-
bels, by letting other experts perform the same labelling task on a subset. We wrote various
unit tests for the exercises and used the obtained labels to train a binary decision tree. This
decision tree allows us to recognise a common logic error. We verified the outcome of the
models by checking them against a test set. Lastly, we sent out a questionnaire to teachers
to check if the feedback we created on the errors are applicable.

Our contribution is that we have created a list of common logic errors students make
when refactoring, developed an algorithm to recognise common logic errors, and showed
that the feedback we can automatically provide is sound.

The remainder of this document is as follows: Section 2 provides context on tutors,
feedback and methods we employed in our research. Section 3 presents our research ques-
tions and outlines the methodology used, and Section 4 presents the results obtained. In
Section 5 we discuss the results, and give our thoughts on further research, and in Section 6
we present our conclusion.

2

2
CONTEXT

2.1. LITERATURE
In this section we look at the current literature concerning feedback, tutors and how learn-
ing works.

2.1.1. SOFTWARE QUALITY AND REFACTORING
Software is becoming more and more important in our society. For example, our trans-
portation, electricity and work depend on it. It is therefore important that the software we
use is of good enough quality, because according to Boehm et al. [1976], good quality soft-
ware can save money in the overall lifespan of the software. These quality aspects can be
divided into multiple categories and subcategories. These aspects are described by Boehm
et al. [1976] as a characteristics tree. For example, the main category maintainability has
the subcategories testability, understandability and modifiability.

To make the quality of a piece of software measurable, there are metrics. For under-
standability, one can use complexity as a measure: if some function is very complex, it will
be harder to understand. This can be quantified by the cyclomatic complexity metric, as
defined by McCabe [1976].

When some function is becoming, for example, too large or too complex, a program-
mer can decide to refactor said function. Refactoring is changing code, without changing
its behaviour, with the purpose of making the code more maintainable [Fowler, 2018]. To
guarantee the stability of the behaviour, Mens and Tourwé [2004] state the pragmatic solu-
tion of rigorous testing. When the tests succeed after the refactoring, there is good evidence
the behaviour has not changed.

2.1.2. SEEKING HELP AND RECEIVING FEEDBACK
Students typically learn from their teachers by attending lectures and reading course ma-
terial. In addition to this, exercises can be made, on which the teachers provide some kind
of feedback to the learners. This feedback can fall into two categories: summative and
formative. Summative feedback provides some sort of evaluation on how well the learner
mastered the material, for example a grade.1 Formative feedback on the other hand, is

1https://sites.tufts.edu/teaching/assessment/assessment-approaches/
formative-and-summative-feedback

3

 https://sites.tufts.edu/teaching/assessment/assessment-approaches/formative-and-summative-feedback
 https://sites.tufts.edu/teaching/assessment/assessment-approaches/formative-and-summative-feedback

2. Context Literature

typically not about grades and more about changing the thinking of the learner.
Shute [2008] did an extensive literature review to gain more understanding about the

workings of formative feedback and on how it could be best applied. She analysed 138 arti-
cles about formative feedback, and made multiple suggestions on what to do and what not
to do when giving feedback, when to give feedback and how to approach giving feedback
depending on some characteristics of the learner (i.e. is it a high or a low achieving learner).

When students learn something new, or are working on a problem, they can discover
that they do not have sufficient knowledge. This process is called meta cognition: knowing
what you do not know and (how) to act on it. Aleven [2013] describes a multitude of ways
students can seek help: ask the teacher, search the internet, look at Wikipedia, etc. For
help to be effective, it must explain the why of a problem. VanLehn [2006] showed that if
the feedback only shows correct/incorrect, the student will give up without learning any-
thing. Therefore, the feedback should be tailored to the student: it must match the level of
mastery of the student on the subject. This is called scaffolding. The implication of this is
that there must be multiple degrees of feedback: from coarse-grained to fine-grained. For
the learning event to be effective, the teacher should gradually remove the scaffold when
the learner is becoming more proficient. As Harris et al. [2009] conclude, this adaptive be-
haviour in providing feedback has a positive effect on the mastery of a subject.

2.1.3. INTELLIGENT TUTORING SYSTEMS
Here we look at Intelligent Tutoring Systems: how they are designed and used, and which
types exist.

DESIGN OF INTELLIGENT TUTORING SYSTEMS

When teaching, a tutor system can be a large asset. It has the capability to assess the
progress and knowledge of students, without the need for a teacher to intervene. VanLehn
[2006] studied multiple tutoring systems, differing in domain: physics, algebra, SQL and
practical training about the operation of systems. VanLehn describes some common traits
shared by intelligent tutor systems. The main components as found in ITSs are:

The outer loop

The outer loop is the part of the tutor which selects the task to be completed next. A
task is an exercise, usually taking between a couple of minutes and an hour to finish.
VanLehn describes four levels of complexity for selecting the next task: at its simplest,
it is a list with tasks to be executed in sequence, and at the most complex end of this
scale is a system based on macroadaption: the system picks the next task based on
the missing knowledge of the student. For macroadaption to work, the ITS must keep
track of the progress of the student: this is called the student model.

The inner loop

The inner loop is concerned with the steps inside a task. A step is a user interface ac-
tion the user takes, and is part of solving the task. The steps available on most tutors
are: providing minimal (correct or incorrect) and error specific (helping the student
understand what is wrong) feedback, next step hint (what to do next), assessment of
knowledge (what does the student know) and review of the whole solution.

Feedback and hints

4

Literature 2. Context

For feedback and hints, the difficulty lies in when to give them and the granularity of
the feedback/hint. As for the when, there are three types: immediate, delayed and on
request. Ideally, hints and feedback are given only when the student needs it. For the
granularity – ranging from very coarse (stating the correctness) to very fine (it gives
the answer) – the level of proficiency of the student must be leading.

CURRENT STATE OF PROGRAMMING TUTORS IN EDUCATION

In 2018, Keuning et al. [2018] did a systematic literature review on several aspects of 101
tools providing feedback on student submissions of programming exercises. They set out
to determine what type of feedback was given to the students using the tool, which tech-
niques were used to create that feedback, and how teachers could expand on the exercises
and feedback in the tool. This was done by reviewing 146 papers, regarding 101 tools, and
labelling the different aspects of each tutor.

The article shows that the type of feedback most prevalent in such a tool is about mis-
takes, and of that, it was mostly about test failures (program is incorrect) and feedback on
errors (program does not show behaviour the exercise expected) in the solution. When
looking at the types of feedback of the previous decades, we see a declining trend for solu-
tion errors and a small rise in test failures.

A technique used to generate feedback is automated testing, where a solution from the
student is checked against a predefined set of tests. Mitrovic et al. [2003] note that one or
more unit tests can be used to observe a buggy rule. A buggy rule is a step in the (refactor-
ing) process that is incorrect, but common enough to describe. Unit tests can thus be used
to identify common errors.

Two other often used techniques are program transformation and basic static analysis.
When using program transformation, the solution can be rewritten to some normal form.
This normal form can then be checked for errors. Basic static analysis can be done using
metrics. The metric can be used to reason about the solution, to show what is wrong with
it.

To be useful for teachers, it must be easy to add new exercises and feedback. Most of
the systems considered use model solutions. In a dynamic analysis, model solutions are
correct implementations of the exercise used to automatically generate the desired output.
When used with static analysis, the structure of the correct model is used to check against
that of the student. Another form of adding new content is by using test data. This can be
in the form of scripts, or as unit tests.

One example of a tutor system that uses unit tests, is the online tool described in the
article by Fischer and von Gudenberg [2006]. They developed an online assessment tool,
to which students can upload their solutions. The solution is then checked for syntax, if
it adheres to the specification and a number of functional tests are run. These functional
tests are executed using the JUnit framework.2 The tests can be defined by the teacher as
mandatory, optional or even secret, and are run immediately.

REFACTORING ITS
Keuning et al. [2021] developed an Intelligent Tutoring System focused on refactoring in
the imperative language Java. The goal for this ITS is to aid teachers in giving feedback to
students. The tool is based on the IDEAS framework3 and was designed to provide feedback

2https://junit.org/
3http://hackage.haskell.org/package/ideas

5

https://junit.org/
http://hackage.haskell.org/package/ideas

2. Context Literature

as efficiently as possible. How and what kind of feedback was given was determined by
comparing professional tools, advice from teachers and current literature on this subject.

The ITS uses rules and strategies for implementing the feedback system, where a rule is
a single step in the refactoring process and a strategy is a series of rules detailing a refactor-
ing solution. These rules can be ordered in sequences, so that priorities can be given. This
resulted in an ITS that addresses more points than professional tools – such as PMD and
SonarQube – do, and takes the advice of teachers into account on how to provide feedback.

On the user interface part, the ITS allows students to enter their solutions and press a
button to validate their solution. When a student needs more help, they can get hints in
varying degrees of granularity: they are first presented with the most coarse-gained hint,
and each successive hint is more fine-grained. With each press of a button, the current
state is sent to the back-end and saved into a database for analysis.

Keuning et al. [2020] studied how students refactor and how they value code qual-
ity. The students tried to solve six exercises, which consisted of small code snippets that
were functionally correct, but needed some improvements with regards to the quality of
the code. The study was done with 133 students, all of them having taken programming
courses.

The research shows that the students requested hints on various levels of coarseness
and they had the most difficulty with complex control flows.

2.1.4. LOG ANALYSIS
When presented with a log database from a system, the amount of data can be overwhelm-
ing. To handle that problem, some structured way is needed to draw conclusions about
the data. Jansen [2006] described a method for extracting and analysing data from trans-
action logs, called Transaction Log Analysis (TLA). The formulated method is focused on
transaction logs from search engines, Intranet and web sites. These logs can describe a
multitude of actions, and can typically be used to investigate performance issues, informa-
tion structure or how users interact with the system. TLA involves three stages: collection,
preparation and analysis.

The collection stage is done at first, and aims at acquiring a dataset as unobtrusively as
possible. This ensures that the behaviour of the subjects does not change, which would
alter the outcome. Preparation is the preprocessing of the data: for example loading it
into a relational database, clean up of the data, parsing of data structures and normalising
(searching) episodes. The normalisation action is done to group individual entries in the
database to one person/actor. The last step, analysis, is concerned with getting conclusions
from the data as acquired and prepared in the previous stages.

2.1.5. TESTING
One of the ways to verify if a function (or method) is correct, is by writing unit tests. This
is a simple program that provides a known input, executes the function-under-test and
compares the result to some expected value. Within the Java language, one of the libraries
used for this is JUnit. Unit testing is at the heart of Test Driving Development (TDD), where
you first write a test and then write the code. It is linked to an improved code quality, as
the study by George and Williams [2003] showed. However, as Aniche and Gerosa [2010]
observed that there are common mistakes when applying TDD, leading to a decrease in
code quality.

6

Current state of the refactor tutor 2. Context

Claessen and Hughes [2011] have developed a tool for the language Haskell, named
QuickCheck. It is a small tool that implements a language construct that allows develop-
ers to explicitly define the relationship between the input and output of a function. This
is called Property Based Testing. When the relationship is defined, the function-under-test
will be executed with multiple, randomly generated inputs, and the resulting outputs are
checked for their compliance to the defined relationship. An implementation for the im-
perative programming language Java exists, called jqwik 4.

2.1.6. CLASSIFIERS
Whereas unit tests may be applied to identify logic errors, there may not necessarily be a
single unit test that can detect all occurrences of a certain error. More likely, a combination
of several unit tests is applicable. Machine learning offers tools to automatically train clas-
sifiers: models that can be used to combine features (the results of various unit test), into a
single classification.

One of those models is a binary decision tree. Murthy [1998] states that a binary de-
cision tree can be used to represent links in the data, and use those links to classify new
data.

In every node of the tree, a decision is made based on an input feature: here, whether a
certain unit test has fired or not. Every data point is thus represented as a path through the
tree, leading to a leaf where the final classification occurs.

This model is a proper fit to the classification problem at hand, because the features are
binary (unit test success of failure). An additional benefit of using binary decision trees, is
they can be graphically represented – via a tree structure – in an easy to understand, and
useful manner.

2.2. CURRENT STATE OF THE REFACTOR TUTOR
In 2020, Keuning et al. [2020] created an ITS focused on refactoring called the refactor tutor.
It has the capability to provide feedback on multiple levels of granularity. In the current
state of the ITS, feedback is given on the steps taken to refactor the given method, and a
basic unit test is executed to validate the output. The refactor tutor is a web application,
from which a screenshot is shown in Figure 2.1. It currently has six exercises, all of them
are described here. It must be noted that exercise 6.havethree is somewhat different: the
first five already have a functionally correct method to begin with, whereas exercise six
has no correct implementation to start with. All of the given initial programs are listed in
Appendix B. The exercise descriptions are:

4https://jqwik.net/

7

https://jqwik.net/

2. Context Current state of the refactor tutor

1.even: countEvent(int[] values)
The countEven method returns the number of even integers in the values-array.

Example test case: 1,2,3,4,5 returns 2. You don’t have to deal with negative numbers.

2.sumvalues : sumValues(int [] values, boolean positivesOnly)
The sumValues method adds up all numbers from the values-array, or only the posi-
tive numbers if the positivesOnly boolean parameter is set to true.

Example test case: calling sumvalues with 1,2,3,4,-5 and true returns 10.

3.oddsum: oddSum(int [] array)
The method oddSum returns the sum of all numbers at an odd index in the array
parameter, until the number -1 is seen at an odd index.

Example test case: 44, 12, 20, 1, -1, 3, 5,-1, 99, 4 returns 16 (12+1+3)

4.score: calculateScore(int changes, int day)
The calculateScore method calculates the score for a train trip. The highest score is
10. The score is based on the number of changes and the day of the week (Monday is
1, Sunday is 7).

Dutch Railways (NS) has designed the following calculation: Base score: 10 For each
change: -1 Trip on a weekday: -3

Example test case: for a trip with 2 changes on a Wednesday (day 3), calculateScore(2,
3) returns a score of 5 (10-2-3)

5.double: hasDoubled(double savings, int interest)
Write a program that calculates in how many years your savings have doubled with
the given interest (as a percentage).

An example: if your savings are 1000 euros and the interest is 4%, it will take you 18
years to double your savings (then you’ll have more than 2000 euros).

6.havethree: haveThree(int [] nums)
Given an array of ints, return true if the value 3 appears in the array exactly 3 times,
and no 3’s are next to each other.

Example test cases: haveThree with 3, 1, 3, 1, 3 returns true haveThree with 3, 1, 3, 3
returns false haveThree with 3, 4, 3, 3, 4 returns false

For this problem you have to write the code yourself. When the solution is correct
and all test cases pass, you can check if there are hints to improve your program.

8

Problem analysis 2. Context

Figure 2.1: Screenshot of the refactor tutor by Keuning et al. [2020]

2.3. PROBLEM ANALYSIS
During refactoring, logic errors can quite easily occur. To illustrate the kinds of errors, let
us look at Listing 2.1.

1 public static int countEven (int [] values) {
2 int count;
3 count = 0;
4

5 for (int i = 0; i < values . length ; i++) {
6 if (values [i] % 2 != 1) {
7 count = count + 1;
8 } else {
9 count = count;

10 }
11 }
12 return count;
13 }

Listing 2.1: Count only the even numbers in a given array. A student might refactor the if-statement.

The exercise belonging to Listing 2.1 function is:
“The countEven method returns the number of even integers in the values-array. Example

test case: {1,2,3,4,5} returns 2. You don’t have to deal with negative numbers. The solution is
already correct, but can you improve this program?"

9

2. Context Problem analysis

The steps that can be taken to improve this program are:

1. Simplify the if statement: values[i] % 2 == 0: line 6

2. Remove useless else block (self-assignment): line 8-10

3. Rewrite calculation: count ++: line 7

4. Rewrite for-loop to for-each: for(int value : values): line 5 and 6

5. Merge declaration and instantiation of count variable: int count = 0;: line 2 and
3

A student might refactor the if statement by changing the != to a ==, without chang-
ing the comparison value to 0. This creates the logical error that the wrong path of the
if-statement is taken: only uneven numbers are counted. In the current version of the ITS,
the message the student receives is:

Error: Test case failed, calling countEven with [1, 2, 3, 4, 5]
should return 2, but your method returns 3

It only signals an error in the output, but it does not provide more insight in the origin
of the error. This research is aimed at making the process that led up to the error insightful
for the student. We will do this by writing multiple unit tests per exercise, specifically de-
signed for observing various logic errors that may occur. These observations will be used
to identify the underlying problem for an incorrect answer. For example, when the student
makes the error as described above, it could display something along the lines of:

Error: Test case failed, calling countEven with [1, 2, 3, 4, 5]
should return 2, but your method returns 3. Is your check for
evenness correct?.

10

3
RESEARCH

In this research we will look at a way to help students better understand the problems they
encounter when refactoring, within the context of solving exercises in a refactoring ITS.
In this chapter we describe the questions we will answer during the research, how we will
answer them and how we will verify the results we obtain.

3.1. RESEARCH QUESTIONS
The main research question is “How to provide students feedback using unit tests for com-
mon logic errors when refactoring?". We have divided the main question into five research
questions. The research will be focussed on practising refactoring within an Intelligent Tu-
toring System.

RQ.1 What are common logic errors students make when they are refactoring?

We can only provide feedback for common logic errors if we know what those errors
are. This will be the first step of the research.

When looking at Listing 2.1 we can see – at least – one problem with the given code.
One of the possible refactoring steps a student might take, is to rewrite the if-statement:
it now has inequation (!= 1), which can be rewritten to == 0. One error that might
occur is that the student rewrites the equality operator to ==, but forgets to adjust
the value from 1 to 0. This will result in a faulty solution, as it will only count odd
numbers.

We will perform a small literature review to make a list of common logic errors.

RQ.2 Which common logic errors do students often make when they practice refactor-
ing in an ITS?

This research question concerns the identification of the logic errors that are most
prevalent in our dataset.

We will examine the dataset as composed by a study of Keuning et al. [2020], and label
the common logic errors made by the participants in that study. We will validate the
labels by calculating the inter annotator agreement.

11

3. Research Research questions

RQ.3 How can we create unit tests that identify common logic errors to provide forma-
tive feedback?

In this research question we will try to find a way to observe when students make
common logic errors. We will make use of unit tests to implement buggy rules. This
way, the observations can be implemented in the existing tutor, and provide more
specific feedback to the student. We will be designing unit tests for the five existing
exercises in the ITS as made by Keuning et al. [2020].

We will use binary decision trees to combine the results of different unit tests and
recognise common logic errors.

When looking at Listing 2.1, a test case to observe the introduced logic error is that
{1,2,3,4,5} returns 3.

RQ.4 To what extent can we identify common logic errors using unit tests?

In RQ.3, we automatically identified occurrences of the common logic errors, based
on a subset of the dataset. Now we must validate if our method can indeed observe
logic errors, by checking the performance on a held-out test set.

RQ.5 How do teachers rate the feedback for common logic errors?

To validate the feedback the tutor can provide based on automatically recognised
common logic errors, we ask teachers to fill out a questionnaire about that feedback.
This research question aims to find out if the feedback on certain common logic er-
rors is in line with what teachers would give.

12

Research method and validation 3. Research

3.2. RESEARCH METHOD AND VALIDATION
To answer the questions posed, we have devised a method for each question. For each
method we describe the steps to be taken, the output we expect and how we will validate
the results.

3.2.1. RQ.1 - FINDING COMMON LOGIC ERRORS WHEN REFACTORING
To find common logic errors, we will do a literature review and a log analysis. The literature
review will be used to create an informed starting point for the log analysis.

LITERATURE REVIEW

We study existing literature to find common logic errors that students make when refac-
toring. The articles as reviewed in Section 2.1 from Ettles et al. [2018], McCall and Kölling
[2014], and the thesis by Kuah [2019] are a good starting point. All three of them provide
insight into errors as made by students. These papers are the starting set for finding more
articles.

Wohlin [2014] has created some excellent steps to systematically find more literature
by snowballing. It is an iterative process, where one starts with a set of relevant articles,
and use those to start snowballing. Backward snowballing is used to identify useful ar-
ticles cited by the article (thus only finding articles backwards in time), whereas forward
snowballing is looking who is citing the current article. For each found article one must
determine whether it is relevant, and added to the set of articles. In a next iteration, the
found articles can also be used for snowballing.

The criteria we use for selecting common logic errors from the literature are:

• Errors must not result in compiler errors

• Errors must be observable by unit tests (as opposed to stylistic errors)

LOG ANALYSIS

In a paper written by Keuning et al. [2020], a study was done to investigate how a group of
students worked with a refactoring ITS. The data from that study is available, and consists
of a database with the logs generated by the students. These logs contain the submitted
solutions, when a hint was asked and the code they submitted as a solution. This allows us
to retrieve the incorrect solutions so we can determine what kind of common logic mistakes
students make.

To identify common logic errors students make when using an ITS, the literature review
will be an informed starting point to analyse this database. This will be done by a technique
called log analysis. We will follow the following phases, as described by Jansen [2006]:

1. Examination

The data has already been collected in the previous study. This phase will consist of a
first examination of the available data. We will look at the different types of requests,
the number of requests and what is inside each request.

2. Preparation

We clean up the data, find out which information is useful and how we can query the
database to answer questions for our analysis.

13

3. Research Research method and validation

3. Analysis

We will now analyse the submissions, and extract the errors made by the students.

The result of the literature review will be a list of common errors made by students.
These errors are not specific to refactoring, and will serve to categorise the errors as found
in the log analysis. The result from the log analysis will be a list of common logic errors
made by students when refactoring.

We expect some overlap between the mistakes found in the literature review, and the
log database. By comparing this overlap and analysing the discrepancies, we can make
sure the results found for this research question are valid.

3.2.2. RQ.2 - LABELLING COMMON LOGIC ERRORS
To answer the question Which common logic errors do students make often when they prac-
tice refactoring in an ITS?, we must first identify the common logic errors present.

Working with the dataset from the study by Keuning et al. [2020], we will answer that
question by labelling the errors present in the dataset. We will verify the outcome by cross
validating a small sample by other annotators.

This research question is split into three phases: labelling of errors, dataset creation and
validating the given labels by different annotators. The result of this research question will
be the log database amended with labels for found errors, a training and a test set derived
from the log database, and an inter annotator agreement.

LABELLING OF ERRORS

In this phase, we label the errors that are present in the database. We do this by inspecting
the submitted function, and identifying the error(s) present in said function. When identi-
fied, we update the row in the database with the label(s) identified in the function.

We make a hierarchy of labels: the errors we found in the literature review are used as
a main category, and labels belong to one of those categories. A submission can contain
multiple labels.

SPLITTING THE DATA

We split the created dataset into two sets : one training set and one test set. The training set
will be used to develop the unit tests against and to train the binary decision trees on the
results of the unit tests. The test set will be used to verify if the binary decision trees identify
the errors correctly.

These two datasets must both be representative of the entire population and be inde-
pendent of each other. To this end, the sets must conform to the following rules:

1. Every exercise must be in both sets

2. Submissions from one student can at most be in one set

3. Duplicate entries from the same student are not allowed

The size of the datasets is influenced by the number of logic errors we want to recognise.
The ratio between training set and test set is 80/20.

14

Research method and validation 3. Research

INTER ANNOTATOR AGREEMENT

The labelling of the data is executed by the main author, which is a threat to validity. To
mitigate this problem, we take a subset of the labelled instances, and have other researchers
annotate the errors as well. To prevent contamination, we do not give the results of the
first labelling action to the external annotators. We instruct the annotators on the labelling
process by providing a document containing the labels, examples for each label, and an
instruction on how to report the resulting labels.

We can then perform an analysis on that subset, and measure the level of agreement
between different annotators. The simplest way according to Artstein [2017], is the observed
agreement. This measure is the percentage of identical labels in the subset between all
annotators. This metric gives insight in the reliability of the labels given by the main author.

3.2.3. RQ.3 - OBSERVING COMMON LOGIC ERRORS

The underlying assumption for this research is that we can observe common logic errors
through the execution of unit tests. Unit tests have a predefined input, an expected out-
put, and they execute a function-under-test (in our case the submission of a student). We
can observe its actual output and compare it to the expected output. The outcome of this
comparison is the result of the unit test.

This design has a couple of implications. The first implication is that the coupling be-
tween unit test and the function-under-test means that each unit test is linked to a specific
exercise. The second implication is that we use dynamic analysis for the submitted code
(i.e. the code is actually executed), and not static analysis (meaning the code is not exe-
cuted). The submitted code must compile, otherwise the analysis cannot be done.

This research question consists of three phases:

1. Writing testbed software

2. Writing unit tests

3. Training of the models

TESTBED SOFTWARE

The submissions in the database are strings containing Java code. To dynamically analyse
them, tooling has to be written. This tooling will need to extract the functions from the
database, compile them and load them in the Java Runtime. After that, it can be analysed
by unit tests.

The result of the execution will be a .csv-file with all retrieved submissions and the
results for the unit tests.

WRITING UNIT TESTS

To observe logic errors one or more unit tests have to be written. The testbed as created
in the previous phase, will determine the exact semantics of a unit test. However, the base
premise still stands: we have some predefined input, an expected output and we compare
the actual output against the expected output. In the case of Listing 3.1, the unit test can
be:

15

3. Research Research method and validation

1 public static int countEven (int [] values) {
2 int count;
3 count = 0;
4

5 for (int i = 0; i < values . length ; i++) {
6 if (values [i] % 2 != 1) {
7 count = count + 1;
8 } else {
9 count = count;

10 }
11 }
12 return count;
13 }

Listing 3.1: Count only the even numbers in a given array. A student might refactor the if-statement.

assertThatNot(countEven([1,2,3,4,5]), 3);

This unit test will call the countEven method with an array containing the numbers 1 to
5, and checks if the output of the method is not equal to 3. When the students do change
the operator from != to ==, but forget to change the value, the unit test fails (the result from
the function will be 3). This result is then saved to the a .csv-file.

TRAIN MODELS

When all submissions have been analysed by the unit tests, the result is one large .csv-
file. To analyse this file, we will use Orange, a tool written by Demšar et al. [2013]. Orange
is a visual programming environment written in Python, to enable the user to implement
various machine learning models. We will use Binary Decision Trees to create a model for
identifying common logic errors.

We will use the training dataset (as created in Section 3.2.2) to train the model. The
resulting model can be used to identify errors in new submissions: the behaviour of that
submission will be observed with the unit tests, and the results from those unit tests will
be analysed with the model from the Binary Decision Tree. The model will then give a
prediction for what kind of common logic error this submission likely contains.

We chose a Binary Decision Tree to find any hidden links and dependencies between
unit tests. The actual data in the training set will reveal those links and dependencies.

3.2.4. RQ.4 - VALIDATION OF RQ.3
This research question validates the Binary Decision Tree models, and to answer it, there
must be some sort of indicator showing the effect. It gives us a measure on how accurate
the models predict a common logic error, and how well it generalises beyond the training
set.

VALIDATE THE MODEL

To validate the models we take the test set. This test set will be used to let the unit test fire
against, and let the models predict the likely error. This allows us to calculate the precision

16

Research contribution 3. Research

and recall of the proposed solution.
We have divided this into three consecutive parts:
Step 1:
We take the test set, and generate the output in the form of a csv file. This csv file con-

tains the results of all unit tests.
Step 2:
This csv file will be used as an input for our models in Orange, written by Demšar et al.

[2013]. Orange will be calculating the recall and precision of the models, and report it via
confusion matrices.

Step 3:
Finally, we analyse the outcome from Step 2 and interpret the results.
These steps give us insight into how the created unit tests will “behave" in the real world

and what their predictive value is. The result of this part will be two metrics, to indicate how
well the designed unit tests can predict the identified errors and how many false positives
will be found.

3.2.5. RQ.5 - ASKING TEACHERS TO VALIDATE UNIT TESTS
For us to answer RQ.5, we will make a questionnaire. This questionnaire will contain a
subset of the exercises, submission from a student and the feedback on that submission.
This will be presented to teachers, so they can rate the feedback on the errors found.

The questions posed are of a qualitative nature, and are designed to provide insight into
the appropriateness and meaningfulness of the provided feedback. The answers allow us
to identify any missing elements, and to improve on the feedback.

We send this questionnaire to approximately five to ten teachers. This should allow us
to retrieve enough information to validate the feedback, and rule out any possible misin-
terpretations made by the teachers.

Teachers are trained for their didactic skills, and thus are able to properly evaluate the
feedback. We ask teachers in the software engineering department, so they have a firm
grasp on the material and can evaluate the unit tests on logic and completeness.

3.3. RESEARCH CONTRIBUTION
This research contributes on a couple of areas. First, it provides insight in what kind of logi-
cal mistakes students make when they refactor functionally correct, but stylistically flawed
code. This might provide some insight for teachers how to deal with these kind of prob-
lems. While there already is knowledge about common logic errors in a general program-
ming context – as found by Ettles et al. [2018] – we make this knowledge more specific to a
refactoring context.

Our second contribution is using unit tests to observe common logic errors in an ITS.
While there are already tutoring systems that use unit tests for observing errors, this re-
search focuses specifically on refactoring. Furthermore, it uses unit tests not only to iden-
tify errors, but also to identify nuances in the errors made. We hope this allows us to provide
formative feedback on specific errors.

17

4
RESULTS

4.1. COMMON LOGIC ERRORS WHEN REFACTORING
To get an answer for research question 1, we study existing literature to find the current
knowledge about common mistakes students make when programming. Then we do a log
analysis on a database from a previous experiment with students refactoring. This log anal-
ysis will provide a list of errors specific to refactoring, while the errors from the literature
review will serve as categories for the errors from the log analysis.

4.1.1. LITERATURE REVIEW
For this literature review we look at common mistakes made by novice programmers. We
define a common logic error as a computer program that does compile, but does not work
as expected. By novice programmers we mean students, as this is the target for our re-
search.

We started snowballing by using the articles by Ettles et al. [2018], McCall and Kölling
[2014] and Kuah [2019], and from there compiled a list of literature, on which we snow-
balled further.

To provide a context, we first look at why student make errors when writing software.
Then we look at the types of errors made by students. The result of this literature review is
Table 4.1. The common errors from this table are used as categories in the log analysis.

STUDENT ERRORS

Learning to program is hard. According to Lahtinen et al. [2005], it deals with a lot of
abstract concepts. Lahtinen et al. [2005] did a survey among teachers and students on
the problems students encounter. They found that designing a program to solve a prob-
lem,dividing functionality into functions and debugging were found the most difficult is-
sues. The difficult concepts are recursion, pointers and references, abstract data types,
error handling and using language libraries. While the article by Lahtinen et al. [2005] does
not have instances of common errors, it does provide some useful categories for identifying
errors.

Besides the nature of programming, Gomes and Mendes [2007] also take into consider-
ation the various circumstances: teaching methods, study methods, student abilities and
attitudes, and the psychological effects. Gomes and Mendes [2007] see programming as a

18

Common logic errors when refactoring 4. Results

set of skills, instead of a single skill. Of these skills, they view problem solving as one of the
most important abilities.

To categorise the common mistakes students make, Brown et al. [2014] did a large scale
study on the Blackbox project. This is a project that collects data from the BlueJ IDE. The
data in Blackbox contains some metadata for each user, start and end times of the program-
ming session, and for each (compilation/edit/execution/etc.) event timestamps and rele-
vant data. The granularity of this data makes it very usable for different kinds of research.
Brown et al. [2014] focussed on compiler errors, and found that the top three compiler er-
rors were: unknown variable, semicolon expected and unknown method.

In a later study, McCall and Kölling [2014] used the Blackbox data again. They tried
to categorise the errors made by students who followed two introductory courses in Java
programming. The research focused on determining a hierarchy of common errors. The
errors retrieved from the dataset are all compile errors, and can be divided into syntactic,
semantic and logic errors. Kölling et al. made a hierarchy for the categories, for example
“variable not declared" is the parent category of “variable name written incorrectly". No
details were given on the logic errors they identified. Our research focusses on dynamic
analysis of code, which requires the code to compile. The resulting list of this study only
contains compiler errors, so it was not incorporated in Table 4.1. However, it did provide
some background and perspective on errors made by students.

Another study using the Blackbox data, this time by Altadmri and Brown [2015], re-
ported specific mistakes. The mistakes ranged from syntax errors, type errors and other
semantic errors. However, some errors could result in a logical error. Examples of these
instances are confusing “short-circuit” evaluators (&& and ||) with & and |. These errors are
included in Table 4.1.

Truong et al. [2004] created a static analysis tool to be used in ITSs and semi-automatic
assessment tools. Using an Abstract Syntax Tree1 it analyses different types of errors: poor
programming practices and common logic errors. The common logic errors as described
in this article are contained in Table 4.1, and the research into static analysis of common
logic errors can be helpful for RQ.3.

COMMON LOGIC ERRORS

Ettles et al. [2018] researched the common logic errors made by students in their first year
– after completing two programming courses. They tried to find what the most common
errors are, and which are the most problematic for them to fix. Using the tool CodeWrite,
they presented students with ten exercises to be programmed in C. The results from the
compilable, but incorrect submissions were analysed. The results from the unit tests were
evaluated and used to group similar solutions. Ettles et al. found that the most difficult
and common misconception logic errors were: integer division results in an integer (not
a double), uninitialised integers do not have a value (they assumed a 0), and off-by-one
errors.

In his master thesis, Kuah [2019] describes some logic errors as made by first year stu-
dents when solving programming exercises as taken from an exam. He shows that errors
concerning string concatenation, mishandling of enum values and wrongfully assigning
values to variables are among the most prevalent made errors. In Table 4.1 we have in-
cluded his top five logic errors: these errors had the most occurrences and were best de-

1https://en.wikipedia.org/wiki/Abstract_syntax_tree

19

https://en.wikipedia.org/wiki/Abstract_syntax_tree

4. Results Common logic errors when refactoring

scribed in his thesis.
The PhD-thesis by Sorva [2012] includes a table with 162 misconceptions novice pro-

grammers have. These misconceptions are compiled from literature and exploratory re-
search. The list is unordered and does not provide information about the commonness
of the misconception. From this list we have selected eleven misconceptions that might
be relevant to our research. We have excluded misconceptions that, for example, result in
compiler errors, or are not relevant for refactoring one method.

Hristova et al. [2003] developed a tool to help students learn Java faster in introduc-
tory programming classes. The authors conducted research in often made mistakes, to
create more readable errors messages reported by the tool. They surveyed college profes-
sors, teaching assistants and students to find programming mistakes students make with
the language Java. For this article we also filtered out errors resulting in compiler errors.
From the twenty errors reported by Hristova et al., we included six in Table 4.1.

Qian and Lehman [2017] did a study to various types of misconceptions students have
when studying computer science. The authors identified that students have misconcep-
tions and other difficulties about syntax, conceptual knowledge and strategic knowledge.
For each type of misconception, they looked at what the contributing factors are. For strate-
gic knowledge, it was found that students do not have complete and organised knowledge,
lack strategies on how to solve a programming problem, and fail to reason at an abstract
level. Qian and Lehman developed strategies to mitigate the found problems. For our re-
search, we deemed the errors in strategic knowledge the most relevant for our study.

RESULT

From the papers studied, we compiled a list of 90 errors, mistakes and misconceptions.
From this list we filtered out any irrelevant errors: errors resulting in compiler errors, er-
rors that were too specific to the source article or too advanced for novice programmers.
Lastly, we filtered out errors in constructs not present in the dataset for the log analysis. For
example, the exercises only deal with primitives, so .equals and string operations are not
relevant. The end result was a list of thirteen errors, as shown in Table 4.1. These errors are
used to categorise errors as found in the log database.

20

Common logic errors when refactoring 4. Results

Table 4.1: Filtered list of common errors made by students as found in literature.

ID Error Category name Source

1 Division of two integers results in integer (no fraction) Integer division Ettles et al. [2018]

2 Off-by-one Off-by-one Ettles et al. [2018]

3 Confusing && and || with & and | Short-circuit Altadmri and Brown
[2015]; Hristova et al.
[2003]

4 Incorrect semicolon after if/for/while statement if (a
== b); return 6;

Early semicolon Altadmri and Brown
[2015]; Hristova et al.
[2003]

5 Not observing the bounds correctly (special case of
Off-by-one)

Boundary Ettles et al. [2018]; Qian
and Lehman [2017]

6 If-if-else instead of if-else if else Wrong if Ettles et al. [2018]

7 Confusion between an array and its cell. Array Sorva [2012]

8 Not using a guard (prevent division by zero) No guard Qian and Lehman [2017]

9 Misconception: Both then and else branches are exe-
cuted.

Both if-else Sorva [2012]

10 Misconception: Using else is optional (the next state-
ment is always the else branch)

Optional else Sorva [2012]

11 Failing to check unexpected cases Logic Qian and Lehman [2017]

12 Wrong loop type for problem Wrong loop Qian and Lehman [2017]

13 Error handling is a difficult concept Error handling Lahtinen et al. [2005]

21

4. Results Common logic errors when refactoring

4.1.2. LOG ANALYSIS
For this log analysis we use the data from a previous experiment by Keuning et al. [2020].
This experiment was done with 133 students using a refactoring tutor. This log analysis will
produce a list with common logic errors students make when refactoring a function.

The log analysis will be done as described in Section 3.2.1. As reported by Keuning
et al. [2020], there are six exercises in the dataset. The first five are in the form of: given a
functionally correct function, can you improve it. However, the last exercise is different: it
does not start with an implementation. This likely results in different errors, and are not
comparable to the errors from the other exercises. Because of this, we exclude exercise six
from the analysis.

EXAMINATION OF DATABASE

The database consists of requests done by the refactor tutor between 26 September 2019
and 24 December 2019, while the experiment was conducted in the week of 14 October
2019. For a first filtering pass, we created a table containing only the data from that time
period. All numbers reported here are from that time period.

The table with requests consists of twenty columns, containing metadata, the request
itself, the input and the output. The most important metadata for this study consists of a
timestamp, a sessionid, an identifier for the task, which service is called and the response
time The input consists of a JSON object with all its parameters, as shown in Listing 4.1.
The JSON object has the requested service (in this case diagnoseR), the parameters of the
call (with the current exercise, the previous submission, the student id) and the new sub-
mission.

To get familiar with the data itself, we did some queries to get feeling for the amount of
requests. Services are endpoints of the tutor, which can be called to validate an solution, get
the number of hints remaining or the number of refactoring steps to be taken. A complete
description of the endpoints can be found at the Ideas website 2. In Table 4.2 we calculated
the number of request per service. We are mostly interested in the diagnoseR service, as
this provides the evaluation of the submitted solution of the service and reports any failing
unit tests.

2https://ideas.science.uu.nl/cgi-bin/rpt.cgi?input=%3Crequest%20service=
%22servicelist%22%20encoding=%22html%22/%3E

22

https://ideas.science.uu.nl/cgi-bin/rpt.cgi?input=%3Crequest%20service=%22servicelist%22%20encoding=%22html%22/%3E
https://ideas.science.uu.nl/cgi-bin/rpt.cgi?input=%3Crequest%20service=%22servicelist%22%20encoding=%22html%22/%3E

Common logic errors when refactoring 4. Results

1 "event": <string >, // currently empty
2 "id": <string >, // currently always zero
3 " method ": <string >, // id of service
4 " params ": [[
5 <string >, // id of exercise
6 <array >, // empty for diagnoseR , used for expandHint
7 <string >, // previous submission
8 <jsonobject >, // Object with data for hints , empty for diagnoseR
9 [

10 <string >, // user id
11 "",
12 ""
13]],
14 <string > // New solution of student .
15],
16 " source ": <string > // Calling user -agent
17

Listing 4.1: Definition of request body

Table 4.2: Requests done in experiment. Grouped per service type.

Service Requests Explanation

diagnoseR 10839 Diagnose current solution for refactoring

hintsremaining 4522 Returns the number of improvement left

allhints 1813 Returns a tree of feedback messages with increasing specificity

expandhint 1686 Expand on a hint, or ask for an alternative

example 1498 Returns a example expression that can be solved with an exercise

exerciselist 462 Returns all the exercises

stepsremaining 360 Returns number of steps still remain

onefirsttextr 82 Returns possible next step

allfirststextr 6 Returns all next steps

Similar to the input, the output column is also in JSON format. The JSON object con-
tains if the exercise is ready, which exercise was processed, the processed code, any errors
encountered (with accompanying information), the userid and the buggy rule which was
triggered (in this case improveevencheck).

The service we are interested in, is the diagnoseR service. This is the service which eval-
uates the code from the student. The column serviceinfo provides us with information
about the result of the service. The values that are present in the serviceinfo column for the
diagnoseR service can be found in Table 4.3. Note that we have truncated the serviceinfo
value to only show the main category of the serviceinfo. In the last column we provide a
description of the serviceinfo. It becomes apparent that NotEquivalent is useful for this
study.

23

4. Results Common logic errors when refactoring

Table 4.3: Requests per serviceinfo (only service = diagnoseR). First three rows are errors.

ServiceInfo Requests Meaning

NotEquivalent 1791 Test case is failing

Buggy 461 Reporting of buggy rules

SyntaxError 1180 Report compiler errors

Similar 4046 Submission is similar to starting point of exercise

Correct 1534 Submission is correct

Expected 709 Report expected next step

PREPARATION

The submitted functions are part of a JSON object in the column input. For easier eval-
uation of the data, we have created a new column named submittedfunction. For each
failed unit test we have extracted the function from the JSON object, and updated this row
with the offending function. We also added a column (useridfunction) with the func-
tion concatenated with the userid. This allows for easy counting of unique submissions
per user. To find only relevant data, we must filter the dataset. We started with filtering the
database for the given time period of the experiment, now we can extend those filters. The
applied filters are:

1. Only use diagnoseR service: service = ‘diagnoseR’

2. Only failing unit tests: serviceinfo like ‘NotEquivalent%’ or serviceinfo =
’buggycollapseif’

3. Only unique submissions from the same user: count(distinct(useridfunction));

To get an overview of the errors, we wanted to know the amount of errors per exercise.
This is shown Table 4.4. We have added the number of requests per exercise, to see what
the relative amount of errors is.

Table 4.4: Per exercise the number of unique errors and requests, and the percentage of requests containing
an error

Exercise Errors Requests Percentage

1.even 177 5664 3.1%

2.sumvalues 489 4818 10.1%

3.oddsum 243 4439 5.5%

4.score 120 1475 8.1%

5.double 53 829 6.4%

24

Common logic errors when refactoring 4. Results

ANALYSIS

When looking at Table 4.4, we see that exercise two has the most relative errors. Upon
inspection of the number of unique serviceinfo’s per exercise, we see a lot of errors only
triggered a couple of times. To get a more manageable size table, we only look at errors
encountered at least ten times. The result can be found in Table 4.5.

25

4. Results Common logic errors when refactoring

Table 4.5: Different errors per exercise.

Error Exercise Errors Subtotal

No boolean condition in if 1.even 80

countEven with [{1, 2, 3, 4, 5}] expected: 2, actual: 0 1.even 41

countEven with [{1, 2, 3, 4, 5}] expected: 2, actual: 3 1.even 22

Rest (errors with less than 11 occurrences) 1.even 34

177

sumValues with [{1, 2, 3, 4, -5}, true] expected: 10, actual: 5 2.sumvalues 302

No boolean condition in if 2.sumvalues 50

sumValues with [{1, 2, 3, 4, -5}, false] expected: 5, actual: 0 2.sumvalues 28

sumValues with [{1, 2, 3, 4, -5}, true] expected: 10, actual: 15 2.sumvalues 26

sumValues with [{1, 2, 3, 4, -5}, false] expected: 5, actual: 10 2.sumvalues 13

sumValues with [{1, 2, 3, 4, -5}, true] expected: 10, actual: 4 2.sumvalues 11

sumValues with [{1, 2, 3, 4, -5}, true] expected: 10, actual: 1 2.sumvalues 11

sumValues with [{1, 2, 3, 4, -5}, true] expected: 10, actual: 0 2.sumvalues 11

sumValues with [{1, 2, 3, 4, -5}, true] expected: 10, actual: -5 2.sumvalues 11

Rest (errors with less than 11 occurrences) 2.sumvalues 26

489

oddSum with [{44, 12, 20, 1, -1, 3, 5, -1, 99, 4}] expected: 16, actual: 0 3.oddsum 38

oddSum with [{44, 12, 20, 1, -1, 3, 5, -1, 99, 4}] expected: 16, actual: 20 3.oddsum 34

oddSum with [{44, 12, 20, 1, -1, 3, 5, -1, 99, 4}] expected: 16, actual: 77 3.oddsum 28

No boolean condition in if 3.oddsum 22

oddSum with [{44, 12, 20, 1, -1, 3, 5, -1, 99, 4}] expected: 16, actual: 12 3.oddsum 18

Test cases do not match the return type of the method 3.oddsum 17

Your loop seems to be infinite, check the stop condition! 3.oddsum 16

oddSum with [{44, 12, 20, 1, -1, 3, 5, -1, 99, 4}] expected: 16, actual: 15 3.oddsum 12

Rest (errors with less than 11 occurrences) 3.oddsum 58

243

calculateScore with [2, 7] expected: 8, actual: 5 4.score 46

calculateScore with [2, 3] expected: 5, actual: 8 4.score 19

Rest (errors with less than 11 occurrences) 4.score 55

120

hasDoubled with [1000.0, 4] expected: 18, actual: 1 5.double 14

hasDoubled with [1000.0, 4] expected: 18, actual: 0 5.double 12

Rest (errors with less than 11 occurrences) 5.double 27

53

Total 1082

26

Labelling of common logic errors 4. Results

4.2. LABELLING OF COMMON LOGIC ERRORS
In this section we will analyse the errors the students made in the study from Keuning et al.
[2020], and we look at how well the labelling went by calculating the inter annotator agree-
ment.

4.2.1. LABELLING
Because the errors reported by the current version of the refactor tutor can be caused by
multiple logical errors, we look at the functions as submitted by the students. We analyse
what the error was and label the row in the database. The complete result of the labelling
process can be found in Appendix A, but we have created a condensed version in Table 4.6.
We excluded all errors with less than ten occurrences. Each label belongs to one main cat-
egory, which can be found in Table 4.1 from the literature review.

In Table 4.7 we have counted the number of errors for each exercise per main category.
We have added a row with a Rest category. Included here are the submissions with multi-
ple labels, or main categories with less then 11 errors. This is visualized in Figure 4.1. In
Table 4.8, we included the number of errors for each label. For readability, we have only
included the label when the number of errors is larger or equals than ten, all labels with
less than ten are grouped in the row Rest.

Table 4.7: For each exercise the number of
errors per main category

Exercise Main category Errors

1.even Array 80

1.even Boundary 36

1.even Logic 22

2.sumvalues Logic 545

2.sumvalues Array 56

2.sumvalues Optional else 27

2.sumvalues Boundary 12

3.oddsum Logic 87

3.oddsum Wrong loop 34

3.oddsum Boundary 27

3.oddsum Semantic 14

3.oddsum Array 10

4.score Logic 64

5.double Logic 22

Rest 46

Total 1082

Table 4.8: For each main category the number of
errors per label

Main category Label Errors

Logic alwaysused 498

Array foreachbutindex 147

Boundary earlyexit 59

Logic orinsteadofand 51

Logic missingcase 52

Wrong loop incorrectforeach 35

Logic controlvarinverse 30

Logic nostop 29

Optional else onifsumdouble 27

Boundary wrongincrement 27

Logic incorrectlogicif 19

Logic wrongvariableused 13

Logic alsoaddedgecase 12

Off-by-one indexoutofbounds 11

Logic incorrectwhilecondition 10

Rest - 62

Total - 1082

27

4. Results Labelling of common logic errors

Table 4.6: Labelled errors with explanation and the number of occurrences

Label Maincategory Explanation Errors

alwaysused Logic No matter the outcome of the if, always
add the value. Multiple variations: (a)
one if with both then and else adding the
number to the sum variable (b) if ((posi-
tivesOnly && i>0) || !positivesOnly), with
the then also adding the number to the
clause.

498

foreachbutindex Array Adjusted for-loop to foreach, but in if
using the loop-variable as an index to re-
trieve a value from the array

147

earlyexit Boundary Stopping from the loop too early (after
successful match, or after first iteration)

59

missingcase Logic Missing case: no else clause, or case from
exercise premise forgotten

52

orinsteadofand Logic Wrong logical operand: && instead of ||,
or vice versa

51

incorrectforeach Wrong loop Used foreach/while, when code needs an
index, or when using a for-loop: skip
nothing when indices have to be skipped

35

controlvarinverse Logic Stop variable initialized with true so it
stops when false, but used inversely:
only add to total when false. The oppo-
site can also be true

30

nostop Logic No control variable present, used or ma-
nipulated to account for exercise param-
eters

29

onifsumdouble Optional else Always add the number to the sum, but
again when the condition is true

27

wrongincrement Boundary Updated counter wrong: count =
count++;

27

incorrectlogicif Logic Logic statement evaluates (almost) al-
ways to false

19

wrongvariableused Logic Checking wrong variable in if statement 13

alsoaddedgecase Logic Before stopping on found error, also
added the edge case (-1) to the total

12

indexoutofbounds Off-by-one Retrieving value from array outside size
of array, can be off-by-one

11

incorrectwhilecondition Logic While condition incorrect: only works on
first iteration, or on wrong variables

10

28

Labelling of common logic errors 4. Results

Figure 4.1: Distribution of main categories for each exercise. Data in Table 4.7.

The relationship between main category and label can be observed in Table 4.8. We
can see that students make the most errors with the main categories Logic (69%) and Array
(14%).

For the Logic category, the largest factor is the alwaysused label: regardless of the con-
dition placed by the exercise, a computation is done (for example counting in exercise 1, or
adding in exercise 2). Other large factors are using OR instead of AND, and not having an
else clause. An example of this error can be found in Listing 4.2.

1 public static int sumValues (int [] values , boolean positivesOnly)
2 {
3 int sum = 0;
4 for (int i : values)
5 {
6 if ((positivesOnly) && i >=0)
7 {
8 sum += i;
9 }

10 else
11 {
12 sum += i; // Same as in IF
13 }
14 }
15 return sum;
16 }

Listing 4.2: Example for label alwaysused

The Array category is a category with only one label (foreachbutindex) as a child.
However, it is the label with the second highest number of occurrences. This label is a mis-
understanding of the for-each loop. An example for an instance is shown in Listing 4.4. We
can see that the for-loop has been changed to a for-each, but the values-array is accessed

29

4. Results Labelling of common logic errors

with the current value of the iteration. Therefore, when passing the values [4,1,3] to the
function, on the first iteration we get an IndexOutOfBounds (values[4] was requested,
but the array was of length 3). This might be classified as an indexoutofbounds label, but
foreachbutindex gives more nuance to the actual error (the error is not in wrongly check-
ing the bounds, but misunderstanding the for-each construct).

We have added examples for the labels earlyexit, foreachbutindex, missingcase,
incorrectforeach and orinsteadofand in respectively Listing 4.3, Listing 4.4, Listing 4.5,
Listing 4.6 and Listing 4.7. We have added the complete list of examples in Appendix C.

1 public static int countEven (int [] values)
2 {
3 int count = 0;
4 for (int i = 0; i < values . length ; i++)
5 {
6 if (values [i] % 2 != 1)
7 {
8 count = count + 1;
9 }

10 else
11 {
12 return count; // Returns after first uneven
13 }
14 }
15 return count;
16 }

Listing 4.3: Example for label earlyexit

1 public static int countEven (int [] values)
2 {
3 int count = 0;
4 for (int i : values)
5 {
6 if (values [i] % 2 != 1) // i is the value , but used as an index
7 {
8 count ++;
9 }

10 else
11 {
12 count = count;
13 }
14 }
15 return count;
16 }

Listing 4.4: Example for label foreachbutindex

30

Labelling of common logic errors 4. Results

1 public static int sumValues (int [] values , boolean positivesOnly)
2 {
3 int sum = 0;
4 for (int value: values)
5 {
6 if (positivesOnly == false){ // Only implements when parameter is

false , other cases are missing
7 sum += value;
8 }
9 }

10 return sum;
11 }

Listing 4.5: Example for label missingcase

1 public static int oddSum (int [] values)
2 {
3 int total = 0;
4 boolean stop = false;
5 for (int value : values) // foreach used , when exercise calls for

for with index
6 {
7 if (stop == false)
8 {
9 if (value != -1)

10 {
11 total += value;
12 }
13 else
14 if (value == -1)
15 {
16 stop = true;
17 }
18 }
19 }
20 return total;
21 }

Listing 4.6: Example for label incorrectforeach

31

4. Results Labelling of common logic errors

1 public static int calculateScore (int changes , int day)
2 {
3 int score = 10;
4 for (int i = 0; i < changes ; i++)
5 {
6 score -= 1;
7 }
8 if (day != 6 || day != 7) // Always evaluates to true
9 {

10 score -= 3;
11 }
12 return score;
13 }

Listing 4.7: Example for label orinsteadofand

INTERESTING DATA

For one occurrence with value NotEquivalent(No boolean condition in if) we could
not reproduce the error in the tool. When we entered the function, it gave a different error
than reported in the database. We consider this row (timestamp: 2019-10-17 09:08:57.42462)
a discrepancy, and labelled it according to the error reported in the tool. This can happen
when a bug is fixed between the study and now.

The error foreachbutindex is found 147 times. Often this was during the refactoring of a
simple for-loop to a for-each loop. Students did refactor the loop, but did not change how
to access the value from the array: they replaced the index by the value from the for-each.

Some errors from the literature review – as noted in Table 4.1 – were not found in the log
database, even though multiple articles reported on them. We pose the following explana-
tions:

The errors Integer division, Not using a guard to prevent division by zero and Error han-
dling, are errors that are out of scope from the exercises: there are no exercises where divi-
sion and error handling is done.

The errors If-if-else instead of if-else if else, Misconception: Both then and else branches
are executed and Failing to check unexpected cases are hard to analyse, as they require access
to the thought process of students.

For the error Confusing && and || with & and |, we think that knowing the existence of
the short-circuit operator is too advanced for students, while error Failing to check unex-
pected cases is prevented because of the example code already containing the initialisation
of all variables.

4.2.2. CREATING DATASETS
To create the datasets, we first assigned each userid a random number between 0 and 100.
Based on that number, we put each userid into the test set (random number < 21) or the
training set (random number > 20). This ensured that a user was only in one dataset.

We checked that the labels reported in Table 4.8 were present in both sets.
In the database there existed multiple duplicate requests for the same student, which

were received shortly after each other – probably due to excessive clicking on the submit
button. These duplicates are filtered out. The resulting datasets are described in Table 4.9
and in Table 4.10. To keep the tables legible, we have added an other category containing

32

Labelling of common logic errors 4. Results

all errors with a low number of occurrences.

As we can see in Table 4.10, there are multiple errors made disproportionately often.
The first six errors from the training set comprise 78% of the errors in that set. There-
fore, we only focus on the errors: alwaysused, foreachbutindex, earlyexit, orinsteadofand,
missingcase and incorrectforeach.

Table 4.9: Number of errors in the test set

Label Errors

alwaysused 99

foreachbutindex 26

missingcase 16

earlyexit 12

controlvarinverse 8

incorrectforeach 7

nostop 6

onifsumdouble 6

orinsteadofand 6

wrongincrement 6

wrongvariableused 6

other (< 6 occurrences) 22

Total 220

Table 4.10: Number of errors in the training set

Label Errors

alwaysused 399

foreachbutindex 120

earlyexit 47

orinsteadofand 45

missingcase 36

incorrectforeach 28

nostop 23

controlvarinverse 22

onifsumdouble 21

wrongincrement 21

incorrectlogicif 16

other (<11 occurences) 85

Total 863

4.2.3. INTER ANNOTATOR AGREEMENT

The labelling was done by the author, which is a threat to validity: the labelling – and suc-
cessive training of the models – depended on one person. To mitigate this, we created a
subset of the training set, and let two different researchers also label those submissions.

The labelling was based on a document supplied to the other researchers. This docu-
ment contains the fifteen most used labels with one or more examples for each label, and
one other category. The other category in the labelling process was chosen to limit the
number of labels and simplify the labelling process for the other researchers. Besides the
available labels, the document describes the environment and how to apply the labels.

The size of the subset was 77 submissions, containing all the exercises. We can find
the results of the labelling process in Table 4.11. The number of instances where all three
annotators were in total agreement was 48, which is 62.3%. The number of instances where
at least one of the other annotators was in total agreement with the author is 57, which is
74%.

In Table 4.11, we can see that there are two possible types of findings why the agreement
can go up: the partial match and other category.

33

4. Results Labelling of common logic errors

Table 4.11: Agreement on submissions

Description Annotator Explanation

1 2

Total checked 77 77 Total size of submission checked by other annotator

Direct match 52 53 Complete agreement on given label(s)

Other category 7 9 Other annotator assigned other category when label was not
in labelling document

No match 17 9 There was no agreement on the label of the first author

Partial match 1 6 There was partial agreement: both annotators found a cor-
rect label

A partial match is when multiple labels were given by either annotator, but not all labels
are being identified by the other annotator. For example: main author gives label A and B,
where the Annotator 1 only gives label A. There is agreement on label A, but not on Label B.
The reverse can also be true: Annotator 1 gives two labels, but the main author only one.

When the other researchers assigned the other category, we checked if the author as-
signed a label contained in the other category. We maintain the strict definition as de-
scribed by Artstein [2017] and only count the identical labels.

The agreement number must be compared to a majority baseline: if the other labellers
assigned only the majority class, how large the agreement would be. In this case, the
majority class is the label alwaysused with 26 instances. Thus, the majority baseline is
26
77 ∗100 = 33.8%. The most strict calculation of the agreement (62.3%) is roughly two times
better than the majority baseline. We can therefore conclude that the labelling that was
done by the author is not dependent on luck, and to a high degree can be reproduced by
others.

34

Writing unit tests to identify common logic errors 4. Results

4.3. WRITING UNIT TESTS TO IDENTIFY COMMON LOGIC ERRORS
In this section, we analyse the results from RQ.3. We created some tooling to embed our
unit tests in, written unit tests and trained six binary decision trees to classify common
logic errors in submissions from students.

4.3.1. TESTBED SOFTWARE

The submissions in the database are strings, which are not executable. We developed a pro-
gram to extract the submissions, compile them and execute the unit tests. In Figure 4.2 an
overview of the program is given. The processor reads submissions from the database and
extracts the function from the student. It then repairs some minor defects (miscapitalized
function name, removed static classifier), compiles the function into a .class file and loads
the function in the Java Runtime. After that, the created unit tests are run, and the results
of all the unit tests are saved to a csv file.

Figure 4.2: Design of testbed software

4.3.2. WRITING UNIT TESTS

To observe errors in the datasets, we write several unit tests per label. In total, we cre-
ated 27 unit tests. An example of a unit tests can be found in Listing 4.8. The first line of
Listing 4.8 shows an annotation @CommonLogicTest. This annotation signifies that the fol-
lowing method is a unit test. It also provides information about the exercise which it acts
upon.

Each unit tests receives a string containing the submission of the student as a parame-
ter. Some input and corresponding expected output is prepared. When the method executeSingle
is called, the submission of the student is called with the prepared input. The return value is
compared against the expected value, and the result of that comparison is saved to the csv
file via the method addTestScore. That method records the result of the unit test, together
with its name.

4.3.3. TRAINING THE MODEL

The results of the unit tests are written to a csv file. This file is read by a classifier as im-
plemented in Orange: an application by Demšar et al. [2013] to develop algorithms using
machine learning techniques. For the classifier algorithm we used a Binary Decision Tree,
which we trained on the training data.

We created multiple models: one for each label. This allowed us to implement an al-
gorithm to recognise multiple errors per submissions: the submission is checked for each
label if it classifies as that label.

35

4. Results Writing unit tests to identify common logic errors

1 @CommonLogicTest (functionNames = {" countEven "})
2 public void exitsAfterFirstIncorrect (String functionBody) throws

Exception {
3 Object [] input = {new int []{2 ,2 ,2 ,1 ,2}};
4 int expected = 3;
5 Object result = null;
6 result = executeSingle (input);
7 addTestScore (result . equals (expected));
8 }

Listing 4.8: Example unit test

For this study, we focussed on the top six common logic errors: alwaysused, foreach-
butindex, missingcase, incorrectforeach, earlyexit and orinsteadofand. Together these er-
rors represent more than 75% of the total errors, as shown in Table 4.8.

36

Validate trained models 4. Results

4.4. VALIDATE TRAINED MODELS
In this Section we evaluate the results from Section 4.3. By using the test set, we calculate
metrics to analyse how the models perform. For all six common logic errors we show the
overall performance, and we discuss several interesting cases.

4.4.1. METRICS
The metrics used to evaluate a trained model are precision and recall, F1 and the accuracy.
To calculate these metrics we use the following terms:

TP True Positive: the model predicted correctly that the class applies

FP False Positive: the model wrongly predicted that the class applies

TN True Negative: the model predicted correctly that the class does not apply

FN False Negative: the model predicted wrongly that the class does not apply

Now we can calculate the metrics:

Precision
Ratio of correctly labelled errors:

tp

tp+ fp

Recall
Ratio of found errors:

tp

tp+ fn

F1

Harmonic mean of precision and recall:
2tp

2tp+ fp+ fn

Accuracy

Ratio how well the model includes versus excludes errors:
tp+ tn

tp+ tn+ fp+ fn

We also calculate the majority baseline of accuracy. This value represents the model
when only the majority class is given to all the submissions. This allows us to place the
accuracy in perspective: the accuracy must always be higher than the majority baseline, or
else the model is worse at classifying when it should only assign the majority class.

4.4.2. ANALYSIS
When we look at Table 4.12, we see that all models perform above the majority baseline.
This shows that the results are better than when we assign only the majority class to every
submission.

Upon inspection, a few things stand out. First, the label missingcase. While the pre-
cision is high (0.924), the recall is quite lower: 0.872. Looking at Figure 4.3, we can see
that this is because the model incorrectly classifies fourteen cases to be this error, when it
should not have done that. While still high, when we compare the accuracy to the majority
baseline, we note that they are close. For this label we can say that the task of classifying a
missingcase label is hard. The closeness of the majority baseline and accuracy is also true
for the labels incorrectforeach, orinsteadofand and earlyexit

37

4. Results Validate trained models

Table 4.12: For all labels, the metrics indicating how well the model performs

Label Positive instances Precision Recall F1 Majority
baseline

Accuracy

missingcase 16 0.924 0.872 0.886 0.863 0.872

alwaysused 59 0.968 0.966 0.966 0.504 0.966

foreachbutindex 26 0.992 0.991 0.991 0.778 0.991

orinsteadofand 6 0.993 0.991 0.992 0.949 0.991

earlyexit 4 1.0 1.0 1.0 0.966 1.0

incorrectforeach 6 0.983 0.983 0.981 0.949 0.983

Figure 4.3: Confusion matrix of label missingcase Figure 4.4: Confusion matrix of label alwaysused

Figure 4.5: Confusion matrix of label foreachbutindex

The second set of labels worth noting, are earlyexit, orinsteadofand and incorrect-
foreach. The number of instances in the test set is very low for these labels, this makes the
result statistically less relevant and we must dismiss these labels from the conclusion.

The last labels to note are alwaysused and foreachbutindex. Interesting here are the
differences between the majority baseline and the accuracy: 0.462 and 0.213, respectively.
This distance means the label determined by the model is not given by chance. The har-
monic mean (F1-score) for both labels is high (0.966 and 0.991), and the number of positive
instances is high enough to be relevant.

38

Validation by teachers 4. Results

4.5. VALIDATION BY TEACHERS
If the tutor can determine a common logic error in a student submission, it can provide
feedback on how to solve that error. In this section we describe the feedback for the six
logic errors for which we trained a model. Furthermore, we created a questionnaire to
verify if the feedback is sufficiently informative to students. We asked twenty teachers to
fill out that questionnaire, and in this section we report the results on that.

4.5.1. FEEDBACK

We have created feedback on how to deal with the top six common logic errors. Multiple
levels of feedback can be given, from very general (“Look at the loop.") to very specific
(“You access the array by a value from that array instead of an index"). We chose for the
middle ground here as it best shows the potential: it can recognize the error and provide
feedback, but it does not give the answer straight away. The final implementation can opt
to implement different levels of feedback. The audience of the feedback are students after
one or two introductory programming courses.

The feedback for the six common logic errors are:

foreachbutindex

The return value isn’t correct. You changed the for loop to a for-each. This also
changed the meaning of the loop variable, from an index to the actual value in the
array. Did you forget to change how to access the value from the array?

earlyexit

The return value isn’t correct. It looks like not all values are considered. Did you
return too early?

orinsteadofand

The return value isn’t correct. Look closely at the used logical operator(s). When do
they evaluate to true?

alwaysused

The return value isn’t correct. It looks like everything is included in the result. Look
at the conditions in the code. Do they reflect the exercise premise?

incorrectforeach

The return value isn’t correct. In your solution you used a for-each. Think about the
construct of a regular for-loop.

missingcase

The return value isn’t correct. Read the exercise description again, and check if all the
conditions are reflected in your solution.

39

4. Results Validation by teachers

4.5.2. QUESTIONNAIRE

We created a questionnaire using Google Forms, as this allows for easy filling out the an-
swers by respondents. The target audience were Computer Science/Software Engineering
teachers in the Netherlands, so the language in which the questions are posed is Dutch. For
reference, the complete questionnaire can be found in Appendix C.

In the questionnaire, we asked the teachers to rate the feedback given to three submis-
sions by answering three questions about each submission. We gave the complete descrip-
tion of the exercise, the refactoring steps the students had to take, and a submission with
a common logic error. We then explained the error the student made, and gave the corre-
sponding feedback. The questions we asked were:

1. How much does the feedback correspond with the message you would give the stu-
dent?

2. How do you rate the granularity of the feedback?

3. Do you have any remarks or suggestions about the given feedback?

Question one can be answered using a likert scale: a number from one to five, where
one is “Not at all" and five is "Completely". In question two, there are three options:

• Too little: the student does not know anything

• Enough: the student can now figure out for themselves what the problem is and how
to correct it

• Too much: the answer is being given

The last question did not use predefined answers, but was a textarea. Only question one
and two are mandatory, question three could be skipped if the respondent so choses.

The labels for the submissions are, in order:

1. foreachbutindex

2. earlyexit

3. orinsteadofand

4.5.3. RESULTS

We sent the questionnaire to twenty teachers from different Universities, of which eleven
responded and answered the questions. In this section we will look at the given answers to
question one and two, and which conclusions we can make. We use the open questions to
give context and interpret the answers.

40

Validation by teachers 4. Results

QUESTION 1: HOW MUCH DOES THE FEEDBACK CORRESPOND WITH THE MESSAGE YOU WOULD

GIVE THE STUDENT?

In Figure 4.6, we show the answers to question one, for all three submissions. While there
is some variation in how well the feedback is scored, we can conclude that to some degree
we would give the same feedback as teachers would. The feedback for submission three is
considered to be the best of all three: 82% of the teachers give it a four or five.

Figure 4.6: Combined answers for question 1: “How much does the feedback correspond with the message
you would give the student?"

QUESTION 2: HOW DO YOU RATE THE GRANULARITY OF THE FEEDBACK?

Giving feedback is about balance: according to Shute [2008], too much detail can over-
whelm the learner and promote superficial learning. This question aims to verify whether
the granularity of the feedback is correct.

When we look at Figure 4.7, we see that for all the submissions the overall granularity
of the feedback is considered to be good: not too little, and not too much. The only outlier
here is submission one: five teachers think it gives away too much information.

41

4. Results Validation by teachers

Figure 4.7: Combined answers for question 2: “How do you rate the granularity of the feedback?"

REMARKS

Several teachers noted that feedback must be attuned to the level of proficiency of the
learner. While this was omitted from the questionnaire, the feedback was meant for stu-
dents after one or two programming courses. We note that step-wise feedback might be
implemented: starting with a very general remark, and finishing with the answer. We leave
this for future work.

Others remarked upon the lack of context in the feedback. They suggest using the vari-
able names used to provide more recognition. While this is certainly a good idea, the feed-
back as provided for the errors are independent of the exercise. Using a variable name
would make the feedback specific for an exercise.

4.5.4. CONCLUSION
We have shown that the feedback in this section is of sufficient quality and granularity.
The remarks obtained in the open questions do not show an inherent problem in the cho-
sen strategy of using unit tests to recognize common logic errors to provide feedback, but
merely provide suggestions in the implementation of the solution in the tutor.

42

Intermission - an example 4. Results

4.6. INTERMISSION - AN EXAMPLE
To better explain the results from previous sections, we will inspect an example. This exam-
ple will show for a given submission, how automatic feedback is provided. For this particu-
lar example, we look at the submission in Listing 4.10. The given code for exercise 4.score
can be found in Listing 4.9 and the description is as follows:

4.score
The calculateScore method calculates the score for a train trip. The highest score is
10. The score is based on the number of changes and the day of the week (Monday is
1, Sunday is 7).

Dutch Railways (NS) has designed the following calculation:
Base score: 10
For each change: -1
Trip on a weekday: -3

Example test case: for a trip with 2 changes on a Wednesday (day 3), calculateScore(2,
3) returns a score of 5 (10-2-3)

1 public static int calculateScore (int changes , int day)
2 {
3 int score = 10;
4 for (int i = 0; i < changes ; i++)
5 {
6 score = score - 1;
7 }
8 if (day == 6 || day == 7)
9 {

10 return score;
11 }
12 else
13 {
14 score = score - 3;
15 return score;
16 }
17 }

Listing 4.9: Exercise 4.score: code given to student to be improved.

When we inspect Listing 4.10,we can see that on line 5 the logical operand || is used. The
result of the if-statement, is that this always evaluates to true. However, the body of the if
is empty, but the else clause subtracts 3. The result of this construct is that the penalty for
travelling on a weekday is never subtracted.

43

4. Results Intermission - an example

1 public static int calculateScore (int changes , int day)
2 {
3 int score = 10 - changes ;
4

5 if (day != 6 || day != 7)
6 {
7

8 }
9 else

10 {
11 score -= 3;
12 }
13 return score;
14 }

Listing 4.10: Submission containing the error orinsteadofand

4.6.1. RUNNING UNIT TESTS
To observe this incorrect behaviour, we have written three unit tests as shown in List-
ing 4.11. The first two, alwaysPenalty and wrongWeekendCheckInverse are for exercise 4.
The third, boundaryCheck, is for exercise 3.oddsum.

ALWAYSPENALTY

The first test, alwaysPenalty, checks if for all the days the weekday penalty is subtracted.
This is done by calling the function with zero changes, and checking if for all the days the
output of the function is equal to 7. We can see that this is not the case for Listing 4.11, so
the result of this unit test is false.

WRONGWEEKENDCHECKINVERSE

The second, wrongWeekendCheckInverse, checks if the penalty for travelling on a weekday
is never subtracted. As we saw above, this is the case. The result for this unit test is true.

BOUNDARYCHECK

The last unit test, boundaryCheck, is only for exercise 3, so it does not apply to this submis-
sion. This results in a false result for this unit test.

44

Intermission - an example 4. Results

1 public void alwaysPenalty (String functionBody) throws Exception {
2 /**
3 * Checks if function always adds a penalty for travelling ,

regardless of day
4 */
5 Object [] inputs = {1, 2, 3, 4, 5, 6, 7};
6 List <Object > results = new ArrayList <>();
7 for (Object input: inputs) {
8 results .add(executeSingle (new Object []{0 , input }));
9 }

10 AtomicBoolean allWrong = new AtomicBoolean (true);
11 results . forEach (res -> {
12 if(! res. equals (7)){
13 allWrong .set(false);
14 }
15 });
16 addTestScore (allWrong .get ()); // save result to csv file
17 }
18

19

20 public void wrongWeekendCheckInverse (String functionBody) throws
Exception {

21 /**
22 * Checks if function never adds a penalty for travelling on a

weekday
23 */
24 Object [] inputs = {1, 2, 3, 4, 5};
25 List <Object > results = new ArrayList <>();
26 for (Object input: inputs) {
27 results .add(executeSingle (new Object []{0 , input }));
28 }
29 AtomicBoolean allWrong = new AtomicBoolean (true);
30 results . forEach (res -> {
31 if(! res. equals (10)){
32 allWrong .set(false);
33 }
34 });
35 addTestScore (allWrong .get ());
36 }
37

38 public void boundaryCheck (String functionBody) throws Exception {
39 /**
40 * Checks if function doesn ’t respect boundary because of using OR

instead of AND
41 */
42 Object [] input = {new int []{1 , 1, 1, 1}};
43 try{
44 Object result = executeSingle (input);
45 }catch(Exception e){
46 if (((InvocationTargetException) e). getTargetException ()

instanceof ArrayIndexOutOfBoundsException) {
47 addTestScore (true);
48 }
49 }
50 }

Listing 4.11: Three unit tests to check if the correct logical operand is used

45

4. Results Intermission - an example

4.6.2. USING THE BINARY DECISION TREE
The trained model for the label orinsteadofand can be found in Figure 4.8. The descrip-
tion for the label orinsteadofand is: “Wrong logical operand: && instead of ||, or vice
versa". Given the results from the unit tests as obtained above, we can walk through the
tree.

We start at the top. The first unit test the model uses is alwaysPenalty. This result
was false, so we take the left branch. We see that there is a 86.5% chance that the label
orinsteadofand is not applicable to this submission.

The next unit test to inspect is boundaryCheck. The result was false, because it was
not applicable for this exercise. Therefore, we take the left branch.

The last unit test we have to check is wrongWeekendCheckInverse. This result was
true, so we can take the right branch, and we have reached a conclusion.

The label orinsteadofand is applicable to this submission. In this node we can see
that there were only three submissions in the training set that take this path.

Now that we have determined the error in the given submission, we can present the
student with feedback to tackle the common logic error. We can now give the following
feedback:

The return value isn’t correct. Look closely at the used logical operator(s). When do they
evaluate to true?

Figure 4.8: Trained model of Binary Decision Tree for label orinsteadofand

46

5
DISCUSSION

In this chapter we describe certain threats to validity: what factors compromise our re-
search, and how did we mitigate them. We outline some solutions for problems we en-
countered that impacted the research, we discuss the limitations, and we provide some
ideas for future research.

5.1. SOLUTIONS
In this section we give some insight in the decisions made in the setup of our research. We
detail how we dealt with problems regarding the dataset, and choices made regarding the
classification algorithm. We also shortly discuss some choices made for the inter annotator
agreement.

5.1.1. IMBALANCED DATASET
A problem we encountered with the dataset is that it is quite imbalanced: of the six errors
in this set, the first two labels – foreachbutindex and alwaysused – represent about 76%.
This means that when we train one of the other labels – for example incorrectforeach, with
35 entries – it has relatively little data from which it can learn how to identify incorrect-
foreach. Even worse, when training for incorrectforeach, most of the data is about what
is not incorrectforeach. To this end, we have made the dataset more balanced by us-
ing a technique called undersampling, as described by Kubat et al. [1997]. When training
the model for an error, we limited the number of submissions not labelled for that error to
the number of submissions that did satisfy that label. That ensured that the dataset was
balanced, and the resulting model representative for the error it could recognise.

5.1.2. BINARY DECISION TREE
For recognizing common logic errors in student submissions, we used a binary decision
tree as a classification algorithm. In this subsection we detail problems we encountered
and how we dealt with them.

MODELS

When creating a model for the classification of a submission, we were faced with two choices
on how to approach this: we could train a model per exercise or we could train a model per

47

5. Discussion Solutions

error. We choose the latter one. Here we set out to explain the rationale behind this deci-
sion.

Training a model per label has four advantages, but only one disadvantage.

1. Comparison of the trees between errors is easy

2. The whole point is identifying errors, so one model per label is more in line with our
goal

3. It takes multiple labels per submission into account

4. All exercises are incorporated in the dataset

It has one disadvantage: the dataset is quite imbalanced. In the training set, the labels al-
waysused and foreachbutindex represent around 60% of the set. The consequence is that
when trying to train a different label, both alwaysused and foreachbutindex are overrepre-
sented. We described the used solution to this problem in Section 5.1.1.

The other choice could be creating a model per exercise. This solution had only one
advantage: comparing exercises is an easy task. This would make the difference and the
effect of a unit test more explainable. However, the goal of the model is to identify an error
– so we could provide more detailed feedback – and not to identify an error for a specific
exercise. The disadvantages are:

1. Exercise four and five only have one common error, so no tree is needed

2. Multiple errors per submission is not possible

Upon inspection of the dataset, and in line with what one might expect, sometimes
multiple errors were present in a submission. Overall it makes more sense to create a model
per error: as shown above it has more advantages.

FEATURES

The binary decision tree uses a csv-file as an input to train the model, and check if a sub-
mission contains a common logic error. The csv-file contains a submission per row, and on
the columns are the features: information about that submission that together can deter-
mine if it contains a common logic error.

The obvious features of a submission are the results from the unit tests. A choice we
made, was if the exerciseid should also be a feature. We decided against it, because it would
make the exercise too important a factor in determining the error. We would over-fit the
model to our current dataset, and the model would be harder to generalize to other ex-
ercises in the future. There is already an implicit connection between the error and the
exercise: via the unit tests themself. A unit test is directly related to a function (the input
parameters, and the return type are fixed), and thus to a exercise. While this tight cou-
pling between unit tests and exercises might present a problem for expanding the tutor, we
present some ideas for future work to remedy this in Section 5.3.1.

48

Limitations 5. Discussion

5.1.3. INTER ANNOTATOR AGREEMENT
As Artstein [2017] notes, the observed agreement is a commonly used metric on how well
labels have been given, but it has some drawbacks. It is easy to understand, but it says little
about the annotation process and its reliability. He poses that using a coefficient from the
kappa/alpha family is the accepted method for mitigating that problem.

While it is an interesting avenue to explore, our focus was on identifying common logic
errors. The used observed agreement was sufficiently informative for our goal, but we leave
this for future research.

5.2. LIMITATIONS
This research was set up to answer the question ‘How to provide students feedback using
unit tests for common logic errors when refactoring’. In this section we discuss the disad-
vantages and limitations of the chosen methods, and how we did mitigate them.

5.2.1. LITERATURE RESEARCH
We performed a literature research to determine common logic error students make when
they learn to program. Due to the size of this part of the research, we did not do a system-
atic literature review. Consequently, we did not describe all the search terms we used to
obtain the literature, which is a threat to verifiability. To mitigate this, we used the tech-
nique (reverse) snowballing. Using the same starting point, other studies can replicate the
findings. To verify those findings further, we included the source of the article for each
found common logic error.

5.2.2. LABELLING
We determined which logic errors students make when they practise refactoring in the tu-
tor. We did this by labelling the errors present in a database from a previous experiment.
The labels were assigned by the main author, which is a threat to validity and reliability.
We mitigated this by calculating the inter annotator agreement: two different researchers
labelled a subset of the submissions, and we calculated the overlap between the other an-
notators and the author.

The wording of the labels used in this research is not always intuitive or reflective of the
error it represents. Changing the labels could change the perception of the meaning of the
label, and comparing the results between annotators would be less correct. This would, to
some degree, invalidate the inter annotator agreement. Due to time constraints, we chose
to not change them, but leave that for future research. The suggestions on the labels is
included in Section 5.3.1.

5.2.3. MODELS
The validation for the binary decision trees was done by checking the models against a test
set: a dataset not used in training the models, to prevent cross contamination of data and
prevent over-fitting. For three of the common logic errors the number of instances in the
test set was very low: four and six instances were in the test set. This low number caused a
threat to validity if used, because the statistical relevance was too low. We did not use those
errors in our interpretation of the results.

When validating the models, we used a smaller amount of errors in the test set for the la-

49

5. Discussion Future work

bels earlyexit and incorrectforeach than reported earlier in this thesis (Section 4.2.2).
When executing the unit tests, we discovered several submissions that were uncompilable,
and thus could not be executed by unit tests. These submissions should not have been
classified as such, but time did not permit to adjust all tables and datasets.

5.2.4. QUESTIONNAIRE

We used a questionnaire to determine that the feedback provided by automatically recog-
nized logic errors are deemed sufficient by teachers. This questionnaire contained three
submissions from students. To reduce ambiguity for the reader – due to multiple errors
in one submission, or not yet finished refactoring steps – we altered the submission. We
removed errors that we did not want to focus on, or any skipped refactoring steps.

This might pose a threat to validity, as feedback on a submission is not given in isola-
tion: in reality, a submission will contain multiple errors or skipped steps. However, we
wanted to focus on providing one piece of feedback at the time: according to Shute [2008],
presenting a student with all possible feedback at once, can cause cognitive overload.

The questionnaire was sent out to twenty different teachers, all within the Computer
Science/Software Engineering domain. A threat to validity for this method is that the teach-
ers asked all know the supervisor, which might influence the respondents to give favourable
answers. We tried to minimize this by making the questionnaire completely anonymous,
so they could give honest answers.

We sent the questionnaire to twenty teachers, of which eleven responded. While the
response rate is quite high, the absolute number of respondents might be too low to gen-
eralise. To get a more conclusive answer to the question how the given feedback is rated by
teachers, more research is needed.

5.3. FUTURE WORK
After doing this research, we see some interesting areas to explore and expand on. We
first give some hints on how one can extend this research, then we have some suggestions
for different techniques on how to recognise common logic errors. Finally, we share some
thoughts on the application of this research in a different area than (refactor) tutors.

5.3.1. EXPANDING THIS STUDY

In Section 4.4, we encountered four common logic errors with too little data to validate
the generated models. It would be interesting to conduct another experiment with more
students to collect more data, so we can validate the models. This experiment can have
multiple extensions on this research.

First, the labels can be enhanced to better reflect the meaning of it. We give some sug-
gestions:

foreachbutindex
Error seems like an instance of a more general error, where a value is used as an in-
dex. That it occurs here in a foreach-loop is coincidence, but it can also happen in a
different setting.

Suggestion: index-versus-value-at-index.

50

Future work 5. Discussion

earlyexit
Suggestion: returning-too-early.

alwaysused
Explanation too specific for the exercises.

Suggestion: no-difference-between-then-and-else

controlvarinverse
The description is quite exercise specific.

Suggestion: condition-inverse.

nostop
That the variable is called stop is coincidence.

Suggestion: unreachable-else

incorrectlogicif
There is also condition-inverse, but that one is more specific. The explanation of the
error is too exercise specific. There might be overlap with orinsteadofand.

Suggestion: condition-incorrect.

Secondly, it might provide extra insight to trace the error to the refactor step the student
tried to take. This could serve to give more context with the feedback.

Third, Keuning et al. [2017] provided a list of quality issues created by students, and also
created the refactor tutor used in this thesis. It might be interesting to see if there is overlap
between the quality issues reported in Keuning et al. [2017] and the list of common logic
errors in this document.

Lastly, it might be interesting to create an algorithm that will determine the possible
errors students will make in a new exercise, and automatically generate unit tests and ac-
companying feedback. This will make the creation of new exercises much easier, as unit
tests and feedback does not have to be written for each new exercise. The bug database
created in this research can be used as a starting point for this algorithm.

5.3.2. DIFFERENT TECHNIQUES
We chose a binary decision tree as a classification algorithm for recognising common logic
errors. Several other classifiers exist for binary classification problems. It would be inter-
esting to see how well other algorithms perform. For example, support vector machine or
random forest are interesting avenues to investigate. Support vector machine is a super-
vised learning model that aims to classify based on the distance of a point on a hyperplane,
while a random forest creates multiple binary decision trees and combines the outcome of
the different trees. Preliminary testing suggests that using a random forest produces better
results than a single binary decision tree.

Only checking compilable errors loses some recall: common logic errors resulting in
non-compilable functions are not checked. A combination of static and dynamic analysis
will be the strongest, and it might be interesting to investigate how well this combination
works.

This study used unit tests that were manually created. This makes adding more exer-
cises labour intensive. To mitigate this problem, it might prove beneficial to automatically

51

5. Discussion Future work

generate unit tests. Using the errors described in this document, an algorithm might be
developed to generate unit tests based on the exercise. This would allow the tutor to be ex-
panded quite easily with new exercises. One can use property-based testing, as developed
by Claessen and Hughes [2011].

5.3.3. DIFFERENT AREAS OF APPLICATION
Another interesting path to investigate, is how well the results of this study generalize to
other types of tutors. We can imagine that the unit tests created can also be incorporated
to recognize common logic errors in general programming tutors.

It might be possible to use some findings from this thesis in a non-tutor environment.
We can imagine that certain errors are always wrong, regardless of the context. For exam-
ple, the error with label foreachbutindex is almost never correct. It can be advantageous
for IDEs to incorporate these kinds of checks. A study whether these errors can be found
using static analysis, or even generated unit tests, might be interesting.

52

6
CONCLUSION

This research set out to answer the question

“How to provide students feedback using unit tests for common logic errors when
refactoring?"

We did this by dividing this question into five sub-questions.

RQ.1 What are common logic errors students make when they are refactoring?

The first step was to identify the logic errors students make when refactoring. We
compiled a list of twelve logic errors that were described in literature. These errors
were not specific for refactoring, but more general. For example, off-by-one errors or
the lack of a guard to prevent against a division by zero are commonly made mistakes.
This list of errors, as found in Table 4.1, was used to define a hierarchy for the errors
that are specific to refactoring.

RQ.2 Which common logic errors do students make often when they practice refactor-
ing in an ITS?

Using the data from previous studies, we investigated what errors students actually
made when refactoring. The errors in the dataset were labelled, and the datapoints
were split into a training set and a test set. The labelling was done by the main author,
and validated by two other authors. We found that the top two errors, alwaysused
and foreachbutindex, were over-represented in the datasets. The other common
logic errors students make when refactoring are missingcase, orinsteadofand, earlyexit
and incorrectforeach.

RQ.3 How can we create unit tests that identify common logic errors to provide forma-
tive feedback?

We created unit tests to observe the top six common logic errors and we ran the unit
tests against the training set. The results from the unit tests were used to train a bi-
nary decision tree, which is used to classify common logic errors. There was a need
for a binary decision tree, because the relevance of all unit tests are not equal. Some
tests are more indicative of a common logic error than others, or the combination of
two unit tests point to a common logic error.

53

6. Conclusion

RQ.4 To what extent can we identify common logic errors using unit tests?

For two errors, we can say with a high degree of certainty if it is present in a stu-
dent submission. For the other four errors, the test set was too small to validate the
model. We suspect that, given enough data, we can also recognize the other four er-
rors. When we can identify common logic errors made by students, we can provide
feedback to help correct that mistake.

RQ.5 How do teachers rate the feedback for common logic errors?

For the top six common logic labels, we created feedback for students on how to mit-
igate the error. Using a questionnaire, we established that the message is consistent
with the feedback that teachers would give. The granularity of the feedback that we
propose, that is if the feedback provides the answer or only a hint, is rated as good by
teachers.

We reported on some threats to validity of this research: a small sample size in the ques-
tionnaire or the exact wording of the labels that could be enhanced. Taken those threats
into account, we can still say that – based on the results presented in this thesis – that for a
subset of the found errors we can use unit tests to determine whether the error is present in
a submission from the student. Furthermore, if we know that a submission contains such
an error, we can provide feedback that is deemed relevant and of sufficient granularity. We
believe this research provides material for new and interesting future research, such as the
implementation of the label foreachbutindex into tools as PMD and SonarQube, or using
different classification algorithms as random forests or Support Vector Machine.

Teachers have too little time to teach students refactoring. If the results of this re-
search were to be implemented in the refactor tutor, students would need less help from
the teacher. As such, refactoring could take a larger part of the curriculum in Software En-
gineering and Computer Science, without increasing the workload placed on the teachers.

54

BIBLIOGRAPHY

Vincent Aleven. Help seeking and intelligent tutoring systems: Theoretical perspectives
and a step towards theoretical integration. In International handbook of metacognition
and learning technologies, pages 311–335. Springer, 2013.

Amjad Altadmri and Neil CC Brown. 37 million compilations: Investigating novice pro-
gramming mistakes in large-scale student data. In Proceedings of the 46th ACM Technical
Symposium on Computer Science Education, pages 522–527, 2015.

Mauricio Finavaro Aniche and Marco Aurélio Gerosa. Most common mistakes in test-
driven development practice: Results from an online survey with developers. In 2010
Third International Conference on Software Testing, Verification, and Validation Work-
shops, pages 469–478. IEEE, 2010.

Ron Artstein. Inter-annotator agreement. In Handbook of linguistic annotation, pages 297–
313. Springer, 2017.

Barry W Boehm, John R Brown, and Mlity Lipow. Quantitative evaluation of software qual-
ity. In Proceedings of the 2nd international conference on Software engineering, pages
592–605, 1976.

Neil Christopher Charles Brown, Michael Kölling, Davin McCall, and Ian Utting. Blackbox:
a large scale repository of novice programmers’ activity. In Proceedings of the 45th ACM
technical symposium on Computer science education, pages 223–228, 2014.

Kim B Bruce. Five big open questions in computing education. ACM Inroads, 9(4):77–80,
2018.

Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random testing of
Haskell programs. ACM sigplan notices, 46(4):53–64, 2011.

Janez Demšar, Tomaž Curk, Aleš Erjavec, Črt Gorup, Tomaž Hočevar, Mitar Milutinovič,
Martin Možina, Matija Polajnar, Marko Toplak, Anže Starič, Miha Štajdohar, Lan Umek,
Lan Žagar, Jure Žbontar, Marinka Žitnik, and Blaž Zupan. Orange: Data mining toolbox
in python. Journal of Machine Learning Research, 14:2349–2353, 2013. URL http://
jmlr.org/papers/v14/demsar13a.html.

Andrew Ettles, Andrew Luxton-Reilly, and Paul Denny. Common logic errors made by
novice programmers. In Proceedings of the 20th Australasian Computing Education Con-
ference, pages 83–89, 2018.

Gregor Fischer and Jürgen von Gudenberg. Improving the quality of programming ed-
ucation by online assessment. In Proceedings of the 4th International Symposium on
Principles and Practice of programming in Java, pages 208–211. ACM, 2006. ISBN
9783939352051;3939352055;.

55

http://jmlr.org/papers/v14/demsar13a.html
http://jmlr.org/papers/v14/demsar13a.html

BIBLIOGRAPHY BIBLIOGRAPHY

Martin Fowler. Refactoring: improving the design of existing code. Addison-Wesley Profes-
sional, 2018.

Boby George and Laurie Williams. An initial investigation of test driven development in
industry. In Proceedings of the 2003 ACM symposium on Applied computing, pages 1135–
1139, 2003.

Anabela Gomes and António José Mendes. Learning to program-difficulties and solutions.
In International Conference on Engineering Education–ICEE, volume 2007, 2007.

Amanda Harris, Victoria Bonnett, Rosemary Luckin, Nicola Yuill, and Katerina Avramides.
Scaffolding effective help-seeking behaviour in mastery and performance oriented
learners. In AIED, pages 425–432, 2009.

Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri. Identifying and cor-
recting java programming errors for introductory computer science students. ACM
SIGCSE Bulletin, 35(1):153–156, 2003.

Bernard J Jansen. Search log analysis: What it is, what’s been done, how to do it. Library &
information science research, 28(3):407–432, 2006.

Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. Code quality issues in student pro-
grams. In Proceedings of the 2017 ACM Conference on Innovation and Technology in Com-
puter Science Education, pages 110–115, 2017.

Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. A systematic literature review of auto-
mated feedback generation for programming exercises. ACM Transactions on Computing
Education (TOCE), 19(1):1–43, 2018.

Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. Student refactoring behaviour in a
programming tutor. In Koli Calling’20: Proceedings of the 20th Koli Calling International
Conference on Computing Education Research, pages 1–10, 2020.

Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. A tutoring system to learn code refac-
toring. In Proceedings of the 52nd ACM Technical Symposium on Computer Science Edu-
cation, pages 1–7, 2021.

Diana Kirk, Tyne Crow, Andrew Luxton-Reilly, and Ewan Tempero. On assuring learning
about code quality. In Proceedings of the Twenty-Second Australasian Computing Educa-
tion Conference, pages 86–94, 2020.

W.C. Kuah. Augmenting CBM to generate constraints and reflection-based feedback for
logic errors in programming solutions. Master’s thesis, Open Universiteit, the Nether-
lands, 2019.

Miroslav Kubat, Stan Matwin, et al. Addressing the curse of imbalanced training sets: one-
sided selection. In Icml, volume 97, pages 179–186, 1997.

Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. A study of the difficulties of
novice programmers. ACM sigcse bulletin, 37(3):14–18, 2005.

56

BIBLIOGRAPHY BIBLIOGRAPHY

Thomas J McCabe. A complexity measure. IEEE Transactions on software Engineering, (4):
308–320, 1976.

Davin McCall and Michael Kölling. Meaningful categorisation of novice programmer er-
rors. In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings, pages 1–8. IEEE,
2014.

Tom Mens and Tom Tourwé. A survey of software refactoring. IEEE Transactions on software
engineering, 30(2):126–139, 2004.

Antonija Mitrovic, Kenneth R Koedinger, and Brent Martin. A comparative analysis of cog-
nitive tutoring and constraint-based modeling. In International Conference on User Mod-
eling, pages 313–322. Springer, 2003.

Sreerama K Murthy. Automatic construction of decision trees from data: A multi-
disciplinary survey. Data mining and knowledge discovery, 2(4):345–389, 1998.

Yizhou Qian and James Lehman. Students’ misconceptions and other difficulties in intro-
ductory programming: A literature review. ACM Transactions on Computing Education
(TOCE), 18(1):1–24, 2017.

Valerie J Shute. Focus on formative feedback. Review of educational research, 78(1):153–
189, 2008.

Juha Sorva. Visual Program Simulation in Introductory Programming Education. PhD the-
sis, 05 2012.

Nghi Truong, Paul Roe, and Peter Bancroft. Static analysis of students’ Java programs. In
Proceedings of the Sixth Australasian Conference on Computing Education-Volume 30,
pages 317–325. Citeseer, 2004.

Kurt VanLehn. The behavior of tutoring systems. International journal of artificial intelli-
gence in education, 16(3):227–265, 2006.

Claes Wohlin. Guidelines for snowballing in systematic literature studies and a replication
in software engineering. In Proceedings of the 18th international conference on evalua-
tion and assessment in software engineering, pages 1–10, 2014.

57

APPENDICES

A. ERRORS

Label Maincategory Explanation Occurrences

alwaysused Logic No matter the outcome of the
if, always add the value. Mul-
tiple variations: (a) one if with
both then and else adding the
number to the sum variable (b)
if ((positivesOnly && i>0) || !pos-
itivesOnly), with the then also
adding the number to the clause.

498

foreachbutindex Array Adjusted for-loop to foreach, but
in if using the loop-variable as an
index to retrieve a value from the
array

147

earlyexit Boundary Stopping from the loop too early
(after successful match, or after
first iteration)

59

missingcase Logic Missing case: no else clause, or
case from exercise premise forgot-
ten

52

orinsteadofand Logic Wrong logical operand: && in-
stead of ||, or vice versa

51

incorrectforeach Wrong loop Used foreach/while, when code
needs an index, or when using a
for-loop: skip nothing when in-
dices have to be skipped

35

controlvarinverse Logic Stop variable initialized with true
so it stops when false, but used
inversely: only add to total when
false. The opposite can also be
true

30

nostop Logic No control variable present, used
or manipulated to account for ex-
ercise parameters

29

58

Errors 6. Appendices

onifsumdouble Optional else Always add the number to the
sum, but again when the condi-
tion is true

27

wrongincrement Boundary Updated counter wrong: count =
count++;

27

incorrectlogicif Logic Logic statement evaluates (al-
most) always to false

19

wrongvariableused Logic Checking wrong variable in if
statement

13

alsoaddedgecase Logic Before stopping on found error,
also added the edgecase (-1) to the
total

12

indexoutofbounds Off-by-one Retrieving value from array out-
side size of array, can be off-by-
one

11

incorrectwhilecondition Logic While condition incorrect: only
works on first iteration, or on
wrong variables

10

doubleloop Logic Double loop, resulting in infinite
loop

8

positivecheckincorrect Logic Mistaken boolean logic: if (val-
ues[i] % 2 == 0) && value <0

8

modulowrong Logic Modulo operation checks for
wrong value: if (values[i] %
2 == 1)

7

assignmentwrong Semantic Self-assign instead of increment-
ing, or signs in wrong order: count
=+ 1;

7

forloopincrement Wrong loop Incrementing for-loop counter
wrong: for (int i = 0; i
<values.length; i += 2),
resulting in a possible out-of-
bounds

6

toocomplicatedfor Logic Complicated definition of for-
loop: for (int i = 1; i
<values.length && values[i]
== -1; i += 2)

4

counterinitwrong Off-by-one Start counting with 1 3

emptyif Logic No statements to be executed
when if evaluates to true

3

noincrement Logic Not calculating the number of
years

3

59

6. Appendices Errors

countinsteadofsum Logic Add 1 instead of the value: sum +=
1

2

ifelsesame Logic The calculations are the same for
the stop variable: everything is
added

2

inconsistentcontrolvar Logic Semantic of control variable stop
used inconsistently: initialised
with true and adjusted if state-
ment to reflect, but when -1 is
found, set to true again instead of
false

2

noloop Logic No loop used when needed 2

arraywrongindexed Array Use wrong variable as index: if
(values[count] % 2 == 0)

1

continuewhennotstop Logic Misuse of continue directive 1

divisioninsteadofmodule Logic if (values[i] / 2 == 0) 1

ifwithoutaccolades if (array[i] == -1) stop = true; return
total; After setting stop to true, im-
mediately return. Probably error
(code was indented)

1

incrementwithitself Logic count += count ; 1

logicstatementsswitched Logic Multiple logic statements
switched: value for one used
by the other

1

modulooutofbounds Boundary Modulo operation that could
never evaluate to true: if
(values[i] % 2 == 2)

1

Table 6.1: Labelled errors with explanation and the number of occurrences

60

Exercises 6. Appendices

B. EXERCISES

1 public static int countEven (int [] values)
2 {
3 int count;
4 count = 0;
5 for (int i = 0; i < values . length ; i++)
6 {
7 if (values [i] % 2 != 1)
8 {
9 count = count + 1;

10 }
11 else
12 {
13 count = count;
14 }
15 }
16 return count;
17 }

Listing 6.1: Exercise 1.even: The countEven method returns the number of even integers in the values-array.

1 public static int sumValues (int [] values , boolean positivesOnly)
2 {
3 int sum = 0;
4 for (int i = 0; i < values . length ; i++)
5 {
6 if (positivesOnly == true)
7 {
8 if (values [i] >= 0)
9 {

10 sum += values [i];
11 }
12 }
13 else
14 {
15 sum += values [i];
16 }
17 }
18 return sum;
19 }

Listing 6.2: Exercise 2.sumvalues: The sumValues method adds up all numbers from the values-array, or only
the positive numbers if the positivesOnly boolean parameter is set to true.

Listing 6.3: Exercise 3.oddsum: The method oddSum returns the sum of all numbers at an odd index in the
array parameter, until the number -1 is seen at an odd index.

1 public static int oddSum (int [] array)
2 {
3 int total = 0;
4 boolean stop = false;
5 for (int i = 1; i < array. length ; i = i + 2)
6 {
7 if (stop == false)
8 {

61

6. Appendices Exercises

9 if (array[i] != -1)
10 {
11 total += array[i];
12 }
13 else
14 if (array[i] == -1)
15 {
16 stop = true;
17 }
18 }
19 else
20 {
21 total = total;
22 }
23 }
24 return total;
25 }

1 public static int calculateScore (int changes , int day)
2 {
3 int score = 10;
4 for (int i = 0; i < changes ; i++)
5 {
6 score = score - 1;
7 }
8 if (day == 6 || day == 7)
9 {

10 return score;
11 }
12 else
13 {
14 score = score - 3;
15 return score;
16 }
17 }

Listing 6.4: Exercise 4.score: The calculateScore method calculates the score for a train trip. The highest score
is 10. The score is based on the number of changes and the day of the week (Monday is 1, Sunday is 7). Dutch
Railways (NS) has designed the following calculation: Base score: 10 For each change: -1 Trip on a weekday:
-3

1 public static int hasDoubled (double savings , int interest)
2 {
3 double target = 2 * savings ;
4 int years;
5 for (years = 0; ;)
6 {
7 if (target > savings)
8 {
9 savings *= interest / 100.0 + 1;

10 years ++;
11 }
12 else
13 if (target <= savings)
14 {
15 break;
16 }

62

Exercises 6. Appendices

17 }
18 return years;
19 }

Listing 6.5: Exercise 5.double: Write a program that calculates in how many years your savings have doubled
with the given interest (as a percentage).

1 public static boolean haveThree (int [] nums)
2 {
3 return true;
4 }

Listing 6.6: Exercise 6.havethree: Given an array of ints, return true if the value 3 appears in the array exactly
3 times, and no 3’s are next to each other. No correct code given. Not used in this study.

63

6. Appendices Examples

C. EXAMPLES

1 public static int sumValues (int [] values , boolean positivesOnly)
2 {
3 int sum = 0;
4 for (int i : values)
5 {
6 if ((positivesOnly) && i >=0)
7 {
8 sum += i;
9 }

10 else
11 {
12 sum += i; // Same as in IF
13 }
14 }
15 return sum;
16 }

Listing 6.7: alwaysused

1 public static int countEven (int [] values)
2 {
3 int count = 0;
4 for (int i : values)
5 {
6 if (values [i] % 2 != 1) // i is the value , but used as an index
7 {
8 count ++;
9 }

10 else
11 {
12 count = count;
13 }
14 }
15 return count;
16 }

Listing 6.8: foreachbutindex

64

Examples 6. Appendices

1 public static int calculateScore (int changes , int day)
2 {
3 int score = 10;
4 for (int i = 0; i < changes ; i++)
5 {
6 score -= 1;
7 }
8 if (day != 6 || day != 7) // Always evaluates to true
9 {

10 score -= 3;
11 }
12 return score;
13 }

Listing 6.9: orinsteadofand

1 public static int countEven (int [] values)
2 {
3 int count = 0;
4 for (int i = 0; i < values . length ; i++)
5 {
6 if (values [i] % 2 != 1)
7 {
8 count = count + 1;
9 }

10 else
11 {
12 return count; // Returns after first uneven
13 }
14 }
15 return count;
16 }

Listing 6.10: earlyexit

1 public static int sumValues (int [] values , boolean positivesOnly)
2 {
3 int sum = 0;
4 for (int i = 0; i < values . length ; i++)
5 {
6 if (positivesOnly)
7 {
8 if (values [i] >= 0)
9 {

10 sum += values [i]; // Only implements when value is positive
, other cases are missing

11 }
12 }
13 }
14 return sum;
15 }

Listing 6.11: missingcase

65

6. Appendices Examples

1 public static int sumValues (int [] values , boolean positivesOnly)
2 {
3 int sum = 0;
4 for (int value: values)
5 {
6 if (positivesOnly == false){ // Only implements when parameter

is false , other cases are missing
7 sum += value;
8 }
9 }

10 return sum;
11 }

Listing 6.12: missingcase

1 public static int calculateScore (int changes , int day)
2 {
3 int score = 10;
4 for (int i = 0; i < changes ; i++)
5 {
6 score -= 1;
7 }
8 if (day == 6) // Only implements case for saturday , sunday is

considered a weekday .
9 {

10 return score;
11 }
12 else
13 {
14 score -= 3;
15 return score;
16 }
17 }

Listing 6.13: missingcase

1 public static int calculateScore (int changes , int day)
2 {
3 int score = 10;
4 if(day <= 5){ // multiple cases from exercise premise missing
5 score -= changes ;
6 }
7 return score;
8 }

Listing 6.14: missingcase

66

Examples 6. Appendices

1 public static int oddSum (int [] values)
2 {
3 int total = 0;
4 boolean stop = false;
5 for (int value : values) // foreach used , when exercise calls for

for with index
6 {
7 if (stop == false)
8 {
9 if (value != -1)

10 {
11 total += value;
12 }
13 else
14 if (value == -1)
15 {
16 stop = true;
17 }
18 }
19 }
20 return total;
21 }

Listing 6.15: incorrectforeach

1 public static int oddSum (int [] array)
2 {
3 int total = 0;
4 boolean stop = false;
5 for (int i = 1; i < array. length ; i = i + 2)
6 {
7 if (stop) // will never enter , should be initialised to true
8 {
9 if (array[i] != -1)

10 {
11 total += array[i];
12 }
13 else if (array[i] == -1)
14 {
15 stop = true; // inversed again
16 }
17 }
18 }
19 return total;
20 }

Listing 6.16: controlvarinverse

67

6. Appendices Examples

1 public static int oddSum (int [] array)
2 {
3 int total = 0;
4 boolean stop = false;
5 for (int i = 1; i < array. length ; i += 2)
6 {
7 if (! stop)
8 {
9 if (array[i] != -1)

10 {
11 total += array[i];
12 }
13 } else if(array[i] == -1) {
14 stop = true; // would never reach
15 }
16

17 }
18 return total;
19 }

Listing 6.17: nostop

1 public static int countEven (int [] values)
2 {
3 int count;
4 count = 0;
5 for (int i = 0; i < values . length ; i++)
6 {
7 if (values [i] % 2 == 0)
8 {
9 count = count ++; // would not update count variable

10 }
11 else
12 {
13 count = count;
14 }
15 }
16 return count;
17 }

Listing 6.18: wrongincrement

68

Examples 6. Appendices

1 public static int sumValues (int [] values , boolean positivesOnly)
2 {
3 int sum = 0;
4 for (int i : values)
5 {
6 if (positivesOnly)
7 {
8 if (i >= 0)
9 {

10 sum += i;
11 }
12 sum += i; // always added , resulting in added to sum twice

when positive
13 }
14 }
15 return sum;
16 }

Listing 6.19: onifsumdouble

1 public static int oddSum (int [] array)
2 {
3 int total = 0;
4 boolean stop = false;
5 for (int i = 1; i < array. length ; i = i + 2)
6 {
7 if (! stop)
8 {
9 if (array[i] == -1)

10 {
11 stop = true;
12 }
13

14 total += array[i]; // when array[i] is -1, the value -1 is
also added

15 }
16

17 }
18 return total;
19 }

Listing 6.20: alsoaddedgecase

69

6. Appendices Examples

1 public static int calculateScore (int changes , int day)
2 {
3 int score = 10;
4 for (int i = 0; i < changes ; i++)
5 {
6 score -= 1;
7 }
8 if (day <= 1 && day <= 5){ // incorrect , only true for day = 1
9 score -= 3;

10 }
11 return score;
12 }

Listing 6.21: incorrectlogicif

1 public static int hasDoubled (double savings , int interest)
2 {
3 double target = savings * 2;
4 int years = 0;
5 while (years == 0) // wrong variable used in while condition
6 {
7 if (target > savings)
8 {
9 savings *= interest / 100.0 + 1;

10 years ++;
11 }
12 else
13 if (target <= savings)
14 {
15 break;
16 }
17 }
18 return years;
19 }

Listing 6.22: incorrectwhilecondition

1 public static int countEven (int [] values)
2 {
3 int count = 0;
4 for (int i = 0; i < values . length ; i++)
5 {
6 if (i % 2 != 1) // i is the index here
7 {
8 count = count + 1;
9 }

10 }
11 return count;
12 }

Listing 6.23: wrongvariableused

70

Examples 6. Appendices

1 public static int oddSum (int [] array)
2 {
3 int total = 0;
4 boolean stop = false;
5 for (int i = 0; !stop && i < array. length ; i = i + 2) // first i = i

+ 2 allows for an out of bounds
6 {
7 if (array[i + 1] != -1) // Second time: i + 1 allows for an out

of bounds
8 {
9 total += array[i + 1];

10 }
11 else
12 {
13 stop = true;
14 }
15 }
16 return total;
17 }

Listing 6.24: indexoutofbounds

1 public static int countEven (int [] values)
2 {
3 int count = 0;;
4 for(int num : values)
5 {
6 if(count %2 == 0) // count used for the even check , should be ’

num ’
7 {
8 count ++;
9 }

10 }
11 return count;
12 }

Listing 6.25: wrongvariableused

71

https://docs.google.com/forms/d/1OqywKXJc30KEYAruOr2mk8v8CqhaY4TYt2e2RbgbPVA/edit?gxids=7628 1/8

Vraag

1

De eerste twee vragen gaan over de volgende opgave:

The countEven method returns the number of even integers in the values-array. Example
test case: {1,2,3,4,5} returns 2. You don't have to deal with negative numbers. The solution
is already correct, but can you improve this program?

Feedback op veelgemaakte fouten
Beste docent,

Momenteel ben ik, Meine Toonen, bezig met mijn afstudeeronderzoek voor mijn master aan
de Open Universiteit.
Binnen de Open Universiteit worden verschillende tutoren ontwikkeld: (web) applicaties die
een student kunnen helpen een bepaalde vaardigheid aan te leren, zonder (al te veel)
tussenkomst van docenten.

Mijn onderzoek gaat over zo’n tutor: de refactor-tutor. In deze tutor kunnen studenten oefenen
met het refactoren van code. Ik richt me op het herkennen van veelgemaakte fouten. We
denken dat studenten veel dezelfde fouten maken, wat betekent dat we – als we deze fouten
herkennen – we hier gericht feedback op kunnen geven.

De eerste resultaten zijn veelbelovend: voor een zestal typen fouten hebben we een manier
gevonden om automatisch vast te stellen of ze gemaakt worden. We kunnen hiervoor dus
feedback geven aan de student die hier wat aan heeft.

De feedback die gegeven wordt, heb ik zelf geschreven. Via deze vragenlijst wil ik vaststellen
of dit het soort feedback is dat jullie als vakinhoudelijke didactici ook zouden geven.

De vragenlijst bestaat uit drie onderdelen, en zal ongeveer tien minuten in beslag nemen. Bij
elke onderdeel zal de opgave worden gegeven zoals de leerling deze krijgt. Bij de opgave
zullen ook een of meerdere inzendingen staan die een fout bevatten. Aan u de vraag om de
feedback die het systeem gegenereerd te evalueren en aan te geven of u het ermee eens
bent. Bij het analyseren van de feedback wil ik u vragen niet naar de exacte bewoording te
kijken, maar om de achterliggende boodschap te beoordelen.

Alvast hartelijk bedankt!

* Required

6. Appendices Questionnaire

D. QUESTIONNAIRE

72

13/12/2020 Feedback op veelgemaakte fouten

https://docs.google.com/forms/d/1OqywKXJc30KEYAruOr2mk8v8CqhaY4TYt2e2RbgbPVA/edit?gxids=7628 2/8

Oplossing
De te nemen refactor-stappen zijn als volgt:
 1. Regel 3 en 4 samenvoegen: declaratie en instantiatie van de count variabele kan in 1 regel
 2. De for-loop op regel 5 kan vervangen worden door een for-each loop
 3. De conditie op regel 7 kan netter: values[i] % 2 == 0
 4. Het ophogen van count kan korter: count ++
 5. Het else statement kan weg: self-assignment voegt niks toe

De foute inzending van de student

Omschrijving probleem en feedback
Probleem: Alle stappen behalve stap 2 zijn correct doorgevoerd. Hoewel het type loop goed is gewijzigd, is de
betekenis van variabele i veranderd: In plaats van een index, bevat het nu de waarde uit de array op dat moment
in de iteratie aan.

De feedback die wordt gegeven aan de student is als volgt:
The return value isn't correct. You changed the for loop to a for-each. This also changed the meaning of the
loop variable, from an index to the actual value in the array. Did you forget to change how to access the value
from the array?

Questionnaire 6. Appendices

73

13/12/2020 Feedback op veelgemaakte fouten

https://docs.google.com/forms/d/1OqywKXJc30KEYAruOr2mk8v8CqhaY4TYt2e2RbgbPVA/edit?gxids=7628 3/8

1.

Mark only one oval.

Helemaal niet overeen

1 2 3 4 5

Helemaal overeen

2.

Mark only one oval.

Te weinig: de student weet nu nog niets

Genoeg: de student kan nu zelf erachter komen wat het probleem is

Te veel: het antwoord wordt nu gegeven

3.

Vraag

2

Een volgende inzending gaat over dezelfde vraag als bij de vorige sectie. We geven
nogmaals de opdracht.

In hoeverre komt deze feedback overeen met de boodschap die u zou geven? *

Wat vindt u van de mate van diepgang in de feedback? *

Heeft u opmerkingen of suggesties over deze feedback?

6. Appendices Questionnaire

74

13/12/2020 Feedback op veelgemaakte fouten

https://docs.google.com/forms/d/1OqywKXJc30KEYAruOr2mk8v8CqhaY4TYt2e2RbgbPVA/edit?gxids=7628 4/8

The countEven method returns the number of even integers in the values-array.

Example test case: {1,2,3,4,5} returns 2. You don't have to deal with negative numbers.

The solution is already correct, but can you improve this program?

De foute inzending van de student

Omschrijving probleem en feedback
Probleem: Bij de volgende inzending zijn alle refactor-stappen doorlopen, maar de methode wordt na het vinden
van een oneven getal afgebroken: op regel 12 staat return count;.

De feedback die wordt gegeven aan de student is als volgt:
The return value isn't correct. It looks like not all values are considered. Did you return too early?

Questionnaire 6. Appendices

75

13/12/2020 Feedback op veelgemaakte fouten

https://docs.google.com/forms/d/1OqywKXJc30KEYAruOr2mk8v8CqhaY4TYt2e2RbgbPVA/edit?gxids=7628 5/8

4.

Mark only one oval.

Helemaal niet overeen

1 2 3 4 5

Helemaal overeen

5.

Mark only one oval.

Te weinig: de student weet nu nog niets

Genoeg: de student kan nu zelf erachter komen wat het probleem is

Te veel: het antwoord wordt nu gegeven

6.

Vraag

3

De volgende vraag gaat over de volgende opgave:

The calculateScore method calculates the score for a train trip. The highest score is 10.
The score is based on the number of changes and the day of the week (Monday is 1,
Sunday is 7).

Dutch Railways (NS) has designed the following calculation:
Base score: 10
For each change: -1
Trip on a weekday: -3

Example test case: for a trip with 2 changes on a Wednesday (day 3), calculateScore(2, 3)
returns a score of 5 (10-2-3)

De bijbehorende code is:

In hoeverre komt deze feedback overeen met de boodschap die u zou geven? *

Wat vindt u van de mate van diepgang in de feedback? *

Heeft u opmerkingen of suggesties over deze feedback?

6. Appendices Questionnaire

76

13/12/2020 Feedback op veelgemaakte fouten

https://docs.google.com/forms/d/1OqywKXJc30KEYAruOr2mk8v8CqhaY4TYt2e2RbgbPVA/edit?gxids=7628 6/8

Oplossing
De te zetten refactorstappen zijn:
 1. Loop weghalen: dit kan vervangen worden door een berekening: score – changes
 2. Initialisatie en berekening samenvoegen: int score = 10 – changes
 3. Berekening in regel 14 vervangen door: score -= 3;
 4. if-statement herschrijven zodat er maar 1 return nodig is:
if (day != 6 && day != 7){
 score -= 3;
}

De foute inzending van de student

Omschrijving probleem en feedback
Probleem: Alle refactor-stappen zijn goed gedaan, behalve de laatste. In plaats van de and-operator heeft de
student een or-operator gebruikt, waardoor er altijd 3 van de score wordt afgehaald.

De feedback die wordt gegeven is de volgende:

The return value isn’t correct. Look closely at the used logical operator(s). When do they evaluate to true?

Questionnaire 6. Appendices

77

13/12/2020 Feedback op veelgemaakte fouten

https://docs.google.com/forms/d/1OqywKXJc30KEYAruOr2mk8v8CqhaY4TYt2e2RbgbPVA/edit?gxids=7628 7/8

7.

Mark only one oval.

Helemaal niet overeen

1 2 3 4 5

Helemaal overeen

8.

Mark only one oval.

Te weinig: de student weet nu nog niets

Genoeg: de student kan nu zelf erachter komen wat het probleem is

Te veel: het antwoord wordt nu gegeven

9.

Opmerkingen
Heeft u verder nog vragen of opmerkingen?

10.

In hoeverre komt deze feedback overeen met de boodschap die u zou geven? *

Wat vindt u van de mate van diepgang in de feedback? *

Heeft u opmerkingen of suggesties over deze feedback?

Opmerkingen

6. Appendices Questionnaire

78

13/12/2020 Feedback op veelgemaakte fouten

https://docs.google.com/forms/d/1OqywKXJc30KEYAruOr2mk8v8CqhaY4TYt2e2RbgbPVA/edit?gxids=7628 8/8

This content is neither created nor endorsed by Google.

 Forms

Questionnaire 6. Appendices

79

	Acknowledgements
	Abstract
	Introduction
	Context
	Literature
	Software quality and refactoring
	Seeking help and receiving feedback
	Intelligent Tutoring Systems
	Log analysis
	Testing
	Classifiers

	Current state of the refactor tutor
	Problem analysis

	Research
	Research questions
	Research method and validation
	RQ.1 - Finding common logic errors when refactoring
	RQ.2 - Labelling common logic errors
	RQ.3 - Observing common logic errors
	RQ.4 - Validation of RQ.3
	RQ.5 - Asking teachers to validate unit tests

	Research contribution

	Results
	Common logic errors when refactoring
	Literature review
	Log analysis

	Labelling of common logic errors
	Labelling
	Creating datasets
	Inter annotator agreement

	Writing unit tests to identify common logic errors
	Testbed software
	Writing unit tests
	Training the model

	Validate trained models
	Metrics
	Analysis

	Validation by teachers
	Feedback
	Questionnaire
	Results
	Conclusion

	Intermission - an example
	Running unit tests
	Using the Binary Decision Tree

	Discussion
	Solutions
	Imbalanced dataset
	Binary Decision Tree
	Inter annotator agreement

	Limitations
	Literature research
	Labelling
	Models
	Questionnaire

	Future work
	Expanding this study
	Different techniques
	Different areas of application

	Conclusion
	Bibliography
	Appendices
	Errors
	Exercises
	Examples
	Questionnaire

