MASTER'S THESIS

Logical shortcuts
Heuristic steps in logic tutoring systems

Steins, R.J. (Ruben)

Award date:
2020

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl
providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 09. Sep. 2021

Open Universiteit

www.ou.nl

https://research.ou.nl/en/studentTheses/f5e7097c-0788-4bc7-8572-8a6f2cee693d

Ir. R.(Ruben) J.Steins

Student ID Number: 851942907

LOGICAL SHORTCUTS

HEURISTIC STEPS IN LOGIC TUTORING SYSTEMS

Thesis Presentation: Friday July 10, 2020 at 1:00 PM.

Open Universiteit
www.ou.nl

LOGICAL SHORTCUTS

HEURISTIC STEPS IN LOGIC TUTORING SYSTEMS
by

Ir. R.(Ruben) J.Steins

in partial fulfillment of the requirements for the degree of

Master of Science

in Software Engineering

at the Open University of the Netherlands, Faculty of Science
Master’s Programme in Software Engineering

to be defended publicly on Friday July 10, 2020 at 1:00 PM.

Student number:

Course code: IM9906

Thesis committee: Dr. B. Heeren (chair), Open University
Drs. J. Lodder (primary supervisor), Open University

Open Universiteit
wWww.oa.ni

CONTENTS

Summary ii
Samenvatting iv
1 Introduction 1
2 Context 4
2.1 Intelligent Tutoring Systems. v v v v v i vt it et e e 4
2.2 TheIDEAS Framework o i i i e e e e e e e e e e e 4
2.3 LOgEX . . . e e e e e 5
2.4 Granularity and HeuristicSteps. o i i e 8
2.5 Performance e e e e e e e e e e e e 10
2.6 Related Work o o o e e e e e 10
3 Research method 15
3.1 Main Research Goal. i e e 15

3.2 RQ1: What are common Heuristic Steps taken by students and how can they

beclassified? L 16

3.3 RQ2: How can we describe Heuristic StepsinanITS?. 17
3.4 RQ3: How can we detect Heuristic Steps in entered solutions? 18

4 Results 22
4.1 C(lassification of HeuristicSteps i 22
4.2 Implementing Heuristic StepsinLogEx. 29
4.3 Putting Heuristic Stepstothetest 31

5 Implementation Details 38
5.1 LogdataProcessing. 38

5.2 ImplementationDetails

6 Threats to Validity
6.1 Extremebiasinthetestgroup.,
6.2 Biasinexercises i e e e
6.3 Smallsamplesize e
6.4 Current prototype is not formally provencorrect
6.5 Performance statisticsaretogeneral.

6.6 Lack of feedback mightleadtounder-use

7 Conclusions and recommendations
7.1 Conclusions i i i e e e e e e e

7.2 Recommended FurtherResearch.
8 Acknowledgement

A Appendix Complete Source Code, Tests and Testresults

ii

46

46

46

46

47

47

47

48

48

49

51

57

SUMMARY

When entering solutions to problems in Interactive Tutoring Systems (ITS) students often
skip or combine steps. How can such systems offer support for these heuristic steps? Based
on analysis of the log data of an existing logic tutoring system, a classification of different
types of heuristic steps has been devised.

A proof-of-concept implementation in the Logic-tutor LogEx has been used in a number of
experiments with students to validate its usage.

Research has shown that the strategy-language used in the IDEAS-framework can be used
to encode heuristic steps. Experiments show that they are liked and used by students when
available.

iii

SAMENVATTING

Bij het invoeren van oplossingen voor problemen in Interactieve tutorsystemen (ITS) bli-
jken studenten vaak stappen over te slaan of te combineren. Hoe kunnen deze systemen dit
soort heuristische stappen ondersteunen? Op basis van log-data-analyse van een bestaand
systeem is een classificatie opgesteld van de soorten heuristsche stappen.

Een voorbeeldimplementatie hiervan in de Logicatutor LogEx is gebruikt in een aantal ex-
perimenten met studenten om het gebruik ervan te valideren.

Uit het onderzoek is gebleken dat de strategietaal die gebruikt wordt in het IDEAS-framework
geschikt is om de heuristische stappen in vast te leggen en dat ze veelvuldig door studenten
worden gebruikt indien aanwezig.

iv

INTRODUCTION

Learning to solve mathematical problems is a bit like learning to ride a bike: while it is
valuable to get a verbal explanation, to read about it in a book or watching someone in
action, the only way to really become proficient is by trying until you fundamentally grasp
the concept. Quick feedback during practice is essential. While the directness of a bump on
the pavement is hard to match, and really has little value in mathematics education, there
are other ways to provide learners with adequate feedback.

To practice a particular type of task, for instance rewriting a propositional logic formula
into a different form, or solving equations for a particular variable, large amounts of exer-
cises are required to allow the learner to practice as much as needed. While human tutors
are perfectly capable of producing problem sets, the task to devise them and later correct
and provide feedback on the results is laborious, especially when multiple students are in-
volved. Since each student might struggle with different concepts, tailoring the exercises to
focus on those problems, is an even bigger challenge.

Intelligent Tutoring Systems (ITS) are tools that can provide training material, such as exer-
cises, and give feedback on submitted solutions. With an ITS students can practice on their
own, at their own pace. With the ability to serve an endless stream of exercises without time
constraints, it allows students to practice until they feel confident. Studies have shown that
ITSs can be a very effective learning tool, when applied correctly [KF15; Mos+03].

There are a number of aspects that make an ITS particularly effective:
 Students learn the most when instructions they receive are individualized. A signif-
icantly better performance has been observed over students who “receive[d] class-

room instruction” [Ma+14; Vanl11]. When instructions, in terms of feedback, are tai-
lored to a particular student this leads to better performance.

* ITSs that mimic aspects of human tutors have also been highly successful. For in-

stance, if a tutor notices the student struggling with problems of a certain difficulty
she might provide the student with a simpler one [MB17].

The way students enter solutions into an ITS is often done in a step-wise fashion. Each step
brings a student closer to the solution. Usually the valid options are encoded in some set of
rules, which is what the ITS uses to validate the input and provide feedback to the student:
the entered step was correct or incorrect and the erroneous part is pointed out. The system
might also provide hints on how to continue or what rules are applicable.

From a didactical standpoint it may be desirable that the student follows a certain order,
or uses a specific strategy to solve the exercise. Students, especially those that are more
advanced in the topic, may try to deviate from this and by combining certain steps when
entering them, effectively skipping intermediate steps.

Take for example this arithmetic expression that is evaluated by working out the opera-
tions in the correct order of precedence (multiplication and division precede addition and
subtraction). Each line shows a step towards the answer and the “rule” applied:

4+8%2-5

4+16-5 Multiplication over addition/subtraction
20-5 Addition

15 Subtraction

A student with some more experience might perform the same evaluation as follows, com-
bining several steps:

4+8%x2-5
-1+16 Multiplication AND subtraction
15 Addition

When the ITS rejects steps that are correct but do not follow the order or step-size expected
by it, this may lead to confusion and frustration with students. Alternatively, the ITS might
see the step is invalid, but is unable to give specific feedback. A human tutor would recog-
nize these “shortcuts” taken by students and accepts the solution or is able to point out the
error.

Analysis of the logfiles from an existing ITS, the Logic tutor LogEx, developed at the Open
University, shows quite a few student attempt to use these kind of “heuristic steps” in their
solutions. A small exploratory survey into Logic tutoring systems like LogEx shows a lack of
support for them across the board.

The main focus of this thesis is to find out how support for heuristic steps can be added to
ITSs. A classification of the different categories of heuristics steps is made, after which a
proof-of-concept is developed by implementing a subset of heuristic steps into the LogEx

2

ITS. The implementation is tested in multiple experiments with students to see if and how
the heuristic steps were used.

The main research question answered in this thesis is:

Research Question. How can heuristic steps in solutions for proposition logic rewriting ex-
ercises in the LogEx tutoring system be detected?

The contribution of this research is that a way has been found to describe Heuristic Steps in
ausable way in an ITS. This addition leads to an ITS that behaves more like its human coun-
terparts and allows students more freedom when entering solutions. A proof-of-concept of
this has been produced and tested on students, who were mostly positive about the addi-
tions to the system.

The remainder of this thesis will go into details on how the above mentioned was achieved.
First, all concepts will be defined and the context will be described in Chapter 2. Next, the
methods used to answer the research question and validate the results is outlined in Chap-
ter 3. Following this, the actual results are shown, including details on the implementation
and experiments in Chapter 4. Finally, any threats to validity are discussed in Chapter 6,
after which the conclusions and recommendations are given in Chapter 7.

CONTEXT

This chapter provides some more context, gives a definition for the most important con-
cepts and shows an overview of related work.

2.1. INTELLIGENT TUTORING SYSTEMS

An Intelligent Tutoring System (ITS) can take many shapes and forms, but is defined here
as a computer system that help students to learn a topic by:

* giving information about the topic

* offering questions, challenges, or assignments to practice the topic

» provide some kind of feedback on the quality of the answer

* give hints (feed forward) on how to proceed

Some ITSs include a representation of the student and their abilities to further tailor the
amount and level of exercises presented, called a student model [Ma+14].

Usually an ITS consists of several conceptual units: the domain knowledge module, the
student model module, the tutoring module and the user interface (UI) module [H]14].

2.2. THE IDEAS FRAMEWORK

IDEAS (Interactive Domain-specific Exercise Assistants) is a “... generic Haskell framework

for constructing the expert knowledge module [..] for an ITS or learning environment” .

Taken from https://hackage.haskell.org/package/ideas on March 1, 2020

4

It provides a lot of Haskell types and functions to set up a domain knowledge base. The
knowledge is captured in Rules which are combined into Strategies. An example of such a
Rule would be, bringing back the arithmetic exercise from the Introduction, that multipli-
cation precedes addition. A Strategy is defined a being either a Rule, or a set of Rules in a
particular order or combination.

For example, and over-simplified, a Strategy to work out any arithmetic expression could
be: apply the rule 'multiplication over addition’ as many times as possible after which you
apply the 'solve addition’ rule as many times as possible.

The IDEAS framework uses a domain specific language (DSL) to define those strategies.
Multiple combinators can be used to chain Rules together to indicate sequence (<*>) ,
choice (<|>, >|>, >) or repetition (repeat) [HJ17].

Several different tutoring systems have been developed as part of the IDEAS research effort:
an interactive Haskell tutor [Ger12], a Java refactoring tutor [KHJ17] and a Logic tutor called
LogEx [LHJ16].

2.3. LOGEX

LogEx is an ITS to teach several concepts from propositional logic: rewriting into normal
forms and proving logical equivalence. It does this by presenting students with exercises.
Solutions are entered in very granular steps, which are compared to a set of Rules. After
each step, the tool will give feedback to the student and may give hints on the next step.

When learning propositional logic, as part of a computer science curriculum for instance,
students have to acquire proficiency in rewriting formulae into particular normal forms,
notably the Conjunctive Normal Form (CNF) and Disjunctive Normal Form (DNF). This
process, which involves applying multiple transformations to the original formula until the
desired form has been reached, is non-deterministic in nature. Many different sets of steps
lead to the desired outcome (although there are heuristics that help to get the conversion
done quickly). Figure 2.1 shows a partially solved exercise in LogEx [LHJ16].

2.3.1. NORMAL FORMS IN PROPOSITIONAL LOGIC

The focus of this thesis is on the rewriting exercises to learn Normal Forms in propositional
logic.

Normal Forms are special syntactical forms a formula can have. A formula is in DNF if
it only consists of disjuncts of conjuncts, which in turn only consist of literals (atoms or
negated atoms), as shown in Definition 2.1:

(D1 A.c.ANPR) V...V (Y1 A ... A Xm),in which ¢y,...,¢,, x1,..., xm are literals. 2.1

Ideas - LogEX

Convert to disjunctive normal form Convert to conjunctive normal form Prove logical equivalence

New exercise ~

(pvrvor—=(raga(g—p)
Implication definition

= Apvrvonv(ragal@—p)
De Morgan
= (parAT YT AQA(G—P)
Double negation
= (PpATTADV(TAGA(Q—DP)
S |eparanvaga@—p) Rule v Send

Figure 2.1: Screenshot of LogEx showing a DNF exercise.

The CNF is similar to the DNE but formulae in this form consist of a conjunction of dis-
junctions of literals, as shown in Definition 2.2

(P1V...VP)A...A(XY1 V...V Xm),in which ¢,...,¢,, x1,..., xm are literals. (2.2)

A more general form of both DNF and CNF is the Negation Normal Form (NNF), in which
both conjunctions and disjunctions are allowed.

It can be proven that for each formula ¢ there is a logically equivalent formula ¢’ in CNF
and alogically equivalent formula ¢” in DNE This proofis omitted here, but can be found in
textbooks on logic [Ben+14]. The CNF and DNF have several applications in mathematics
and computer science, such as automated theorem proving and circuit theory. Being able
to rewrite logical formulae into their CNF and DNF equivalents is a convenient skill to have
as a student or practitioner in one of those fields.

2.3.2. REWRITING RULES

The set of supported rewriting rules for Propositional Logic in LogEx is included in Table
2.1. Each of these rules is recognized by the tool as a valid step which may lead towards
a potential solution. The system can provide students feedback in the form of hints and
suggestions for possible next steps. It can also detect that the student has made a common
error or has applied a rule incorrectly [LHJ15].

6

Rule Example

Absorption (pAgQ)VgeqorpA(pVvg) e p

Commutativity (pvg)e(pvgorprnge gAp

De Morgan (pvg)epAgora(pAg) e pV g

Distribution rnpvg)erap)virnglorrv(ipng) e (rvp)A(rvg)

Double negation

Equivalence Definition p—qgeo(pAg)V(pAqg)
F-Rule Conjunction pANF o F
F-Rule Complement pAp<e F
F-Rule Not T “TeF

F-Rule Disjunction pvFoep
Idempotency gvqgeq
Implication Definition p—qepvg
T-Rule Conjunction ghnT o q
T-Rule Complement pvape T
T-Rule Not T “FoT

T-Rule Disjunction pvToT

Table 2.1: Set of supported rewriting rules in the current version of LogEx

2.3.3. STRATEGY

While there are many possible series of rewriting steps that will convert any formula into
a Normal Form, not all are equally efficient. Default strategies exist which, when applied
consistently, will lead a student to a correct solution in a reasonable number of steps. For
instance, the rewriting of any formula to the DNF or CNF can be done using the following
strategy, which is also used in LogEx:

1. Remove Implication and Equivalences by using elimination rules;
2. Push negations inward using DeMorgan (after this step the formula is in NNF);
3. Distribute A over Vv (for DNF) or v over A (for CNF).
Although there are perhaps strategies that might lead to a DNF of CNF quicker or in less

steps (at least for certain formulae), the one provided here will always lead to a correct
solution. ?) In this case the reliability and ease-of-use make it a sensible default Strategy.

2.3.4. SERVICES

The architecture of LogEx is service-based. The web front end ,the Ul module, is only used
to present information to the user and process input. All logic is performed in the Common

Zhttps:/ /people.eecs.berkeley.edu/ ~daw/teaching/cs70-f03/Notes/lecture07.pdf, retrieved 03-04-2020

Gateway Interface (CGI) back end. Each operation is available to the front-end application
as a different service-call. The list of services is quite extensive, as can be seen in Figure 2.2.
The ones used in this thesis are shown in Table 2.2.

Service ‘ Purpose

basic.allfirsts Returns a list of steps that are suitable, according to the strategy.

basi 1 Applies a particular rule to the current expression, or an error, if the
asic.a
2 chosen rule is not applicable

))) Evaluates the expression. It can detect equivalence, or an incorrectly
basic.diagnose-string) ..
applied rule (Buggy) or a deviation from the strategy (Detour).

basic.onefirst Gives a possible next step, according to the strategy.
basic.ready Checks if the exercise is complete.
basic.derivation Gives back the entire solution

Table 2.2: Most relevant Service end-points in LogEx and their purpose

2.3.5. FEEDBACK

The feedback provided by LogEx on student input is based on the Feedback Strategies de-
scribed by Narciss and consists of four categories [Nar13; LHJ16]:
1. whether the answer is correct or incorrect, using the basic.diagnose-string-service
2. what the correct result is, using the basic.derivation-service
3. thelocation of the mistakes and explanation of the error
4. hints on how to proceed, using the basic.onefirst-service
While giving specific feedback on Heuristic Steps is not part of this thesis, the feedback

features are an integral part of LogEx and any alteration we make to LogEx should take this
mechanism into account.

2.4. GRANULARITY AND HEURISTIC STEPS

As said, students enter solutions to exercises in LogEx, and many other ITSs, step-by-step.
Consider for example the following (partial) rewrite attempt in Equations 2.3, 2.4 and 2.5:

“((rap)v(gAar)) (2.3)
(rAp)A(gAT) (2.4)
((rv=ap)A(mg V) (2.5)

@ IDEAS Index Exercises 13 Services 44

Services

1. basic
basic.allapplications Given a current expression, this service yields all rules that can be applied at a certain location, regardless wel
basic.allfirsts Returns all next steps that are suggested by the strategy. See the onefirst service to get only one suggestion. |
basic.applicable Given a current expression and a location in this expression, this service yields all rules that can be applied at
(deprecated)
basic.apply Apply a rule at a certain location to the current expression. If this rule was not expected by the strategy, we de
basic.constraints Check all constraints
basic.create Given an expression, this service returns an initial state with the original given expression.

basic.derivation (deprecated) See 'solution’ service.

basic.diagnose Diagnose an expression submitted by a student. Possible diagnosis are Buggy (a common misconception wa
expression in the derivation), Expected (the submitted expression was anticipated by the strategy), Detour (the
know which rule was applied). Extended version for logic domain: check predicates for NotEquiv.

basic.diagnose-string See diagnose service, but also returns a SyntaxError for invalid input.
basic.equivalence Tests whether two terms are semantically equivalent.
basic.example This services returns a specific (numbered) example expresssion that can be solved with an exercise. These ¢

term

Figure 2.2: Screenshot of a partial LogEx services-list. Note the total number available at the top of the page.

The first step is done using an application of De Morgan’s law (step 2.4). The second step
applies it once again, but the student has observed a symmetry in the equation and applied
De Morgan to both disjuncts in one go (step 2.5).

What happens here can be classified as a shift in Granularity. As a concept in computabil-
ity this is defined as “a means of constructing simple theories out of more complex ones”
[Hob90]. In the context of an ITS it can be seen as the “level of detail” used in solving a
particular exercise, or more specifically, the size of steps taken by a student in solving a
particular exercise.

When speaking of higher and lower levels of granularity, confusion about the meaning of
the adjectives often arises. Does a higher granularity mean that the grains are smaller (more
granular) or that the level of abstraction is higher (and thus the “grains” are bigger). To avoid
this, the terms “fine-grained” and “course-grained” will be used instead.

When rewriting Equation 2.6 to DNE a student could apply the “Implication Definition”-
strategy (which essentially uses the equivalency: p — g © —p Vv g) in two separate steps,
resulting in steps 2.7 and 2.8, or she could apply the strategy twice in one go and jump
straight to Equation 2.8. This latter approach is an indication the student is thinking at a
more course-grained granularity.

(r—=p)Ap)—(gA—p) (2.6)

((hrvp)Ap)— (tgAp) (2.7)

A((rvp)Ap)V(ogAp) (2.8)

Most people can easily switch between those different grain sizes and, when their knowl-
edge advances, they can see patterns emerge [MG94]. Moreover, as Hobbs puts it, “they
can have both deep and shallow knowledge at the same time” [Hob90].

These “organic granularity shifts” used by students when solving exercises are often rec-
ognizable by human tutors, who, due to their higher level of understanding, are capable of
seeing the exercises at an even lower level of granularity (bigger grain-size). This knowledge
can be used to guide students by giving appropriate feedback on a more general, strategic
level [GM89].

The term Heuristic Step has been chosen to mean any deviation from the most fine-grained
stepwise solution within the Strategy for a particular problem in an Intelligent Tutoring
System.

2.5. PERFORMANCE

The students’ input is parsed into an Abstract Syntax Tree (AST) representation in LogEx.
The AST is used by the different feedback services to decided which reply to give. To put
is simply, any Rule that can be applied to a member of the AST is considered a possi-
ble next step. Not all of those are in the Strategy, so not all of them are returned by the
basic.onefirst-service or basic.allfirst-service.

The amount of Rules in the system determine how many options have to be considered.
The more rules there are, the more potential candidates should be checked. When adding
Heuristic Steps to the LogEx system, care has to be taken to keep feature and performance
parity (no loss of functionality or loss of performance speed).

2.6. RELATED WORK

A useful comparison between several existing Logic tutors has been done by Lodder e.a.,
but unfortunately, the Heuristic Step behaviour was not part of their original comparison
matrix [LHJ16]. Therefore a small explorative investigation of a number of other ITSs de-
veloped as part of ongoing or earlier research has been performed in order to find evidence
of support for Heuristic Steps or similar mechanismes.

10

Antecedent Lines | Rule Used

1(A=Ba0)) 2(AvD) 3((DAE) Rules

Modus Ponens Madus Tollens

Disjunctive Syllogism Addition

Simplifieation Conjunction

Hypothetical Syllogism ~ Gonsiructive Dilemma|

DeMorgan's

Double Negation

o impl eGP O)

Implication Contrapasitive

Equivalence

‘Commutative

Associstive

® Distributive:
Problem Code: 1.0.1.0 ® th?;:“ 1/4) Exportation Tautology c
Representation
|Get Hint AnB A'B A-B AB
®) Symbolic English AvB AB A-B A=B
Message Box O O A -A
| Delete Node | | -
Instructions]
| Change to Indirect Proof | ADLeeB’ T'hrotoug ht
ogic Froot futor [Window Information |
[Restart Current Problem | | Version 10
February 1, 2018 - _
Skip Current Problem North Carolina Stafe University | Contact/Version Information |

Figure 2.3: Screenshot of Deep Thought with an almost solved problem

2.6.1. ASK-ELLE

The Haskell tutor Ask-Elle has a system to dynamically promote or demote certain strate-
gies from major to minor to allow differentiating step size. Minor rules are “...used to per-
form administrative tasks, such as moving down into a term, updating an environment,
or automatically simplifying a term ...” [Ger12]. Because Ask-Elle is based on the Ideas-

framework as well, further investigations into the mechanism applied here might prove
fruitful.

2.6.2. DEEP THOUGHT

Deep Thought, developed at NC State University is a Logic Tutor that focusses on “the prac-
tice of solving deductive logic proof problems in graphical representation” ° (see also Figure
2.3) [MB17]. This tool uses a data-driven approach to enhance the tutors behaviour with
regards to hints provided and problem selection. Step-size and granularity are not men-
tioned in the research at all. Several small tests have not been able to detect this. In fact,
feedback seems limited to “Incorrect rule application” in most cases. This might be be-
cause “proof problems” require each step to be explicitly motivated and thus do not leave
much room for Heuristic Steps.

3http://eliza.csc.ncsu.edu/DeepThought

11

@?‘!‘; O n Hist
Question no: § of 25
iAUthor: kalinat

Status: COMPLETED
N8 Oct10,2002 [a

]

~|lPremise Refere.| Line Number | Formula | Rule |Line References
8-9ck10p2002 (o 0 ~(A] ~A) Premise (P) 0
10: Oct 10, 2002 1 } |
11: Oct 10, 2002 {0} B |-A&~A) |Or De-Morgans {0}
12: Oct 10, 2002 0 2 (A ~8) |Indirect Proot |0, 1}
13, et Ao B Mistake Viewer - 1 of 1
14; 0ct 10, 2002
15: Oct 11, 2002 This was an invalid application of Or De-Morgans (Or DeM)
16: Oct 11, 2002 The Or De-Margans {Or DeM) rule is (~(P | Q))=(~P &~ Q)
17: 0ct 11, 2002 &toruzaiﬂ;:ﬁ;dlze references.
18: Oct 11, 2002
19: Oct 14, 2002

Java Applet Window

20: Oct 16, 2002
21: Oct 23, 2002
22: Oct 23, 2002

23: Oct 23, 2002 RedoQuestion | Coiio 0o | ViewMistakes || Print |
24: Oct 29, 2002 : -
25: Oct 28, 2002 Question View | Answer View
‘ 4 Previous ’ ’ Dismiss | ’ Next ’ H

Figure 2.4: Screenshot of the original Logic-ITA taken from [Yac03]

2.6.3. LoGIC-ITA

The Logic ITA developed at the University of Sydney validates individual steps on their own
merit, without checking its appropriateness [Yac05]. Afterwards the tool can give an indi-
cation whether or not a particular step was useful in solving the exercise.

When evaluating steps entered, the tool first analyses the validity of the submitted formula
(both syntactically and logically). When valid, all parts of the entry must be valid (i.e. the
specified rule, the referenced lines and premises). If the entered step is invalid, the system
will check if alteration of one of these components will lead to a valid solution. This infor-
mation is used to supply the student with an appropriate hint [Yac03]. Figure 2.4 shows an
example of this.

2.6.4. ORGANON

ORGANON is a logic tutor developed by the University of West Bohemia in Pilsen, which
supports a number of different logic exercises among which are rewriting to CNF and DNF
[DLO7]. It was impossible to access a running version of the tool. The authors indicate the
tool is capable of giving feedback on individual steps, but do not mention step size at all.

2.6.5. FMA/CAL

Prank e.a. allow multiple input modes for their tutor. In “free input mode” students can
enter steps that consist of arbitrarily long strings [Pral4]. No stepwise feedback is given
when in this mode, because the bigger steps “make it harder to recognize the reasons for
non-equivalence”. In other words, students can make unpredictable leaps of thoughts that
are harder to diagnose. The alternative is using a rule-based approach, which “[..] allows

12

the user to ignore low-level details”. This latter approach leaves no room for interpretation
since the student is not allowed to enter free text.

2.6.6. SETSAILS!

Zimmerman and Herding developed SetSails!, a German tutor containing set-theoretical
questions [ZH10]. It is unclear from their research if dynamic setup sizes are supported in
any form. However, the apparent lack of the possibility to enter free-form solution steps
and the focus on a single correct solution (“Anwendungen hingegen haben im Hintergrund
meistens nur einen korrekten Losungsweg”), seems to imply that this is not the case. While
the software was available for download, I was unable to get it to run.

2.6.7. CTAT

The Cognitive Tutor Authoring Tools (CTAT) developed at Carnegie Mellon is a suite of au-
thoring tools for tutors [Ale+06]. An example logic tutor has been developed 4 of which a
screenshot is shown in Figure 2.5. The tutor (which trains conversion to the Negation Nor-
mal Form) lets the student select a particular part of the formula and a strategy (“rewrite
rule”) to apply to that selection. Selecting a too small or too large part of the expression
will result in an error. The tutor does not seem to support application of the same rule to
multiple parts of the formula in one step. Whether or not this is a limitation of this specific
tutor or the authoring tools is unclear and requires more study.

2.6.8. LoGIC/SELL

At the Open University of Catalonia a logic tutor (Logic) was developed, but no details per-
taining its implementation were described [Hue+11]. Unfortunately there is no longer a
version available online to test with.

2.6.9. FINDINGS

It seems most logic ITSs currently used do not have any support for Heuristic Steps. The
rule-based approach used in FMA/CAL seems to be a more strict form of the strategy se-
lection used in LogEx [Pral4]. Including explicit 'Heuristic Step-strategies’ has been . The
“upgrading” of strategies used in Ask-Elle is worth looking into, although the type of prob-
lems in that ITS are not entirely comparable to those in LogEx [Ger12]. The possibilities
offered by other (as opposed to Ideas) authoring tools, such as CTAT have not been investi-
gated [Ale+06].

4Cdn.ctat.cs.cmu.edu/logic-tutor/html

13

Simplify the expression by selecting part of the given expression, then
choosing a rule from the mennu to apply to that part.

E(TA;NAEFAI])
éﬁTVﬁp)A A gl

TV —p)A(FV —-tﬂ

No hint is available at this step.

| 4 Previous |

Enter an expression to simplify: I—((T Ap)V(EAQ)

‘ DeMorgan's w ‘ Apply
p
‘ DeMorgan's w ‘ Apply
b
‘ DeMorgan's V ‘ Appl

‘Eljm. Double Negat V‘ Apply

Figure 2.5: Screenshot of a Logic Tutor built with CTAT

14

RESEARCH METHOD

3.1. MAIN RESEARCH GOAL

Cursory examination of the LogEx logfiles indicated that many students attempt to use
Heuristic Steps when doing rewriting exercises. LogEx had no support for those, so students
were confronted with unexpected error messages, such as the one in Figure 3.1. Allowing
Heuristic Steps will make LogEx more closely mimic human tutor behaviour.

Therefore, the following main research question in this thesis was formulated:

Research Question. How can heuristic steps in solutions for proposition logic rewriting ex-
ercises in the LogEx tutoring system be detected?

3.1.1. RESEARCH QUESTIONS

In order to answer the main Research Question, three sub-questions have been formulated,
which will be elaborated upon in the following sections:

* RQ1: What are common Heuristic Steps taken by students and how can they be clas-
sified?

* RQ2: How can we implement Heuristic Steps in LogEx?

* RQ3: How can we detect Heuristic Steps in entered solutions?

This chapter describes, for each of the three research questions, how they are answered and
how the results are validated. If necessary, some additional context is also given.

15

New exercise 4

A(rAap)vi(gan)

This formula is quivalent with the last,
= but you have either performed multiple

steps at once or performed an incarrect
step.
w

& | ((orvp)A(=g v m)

Figure 3.1: Screenshot of LogEx showing an error due to a student applying a Heuristic Step.

3.2. RQ1: WHAT ARE COMMON HEURISTIC STEPS TAKEN BY STU -
DENTS AND HOW CAN THEY BE CLASSIFIED?

The answer to this research question will be a typology of the different types of Heuristic
Steps taken by students in the context of solving exercises in the LogEx ITS.

3.2.1. SOURCES OF INFORMATION

A number of sources were used to gather information on the usage of Heuristic Steps, both
in theory and in practice.

1. LogEx logfiles: LogEx logs every step a student has entered as well as the system
response in great detail. Analysis of the logfiles of several experiments, some of which
was conducted before this graduation project started will provide insight in how the
system is used. Some automation to help the analysis may be possible.

2. Homework Submissions on Paper: A second source of information are the submis-
sions (on paper) of mathematics homework done by students in a Discrete Mathe-
matics course. These paper submissions have to be studied by hand. Since these
results represent the students’ train of thought most accurately, this source might
prove to be the most valuable.

16

3. Textbooks: A third source of potential Heuristic Steps are mathematics textbooks,
which may contain examples or solutions that qualify as Heuristic Step.

3.2.2. VALIDATION

The validity and usefulness of the typology is tested using experiments with students solv-
ing LogEx exercises. From the logfiles generated during experiments and survey-data gath-
ered afterwards, the usage of Heuristic Steps is determined.

3.3. RQ2: HOW CAN WE DESCRIBE HEURISTIC STEPS IN AN ITS?

Specifically: how can Heuristic Steps be described in such a way that LogEx is able to use
them.

3.3.1. APPROACH

In order to answer this question, a subset of the identified Heuristic Steps is implemented
in an experimental version of LogEx. The implementation adheres to the IDEAS standards
and works without disrupting the “normal” program flow.

The implementation is written in Haskell and is accessible online for testing purposes. '

3.3.2. BACKWARDS COMPATIBILITY AND PERFORMANCE

Besides working correctly, the solution also has to perform reasonably well (no exact de-
mands have been specified) and solution entered without Heuristic Steps still need to be
supported.

The potential explosion of state-space is taken into account when choosing a solution. Ev-
ery addition to the rule-set potentially increases the amount of work the LogEx-services
have to perform.

3.3.3. VALIDATION OF RESULTS

The results will be tested in multiple experiments with students and by running manual
and automated tests against the application.

https://ideastest.science.uu.nl/logic-step/, retrieved 2020-07-01

17

3.4. RQ3: HOW CAN WE DETECT HEURISTIC STEPS IN ENTERED
SOLUTIONS?

This research question has been answered with a prototype of LogEx that is able to detect
(a subset of) the identified Heuristic Step-types.

3.4.1. APPROACH

An extension to LogEx has been be written in Haskell that allows the ITS to detect (a number
of) Heuristic Steps in stepwise solutions entered in the tool.

3.4.2. VALIDATION

A set of test cases has been devised based on the different Heuristic Step-categories defined
in RQ1. These are used to determine if and how easy LogEx is able to detect the Heuristic
Steps. Performance levels for the solution should also be acceptable (the thresholds for
which have to be determined as well) and impact will be measured.

3.4.3. EXPERIMENTS WITH STUDENTS

A real-life test of the prototype has been conducted twice with different groups of students.
These were heterogeneous in terms of knowledge level, but for quite a few students con-
version to DNF or CNF was most likely a relatively new topic and a very brief explanation
on the DNF and CNE

The used were offered a chance to use LogEx in preparation for their exams. The students
were informed beforehand that certain experimental features were being tested as well, but
the specifics were not disclosed. They received a quick explanation on LogEx.

PREDEFINED EXERCISES

While students were free to enter any exercise they liked, or work on an auto-generated
one, a list of pre-defined exercises was supplied. This list was chosen in such a way that the
Heuristic Steps implemented in the prototype could be used in solving them.

EXPERIMENT 1, 10-2019

In October 2019 an experiment was conducted with about fifteen volunteers, all students
following the course “Premaster formele technieken 1: discrete wiskunde en logica” (“Pre
Master formal techniques 1: discrete mathematics and logic”) as part of their studies at the
Open University. The students were asked to use LogEx to rewrite several expressions into
DNE After the explanation students used the tool for about one hour. A list of exercises was
shared with the students at the start of the experiment. It contained thirteen exercises of

18

”»” o«

different difficulty level as shown in Table 3.1. The qualification (“Easy”, “Normal” etc. are
those used in LogEx as well).

’ Nr ‘ Exercise Level ‘

1 a(p—q) Easy

2 S(apA-(gvr) Easy

3 Tp < g Easy

4 am(gVv p)AT(gVT) Medium

5 a((g—r1)—q) Medium

6 gApPAGA (g < r) Medium

7 (p—=qVv(r—s)—-s Medium

8 a(pAg)—p Medium

9 r—(prnqVv(pAar) Medium

10 (p—q)—=@T—y9) Difficult

11 S(pV(r—s) Difficult

12 (r—=8)<(pVv)ApArrIvignp) Very Difficult
13 (s—eg@A1)—p Very Difficult

Table 3.1: Predefined exercises for the first experiment

At the time of this first experiment, the only heuristic step that was supported was the ho-
momorphic double negations. Afterwards most students (thirteen) filled out a survey.

EXPERIMENT 2, 02-2020

The second experiment was conducted in January of 2020 with a group of 23 students, all
following the course “Logica, verzamelingen en relaties” (“Logic, Sets and Relations”) as
part of their studies at the Open University. Again, the students were asked to use LogEx to
rewrite several expressions into DNE After the explanation students used the tool for about
one hour.

At this point in time, the Homomorphic Subformula Heuristic Steps: multiple double nega-

tion, multiple implication and multiple equivalence, as well as the Granularity-based DeMorgan/Double-

negation combination were supported. Again, a large portion of the students (nineteen)

filled out a survey on their experience with the tool.

This time, students could choose from the list of pre-defined exercises from within the ap-

plication. The options to manually enter formulae or have the system auto-generate one
were also available. The list of included exercises is shown in Table 3.2.

3.4.4. SURVEY QUESTIONS

The survey used for the different experiments contains the following questions:

1. What was your account number?

2. How would you rate your level of proficiency in propositional logic?

19

Nr Exercise Level
1 “(p—q) Easy
2 a(apAT(gvr) Easy
3 QTp g Easy
4 “((g—nr)vgvr Easy
5 (p—nrvig—r) Easy
6 a(hpVvg) Medium
7 “(pAg)—p Medium
8 (p—q) —(r—y) Difficult
9 S(pV(r—s) Difficult

Table 3.2: Predefined exercises for the first experiment

(a) Fundamental Awareness (basic knowledge)
(b) Novice (limited experience)

(c) Intermediate (practical application)

(d) Advanced (applied theory)

(e) Expert (recognized authority)
3. How many problems did you attempt to solve using the LogEx Logic Tutor?

(a) <5
(b) 6-10
(c) >10
(d) Unspecified
4. How easy was entering solution steps in the LogEx Logic Tutor?
(a) Very easy
(b) Easy
(c) Not particularly hard or easy
(d) Hard
(e) Very Hard

5. Did any of your solution steps get rejected even though you knew they were correct?

(a) No, not at all
(b) Yes, once or twice

(c) Yes, on multiple occasions

6. Did you make use of the option to rewrite two double negations in a single step (e.g.
Tmpvoagepvg)?

(@) Yes

20

(b) No

(c) Notsure

7. Did you make use of the ability to rewrite using De Morgan and Double Negation in
asingle step (e.g. 7"("pVvg) © pAg)??
(@) Yes
(b) No

(c) Not sure

8. How much does using the LogEx Logic Tutor contribute to your understanding of
propositional logic?

(a) Notatall
(b) A little bit
(c) Alot

9. How satisfied (on a scale of 1-10) were you about your overall experience with the
LogEx Logic Tutor?

10. Do you have any remarks (open question)?

2This question appeared only in the survey for the second experiment

21

RESULTS

This chapter provides an overview of the most relevant findings for each research question.

4.1. CLASSIFICATION OF HEURISTIC STEPS

To establish this classification the LogEx log-files of experiments with students were studied
to determine if common Heuristic Steps could be identified. Four different experiments
were conducted with groups of students on four occasions, two of which as part of this
graduation project and homework of twelve students was analysed.

4.1.1. IDENTIFIED CATEGORIES OF HEURISTIC STEPS

After analysing the logs and homework assignments, the following categories have been
defined. The names initially assigned to them during analysis were altered to better reflect
the nature of the type of Heuristic Step.

1. Homomorphic Sub-formulae

2. Housekeeping

3. Granularity Based

HOMOMORPHIC SUB-FORMULAE

Many students apply the same rewriting rule on multiple sub-formulae in a particular for-
mula at the same time if these sub-formulae are homomorphic, that is, only the proposi-
tional letters are different, but the structure is the same. The original name for this category
“Symmetry” was too narrow a description.

22

(p=2>a)Alr=>aq)

/N

(p=aq) (r=>q)

2 WA

Figure 4.1: Parse tree for ((r — q) v (p — q))

Formally this means that the sub-formulae follow the same schema. For instance p — ¢,
r — sand (r v p) — (s A q) are all instances of the formula schema ¢ — .

If students recognize that multiple parts of a formula follow the same schema, they might
attempt to apply the same rule to all of them in a single step. The most frequent application
of this has been observed for exercises that contained multiple double negations.

If say, a formulae contains the sub-formula =—p v 7—g, a number of student will try to
apply the “DoubleNeg”-rule to both instances of the schema ——¢ in one go and submit

pvdqg

Not all multiple applications of the same rule fall into this category. For instance in =—1(=—1p),
although the double negation (=) occurs twice in the formula, the approach is different:
there is overlap between the two expressions.

If we would make parse trees for Formula 4.1, and Formula 4.2, as shown in in Figure 4.1
and Figure 4.2 the difference would become more clear.

The homomorphic sub-formulae need to be either the same level in the hierarchy of the
tree or there should be no overlap. If this is the case, the same rewrite can be applied with-
out problems. If not, they fall into a different category.

(r—=qvip—q) 4.1)
(p—(g—1) (4.2)

GRANULARITY BASED

As can be seen in the second parse tree, the homomorphism is found on different levels.
This “nested homomorphism” is in fact a shift in grain size: the student is using a more
coarse-grained approach. This requires her to reason about the formula on several levels

23

(p=2>(q=>1)

/N

(q=>1)

/ N\

Figure 4.2: Parse tree for (p — (g — 1))

of granularity at the same time, whereas in the first category all homomorphisms are of the
same grain size. This warrants introduction of a second category, that of the Granularity
Based Heuristic Steps.

Another shift in grain size is seen in the following scenario. While the strategy described
in Section 2.3.3 will always lead to the correct normal form, it is not guaranteed this is the
most efficient way.

Take as an example the formula =((p — g) A p) Vv p). If we ask LogEx to show the complete
derivation we get the following steps:

((p—=q@)Ap)Vp)

(pVv g Ap)VPp) Implication definition
((pAp)V(GADP) VD Distribution
(FV(gAp)Vp F-rule complement
(GAp)V D F-rule disjunction
gV pvVvp De Morgan

aqgvT T-rule complement
T T-rule disjunction

If we postpone applying the “Implication Definition” we get a much simpler solution:

((p—=q@ Ap)Vp)

(p—qVvVopVvp) De Morgan
p—-qvT T-Rule Complement
T T-rule Disjunction

Furthermore, some steps can be considered less important than others, depending on the
level of the student. For these students all the “hoops” they have to jump through could

24

be frustrating. The learning gain would presumably be lower in this case. Consider the
following rewrite steps:

= (—|p VA q)
TTpATTg De Morgan
pPAg Double Negation (2x)

The double negation, once mastered, is trivial to apply. Conceivably, a student can work at
a level that requires less detailed “in-between” steps, and write this instead:

(tpvq)
pAqg De Morgan

The grain size can be coarser allowing the student to rewrite in bigger chunks.

Another example would be:

(p—(g—(s—=r1))
apVv gV asvr Implication Definition

HOUSEKEEPING

The third category is about cleaning up and reordering the formulae while performing an-
other rewrite operation. When rewriting a formula by meticulously following the strategy
and all rules to the letter, a lot of extra steps have to be taken to “clean up” the formula. In
the following (partial) derivation to DNF we see that in order to use “Idempotency” in step
4, we need to first explicitly reorder the first disjunct by applying “Commutativity”:

(pAG) < p

(pAgAp)V((pAg)A—p) Equivalence Definition
(pApAng)V(o(pAg)A—p) Commutativity
(pAg)V((pAg)A—p) Idempotency

Much more intuitive would be to either allow the student to apply the “Commutativity”-
rule at the same time as the “Equivalence Definition” or allow the “Idempotency”-rule a
bigger scope, taking more siblings into account:

(pAg)—p
(pAgAp)V(0(pAg)A—p) Equivalence Definition
(pAq)V((pAqg)Ap) Idempotency

The “Housekeeping”-category also includes the removal of unnecessary parentheses:

25

(pvqg)—(qVs)
a(pvqg)Vv(gVs) Implication Definition
(pvgvgvs Remove Parentheses

Because LogEx works with abstract syntax trees, parentheses are removed and added auto-
matically, this latter feature is already supported by the current version.

4.1.2. LOG ANALYSIS RESULTS

LOGS FROM EARLIER EXPERIMENTS

The first two sets of logs that were analysed, were taken from two experiments done with
a large group of computer science students at a University of Applied Science (“HBO” in
Dutch) in The Netherlands. One group used the complete tool with all functionality avail-
able at that time, including hints about how to proceed and possible next steps. This set
is identified by “logex-hints” from now on. The second group of students used the tool
but could not use hints and the next step functionality. This set is identified with “logex-
nohints”. The experiments were done to test the value of these features and are described
in [LHJ19].

The assumption was that the logfiles of the “logex-hints” would have limited evidence
of the usage of Heuristic Steps. Since LogEx provided stepwise feedback, most students
quickly learn that the Heuristic Steps they want to take are not supported by the tool.
They will adapt their input and no longer utilize the Heuristic Steps. It turned out how-
ever that both sets contained evidence of Heuristic Steps, the “logex-hints”-set even more
than “logex-nohints”-set.

Each of these sets of log data was analysed by utilizing the tool describes in Section 5.1.
Table 4.1 shows a quantitative breakdown of each dataset. Each log-entry consists of a
single interaction with the user and is either a requests for a new exercise, for feedback or a
submission of a single step of the solution. The system contained a small set of predefined
exercises from which students could choose, but each exercise could be attempted any
number of time by any student, so there are many more solutions than there are exercises.

Table 4.2 shows for each of these categories how many solutions were found containing an
(attempted) heuristic step. Some solutions contained evidence of multiple types, so they
are included in more than one category.

4.1.3. HOMEWORK ANALYSIS

Homework assignments submitted by students, were another source of potential usage of
heuristic steps. Twelve students were allowed their homework to be analysed. They all
submitted solutions to the following two exercises:

26

H logex-hints

logex-nohints

Total number of log entries 6734 3760
Number of distinct users 45 32
Number of distinct exercises 13 13
Number of solutions 555 373
Entries with status Irrelevant 552 617
Entries with status LookedAt 5344 2506
Entries with status Relevant 838 637
Solutions with HS Evidence 41 43

% of solutions with HS Evidence 11,5% 7,4 %

Table 4.1: Numerical analysis of log data of earlier experiments

H logex-hints

logex-nohints

Homomorphic Subformulae 19 14
Housekeeping 5 18
Granularity Based 19 20

Table 4.2: Different types of heuristic steps

Exercise 1

Let ¢ be the formula = p v (g — p)

Prove in two different ways ¢ is a tautology:

a using the truth table for ¢.

b using standard equivalences.

Exercise 2

Let ¢ be the formula (pA g) — 1) — (7p A).

Give both the disjunctive normal