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ABSTRACT

Recursion is not an easy subject to learn. In this thesis the literature is examined on the
common difficulties and misconceptions students encounter when trying to understand
recursion in the functional paradigm, and on the available tools for teaching and visual-
izing recursion. It is found that experts possess the copies model as their mental model
and that novices often hold misconceptions about the passive flow and have difficulties
identifying a correct base case or recursive step. The examined intelligent tutoring systems
and visualizations show a variety of different approaches to illustrate code execution: some
use graphical representations while others are text-based. Research indicates that some of
the tools encourage students to spend more time with the learning material which leads to
greater learning gains.

A prototype tool is proposed that supports the learning of recursion in Haskell through
the step-wise evaluation of recursive functions and the displaying of the subsequent func-
tion calls in function tables. The prototype is aimed at alleviating the identified difficulties
and misconceptions. The copies model is illustrated through the use of function tables
that display the different instantiations of the function in the table rows. The passive flow
is shown through step-wise normalization of the rows in the tables. The prototype has a
unique way of illustrating the copies model and displays the passive flow explicitly. In the
future the prototype could be augmented with additional features such as the handling of
input and feedback.
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1. INTRODUCTION

Learning to program is challenging (Carter & Jenkins, 1999; Lahtinen, Ala-Mutka, & Järvi-
nen, 2005). Introductory courses on programming often fail to deliver: a lot of students
struggle to produce a working program after a first course, independent of the institution
(Venables, Tan, & Lister, 2009; Guzdial, 2011).

One of the hardest subjects to learn is recursion (Roberts, 1986; Gal-Ezer & Harel, 1998;
Lahtinen et al., 2005). Students often struggle when they encounter the concept of recur-
sion for the first time, it is a difficult concept to grasp. A lot of research in the field of
computing education research has been done concerning the misconceptions and diffi-
culties students run into when learning recursion (Kahney, 1983; Wu, Dale, & Bethel, 1998;
Du Boulay, O’Shea, & Monk, 1999; Götschi, Sanders, & Galpin, 2003; AlZoubi, Fossati, Di Eu-
genio, & Green, 2014).

Recursion is an important programming technique (McCracken, 1987). Several algo-
rithms, such as a search in a binary tree, are recursive in nature and are thus coded effi-
ciently using recursion. Recursion is also used as an iteration construct in functional pro-
gramming languages such as Haskell and Scheme.

To aid novices in the understanding of code execution several intelligent tutoring sys-
tems (ITS) and program visualization tools have been introduced over the past decades
(Sorva, 2012). Research suggests that using ITS for teaching can be very effective (VanLehn,
2011). By using an ITS a student can study independently requiring less help from a teacher
(Odekirk-Hash & Zachary, 2001). The systems are often able to give immediate feedback,
which is not always possible in a classroom setting. Research suggests that immediate feed-
back is preferable to delayed feedback (Mory, 2004).

Some of the proposed tools have been targeted at recursion while others have a broader
focus. Most of these tools are focused on the object-oriented paradigm and only a few are
focused on the functional paradigm. None of those are specifically designed for teaching
recursion.

The focus of this thesis lies within the subject of computing education: the teaching of
recursion in the functional programming language Haskell. The goal of this research is to
document what has been done by the community of programming educators on recursion
and to design a prototype for an intelligent tutoring system that helps in the understanding
of recursion by leveraging the widespread familiarity with mathematical function tables.

Function tables are a widely used visualization method in mathematics education
(Martinez & Brizuela, 2006). Because of its widespread use it is an promising notation to
leverage for illustrating function application, particularly for the demonstration of recur-
sion.

To document the community’s effort the available literature is studied focusing on two
subjects: the difficulties encountered by students when introduced to recursion and the
developed ITS and program visualization tools for teaching recursion. The output of the
literature studies is used as inspiration for the prototype.

The tutor prototype is aimed at novices learning the functional language Haskell. The
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basic method of computation in Haskell is function application (Hutton, 2017). Function
evaluation can be viewed as a form of term rewriting (Pareja-Flores, Urquiza-Fuentes, &
Velázquez-Iturbide, 2007). Several functional program visualizations tools illustrate the
process of function evaluation as repeated term rewriting. The proposed prototype also
follows this approach, but focuses on recursion and additionally displays function invoca-
tions and results in function tables.

1.1. CONTRIBUTION

The research proposed in this thesis makes a step towards helping students, who are new
to Haskell, to understand recursion. The main research question we aim to answer is: How
can a tutoring environment support students in understanding the evaluation of recursive
functions in Haskell?

The contributions of this thesis are the summary and discussion of the findings of the
community on the difficulties and misconceptions of novices concerning recursion in the
functional paradigm, the compilation of an overview of tools that help in understanding
recursion, and the design of a tutoring environment aimed at teaching recursion and that
leverages function tables.

The tutoring environment calculates and displays evaluation steps of simple recursive
functions and is aimed at novices. To our knowledge there is no tool that uses function
tables to illustrate recursion. Figure 1 shows a screenshot of the tutor.

Tools such as the Haskell Expression Evaluator (Olmer, Heeren, & Jeuring, 2014) and
WinHIPE (Pareja-Flores et al., 2007) also show evaluation steps and can be used to illustrate
recursion, but lack the ability to display function tables. The Haskell Expression Evaluator
focuses on higher-order functions defined in the Haskell Prelude, such as foldl and map,
instead of explicit recursive functions that are typically covered before the more general-
ized functions in an introductory functional programming course (Lipovaca, 2011; Hutton,
2017).
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Figure 1: The proposed tutor prototype illustrating a call to the sum function. On the left the rewrite steps
are shown. The expression that is rewritten is underlined. Next to it are the function tables. At this stage the

table rows are not yet normalized, this can be done by the student by clicking the right pointing arrow.
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1.2. THESIS OVERVIEW

In the next section, Section 2, we look at background concepts that are used in this thesis.
Related work that has been done on intelligent tutoring systems, program visualizations,
the Haskell Expression Evaluator and the IDEAS framework is discussed. In this section we
also summarize some relevant literature reviews. The main research question is introduced
in Section 3 and answered in Section 4, 5 and 6. Section 7 discusses the proposed prototype,
compares it to two other tools, examines its limitations and identifies possible future work.
The last section summarizes the answers to the research questions.
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2. RELATED WORK

In this section we present related work and background concepts that are relevant to this
thesis. First, we will give a brief introduction of recursion and evaluation order in Haskell.
Secondly, we touch upon the concepts of mental and conceptual models proposed by cog-
nitive psychology, identify some conceptual models for recursion and relate these concepts
to the concept of the notional machine and talk about program visualizations. Next, some
general properties of intelligent tutor systems, the Haskell Expression Evaluator and the
IDEAS framework are briefly discussed. We conclude this section with an overview of some
literature reviews that have been done on program visualizations and intelligent tutor sys-
tems.

2.1. RECURSION IN HASKELL

Recursion is the basic mechanism for coding iteration in Haskell (Hutton, 2017). A loop
statement with an incrementing counter variable, a common statement in imperative lan-
guages, does not exist making recursion an essential programming technique.

The production of a new list from an existing list where from every element in the old
list a new value is calculated by a function, or what is called a map, is one occasion where
recursion can be used. Code Listing 1 shows an example of a recursive function definition,
a function that squares all elements in a list of numbers. On line 1 is the function signature,
which should be interpreted as follows: the function takes a list of integers and outputs a
list of integers. Line 2 contains the base case of the recursion: the squares function called
on an empty list returns an empty list. On line 3 is the recursive step. This line uses the
colon for pattern matching: a list is matched against a pattern and deconstructed into its
head (which gets assigned to x) and the tail (which gets assigned to xs). Line 3 should be
interpreted as follows: to square all elements of a non-empty list, take the square of the first
element of the list and use this as the head of the list, then apply the same actions on the
remaining tail of the list. In short, the squares function maps the square function to every
element in a list.

Note that the definition of the squares function comes in two equations, one for an
empty list and one for non-empty lists. The equations are matched against the received
arguments in order, when encountering an empty list the first match on line 2 is applied.
When the parameter is a non-empty list the first case does not match, but the second case
on line 3 will match, so this equation is applied instead.

squares :: [Int] -> [Int]
squares [] = []
squares (x:xs) = square x : squares xs

square :: Int -> Int
square x = x*x

Listing 1: A recursive function definition in Haskell
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RECURSIVE DATA TYPES

Function definitions are not the only places where recursion can be used in Haskell. Cus-
tom types created with newtype and data can also be declared recursively (Hutton, 2017).

An example of a custom version of a list declared with the data keyword, taken from
Hutton (2017), is shown in Listing 2. Here a new parameterised data type List is declared,
which can be an empty list (Nil) or a list of the form Cons x xs where x is a value in the list
and xs is another list.

data List a = Nil | Cons a (List a)
Listing 2: A recursive data type in Haskell

A list of our own type List containing integers can then be defined as follows:

l :: List Int
l = Cons 3 (Cons 2 (Cons 1 Nil))

Listing 3: The application of a recursive data type in Haskell

Recursive data types and recursive functions work well together. We can define our own
version of the length function to calculate the length of a list recursivly (Hutton, 2017). Such
a function could look like this:

len :: List a -> Int
len Nil = 0
len (Cons _ xs) = 1 + len xs

Listing 4: A recursive function for calculating the length of a list

2.2. EVALUATION IN HASKELL

A Haskell expression that can be evaluated further by performing beta reduction is called
a redex, short for reducible expression (Hutton, 2017). Haskell uses lazy evaluation, this
means that functions are evaluated with outermost evaluation. Outermost evaluation pre-
scribes that the outermost redex, that is the redex that is not contained in another redex,
is evaluated first. When there is more than one unencapsulated redex the leftmost is eval-
uated first (Hutton, 2017). Below a step-wise evaluation of a call to the squares function is
shown, the redexes that are being evaluated are underlined.

squares [13, 6]
↓
square 13 : squares [6]
↓
(13 * 13) : squares [6]
↓
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169 : squares [6]
↓
169 : square 6 : squares []
↓
169 : (6 * 6) : squares []
↓
169 : 36 : []
↓
[169, 36]

Since Haskell is a pure language the result of an expression does not depend on the
order of evaluation, although the evaluation strategy can have implications for the termi-
nation behaviour (Hutton, 2017). Because Haskell has no side effects the evaluation order
is in general unimportant for the result, thus a recursive function can be evaluated in any
chosen order. From this property follows that there are different correct ways in which a
student can trace a recursive function.

2.3. MENTAL MODELS AND CONCEPTUAL MODELS

MENTAL MODELS

Cognitive psychology offers an interesting perspective for looking at computing education.
This branch of psychology makes a distinction between the represented world and repre-
sentations in one’s mind of the represented world (Gentner & Stevens, 2014). One of the
key concepts in cognitive psychology are mental models.

The concept of the mental model springs from the idea that the experiences of things
around us, the representations in our mind, are different from the real life things causing
them (Forrester, 1971). Obviously, when one thinks about a real-life thing such as a car, the
car is not physically present in one’s mind, we build a mental image or model of the car in
our mind.

According to cognitive psychology a mental model describes the mental structure, the
structure in one’s mind, representing an aspect of one’s environment. It is theorized that
people can have mental models of all kind of things, although the primary subject for men-
tal model theorists has been causal systems and the interaction between humans and such
systems, such as digital interfaces and computers (Gentner & Stevens, 2014). Or, what is
more in line with the subject of this thesis, a computer programming technique.

When learning a programming technique, students build their own mental models of
this technique. A mental model provides an explanation and enables the student to make
predictions (Wu et al., 1998). Someone who possesses a mental model of a process is able
to mentally visualize the process (Götschi et al., 2003). A mental model can be “run” as a
mental simulation of the program (Gentner & Stevens, 2014). In short, a mental model of a
programming technique is how one views and understands this technique.

Note that a mental model can be incorrect. A faulty mental model makes wrong predic-
tions or fails to correctly explain the process.
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CONCEPTUAL MODELS

To facilitate the forming of a correct mental model teachers use an explanation of a system
or process: a conceptual model (Turner & Belanger, 1996). In the views of Turner and Be-
langer (1996) a conceptual model does not need to be strictly accurate, consistent or com-
plete as long as it aids in the explaining and understanding of the system. In this sense an
analogy or metaphor can be a viable conceptual model. Götschi et al. (2003) have a stricter
view: they define a conceptual model as an accurate, consistent and complete model used
by experts. We will use this strict view in the following discussion unless noted otherwise.

The mental model constructed by the student can be consistent or be at odds with the
conceptual model. A mental model that is consistent with the conceptual model is called a
viable model, a mental model at odds is called non-viable.

MENTAL AND CONCEPTUAL MODELS OF RECURSION

Different conceptual models can exist for a programming construct. Wu et al. (1998) name
five conceptual models that can be used for introducing recursion to novice programmers:
Russian dolls, process tracing, stack simulation, mathematical induction and structure
templates. Some of these models are not strict conceptual models in the sense used by
Götschi et al. (2003).

The Russian dolls metaphor, where the image of a doll containing other dolls is used
to visualize recursion, is not a strict conceptual model but an analogy. It can, however,
be used to ease the introduction of recursion. Mathematical induction is also not a strict
conceptual model. In this model prior mathematical knowledge is leveraged to introduce
recursion by using the proof by induction as an analogy. It too can be used to ease the
introduction but is not an accurate nor complete description of the programming tech-
nique. Structure templates, where similar recursive problems are solved using prior recur-
sive functions as templates, is not a strict conceptual model either. This model can only
be used to solve recursive problems of a certain form and is therefore not complete. This
leaves process tracing and stack simulation as strict conceptual models.

Kahney (1983) identified different mental models used by students for recursion. The
identified mental models have been expanded by Götschi et al. (2003). Viable and non-
viable models were discovered by looking at submissions of student tests by both Kahney
and Götschi et al. (2003). Non-viable models include the looping, active flow, step, re-
turn value, syntactic or magic, algebraic, and odd models. These non-viable models are
discussed in more detail in Section 4. The copies model is seen as both a correct mental
model and a usable conceptual model. In the copies model “recursive procedures are seen
to generate new instantiations of themselves, passing control, and possibly data forward
to successive instantiations and back from terminated ones”. It is considered the expert
view. The copies model is a form of process tracing, as mentioned by Wu et al. (1998). Fig-
ure 2 shows a visualisation of the merge-sort algorithm using the copies model (Wilcocks &
Sanders, 1994).

One of the important properties of the copies model is what Götschi et al. (2003) call the
winding and unwinding phase. In the winding phase new instantiations of the functions
are called, “passing control and possibly data forward”. The unwinding phase typically con-
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Figure 2: An example of a visualisation of a recursive call using the copies model (Wilcocks & Sanders, 1994)

sists of the return statements where the value is substituted and control is passed back to
the previous calling function.

CONSTRUCTIVISM AND PHENOMENOGRAPHY

Mental and conceptual models are two concepts of cognitive psychology. This branch of
psychology has much more interesting concepts to offer regarding what it is to learn such
as the theories of working memory, cognitive load and schemata, to name a few. These
interesting topics will remain untouched in this thesis.

Other points of view of which we will highlight some ideas, that will be used later in this
document, are constructivism and phenomenography.

Constructivism emphasises active learning and its social context. Several ideas have
emerged from constructivism, such as the insight that by learning a student constructs
its own knowledge based upon the student’s prior knowledge. Another insight is that ef-
fective learning is an active construction of knowledge (Phillips, 1995). Instead of passive
consumers of knowledge students should be active participators in order to maximize the
learning gains.

Phenomenography investigates the different ways in which students understand or ex-
perience phenomena, in our case the programming technique recursion. During a phe-
nomenographic study different qualities of understanding are identified through interviews.
Typically, the different understandings or insights of the student group under investigation
is hierarchically structured with increasing levels of inclusion. The study of Booth (1992),
of which a small part is summarized in this document, is a phenomenographic study.

As is the case with cognitive psychology, the constructivist theory and the phenomeno-
graphic perspective have much more to offer. For a good introduction related to computing
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Figure 3: Visualization of a notional machine (Mayer, 1981)

education see Sorva (2012).

2.4. THE NOTIONAL MACHINE

Closely related to mental and conceptual models of programming techniques is the con-
cept of the notional machine. In 1981 Du Boulay coined the term notional machine for
“the idealized, conceptual computer whose properties are implied by the constructs in the
programming language employed” (Du Boulay et al., 1999). In an educational context edu-
cators present a visualization of a notional machine at the appropriate level of abstraction
to encourage the forming of viable mental models.

PROGRAM VISUALIZATIONS

For novices the runtime behaviour of code is not immediately obvious from looking at code.
It is common to visualize a notional machine as a simplified computer in textbooks, slides
or drawn on a black board (Naps et al., 2003) to make the behaviour of code clearer. Figure 3
shows a visualisation used by (Mayer, 1981). He found that novices to whom he introduced
this model, together with an accompanying explanation and early in the learning process,
were better able to solve code problems requiring creative solutions.

Through the years a lot of different visualizations of notional machines were proposed.
Next to static, on paper visualizations, as used by Mayer (1981), a lot of interactive visu-
alization software programs have been developed. Most of these programs focus on the
imperative or the object-oriented paradigm (Sorva, Karavirta, & Malmi, 2013).

A typical visualization of an imperative notional machine consists of a memory stack
with changeable content, similar to the sketch used by Mayer. A recent interactive visual-
ization generated by the Jsvee library is shown in Figure 4 (Sirkia, 2016). Jsvee is looked at
in more detail when comparing different visualization tools.
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Figure 4: Visualization of imperative code in Jsvee (Sirkia, 2016)

Figure 5: Visualization of object-oriented code in Evizor (Moons & De Backer, 2013)

An example of an early tool aimed at visualizing recursion is Recursion Animator by
Wilcocks and Sanders, which uses overlayed windows to visualize the copies model, see
Figure 2. Here the focus is the displaying of recursive function calls including the content
of local variables.

A visualization of an object-oriented notional machine often displays classes, instan-
tiated objects and their relations, additionally to the memory stack. An example is Evizor
by Moons and De Backer (2013) where students can visualize the class and object structure
they programmed, see Figure 5. Two other notable examples of the many object-oriented
visualizers are Jeliot (Moreno, Myller, Sutinen, & Ben-Ari, 2004) and BlueJ (Kölling, Quig,
Patterson, & Rosenberg, 2003).

Since functional programming is less involved with changeable memory content, but
stays closer to mathematical functions, functional notional machines focus more on func-
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tions and their inputs and outputs rather than on a changeable memory stack. KIEL is such
a visualization tool for the language Standard ML (Berghammer & Milanese, 2001). KIEL
displays an expression tree that can interactively be rewritten by substitution and simplifi-
cation. Figure 6 shows a screenshot of KIEL illustrating the construction of a binary search
tree. Another example using a similar approach is WinHIPE which we will look at in more
detail in the Section 5 where we compare different tools.

Figure 6: Visualization of functional code in KIEL (Moons & De Backer, 2013)

A somewhat different approach is used by RainbowScheme (Sho-Huan, Ching-Tao, Wing-
Kwong, & Jihn-Chang, 2001). This tool visualises recursion in the Scheme language. The
intermediate expression-environments are calculated via four semantic rules, a subset of
Scheme called visualcode. Dynamically generated environments are color coded illustrat-
ing the folding and unfolding of recursive evaluation. Figure 7 illustrates the evaluation of
a factorial function call.

2.5. INTELLIGENT TUTOR SYSTEMS

Closely related to visualization tools are intelligent tutor systems (ITS). The distinctive fea-
ture between a visualization tool and an ITS is that the latter has the ability to offer exercises
and assess the students’ input as being correct or incorrect.

OUTER AND INNER LOOP

In The Behaviour of Tutor Systems VanLehn (2006) describes the general structure of ITS
as having an inner loop and an outer loop. The outer loop selects a task, in most cases an
exercise, for the student to solve. The inner loop contains the different steps of the exercise.
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Figure 7: Visualization of a call to the factorial function in RainbowScheme (Sho-Huan et al., 2001)
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The outer loop could be simply controlled by the student: the student selects the prob-
lem he wants to solve via a menu or a next exercise button. Other more sophisticated outer
loops exist. Some ITS store student information in a student model. With a sophisticated
student model an ITS can keep track of the student’s strengths and weaknesses instructing
the outer loop to select tasks specifically to strengthen the student’s weaknesses (VanLehn,
2006).

COMPONENTS OF AN INTELLIGENT TUTOR SYSTEM

In general, intelligent tutor systems consist of 4 main components (Nwana, 1990):

• Tutoring module

• Expert knowledge module

• Student model module

• User interface module

An overview of the basic structure of an ITS is taken from Heeren and Jeuring (2014) and
displayed in Figure 8.

The user interface provides an environment for the student to complete a task. The tu-
toring module selects the tasks for the student based on the student’s input, the student
model and the expert knowledge module. The expert knowledge model contains the exer-
cises and checks the student’s attempts for correctness (Heeren & Jeuring, 2014).

Figure 8: Components of an Intelligent Tutor System (Heeren & Jeuring, 2014)

ITSs come in all kinds of forms and sizes. The components listed above are not always
present or some components might be clustered into one component. Other components
could be present such as an authoring environment where teachers can add, update, or
delete exercises or a monitoring environment where the progress of students can be tracked
(Heeren & Jeuring, 2014).
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SCAFFOLDING

Scaffolding is the support a tutor, be it a human or computer, provides for a student while
trying to execute a task. Analogous to the construction of a building where scaffolding is
necessary the student might not be able to accomplish the task at hand without the offered
support (van de Pol, Volman, & Beishuizen, 2010).

Fading the scaffolding is the pedagogical technique where the support is gradually di-
minished. When the student becomes more proficient she learns to solve the exercises
independently. In “the behavior of tutoring systems” VanLehn (2006) describes a tutoring
system called Steve. Steve provides different modes, a demonstration mode, a mode where
every step is hinted and a mode without unsolicited hints. This can be seen as an applica-
tion of fading the scaffolding.

Fading the scaffolding is one form of scaffolding adjustment. The adjustment can also
be made in the opposite direction, by offering more support instead of less, or in other
words: adding scaffolding (Belland, 2017). The ability to reveal hints is a form of adding
scaffolding on request. Ideally several hints are available per step where the hints should
gradually offer more support.

2.6. THE HASKELL EXPRESSION EVALUATOR AND THE IDEAS FRAMEWORK

The Haskell Expression Evaluator (HEE) is a visualisation tool and tutor that can calculate,
verify and demonstrate the step-wise evaluation of Haskell expressions (Olmer et al., 2014).
In the demonstration mode the user can submit an expression and see the calculated eval-
uation steps. One of the goals of HEE is to show the differences between innermost and
outermost evaluation. The user is able to display these two evaluation methods.

Besides a demonstration mode HEE features a practice mode where the user is asked
to provide the next evaluation step. HEE evaluates the user’s input and provides feedback.
The tool can also hint on the next step to apply on request.

Similarly to the proposed prototype in this thesis HEE uses a recursive data type inter-
nally to encode Haskell expressions. HEE is intended to be used in an introductory course
and supports Haskell features such as pattern matching, recursive functions, higher order
and different evaluation strategies.

HEE uses the IDEAS framework, a generic framework for defining an expert knowledge
module, also called a domain reasoner, for an ITS (Heeren & Jeuring, 2014). IDEAS is an
acronym for "Interactive domain-specific exercise assistant". With the IDEAS framework it
is possible to define rewrite strategies as a context-free grammar. The domain reasoner can
provide automated feedback on solutions proposed by students.

HEE is included in the comparison of the tools in Section 5.

2.7. LITERATURE REVIEWS

Several literature reviews concerning program visualisation and ITS have been published.
In this part we give an overview of some of the literature reviews that inspired this thesis
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and provides interesting pointers for discussing such digital educational tools.

An overview describing and discussing a large volume of code visualisations tools and
their evaluative studies was done by Sorva et al. (2013). The study found that the visualisa-
tion tools were often short-lived research prototypes. The investigated evaluative studies
suggest that the tools positively contribute to the learning process. In the current study
we use the engagement framework as proposed by Sorva et al. while answering research
question 2.

Keuning, Jeuring, and Heeren (2018) performed a systematic literature overview on a
large volume of exercise tools that are able to generate automatic feedback on student so-
lutions. Pre-defined selection criteria were used to select 101 tools identified by examining
17 prior literature overviews and additionally querying 2 databases. It was found that most
of the tools are not easily adaptable by teachers. In general the tools are focused on iden-
tifying mistakes and not on giving feedback on the next step to take. However, automatic
feedback generation is an active field of research, new techniques are being used in the
recent tools that lead to more supportive feedback. The researchers pointed out that the
studies on the effectiveness of the tools were often lacking in quality.

Nesbit, Adesope, Liu, and Ma (2014) reviewed the literature on the effectiveness of ITS.
Twenty-two studies were selected that met pre-defined selection criteria. Across these
studies it was found there was a significant advantage by using an ITS instead of applying
teacher-led classroom instruction or non-ITS computer-based instruction.

Crow, Luxton-Reilly, and Wuensche (2018) reviewed fourteen tutor systems and docu-
mented their supplementary features. The documented features were:

• Questions the user needed to answer such as multiple choice question in a quiz-like
form

• Plans or visualisations the tool asked the user to draw

• Plans or visualisations the tool presented to the user

• Lesson content or reference material provided by the tutor

• Worked-out solutions provided by the tutor

The review concludes that supplementary features could be valuable, but are often ab-
sent in ITSs. To embed the tutor in a knowledge domain together with reference material
would allow the student to see the bigger picture and to connect the dots. Together with
a student model this would allow the student to see where her weaknesses are and to de-
cide what to study next. Also a case is made for including user-generated plans that should
reduce structural problems in the student’s code.
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3. RESEARCH DESIGN

3.1. RESEARCH QUESTIONS

The main research question is:

How can a tutoring environment support students in understanding the evaluation of
recursive functions in Haskell?

This question is subdivided as follows:

• RQ1. What are difficulties and misconceptions encountered by students when trying
to understand recursive functions?

• RQ2. How do current educational tools illustrate recursive functions?

• RQ3. How can a tutoring environment be designed to illustrate recursion in Haskell?

3.2. RESEARCH METHOD

RQ1. WHAT ARE DIFFICULTIES AND MISCONCEPTIONS ENCOUNTERED BY STUDENTS WHEN

TRYING TO UNDERSTAND RECURSIVE FUNCTIONS?

A literature study in the next section distills difficulties and misconceptions encountered
by novices when introduced to recursion. Four studies are examined. We will also look at
pedagogical good practices proposed in the examined studies.

RQ2. HOW DO CURRENT EDUCATIONAL TOOLS ILLUSTRATE RECURSION?

Some of the available tutoring environments and program visualizations are investigated.
Since the number of tools aimed at the functional paradigm is limited the investigation has
a broader scope and includes other programming paradigms as well.

The results of RQ2 are used as inspiration for the design of the prototype when answer-
ing RQ3.

RQ3. HOW CAN A TUTORING ENVIRONMENT BE DESIGNED TO ILLUSTRATE RECURSION IN

HASKELL?

A part of the research is the design of a tutor prototype aimed at learning the application of
recursive functions in Haskell. The aim of the prototype is to illustrate recursion in Haskell
while trying to alleviate the identified difficulties and misconceptions in RQ1.

From the researched tools those that follow a similar approach are selected and com-
pared to the prototype. The comparison will focus on the illustration of recursion and the
mitigating of the identified difficulties and misconceptions.
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4. DIFFICULTIES AND MISCONCEPTIONS ABOUT RECURSION

In this section we first give an overview of the mental models of recursion identified by
Kahney (1983) and expanded by Götschi et al. (2003). Afterwards we will summarize the
difficulties and misconceptions found by Hamouda, Edwards, Elmongui, Ernst, and Shaf-
fer (2018) and summarize some of the findings of the phenomenographic study by Booth
(1992). We conclude with pedagogical suggestions derived from both the mentioned and
other studies.

4.1. MENTAL MODELS OF RECURSION BY KAHNEY

Kahney (1983) investigated the understanding of a group of novices and a group of experts
about recursive evaluation. A question was devised to identify the differences of under-
standing of the passive flow of a recursive call in the SOLO-language, a beginner-friendly,
LOGO-like database manipulation language. Figure 9 shows the abridged question asked
by Kahney. In the complete original question there was a third solution that did not achieve
the required result.

Figure 9: The abridged question asked by Kahney (1983).

THE EXPECTED MODELS: COPIES AND LOOPING MODEL

Kahney hypothesized that experts possess the copies model as a mental model. This is the
viable model that takes into account both the active and the passive flow. A new function
call spawns a new function instance in the active or winding phase until the base case is
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reached. The last called function returns its value to the previous function in the passive or
unwinding phase until all called functions have returned.

In the non-viable looping model the recursive process is not seen as spawning new
functions instantiations, but rather as a form of iteration in only one function instance.
The base case is seen as the stopping condition of the loop. This model can lead to correct
results, but fails in some cases. Kahney expected that novices possess this mental model.

When the respondent selected both solutions as achieving the required result and also
commented on the order of the side-effect changing the database, that is the line "NOTE
/X/ HAS FLU", the response was categorized as showing strong evidence for possession of
the copies model.

On the other hand, when only solution 1 was selected and solution 2 was rejected on the
basis that only JOAN would be affected, this was categorized as showing strong evidence for
the possession of the looping model.

OUTCOME AND CONCLUSION

Kahney found that 8 out of the 9 questions experts showed strong evidence for possess-
ing the copies model, whereas only 1 out 30 novices showed strong evidence for the copies
model. 16 out of 30 novices selected solution 1 and rejected solution 2, but only 4 men-
tioned JOAN as being the only one affected. Kahney concluded there was only weak evi-
dence that the other novices possessed the looping model. It could be those novices pos-
sessed other mental models.

From the respondents’ comments Kahney identified other possible models. Some re-
spondents argued it is invalid that the function definition includes a call to itself, rejecting
the possibility of recursion. These models were categorized as null models. When the re-
spondents thought that the flow of control statement ’EXIT’ acts as the stopping rule for
recursion the mental model was categorized as the odd model. The last identified model
was the syntactic magic model where students wrongly based the outcome of the function
call on the position of the different program segments.

4.2. MENTAL MODELS OF RECURSION BY GÖTSCHI ET AL.

In the research by Götschi et al. (2003) students’ submissions to two code tracing questions
were analysed. One question was specifically aimed at discovering if students understood
the passive flow of a recursive call: we will focus on this question. Similar code to the code
accompanying Götschi’s question is shown in listing 5. The question asked was to trace the
function call f(8).
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Figure 10: The copies model. Red arrows indicates the active flow, green the passive flow

int f (int n) {
if(n == 1) {

return 1;
}
else {

return 4 * f(n/2) + 3;
}

}
Listing 5: The recursive function used by Götschi et al. to identify mental models (translated to Java)

A correct calculation of the call f(8) is 4 * (4 * (4 * 1 + 3) + 3) + 3 = 127. An activation
diagram illustrating the two phases of the copies model is shown in Figure 10.

Götschi et al. also identified the copies and looping model from the students’ solutions.
Because the looping model can lead to correct results, but fails in some cases, Götschi et al.
dub this a "risky" viable model.

Götschi did find other mental models that share some similarities with those of Kahney.
Listed below is a summary of the mental models that were identified.

I. ACTIVE MODEL

The active model only takes into account the active phase and disregards the passive phase.
This model can also lead to correct results when the passive phase does not pass data back
to the calling functions. In the function provided by Götschi et al. the order and precedence
of operations requires the results to be passed back to the calling functions to get a correct
result. Hence, in this case the active model fails.

II. MAGIC MODEL

Götschi et al. categorized the submissions that showed some insight into the recursive na-
ture of the assignment, but disregarded important details as the magic model. Götschi et
al. gave some examples of faulty solutions with the magic model, see Figure 11.
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Figure 11: Two solutions categorized as magic models (Götschi et al., 2003).

Figure 12: Student solution categorized as step model. (Götschi et al., 2003).

III. RETURN VALUE MODEL

This non-viable model is the result of students’ misconceptions about parameter passing,
function calling, return values and program stack.

IV. STEP MODEL

In this non-viable model the function is only called once and thus not honoring the repeat-
ing embedded function calls. Only one branch of the if else statement was executed. An
example of a student solution categorized as step model is shown in Figure 12.

V. ALGEBRAIC MODEL

In this rare model students tried algebraic techniques to derive a formula from the function.
An example of a student solution categorized as algebraic model is shown in Figure 13.

VI. ODD MODELS

Traces that were incomprehensible or showed several aspects of the above models indicat-
ing lack of insight were categorized as odd models.

4.3. LIMITATIONS OF THE CLASSIFICATION OF MENTAL MODELS

The classification of mental models of individuals does have its limitations. A major prob-
lem is that one cannot simply peek inside the head of a person and draw detailed conclu-
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Figure 13: Student solution categorized as algebraic model. (Götschi et al., 2003).

sions about her internal representations. Mental models are not always identifiable from
the limited notes from the students, the models are not directly accessible and some theo-
rists even argue to discard them as irrelevant (Uttal, 2000).

Another issue is that Götschi’s classification of the models is fine-grained, the active
model and magic model seem quite similar and from the examples given it is not always
clear what the differences are. Also, the concept of a mental model breaks down when
students do not have a clue and start to guess answers.

We do, however, not take such an extreme stance as Uttal and do believe Kahney’s
and Götschi’s work provides some interesting insights. The looping and active model re-
veal misconceptions about the base case and the passive flow. These models are popular
faulty models and are almost correct, the students almost got the crux of the matter. If the
students were exposed to examples and exercises where these misconceptions were chal-
lenged, the misconceptions could be mitigated.

Both Kahney and Götschi point out that programmers holding non-viable mental mod-
els can come to correct working solutions in some situations, but the model will fail in other
situations. According to Kahney the holding of a non-viable mental model can allow the
person to debug the model when confronted with a counter-example.

4.4. DIFFICULTIES AND MISCONCEPTIONS FOUND BY HAMOUDA ET AL.

Hamouda et al. (2018) also studied students’ responses to exam questions. RecurTutor was
specifically designed to remedy the identified difficulties and misconceptions. RecurTutor
is looked upon in more detail in Section 3. Listed below are the misconceptions Hamouda
et al. found that are relevant to the functional paradigm.

• No statements that appear after the recursive call will execute.

• Statements that appear after the recursive call will execute before the recursive call is
executed.

• If there is a base case, then it will always execute. If the recursive call does not reduce
the problem to the base case, then the base case will return and that will terminate
the recursive method.

Other identified misconceptions relate to mutable variables in imperative languages.
Some difficulties identified by Hamouda et al. are:
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• Cannot formulate a recursive call that eventually reaches the base case.

• Cannot write a correct base case.

• Cannot properly evaluate the base case such that the student believes that the recur-
sive method executes one more or one less time than it should.

The found difficulties all revolve around the base case. The two first misconceptions
seem to stem from a weak understanding of function invocation and the function return
phase.

4.5. PHENOMENOGRAPHIC PERSPECTIVE BY BOOTH

Booth looked at novices learning recursion in the functional language SML from a phe-
nomenographic perspective. She interviewed the students, analyzed and categorized the
students’ responses and examined exercise solutions. From the interview she identified
three increasing levels of understanding pertaining to recursion that the starting students
expressed.

• Recursion as a program construct

• Recursion as a means to accomplish iteration

• Recursion as being self referential

The levels of understanding are listed in an increasing hierarchy of insight. When a stu-
dent understands recursion as a means to accomplish iteration he also understands recur-
sion as a program construct. When a student understands recursion as being self referential
he also understands the other two lower levels.

Surprisingly Booth did not find a strong connection between the deeper understanding
of the subject and the solving of an exercise. Some students who expressed deep under-
standing of recursion during the interview had difficulties to provide correct answers to
recursion exercises. She also found that students who provided correct solution did not al-
ways express deep understanding during the interview. In one case a student called Philip
provided a correct solution through using a teacher’s example as a starting template that
was correctly filled in. Philip expressed the weakest level of understanding, namely recur-
sion as a program construct only.

Booth concludes that solutions provided by students do not necessarily reflect the stu-
dents’ understanding of the subject matter. It does not always make sense to try to deduce
the students’ understanding of a program technique by looking at students’ solutions.

4.6. PEDAGOGICAL SUGGESTIONS

Based on the identified models Götschi makes some suggestions about best practices in
the classroom. According to Götschi it is important for the students to have a good grasp
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of function invocation, parameter passing and return values before introducing recursion.
Also embedded function calls should be well understood.

Götschi argues that detecting a student’s non-viable mental model can help to target the
specific misconceptions and could lead to greater learning gains. It is therefore important
that the examples and exercises are well constructed to challenge the weaknesses of risky
mental models.

Similar insights are found by Velázquez-Iturbide (2000). He proposes a gradual intro-
duction when novices are introduced to recursion. Since novices typically do not have a
good grasp of function invocation, parameter passing etc. Velázquez-Iturbide proposes to
teach recursive grammars first, recursion in functional languages next and later introduce
recursion in imperative languages. Velázquez-Iturbide argues recursion in imperative lan-
guages is more challenging because of the interaction with the imperative mechanics.

Hamouda et al. note that it takes different skills to trace than to write recursive func-
tions. In the case of recursive functions it is the tracing that forces the student to focus on
the details of how the computer executes the recursive function calls. While writing a re-
cursive function seasoned programmers do not focus on how the computer executes the
function. Hamouda illustrates this with the factorial function where one just writes fact(n)
= n * fact(n - 1) and consider this as a mathematical fact without worrying about how fact(n
- 1) is calculated. According to Hamouda this is similar to a call to a library function, one
simply trusts the call to fact(n - 1) will succeed.

This is similar to how experienced programmers trace programs. Detienne and Soloway
(1990) found experienced programmers usually use symbolic tracing instead of concrete
tracing. In symbolic tracing details are ignored and no concrete values are filled in as long
as the program behaves as expected. As an example, the behaviour of a looping or recursive
construct is assessed without a full concrete tracing of the code. When encountering unex-
pected behaviour the skill of concrete tracing is used to fill in concrete values in variables
and go over every statement step by step.

Novices do not have the skill to perform symbolic nor concrete tracing yet and are re-
quired to look into the details of code execution and learn concrete tracing first. Once they
mastered the details they can look at it in a different light and use symbolic tracing. As
Charlie Parker once said: "Master the instrument. Master the music. And then forget about
all that and just play."

4.7. SUMMARY

To conclude this section we will summarize the findings in a few take-home messages.

1. The copies model is the conceptual model held by experts about recursion. In this
model every recursive call spawns a new function with its own scope, when the base
case is reached data can be returned to the previous functions in the so-called passive
flow.

2. Several non-viable mental models seem to exist when looking at students’ solutions.
It is common that novices are unaware of the passive flow of recursive evaluation.
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Mental models, such as the looping and active model, are risky and can lead to cor-
rect results when the passive flow does not alter the result. Exercises should be well
constructed to challenge the weaknesses of these risky mental models.

3. Identifying a correct base case or recursive step is often challenging for novices.

4. Recursion is challenging due to its reliance on other basic programming concepts
such as function invocation and parameter passing. These should be well understood
first.

5. Recursion is more challenging in imperative languages. The introduction of recur-
sion via grammars and functional programming could ease the understanding.

6. The ability to provide a correct solution does not always reflect a deep understanding
of recursion.

7. Once the evaluation of recursive functions is mastered through tracing, the writing
of recursive functions can be looked upon form a higher level of abstraction and be-
comes less challenging.

Points four to six are rather general pedagogical remarks and are out of scope of the
current research. The first three points are relevant for the tutor prototype: visualisations
of the copies model, exercises that actively involve the passive flow and exercises asking for
identification of a correct base case or recursive case should be offered.
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5. HOW DO CURRENT EDUCATIONAL TOOLS ILLUSTRATE RECUR-
SION?

In this section we compare tools that try to help novices to understand the execution of pro-
gramming code. We examine eight tools: three visualizations tools and five tutors. Some
tools are focused on recursive code while others have a broader focus.

The visualization tools and tutors have similar educational aims and have overlapping
features. Visualizers are focused on generating animations, but this distinction is blurry.
Some tutors also provide animated code execution and some visualizers do provide the
ability to input code. The distinctive feature to be called a tutor is for a system to be able to
offer exercises and to be able to judge students’ input to be correct or incorrect.

Name Content ownership Representation Paradigm Language

WinHIPE Own content Animated
expression steps
and trees

Functional Hope

SREC Given content Code highlighting,
activation tree,
control stack,
function trace

OO Java

JSVEE Given content Code highlighting,
animated stack
frame, text console

OO Language
agnostic

Table 1: The examined visualization tools (Pareja-Flores et al., 2007; Fernández-Muñoz, Pérez-Carrasco,
Velázquez-Iturbide, & Urquiza-Fuentes, 2007; Sirkia, 2016)
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Name Content ownership Representation Task Paradigm

Ask-Elle Modified content Partial function
definition with
holes

Provide step-wise
function definition

Functional

RecurTutor Given content To be completed
code examples and
questions

Provide base case,
recursive step,
tracing questions

OO

ChiQat Given content Animated
evaluation, code
highlighting and
animated recursion
graph

Draw recursion
graph, answer
multiple choice
questions

OO

WHAT Modified content To be completed
code questions

Evaluate
expression, provide
function type or
definition

Functional

HEE Own content Rewrite steps Provide next
rewrite step

Functional

Table 2: The examined intelligent tutoring systems (Olmer et al., 2014; Gerdes, Heeren, Jeuring, & van
Binsbergen, 2016; Hamouda et al., 2018; AlZoubi et al., 2014)

5.1. VISUALIZATIONS TOOLS

WINHIPE

WinHIPE is an IDE with an educational focus (Pareja-Flores et al., 2007). It is one of the
few visualization tools in the functional paradigm. The user, be it a student or educator, is
able to author code and let the tool generate animations with little effort. A custom inter-
preter was built to enable the generating of evaluation steps. The tool uses term rewriting
to generate different expression trees showing the rewrite steps. The tool supports graphi-
cal representations for lists and trees, other expressions are displayed textually. The rewrite
steps can be compiled into animations. The user can choose to omit steps in the animation
before generating the animation. Figure 14 shows the rebuilding of a tree from its pre- and
inorder traversals.

The animations can be saved as files, viewed in the WinHIPE environment or can be
exported as animations for viewing on the web. For educational purposes descriptions and
source code can be added to explain the animations, see Figure 26 near the end of this
thesis for an example.

The viewer of the animation is able to play and pause the animation as well as perform
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other actions such as step forward or backward, jump to start and jump to end.

Figure 14: Visualisations generated by WinHIPE.

SREC

SREC is a visualization tool aimed at illustrating recursion in Java (Fernández-Muñoz et al.,
2007). It features different views of the executed code: an activation tree, a control stack and
a trace of the function calls, see Figure 15. To create an animation the user has to preprocess
the code manually. The input and return variables are fed into the SREC framework to
enable it to detect the program execution and output the animation. The downside of this
approach is that changing the code, which is a trivial action for an educator, might be a task
too complex for novices who might have a hard job understanding the code as it is.

The animations can be saved as files for future retrieval. During execution of the ani-
mation the preprocess edits of the code are hidden for demonstration purposes. As with
WinHIPE the tool provides animation controls.

JSVEE

Another tool in the crowded world of the object-oriented code visualizers is JSVEE (Sirkia,
2016). This open-source browser-based library enables educators to generate animations
with little effort. JSVEE is aimed to be language agnostic and currently supports a subset
of Python and C# with the help of external translation files. To generate an animation the
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Figure 15: An animation of the Fibonacci algorithm in SREC

source code of a program is automatically converted into a Javascript object containing all
the animation information.

There is no environment to save or open files. An animation can however easily be
saved as a small static stand-alone website that thus can be used for demonstration pur-
poses. Explanatory annotations can be added to steps with the optional Kelmu library.

The animations are displayed in-browser and show the execution of expressions in their
own stack frame. The controls are limited to the essential controls: play, one step forward,
one step backward and jump back to start.

5.2. TUTORING SYSTEMS

ASK-ELLE

Ask-Elle is an intelligent tutoring system that supports the step-wise development of a
given set of Haskell exercises (Gerdes et al., 2016). It is not aimed at introducing recur-
sion but is included in this overview because it is one of the few tutoring systems for the
Haskell language.

The tool can evaluate incomplete program solutions through the use of "holes". The
user can fill in a question mark to indicate a hole where the program needs to be extended.
Ask-Elle provides hints on request for the next steps to take. To accomplish this Ask-Elle
uses strategy-based model tracing and property-based testing to assess a student’s solution.
Like HEE, Ask-Elle also uses the IDEAS framework.
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Figure 16: An animation in JSVEE showing a recursive process stack trace

Figure 17: The Haskell Expression Evaluator (Olmer et al., 2014)
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Figure 18: An exercise in the Ask-Elle tutor, the question marks are the holes that are to be filled in (Gerdes et
al., 2016).

RECURTUTOR

RecurTutor is a tutor providing a fixed set of exercises in the Java language (Hamouda et al.,
2018). As the name implies it is specifically aimed at teaching recursion. The tutor presents
code completion questions and tracing questions. The code completion questions focus
on filling in the base case or the recursive case. The student’s submission is sent to the
server where the code is validated through several test cases that should succeed in order to
complete the exercise successfully. The results of the function calls are offered as feedback
in the RecurTutor interface.

RecurTutor is the result of a research into the difficulties and misconceptions students
have when encountering recursive questions during exams at Virginia Tech. RecurTutor
was created to remedy the found misconceptions and difficulties. Hamouda et al. found
that students using RecurTutor outperformed students that received typical instructions.

The exercises do not provide a visualization, but the accompanying introduction does.
The introduction consists of a body of text and step-through slides. Here the different in-
stantiations of a recursive function are shown with their code and variables. A screenshot
of the explanation is shown in 19, a screenshot of an exercise in 20.

Hamouda, Edwards, Elmongui, Ernst, and Shaffer (2020) contributed another tutor fo-
cusing on recursion algorithms in binary trees. This tool is not covered in this thesis since
it is not aimed at novices.

CHIQAT

The ChiQat tutor is an interactive tutor in the object-oriented paradigm (AlZoubi et al.,
2014). It consists of a fixed set of exercises for both Java and Python of which a set is focused
on recursion.
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Figure 19: A screenshot of the slides accompanying the RecurTutor by Hamouda et al.

Figure 20: A screenshot of an exercise of the RecurTutor by Hamouda et al.
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The ChiQat tutor visualises the copies model through a so-called "recursion graph". A
recursion graph is a directed graph where ovals stand for function invocations and rounded
rectangles stand for function returns. Before a student can attempt an assignment an an-
imation is played showing an animated recursion graph while the corresponding line of
code is highlighted (see Figure 21). After the animation several assignments are given such
as identifying the base case in a multiple choice question and drawing a recursion graph.
Feedback is provided after submission of a solution. The exercises and animations are not
editable.

Figure 21: A screenshot of the Chiqat tutor by (AlZoubi et al., 2014)

WEB-BASED HASKELL ADAPTIVE TUTOR

The Web-based Haskell Adaptive Tutor, WHAT for short, is an ITS for learning Haskell (López,
Núñez, Rodríguez, & Rubio, 2002). It offers different levels of exercises in a friendly and
easy-to-use interface. Exercises range from simple numerical calculations, over typing and
building simple function definitions, to more complex custom higher-order functions. As-
signments on recursive functions are also included.

WHAT employs a student model and is able to adapt the level of exercises to the stu-
dent’s performance. To offer assignments at the appropriate level the student’s learning
speed and memory performance are assessed.

Each student belongs to a group of students called a class. Next to recording a student’s
performance on an individual level, WHAT records the performances of all the students in
a class and learns what to expect from a typical student in a certain class. Additionally, a
human teacher can use this system to see which topics students are struggling with.

Assignments are taken from a predefined set. Random variations are generated from
this set and are offered to the students when they have reached the appropriate level. When
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a student submits a solution the solution is checked with a set of input data in a Haskell
environment. The set of input data is carefully selected to be able to offer sensible feedback
and hints.

HASKELL EXPRESSION EVALUATOR

The Haskell Expression Evaluator (HEE) is both a tutor and a code visualizer (see Figure 17
for a screenshot). It is explained in more detail in Section 2.

5.3. LEVEL OF ENGAGEMENT

We use the 2DET engagement taxonomy proposed by Sorva et al. (2013) to assess the level
of engagement the tools offer. 2DET stands for two dimensional engagement taxonomy and
is an extension of the taxonomies proposed by Naps et al. (2003) and Myller, Bednarik, Suti-
nen, and Ben-Ari (2009). The 2DET taxonomy lays out the engagement that a tool provides
across two dimensions: the content ownership and the direct engagement dimension. In-
creasing one of these properties increases the total engagement. The tools are layed out in
Figure 22.

Figure 22: The tools layed out in the 2DET taxonomy.

The content ownership dimension represents how the user is able to change the con-
tent. To change the content increases the interactivity and thus makes the learning more
active which, according to the constructivist viewpoint, is a good thing. When the student
provides its own code to be visualised instead of code that he did not produce is arguably
more engaging, for one, the student will probably be more interested in his own code.

Sorva et al. (2013) distinguish four levels of content ownership: given content, own
cases, modified content and own content. A tool that offers content that can not be al-
tered by the user falls in the given content category. When a user can enter its own content,
to visualise or to practices with, the tool is categorized as such. Most of the tools in this
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document fall in the given content or own content category. Ask-Elle and WHAT occupy
a special spot. To fulfill an assignment the tutors ask to input code for a certain task. Dif-
ferent solutions, and in the case of Ask-Elle different routes on how a student develops the
function, are supported. We therefore place the tutors in the modified content category.

The direct engagement dimension expresses the level of interactivity with the content.
Sorva et al. (2013) identified seven levels of direct engagement. The tools fall in two cate-
gories, for brevity we will clarify just those two.

The visualizers all fall in the "controlled viewing" category which means the user can
play and pause an animation, skip back etc, but no other input is provided. It is no surprise
the tutors fall in a higher category of direct engagement since they expect more complex
input. The tutors fall in the "applying" category: the user should modify components to
perform a task.

The 2DET taxonomy places two important properties on the foreground. There are also
other properties that influence the engagement of a tool such as the level of complexity
of a task, the form of the animation or task or what idea a visualization or tutor commu-
nicates. As an example, the ChiQat tutor asks the user to draw a recursion diagram with
ovals, rounded rectangles and arrows. This way of illustrating might appeal to certain stu-
dents and could lead to greater learning gains. Ask-Elle on the other hand introduces the
notion of incremental development and hole-driven development where partially finished
solutions can be evaluated. This approach could appeal too, increasing engagement and
learning gains.

5.4. EFFECTIVENESS

Most of the tools were tried out in classroom settings, but often the test settings were not
documented and feedback was qualitative or informal. We will discuss two more rigorous
experiments including control groups performed with RecurTutor and WinHIPE.

Hamouda et al. (2018) recorded the time spent with RecurTutor and found that stu-
dents using the tutor spent more time practicing than students using traditional methods.
The students that had used the tutor had better scores on the subsequent recursion exam
questions.

It is difficult to make strong claims about the effectiveness of the tutor because the
amount of time spent using the tutor versus traditional methods is not equal. RecurTu-
tor was, however, conceived to encourage students to spend more time with the material
and challenge the students’ misconceptions. In that sense the tutor was effective in this
particular student group.

An interesting experiment was done by Urquiza-Fuentes and Ángel Velázquez-Iturbide
(2007). They asked two similar groups of students to study the tree breadth traversal al-
gorithm. One group received animations created with WinHIPE, the other group got in-
structions to build animations with WinHIPE. Both groups had ample time to study the
algorithm and were asked to answer questions when they thought they had enough knowl-
edge. Interestingly the group that had to create the animations did spend more time with
the material and scored better in the subsequent questions.
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The study with WinHIPE indicates that exercises that require more interactivity and
challenge the students at an appropriate level encourage students to spend more time
which leads to greater learning gains. Both studies do suggest that the tutors are engag-
ing and encourage the students to spend more time studying. These findings are in line
with constructivists’ claim that learning should be an active endeavour.

Both studies suggest that a higher level of meaningful interaction leads to more time
spent studying and greater learning gains. This could be because the interaction offered
by the tools challenges the misconceptions of the students, possibly making the students
more aware of their weaknesses and thus motivating the students to overcome these weak-
nesses and increasing the time spent with the learning material. Another effect at play
could be that the students were more entertained by the tools that showed self-created an-
imations in the case of WinHIPE and direct feedback and a quiz-like setup in the case of
RecurTutor.

To make claims about the effectiveness of the other tools more studies are needed.

5.5. SUMMARY

The examined tools display different approaches on how to teach and illustrate recursion.
WinHIPE and SREC have a more graphical approach using tree structures. Jsvee provides
elaborate animations illustrating imperative mechanics and displays an expanding stack
frame when evaluating recursive calls. The examined tutors are more text based and usually
require text input to complete tasks. ChiQat is the only exception in this category, requiring
the student to draw a recursion graph.

RecurTutor is embedded in a large volume of reference material and is accompanied by
introductory lessons with text and static visualizations. As argued by Nesbit et al. (2014),
including reference material is an advantage. Most of the other tools were also used in a
classroom settings, also accompanied by lessons and reference material, but these were
not shared.

Both HEE and Ask-Elle provide the possibility to ask for hints. Ask-Elle has an advanced
feedback system offering immediate and detailed feedback and offers links to reference
material in the provided hints. The other three tutors offer less scaffolding.

The handling of input is an important property as it raises the level of engagement of a
tool. The study with WinHIPE and RecurTutor suggest that students who are more actively
engaged with a tool show greater learning gains.
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6. A TUTOR FOR RECURSION IN HASKELL

In this section a tutor is presented that tries to mitigate the misconceptions and difficulties
identified in Section 4. The tool illustrates the copies model by means of function tables,
these are first briefly touched upon. Subsequently the architecture and the inner workings
of the tools are described and illustrated with some selected code snippets and a walk-
through.

6.1. USING FUNCTION TABLES TO ILLUSTRATE REWRITE STEPS

The basic building block of a functional language such as Haskell is the function. The con-
cept of a function in Haskell is analogous to a function in mathematics in that it transforms,
through function application, one or several input values to an output value.

When transforming integer values the notation in Haskell stays close to the algebraic
notation of a function.

f (x) = 2x +2

f x = 2 * x + 2
Listing 6: A function that takes an integer and outputs another

When evaluating a recursive function the given expression is repeatedly rewritten. The
given redex, short for reducible expression, is evaluated step-by-step until it cannot be re-
duced anymore. Below the evaluation of a call to fac 4 with the different rewrite steps
is shown. The last four multiplication steps are combined into one step. The redexes are
underlined.

fac 4
↓
4 * fac 3
↓
4 * (3 * fac 2)
↓
4 * (3 * (2 * fac 1))
↓
4 * (3 * (2 * (1 * fac 0)))
↓
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4 * (3 * (2 * (1 * 1)))
↓
24

Function tables are a widely used notation for introducing algebraic thinking in math-
ematics education (Martinez & Brizuela, 2006). Because function tables are so widely used
it is an interesting notation to leverage to illustrate function application in Haskell.

WinHIPE and SREC show the function calls in a tree diagram to illustrate the evalua-
tion. In contrast we will show the calls to the fac function in a function table. The rows in
the table make the application of the function definition explicit. The table illustrates the
copies model as the expert conceptual model. Every line in the table corresponds to one
function instantiation. Table 3 illustrates such a function table for fac 4.

The proposed tutor automatically calculates the tables. A screenshot of the tutor evalu-
ating squares [3, 5, 7, 3] is shown in Figure 23.

FAC
Input Output
4 4 * fac 3
3 3 * fac 2
2 2 * fac 1
1 1 * fac 0
0 1

Table 3: A function table with the input and output of the fac function.

6.2. ARCHITECTURE OF THE PROTOTYPE

The proposed prototype is a web-based tool that consists of two parts: a Haskell program
that utilizes the Haskell cgi package and a browser front-end. The Haskell part is currently
one program that contains the function definitions and the function calls to be evaluated.
When receiving an http-request it calculates the rewrite steps and function tables, renders
the html code and responds by sending back the html page. The http-request includes two
arguments: the exercise id and the step number.

6.3. USING ALGEBRAIC DATA TYPES TO DEFINE AND EVALUATE EXPRESSIONS

In this subsection the techniques used to build the prototype are explained. First a data
type is introduced to enable the encoding of expressions. Next a simple evaluator that sup-
ports nested additions is introduced. The evaluator is then expanded in two steps to make
it more general and to enable the function tables to grow interactively.

To define and rewrite expressions a recursive data type is declared in Haskell.

data Expr = Var String | Con Int | App Expr Expr
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Figure 23: A screenshot of the proposed tutor. The expressions on the left are already fully rewritten. At the
end of the rewrite process the table rows are normalized from bottom to top. Data flowing back through the

passive flow is indicated with green arrows.

49



The idea behind this data type is that an expression could be a variable, an integer or
an application of a function on an expression (be it a string, an integer value or a function
application). Note that an expression encoded with this data type forms a binary tree where
an App is a node. The leaves of the tree are populated by Var and Con instantiations. Some
examples of expressions encoded with the data type are shown in listing 7.

Var "Hello" -- literal string
Con 23 -- literal integer
App (Var "square") (Con 4) -- application of function

square on 4
Listing 7: Expressions encoded with the data type

The function in listing 7 is a unary function. Binary functions are also possible to define
through the function application of a function application. Thus a unary function taking
one parameter is applied to a second parameter through currying.

App (App (Var "+") (Con 4)) (Con 3)

Lists can be encoded too by introducing a list constructor that we will call "cons", in
line with the functional tradition, and an empty list constructor. The list [5], that is the list
containing the integer value 5, is displayed in Listing 8.

App (App (Var "cons") (Con 5)) (Var "[]")
Listing 8: A list encoded with the data type

To calculate the rewrite steps rewrite rules are defined. The rewrite steps of the binary
function addition are demonstrated in a small evaluator in listing 9. If the evaluator en-
counters an application of the addition function that does not match the addition of two
integers it will look at the first parameter. If this is already a fully evaluated integer it will
recursively evaluate the second parameter otherwise the first. Through the use of recursion
nested addition operations are supported.

step :: Expr -> Expr
step (App (App (Var "+") (Con n)) (Con m)) = Con (n+m)
step (App (App (Var "+") x) y) =

case x of
Con n -> add (Con n) (step y)
_ -> add (step x) y

Listing 9: Rewrite rules for addition

The maybe type is used to indicate if a rewrite step was successful or not. An integer
or string cannot be rewritten and thus returns Nothing. This technique is illustrated in the
refined evaluator in listing 10 where the recursive step is written in general terms. Other
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Figure 24: Rewriting of the expression 17 + square 5 to 17 + 25

functions like square and multiply can now easily be added without other changes to the
code.

step :: Expr -> Maybe Expr
step (Con _) = Nothing
step (Var _) = Nothing
step (App (App (Var "+") (Con n)) (Con m)) = Just (Con (n+m))
step (App (App (Var "*") (Con n)) (Con m)) = Just (Con (n*m))
step (App (Var "square") (Con n)) = Just (Con (n*n))
step (App f a) =

case step f of
Just f’ -> Just (App f’ a)
Nothing ->

case step a of
Just a’ -> Just (App f a’)
Nothing -> Nothing

Listing 10: Generalized evaluator supporting addition multiply and square function

Thanks to the recursive nature of the last rewrite rule the evaluator works on nested
functions. Figure 24 shows how the expression 17 + square 5 is rewritten to 17 + 25.

The right branch in the expression tree in Figure 24 is rewritten. The function’s input
and result at the location of the rewrite should get added to the corresponding function
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table. In this case a row in the function table "square" should be added. To identify the
rewritten function the location of the rewrite is stored in a path. A path is a list of directions
where each direction corresponds to the left or right branch of a node, see Listing 11. In
Figure 24 the path of the rewrite is simply [R].

type Path = [Direction]

data Direction = L | R
Listing 11: A path is a list of directions and direction is either L or R

It can be tedious to have to define and read functions using the App constructor, es-
pecially for binary constructors. To make this more manageable smart constructors are
defined, see listing 12.

bin :: String -> Expr -> Expr -> Expr
bin s x y = App (App (Var s) x) y

cons :: Expr -> Expr -> Expr
cons = bin "cons"

nil :: Expr
nil = Var "[]"

mult :: Expr -> Expr -> Expr
mult = bin "*"

add :: Expr -> Expr -> Expr
add = bin "+"

square :: Expr -> Expr
square = App (Var "square")

squares :: Expr -> Expr
squares = App (Var "squares")

Listing 12: Smart constructors

Listing 13 shows a further refined evaluator incorporating paths and the definition of
the squares function as shown in Listing 1, enabling the mapping on a list of the square
function. The recursive step builds the path when a branch can be rewritten to keep track
of the location of the rewrite. The path is used to tag the expression that is about to be
rewritten in the front-end.
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1 step :: Expr -> Maybe (Expr , Path)
2 step (Con _) = Nothing
3 step (Var _) = Nothing
4 step (App (App (Var "+") (Con n)) (Con m))
5 = Just (Con (n+m), [])
6 step (App (App (Var "*") (Con n)) (Con m))
7 = Just (Con (n*m), [])
8 step (App (Var "square") (Con n)) = Just (Con (n*n), [])
9 step (App (Var "squares") (App (App (Var "cons") x) xs)) =

10 Just (cons (square x) (squares xs), [])
11 step (App f a) =
12 case step f of
13 Just (f’, p) -> Just (App f’ a, L:p)
14 Nothing ->
15 case step a of
16 Just (a’, p) -> Just (App f a’, R:p)
17 Nothing -> Nothing

Listing 13: Evaluator with path

The step function provides the main rewrite mechanics. It is now fairly easy to define a
recursive function that produces all the rewrite steps and the location of the rewrite of an
expression.

stepsPath :: Expr -> [(Expr , Path)]
stepsPath e =

case step e of
Just (e’, p) -> (e, p) : stepsPath e’
Nothing -> (e, []) : []

Listing 14: Function that produces all rewrite steps and the locations of the rewrite

6.4. WALK-THROUGH

To demonstrate the evaluator we will walk through the first two rewrite steps of an example
expression: the application of the squares function to the list [7, 5]. The expression squares
[7, 5] is encoded below. The expression tree is the first tree in Figure 25.

App (Var "squares")
(App (App (Var "cons")

(Con 7))
(App (App (Var "cons")

(Con 5))
(Var "[]")))

The first call to the step function will match the squares rule, the expression is rewritten
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to the expression below. This corresponds to the rewriting of expression tree 1 to 2 in Figure
25.

App (App (Var "cons")
(App (Var "square")

(Con 7)))
(App (Var "squares")

(App (App (Var "cons")
(Con 5))

(Var "[]")))

The second rewrite, from tree 2 to tree 3, does not match any of the first rules so the last
catch all recursive step on line 11 is applied. The recursive step checks if f, that is the left
branch of the tree, can be rewritten by calling the step function again, starting the process
again on line 12. Again none of the first rules apply so the recursive case is applied again.
The left branch of the left subtree is now checked, since this is a leaf containing Var "cons"
Nothing is returned indicating a rewrite is not possible and the step function is applied on
the right branch instead. Finally one of the first step rules match: the square rule on line 8.
Here the unfolding or unwinding of the nested recursive calls starts and the location is set to
the empty list. Since step did return a Just value (the application of the square function) the
subtree is rebuilt with the newly returned value and direction R is prepended on the empty
list. Step f from the previous recursive call prepends L. The path to the rewrite location is
thus [L, R].

The rewrite steps and their paths as produced by the stepsPath function are displayed
below.

(squares [7, 5],[])
(square 7 : squares [5],[L,R])
(49 : squares [5],[R])
(49 : square 5 : squares [],[R,L,R])
(49 : 25 : squares [],[R,R])
([49, 25],[])

6.5. GETTING THE SUB-EXPRESSION FORM A PATH

Another key element of the tutor is to list the rewritten parts of the expression in the corre-
sponding table. We will highlight some essential functions.

To get to the sub-expression the process to build the path is reversed. Instead of prepend-
ing the path, the first element is popped of at the head of the path list and the function is
reapplied on the left or right branch until the empty list is reached. This idea is captured in
the code in listing 15.
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Figure 25: Rewrite trees of squares [7, 5] with highlighted rewrite locations.
The expressions and paths to the rewrite locations are listed below:
a. expression: square [7, 5], path: []
b. expression: square 7 : squares [5], path: [L,R]
c. expression: 49 : squares [5], path: [R]
d. expression: 49 : square 5 : squares [], path: [R,L,R]
e. expression: 49 : 25 : squares [], path: [R,R]
f. expression: 49 : 25 : []
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subexpr :: Path -> Expr -> Expr
subexpr [] e = e
subexpr (L:p) (App f a) = subexpr p f
subexpr (R:p) (App f a) = subexpr p a
subexpr _ _ = error "subexpr:␣invalid␣path"

Listing 15: Getting the sub-expression from a path and an expression

The subexpr function is used by inOutStep to produce a list of expressions containing
the name of the rewritten function and the parameters. The function is listed in Listing
16, the helper function fname is omitted for brevity. The inOutSteps function iterates the
inOutStep function a given number of times or until the rewriting is finished.

inOutStep :: Expr -> Maybe (String , [Expr])
inOutStep e =

case (e, step e) of
(e, Just (e’, p)) -> Just (fname $ subexpr p e, [subexpr

p e, subexpr p e’])
_ -> Nothing

inOutStep :: Expr -> Maybe (String , [Expr])
inOutStep e =

case (e, step e) of
(e, Just (e’, p)) -> Just (fname $ subexpr p e, [subexpr

p e, subexpr p e’])
_ -> Nothing

inOutSteps :: Expr -> Int -> [(String , [Expr])]
inOutSteps e n

| n <= 0 = []
| otherwise = case (inOutStep e) of

Just x -> x : inOutSteps (step ’ e) (n-1)
Nothing -> []

Listing 16: Generating the function name and parameters from a rewrite.

The last function we will highlight is the generation of the tables. This function uses
the inOutStep function. The input and output parameters are inserted into the tables by
the insert function, double values are not inserted. The function receives an integer to stop
after a certain amount of steps, this integer is received from the front-end.
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type Table = (String , [[Expr ]])

exprToTables :: Expr -> Int -> [Table]
exprToTables e n = exprToTables ’ (inOutSteps e n) []

where
exprToTables ’ :: [(String , [Expr])] -> [Table] -> [Table]
exprToTables ’ (r:rows) ts

| rows == [] = insert r ts
| otherwise = insert r (exprToTables ’ rows ts)

insert :: (String , [Expr]) -> [Table] -> [Table]
insert (s,exprs) [] = [(s, [exprs])]
insert (s,exprs) (t:ts)

| s == fst t = if exprs ‘elem ‘ snd t then (t:ts)
else (s, exprs:snd t):ts

| otherwise = t : (insert (s,exprs) ts)
Listing 17: Generating the function name and parameters from a rewrite

The result of an evaluation of exprToTables with squares [7, 5] as the first param-
eter is shown in Listing 18.

[("squares",
[[ squares [7, 5],square 7 : squares [5]],
[squares [5], square 5 : squares []],
[squares [] ,[]]]),

("square",
[[ square 7,49],
[square 5 ,25]])]

Listing 18: The generated tables with function call and output of the functions.

The data generated by exprToTables constitutes the content of the function tables.
When the function is fully evaluated the rows containing unevaluated expressions are nor-
malized step by step from bottom to top to illustrate the passive flow. Green arrows are
shown indicating data flowing back to the previous function call.

6.6. SUMMARY

In this section a prototype is presented that has a unique way of illustrating recursive calls
by using function tables to illustrate the evaluation of recursive functions. Research ques-
tion 1 showed that it is common that novices are unaware of the passive flow of recursive
evaluations. The function tables make this passive flow explicit and illustrate the copies
model.

To encode expressions a recursive data type is introduced. An expression can be viewed
as a tree structure. A custom-made evaluator calculates the evaluation steps and saves
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the rewrite location in a path, enabling the insertion of the rewritten sub-expressions in
the function tables. After evaluating the function call the table will contain unevaluated
expressions, the rows are normalized from bottom to top to illustrate the passive flow.

At its current state the prototype is not able to handle input and thus is not able to offer
exercises nor assess input as being correct or incorrect. The handling of input enabling
students to solve an exercise is a key feature of a tutor (VanLehn, 2006). At the moment the
prototype is more an evaluation visualization tool than a tutor. The next section explores
some possible additional features to make the prototype into a real tutor.
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7. DISCUSSION

In the future the prototype could be verified in a classroom setting to see if it holds up to its
promises: does it ease the learning of recursion? As an alternative to such a verification we
reflect on the prototype by comparing it to two other tools. In the first part of this section
the prototype is compared to WinHIPE and HEE when evaluationing a similar function. A
discussion about the limitations and possible future work concludes this section.

7.1. COMPARISON WITH WINHIPE AND HEE

WinHIPE and the Haskell Expression Evaluator are tools that offer similar features as the
proposed prototype. How does the prototype compare to these tools? In this part of the
thesis we will look at how the three tools illustrate the evaluation of a call to the function
sum or sumlist, a function that calculates the sum of a list of integers. Note that the sum
function is defined in the Haskell prelude with the higher-order function fold, but such
functions are often introduced in an explicit recursive manner when introducing recursion
to novices (Urquiza-Fuentes & Ángel Velázquez-Iturbide, 2007) (Hutton, 2017).

Figure 26 shows WinHIPE illustrating the sumlist function in the functional program-
ming language HOPE. WinHIPE displays descriptions, the source code of how this function
can be implemented recursively and an animation of the evaluation. The Haskell Expres-
sion Evaluator shows the evaluation through the application of the definition in the Haskell
prelude and is able to show the difference between inner- and outermost evaluation. Fig-
ure 27 shows an outermost evaluation of the sum function by HEE. Figure 28 shows how
the prototype illustrates an evaluation.
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Figure 26: An example of how WinHIPE is able to offer descriptions, source code and algorithm animation.
(Urquiza-Fuentes & Ángel Velázquez-Iturbide, 2007)
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Figure 27: Evaluation of sum [3, 5, 7, 3] by HEE
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Figure 28: Evaluation of sum [3, 5, 7, 3] by the prototype. After the function is fully evaluated the data passed
back through the passive flow is illustrated through the usage of green arrows.
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WinHIPE and HEE both have its strengths. WinHIPE is able to produce algorithm an-
imations with little effort. The aim of this tool is to provide insight into a broad range of
algorithms and to enable students to consume and create algorithm visualizations. HEE
on the other hand is able to showcase rewrite steps and the difference between innnermost
and outermost evaluation. But when looking at the visualizations it is clear that both tools
are not designed to specifically target the weaknesses of novices about recursion. The vi-
sualization of the sumlist function by WinHIPE does not show the passive flow, except for
the brackets indicating the order of operations. The copies model is not shown explicitly.
HEE evaluates the sum function through the higher-order function foldl which is a step up
in abstraction level than the explicit recursive functions of the proposed prototype.

We would argue that the prototype is the most apt to illustrate the copies model and
the passive flow of recursive evaluation. The different function calls or the "copies" of
the copies model are shown as rows in the function tables. The passive flow is illustrated
through the normalization of the rows in the function tables and by employing arrows in-
dicating the data flowing back. The exercise devised by Götschi et al. to specifically target
the passive flow is also present in the prototype.

The answer to research question 1 in Section 4 showed that students struggle with iden-
tifying a correct base case and recursive step. This is not yet addressed by the tool in its
current state since the tool does not offer code input. Since the input is limited, the level of
engagement is also limited.

7.2. LIMITATIONS AND FUTURE WORK

INPUT AND FEEDBACK

The inability to handle input is one of the main limitations of the prototype. The prototype
is only able to provide worked-out examples. In the 2DET taxonomy in Figure 22 it would
share places with the least engaging tools: SREC and JSVEE. An exercise mode with input
fields that checks the input against the calculated next step would be valuable. One sensi-
ble place to add input fields is in the tables or part of the next rewrite step. The exercises
created in this manner would only have one possible solution, so feedback solutions might
be simple. The support for student input would greatly increase the level of engagement. A
mock-up of how this could look like is shown in Figure 29.
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Figure 29: Input could be asked for in the tables or in the next rewrite step.

Another sensible way to ask for input is to let the tutor give the evaluation steps and
function tables and ask the students for a function definition. Here the possible answers are
multiple, instead of giving a recursive definition some users might give an answer applying
the prelude function map. To support multiple solutions the proposed function could be
tested on the server to check if it produces the correct output, or strategy-based model
tracing and property checking could be used, similar to Ask-Elle’s approach.

Another option is to ask for a part of the function definition such as the base case or the
recursive step. This narrows the possible input space and is thus easier to check for cor-
rectness. Such questions would be more focused on the identified difficulties by Hamouda
et al. A mock-up of how this could look like is shown in Figure 30.
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Figure 30: The base case or recursive step could be asked as input.

EXTENSION OF THE FUNCTIONS OR EXERCISES

Currently only a limited set of custom functions are supported such as the length, sum,
squares, factorial and Fibonacci functions. The supported function set could be expanded.
In contrast, the Haskell Expression Evaluator demonstrates evaluation steps of user pro-
vided Haskell expressions and supports the functions from the standard prelude such as
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map, foldl, head, maximum, etc. The functions in the prelude are more advanced than
the exercises supported in the proposed prototype. In the future these two tools could be
merged into one, blending the features of the two tools: supporting custom functions such
as squares and displaying function tables while supporting the prelude functions and a
practice mode. Simple and more advanced exercises are then possible.

The exercises are currently taken from a predefined set. There is no interface where
a teacher can add functions or exercises. Currently, to add an exercise knowledge about
the structure of the internally used data type is needed. To support the management of
exercises in a user-friendly manner a parser should be created that parses standard Haskell
function definitions into definitions applying the data type. A content management system
and GUI enabling the input of exercises would be a useful addition.

If a parser would exist this could allow students to put in their own functions to pro-
duce the evaluation steps and function tables, increasing the level of engagement. The
study held with WinHIPE showed that a more active, creative interaction can lead to greater
learning gains. If the input of students’ functions is allowed care should be taken only sup-
ported functions are accepted and infinite recursive calls are denied.

Offering the exercises in increasing level of difficulties while storing the student’s progress
is another possible feature. Storing the progress requires a student model and a tracking
system.

ANIMATING THE BUILDING OF THE FUNCTION TABLES

Currently the rows in the function tables are normalized after the function call is fully
rewritten. This choice was made to reduce the complexity of the prototype. Another option
is to show the normalization during the actual passive flow when the base case is reached.
This would be more accurate and could potentially offer more insight, but would also make
the prototype more complex. Ideally the numbers would animate to their corresponding
place as shown in Figure 31. During step 1 the number zero would animate to the row
above, to the location of "sum []" and replace it.

An option would be to discard the basic arithmetic functions such as add and multiply
and do the addition in one step to remove some unimportant details.
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Figure 31: Suggested timing of animations for illustrating the passive flow more accurately.

GRAPHICAL REPRESENTATION

WinHIPE, SREC and ChiQat tutor illustrate the evaluation of a recursive function in a dia-
gram. This could also be a way to illustrate the recursive calls in the recursion tutor. Since
the tutor is displayed in a web browser one of the many Javascript libraries could be used
to display a tree representation. A library such as https://github.com/magjac/d3-graphviz
supporting the dot graphics language could possibly be used for this (Gansner, Koutsofios,
& North, 2006). An example image generated with dot is shown in Figure 32.

Figure 32: Graphical representation of an expression tree.

QUALITATIVE AND EFFECTIVENESS STUDIES

The prototype is not yet used in the wild. Some feedback on the appreciation of the tool
and on certain design choices could be collected from novices through a qualitative study.

The effectiveness of the proposed tutor could be examined in a classroom setting. The
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investigation of different features, with and without interaction or tree diagram, and a con-
trol group that receives the learning material in a traditional manner could be an interesting
setup for an experiment.
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8. CONCLUSIONS

The main research question of this document is: how can a tutoring environment support
students in understanding the evaluation of recursive functions in Haskell? The main re-
search question is subdivided in three sub-questions of which the answers are summarized
below.

WHAT ARE DIFFICULTIES AND MISCONCEPTIONS ENCOUNTERED BY STUDENTS WHEN TRYING

TO UNDERSTAND RECURSIVE FUNCTIONS?

In research question 1 the current literature was investigated and some of the already iden-
tified difficulties and misconceptions commonly held by novices were documented. Kahney
(1983) and Götschi et al. (2003) found that experts possess the copies model as the concep-
tual model of recursion. Several non-viable mental models were identified. Some models,
such as the looping model and the active model, are close to the copies model but show that
novices often hold misconceptions about the passive flow. Hamouda et al. (2018) found
novices often have problems finding a correct base case or recursive step. Ideally exercises
should be offered that challenge these potential weaknesses.

HOW DO CURRENT TUTORING ENVIRONMENTS ILLUSTRATE RECURSIVE FUNCTIONS?

The literature study in research question 2 revealed several different approaches on how ex-
isting tools visualise recursive functions. Some tools employed graphical representations,
such as tree diagrams, function call diagrams and stack frames, while others employed a
textual approach.

The tools’ abilities testified of a sizeable amount of time and effort invested by the re-
searchers. However, the studies into the effectiveness of the tools did not reflect the same
rigour, as they were often lacking.

Two studies held with control groups were examined, the studies suggested that the
tools were engaging and encouraged the students to spend more time with the learning
material leading to greater learning gains and higher test scores. The study with WinHIPE
showed that a more active, creative interaction with the tool did lead to higher test scores
than a passive, consuming one.

HOW CAN A TUTORING ENVIRONMENT BE DESIGNED TO ILLUSTRATE RECURSION IN HASKELL?

Research question 3 is the main contribution of this thesis: the proposed prototype that
calculates and displays the rewrite steps and shows the rewritten sub-expressions in func-
tion tables. The function tables illustrate the copies model, every row in the table of the
recursive function shows a new instantiation of the function. To our knowledge this is a
unique way of illustrating the copies model. Also the passive flow is explicitly shown: the
data is passed back to the previous rows to calculate the final result.

The difficulties to provide a correct base case or recursive step, identified by Hamouda
et al., are not tackled by the prototype in its current stage. The handling of students’ input,
which could increase the level of engagement and could provide a more creative interac-
tion, and the testing of the tool in a classroom setting remains future work.
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