
Open Universiteit
www.ou.nl

MASTER'S THESIS

Logical shortcuts

Heuristic steps in logic tutoring systems

Steins, R.J. (Ruben)

Award date:
2020

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 09. Sep. 2021

https://research.ou.nl/en/studentTheses/f5e7097c-0788-4bc7-8572-8a6f2cee693d

Ir. R.(Ruben) J.Steins

Student ID Number: 851942907

LOGICAL SHORTCUTS

HEURISTIC STEPS IN LOGIC TUTORING SYSTEMS

Thesis Presentation: Friday July 10, 2020 at 1:00 PM.

LOGICAL SHORTCUTS

HEURISTIC STEPS IN LOGIC TUTORING SYSTEMS

by

Ir. R.(Ruben) J.Steins

in partial fulfillment of the requirements for the degree of

Master of Science

in Software Engineering

at the Open University of the Netherlands, Faculty of Science

Master’s Programme in Software Engineering

to be defended publicly on Friday July 10, 2020 at 1:00 PM.

Student number:

Course code: IM9906

Thesis committee: Dr. B. Heeren (chair), Open University

Drs. J. Lodder (primary supervisor), Open University

CONTENTS

Summary iii

Samenvatting iv

1 Introduction 1

2 Context 4

2.1 Intelligent Tutoring Systems. 4

2.2 The IDEAS Framework . 4

2.3 LogEx . 5

2.4 Granularity and Heuristic Steps. 8

2.5 Performance . 10

2.6 Related Work . 10

3 Research method 15

3.1 Main Research Goal . 15

3.2 RQ1: What are common Heuristic Steps taken by students and how can they

be classified? . 16

3.3 RQ2: How can we describe Heuristic Steps in an ITS?. 17

3.4 RQ3: How can we detect Heuristic Steps in entered solutions? 18

4 Results 22

4.1 Classification of Heuristic Steps . 22

4.2 Implementing Heuristic Steps in LogEx . 29

4.3 Putting Heuristic Steps to the test . 31

5 Implementation Details 38

5.1 Log data Processing . 38

i

5.2 Implementation Details . 41

6 Threats to Validity 46

6.1 Extreme bias in the test group. 46

6.2 Bias in exercises . 46

6.3 Small sample size . 46

6.4 Current prototype is not formally proven correct 47

6.5 Performance statistics are to general. 47

6.6 Lack of feedback might lead to under-use . 47

7 Conclusions and recommendations 48

7.1 Conclusions . 48

7.2 Recommended Further Research. 49

8 Acknowledgement 51

A Appendix Complete Source Code, Tests and Testresults 57

ii

SUMMARY

When entering solutions to problems in Interactive Tutoring Systems (ITS) students often

skip or combine steps. How can such systems offer support for these heuristic steps? Based

on analysis of the log data of an existing logic tutoring system, a classification of different

types of heuristic steps has been devised.

A proof-of-concept implementation in the Logic-tutor LogEx has been used in a number of

experiments with students to validate its usage.

Research has shown that the strategy-language used in the IDEAS-framework can be used

to encode heuristic steps. Experiments show that they are liked and used by students when

available.

iii

SAMENVATTING

Bij het invoeren van oplossingen voor problemen in Interactieve tutorsystemen (ITS) bli-

jken studenten vaak stappen over te slaan of te combineren. Hoe kunnen deze systemen dit

soort heuristische stappen ondersteunen? Op basis van log-data-analyse van een bestaand

systeem is een classificatie opgesteld van de soorten heuristsche stappen.

Een voorbeeldimplementatie hiervan in de Logicatutor LogEx is gebruikt in een aantal ex-

perimenten met studenten om het gebruik ervan te valideren.

Uit het onderzoek is gebleken dat de strategietaal die gebruikt wordt in het IDEAS-framework

geschikt is om de heuristische stappen in vast te leggen en dat ze veelvuldig door studenten

worden gebruikt indien aanwezig.

iv

1
INTRODUCTION

Learning to solve mathematical problems is a bit like learning to ride a bike: while it is

valuable to get a verbal explanation, to read about it in a book or watching someone in

action, the only way to really become proficient is by trying until you fundamentally grasp

the concept. Quick feedback during practice is essential. While the directness of a bump on

the pavement is hard to match, and really has little value in mathematics education, there

are other ways to provide learners with adequate feedback.

To practice a particular type of task, for instance rewriting a propositional logic formula

into a different form, or solving equations for a particular variable, large amounts of exer-

cises are required to allow the learner to practice as much as needed. While human tutors

are perfectly capable of producing problem sets, the task to devise them and later correct

and provide feedback on the results is laborious, especially when multiple students are in-

volved. Since each student might struggle with different concepts, tailoring the exercises to

focus on those problems, is an even bigger challenge.

Intelligent Tutoring Systems (ITS) are tools that can provide training material, such as exer-

cises, and give feedback on submitted solutions. With an ITS students can practice on their

own, at their own pace. With the ability to serve an endless stream of exercises without time

constraints, it allows students to practice until they feel confident. Studies have shown that

ITSs can be a very effective learning tool, when applied correctly [KF15; Mos+03].

There are a number of aspects that make an ITS particularly effective:

• Students learn the most when instructions they receive are individualized. A signif-

icantly better performance has been observed over students who “receive[d] class-

room instruction” [Ma+14; Van11]. When instructions, in terms of feedback, are tai-

lored to a particular student this leads to better performance.

• ITSs that mimic aspects of human tutors have also been highly successful. For in-

1

stance, if a tutor notices the student struggling with problems of a certain difficulty

she might provide the student with a simpler one [MB17].

The way students enter solutions into an ITS is often done in a step-wise fashion. Each step

brings a student closer to the solution. Usually the valid options are encoded in some set of

rules, which is what the ITS uses to validate the input and provide feedback to the student:

the entered step was correct or incorrect and the erroneous part is pointed out. The system

might also provide hints on how to continue or what rules are applicable.

From a didactical standpoint it may be desirable that the student follows a certain order,

or uses a specific strategy to solve the exercise. Students, especially those that are more

advanced in the topic, may try to deviate from this and by combining certain steps when

entering them, effectively skipping intermediate steps.

Take for example this arithmetic expression that is evaluated by working out the opera-

tions in the correct order of precedence (multiplication and division precede addition and

subtraction). Each line shows a step towards the answer and the “rule” applied:

4+8∗2−5

4+16−5 Multiplication over addition/subtraction

20−5 Addition

15 Subtraction

A student with some more experience might perform the same evaluation as follows, com-

bining several steps:

4+8∗2−5

−1+16 Multiplication AND subtraction

15 Addition

When the ITS rejects steps that are correct but do not follow the order or step-size expected

by it, this may lead to confusion and frustration with students. Alternatively, the ITS might

see the step is invalid, but is unable to give specific feedback. A human tutor would recog-

nize these “shortcuts” taken by students and accepts the solution or is able to point out the

error.

Analysis of the logfiles from an existing ITS, the Logic tutor LogEx, developed at the Open

University, shows quite a few student attempt to use these kind of “heuristic steps” in their

solutions. A small exploratory survey into Logic tutoring systems like LogEx shows a lack of

support for them across the board.

The main focus of this thesis is to find out how support for heuristic steps can be added to

ITSs. A classification of the different categories of heuristics steps is made, after which a

proof-of-concept is developed by implementing a subset of heuristic steps into the LogEx

2

ITS. The implementation is tested in multiple experiments with students to see if and how

the heuristic steps were used.

The main research question answered in this thesis is:

Research Question. How can heuristic steps in solutions for proposition logic rewriting ex-

ercises in the LogEx tutoring system be detected?

The contribution of this research is that a way has been found to describe Heuristic Steps in

a usable way in an ITS. This addition leads to an ITS that behaves more like its human coun-

terparts and allows students more freedom when entering solutions. A proof-of-concept of

this has been produced and tested on students, who were mostly positive about the addi-

tions to the system.

The remainder of this thesis will go into details on how the above mentioned was achieved.

First, all concepts will be defined and the context will be described in Chapter 2. Next, the

methods used to answer the research question and validate the results is outlined in Chap-

ter 3. Following this, the actual results are shown, including details on the implementation

and experiments in Chapter 4. Finally, any threats to validity are discussed in Chapter 6,

after which the conclusions and recommendations are given in Chapter 7.

3

2
CONTEXT

This chapter provides some more context, gives a definition for the most important con-

cepts and shows an overview of related work.

2.1. INTELLIGENT TUTORING SYSTEMS

An Intelligent Tutoring System (ITS) can take many shapes and forms, but is defined here

as a computer system that help students to learn a topic by:

• giving information about the topic

• offering questions, challenges, or assignments to practice the topic

• provide some kind of feedback on the quality of the answer

• give hints (feed forward) on how to proceed

Some ITSs include a representation of the student and their abilities to further tailor the

amount and level of exercises presented, called a student model [Ma+14].

Usually an ITS consists of several conceptual units: the domain knowledge module, the

student model module, the tutoring module and the user interface (UI) module [HJ14].

2.2. THE IDEAS FRAMEWORK

IDEAS (Interactive Domain-specific Exercise Assistants) is a “... generic Haskell framework

for constructing the expert knowledge module [..] for an ITS or learning environment” 1.

1Taken from https://hackage.haskell.org/package/ideas on March 1, 2020

4

It provides a lot of Haskell types and functions to set up a domain knowledge base. The

knowledge is captured in Rules which are combined into Strategies. An example of such a

Rule would be, bringing back the arithmetic exercise from the Introduction, that multipli-

cation precedes addition. A Strategy is defined a being either a Rule, or a set of Rules in a

particular order or combination.

For example, and over-simplified, a Strategy to work out any arithmetic expression could

be: apply the rule ’multiplication over addition’ as many times as possible after which you

apply the ’solve addition’ rule as many times as possible.

The IDEAS framework uses a domain specific language (DSL) to define those strategies.

Multiple combinators can be used to chain Rules together to indicate sequence (<*>) ,

choice (<|>, >|>, .) or repetition (repeat) [HJ17].

Several different tutoring systems have been developed as part of the IDEAS research effort:

an interactive Haskell tutor [Ger12], a Java refactoring tutor [KHJ17] and a Logic tutor called

LogEx [LHJ16].

2.3. LOGEX

LogEx is an ITS to teach several concepts from propositional logic: rewriting into normal

forms and proving logical equivalence. It does this by presenting students with exercises.

Solutions are entered in very granular steps, which are compared to a set of Rules. After

each step, the tool will give feedback to the student and may give hints on the next step.

When learning propositional logic, as part of a computer science curriculum for instance,

students have to acquire proficiency in rewriting formulae into particular normal forms,

notably the Conjunctive Normal Form (CNF) and Disjunctive Normal Form (DNF). This

process, which involves applying multiple transformations to the original formula until the

desired form has been reached, is non-deterministic in nature. Many different sets of steps

lead to the desired outcome (although there are heuristics that help to get the conversion

done quickly). Figure 2.1 shows a partially solved exercise in LogEx [LHJ16].

2.3.1. NORMAL FORMS IN PROPOSITIONAL LOGIC

The focus of this thesis is on the rewriting exercises to learn Normal Forms in propositional

logic.

Normal Forms are special syntactical forms a formula can have. A formula is in DNF if

it only consists of disjuncts of conjuncts, which in turn only consist of literals (atoms or

negated atoms), as shown in Definition 2.1:

(φ1 ∧ . . .∧φn)∨ . . .∨ (χ1 ∧ . . .∧χm), in which φ1, . . . ,φn ,χ1, . . . ,χm are literals. (2.1)

5

Figure 2.1: Screenshot of LogEx showing a DNF exercise.

The CNF is similar to the DNF, but formulae in this form consist of a conjunction of dis-

junctions of literals, as shown in Definition 2.2

(φ1 ∨ . . .∨φn)∧ . . .∧ (χ1 ∨ . . .∨χm), in which φ1, . . . ,φn ,χ1, . . . ,χm are literals. (2.2)

A more general form of both DNF and CNF is the Negation Normal Form (NNF), in which

both conjunctions and disjunctions are allowed.

It can be proven that for each formula φ there is a logically equivalent formula φ′ in CNF

and a logically equivalent formulaφ′′ in DNF. This proof is omitted here, but can be found in

textbooks on logic [Ben+14]. The CNF and DNF have several applications in mathematics

and computer science, such as automated theorem proving and circuit theory. Being able

to rewrite logical formulae into their CNF and DNF equivalents is a convenient skill to have

as a student or practitioner in one of those fields.

2.3.2. REWRITING RULES

The set of supported rewriting rules for Propositional Logic in LogEx is included in Table

2.1. Each of these rules is recognized by the tool as a valid step which may lead towards

a potential solution. The system can provide students feedback in the form of hints and

suggestions for possible next steps. It can also detect that the student has made a common

error or has applied a rule incorrectly [LHJ15].

6

Rule Example

Absorption (p ∧q)∨q ⇔ q or p ∧ (p ∨q) ⇔ p

Commutativity (p ∨q) ⇔ (p ∨q) or p ∧q ⇔ q ∧p

De Morgan ¬(p ∨q) ⇔¬p ∧¬q or ¬(p ∧q) ⇔ ¬p ∨¬q

Distribution r ∧ (p ∨q) ⇔ (r ∧p)∨ (r ∧q) or r ∨ (p ∧q) ⇔ (r ∨p)∧ (r ∨q)

Double negation ¬¬q ⇔ q

Equivalence Definition p ↔ q ⇔ (p ∧q)∨ (¬p ∧¬q)

F-Rule Conjunction p ∧ F ⇔ F

F-Rule Complement p ∧¬p ⇔ F

F-Rule Not T ¬T ⇔ F

F-Rule Disjunction p ∨ F ⇔ p

Idempotency q ∨q ⇔ q

Implication Definition p → q ⇔¬p ∨q

T-Rule Conjunction q ∧ T ⇔ q

T-Rule Complement p ∨¬p ⇔ T

T-Rule Not T ¬F ⇔ T

T-Rule Disjunction p ∨ T ⇔ T

Table 2.1: Set of supported rewriting rules in the current version of LogEx

2.3.3. STRATEGY

While there are many possible series of rewriting steps that will convert any formula into

a Normal Form, not all are equally efficient. Default strategies exist which, when applied

consistently, will lead a student to a correct solution in a reasonable number of steps. For

instance, the rewriting of any formula to the DNF or CNF can be done using the following

strategy, which is also used in LogEx:

1. Remove Implication and Equivalences by using elimination rules;

2. Push negations inward using DeMorgan (after this step the formula is in NNF);

3. Distribute ∧ over ∨ (for DNF) or ∨ over ∧ (for CNF).

Although there are perhaps strategies that might lead to a DNF of CNF quicker or in less

steps (at least for certain formulae), the one provided here will always lead to a correct

solution. 2) In this case the reliability and ease-of-use make it a sensible default Strategy.

2.3.4. SERVICES

The architecture of LogEx is service-based. The web front end ,the UI module, is only used

to present information to the user and process input. All logic is performed in the Common

2https://people.eecs.berkeley.edu/~daw/teaching/cs70-f03/Notes/lecture07.pdf, retrieved 03-04-2020

7

Gateway Interface (CGI) back end. Each operation is available to the front-end application

as a different service-call. The list of services is quite extensive, as can be seen in Figure 2.2.

The ones used in this thesis are shown in Table 2.2.

Service Purpose

basic.allfirsts Returns a list of steps that are suitable, according to the strategy.

basic.apply
Applies a particular rule to the current expression, or an error, if the

chosen rule is not applicable

basic.diagnose-string
Evaluates the expression. It can detect equivalence, or an incorrectly

applied rule (Buggy) or a deviation from the strategy (Detour).

basic.onefirst Gives a possible next step, according to the strategy.

basic.ready Checks if the exercise is complete.

basic.derivation Gives back the entire solution

Table 2.2: Most relevant Service end-points in LogEx and their purpose

2.3.5. FEEDBACK

The feedback provided by LogEx on student input is based on the Feedback Strategies de-

scribed by Narciss and consists of four categories [Nar13; LHJ16]:

1. whether the answer is correct or incorrect, using the basic.diagnose-string-service

2. what the correct result is, using the basic.derivation-service

3. the location of the mistakes and explanation of the error

4. hints on how to proceed, using the basic.onefirst-service

While giving specific feedback on Heuristic Steps is not part of this thesis, the feedback

features are an integral part of LogEx and any alteration we make to LogEx should take this

mechanism into account.

2.4. GRANULARITY AND HEURISTIC STEPS

As said, students enter solutions to exercises in LogEx, and many other ITSs, step-by-step.

Consider for example the following (partial) rewrite attempt in Equations 2.3, 2.4 and 2.5:

¬((r ∧p)∨ (q ∧ r)) (2.3)

(¬(r ∧p)∧¬(q ∧ r)) (2.4)

((¬r ∨¬p)∧ (¬q ∨¬r)) (2.5)

8

Figure 2.2: Screenshot of a partial LogEx services-list. Note the total number available at the top of the page.

The first step is done using an application of De Morgan’s law (step 2.4). The second step

applies it once again, but the student has observed a symmetry in the equation and applied

De Morgan to both disjuncts in one go (step 2.5).

What happens here can be classified as a shift in Granularity. As a concept in computabil-

ity this is defined as “a means of constructing simple theories out of more complex ones”

[Hob90]. In the context of an ITS it can be seen as the “level of detail” used in solving a

particular exercise, or more specifically, the size of steps taken by a student in solving a

particular exercise.

When speaking of higher and lower levels of granularity, confusion about the meaning of

the adjectives often arises. Does a higher granularity mean that the grains are smaller (more

granular) or that the level of abstraction is higher (and thus the “grains” are bigger). To avoid

this, the terms “fine-grained” and “course-grained” will be used instead.

When rewriting Equation 2.6 to DNF, a student could apply the “Implication Definition”-

strategy (which essentially uses the equivalency: p → q ⇔ ¬p ∨ q) in two separate steps,

resulting in steps 2.7 and 2.8, or she could apply the strategy twice in one go and jump

straight to Equation 2.8. This latter approach is an indication the student is thinking at a

more course-grained granularity.

9

((r → p)∧¬p) → (¬q ∧¬p) (2.6)

((¬r ∨p)∧¬p) → (¬q ∧¬p) (2.7)

¬((¬r ∨p)∧¬p)∨ (¬q ∧¬p) (2.8)

Most people can easily switch between those different grain sizes and, when their knowl-

edge advances, they can see patterns emerge [MG94]. Moreover, as Hobbs puts it, “they

can have both deep and shallow knowledge at the same time” [Hob90].

These “organic granularity shifts” used by students when solving exercises are often rec-

ognizable by human tutors, who, due to their higher level of understanding, are capable of

seeing the exercises at an even lower level of granularity (bigger grain-size). This knowledge

can be used to guide students by giving appropriate feedback on a more general, strategic

level [GM89].

The term Heuristic Step has been chosen to mean any deviation from the most fine-grained

stepwise solution within the Strategy for a particular problem in an Intelligent Tutoring

System.

2.5. PERFORMANCE

The students’ input is parsed into an Abstract Syntax Tree (AST) representation in LogEx.

The AST is used by the different feedback services to decided which reply to give. To put

is simply, any Rule that can be applied to a member of the AST is considered a possi-

ble next step. Not all of those are in the Strategy, so not all of them are returned by the

basic.onefirst-service or basic.allfirst-service.

The amount of Rules in the system determine how many options have to be considered.

The more rules there are, the more potential candidates should be checked. When adding

Heuristic Steps to the LogEx system, care has to be taken to keep feature and performance

parity (no loss of functionality or loss of performance speed).

2.6. RELATED WORK

A useful comparison between several existing Logic tutors has been done by Lodder e.a.,

but unfortunately, the Heuristic Step behaviour was not part of their original comparison

matrix [LHJ16]. Therefore a small explorative investigation of a number of other ITSs de-

veloped as part of ongoing or earlier research has been performed in order to find evidence

of support for Heuristic Steps or similar mechanisms.

10

Figure 2.3: Screenshot of Deep Thought with an almost solved problem

2.6.1. ASK-ELLE

The Haskell tutor Ask-Elle has a system to dynamically promote or demote certain strate-

gies from major to minor to allow differentiating step size. Minor rules are “. . . used to per-

form administrative tasks, such as moving down into a term, updating an environment,

or automatically simplifying a term . . . ” [Ger12]. Because Ask-Elle is based on the Ideas-

framework as well, further investigations into the mechanism applied here might prove

fruitful.

2.6.2. DEEP THOUGHT

Deep Thought, developed at NC State University is a Logic Tutor that focusses on “the prac-

tice of solving deductive logic proof problems in graphical representation” 3 (see also Figure

2.3) [MB17]. This tool uses a data-driven approach to enhance the tutors behaviour with

regards to hints provided and problem selection. Step-size and granularity are not men-

tioned in the research at all. Several small tests have not been able to detect this. In fact,

feedback seems limited to “Incorrect rule application” in most cases. This might be be-

cause “proof problems” require each step to be explicitly motivated and thus do not leave

much room for Heuristic Steps.

3http://eliza.csc.ncsu.edu/DeepThought

11

Figure 2.4: Screenshot of the original Logic-ITA taken from [Yac03]

2.6.3. LOGIC-ITA

The Logic ITA developed at the University of Sydney validates individual steps on their own

merit, without checking its appropriateness [Yac05]. Afterwards the tool can give an indi-

cation whether or not a particular step was useful in solving the exercise.

When evaluating steps entered, the tool first analyses the validity of the submitted formula

(both syntactically and logically). When valid, all parts of the entry must be valid (i.e. the

specified rule, the referenced lines and premises). If the entered step is invalid, the system

will check if alteration of one of these components will lead to a valid solution. This infor-

mation is used to supply the student with an appropriate hint [Yac03]. Figure 2.4 shows an

example of this.

2.6.4. ORGANON

ORGANON is a logic tutor developed by the University of West Bohemia in Pilsen, which

supports a number of different logic exercises among which are rewriting to CNF and DNF

[DL07]. It was impossible to access a running version of the tool. The authors indicate the

tool is capable of giving feedback on individual steps, but do not mention step size at all.

2.6.5. FMA/CAL

Prank e.a. allow multiple input modes for their tutor. In “free input mode” students can

enter steps that consist of arbitrarily long strings [Pra14]. No stepwise feedback is given

when in this mode, because the bigger steps “make it harder to recognize the reasons for

non-equivalence”. In other words, students can make unpredictable leaps of thoughts that

are harder to diagnose. The alternative is using a rule-based approach, which “[..] allows

12

the user to ignore low-level details”. This latter approach leaves no room for interpretation

since the student is not allowed to enter free text.

2.6.6. SETSAILS!

Zimmerman and Herding developed SetSails!, a German tutor containing set-theoretical

questions [ZH10]. It is unclear from their research if dynamic setup sizes are supported in

any form. However, the apparent lack of the possibility to enter free-form solution steps

and the focus on a single correct solution (“Anwendungen hingegen haben im Hintergrund

meistens nur einen korrekten Lösungsweg”), seems to imply that this is not the case. While

the software was available for download, I was unable to get it to run.

2.6.7. CTAT

The Cognitive Tutor Authoring Tools (CTAT) developed at Carnegie Mellon is a suite of au-

thoring tools for tutors [Ale+06]. An example logic tutor has been developed 4 of which a

screenshot is shown in Figure 2.5. The tutor (which trains conversion to the Negation Nor-

mal Form) lets the student select a particular part of the formula and a strategy (“rewrite

rule”) to apply to that selection. Selecting a too small or too large part of the expression

will result in an error. The tutor does not seem to support application of the same rule to

multiple parts of the formula in one step. Whether or not this is a limitation of this specific

tutor or the authoring tools is unclear and requires more study.

2.6.8. LOGIC/SELL

At the Open University of Catalonia a logic tutor (Logic) was developed, but no details per-

taining its implementation were described [Hue+11]. Unfortunately there is no longer a

version available online to test with.

2.6.9. FINDINGS

It seems most logic ITSs currently used do not have any support for Heuristic Steps. The

rule-based approach used in FMA/CAL seems to be a more strict form of the strategy se-

lection used in LogEx [Pra14]. Including explicit ’Heuristic Step-strategies’ has been . The

“upgrading” of strategies used in Ask-Elle is worth looking into, although the type of prob-

lems in that ITS are not entirely comparable to those in LogEx [Ger12]. The possibilities

offered by other (as opposed to Ideas) authoring tools, such as CTAT have not been investi-

gated [Ale+06].

4Cdn.ctat.cs.cmu.edu/logic-tutor/html

13

Figure 2.5: Screenshot of a Logic Tutor built with CTAT

14

3
RESEARCH METHOD

3.1. MAIN RESEARCH GOAL

Cursory examination of the LogEx logfiles indicated that many students attempt to use

Heuristic Steps when doing rewriting exercises. LogEx had no support for those, so students

were confronted with unexpected error messages, such as the one in Figure 3.1. Allowing

Heuristic Steps will make LogEx more closely mimic human tutor behaviour.

Therefore, the following main research question in this thesis was formulated:

Research Question. How can heuristic steps in solutions for proposition logic rewriting ex-

ercises in the LogEx tutoring system be detected?

3.1.1. RESEARCH QUESTIONS

In order to answer the main Research Question, three sub-questions have been formulated,

which will be elaborated upon in the following sections:

• RQ1: What are common Heuristic Steps taken by students and how can they be clas-

sified?

• RQ2: How can we implement Heuristic Steps in LogEx?

• RQ3: How can we detect Heuristic Steps in entered solutions?

This chapter describes, for each of the three research questions, how they are answered and

how the results are validated. If necessary, some additional context is also given.

15

Figure 3.1: Screenshot of LogEx showing an error due to a student applying a Heuristic Step.

3.2. RQ1: WHAT ARE COMMON HEURISTIC STEPS TAKEN BY STU-

DENTS AND HOW CAN THEY BE CLASSIFIED?

The answer to this research question will be a typology of the different types of Heuristic

Steps taken by students in the context of solving exercises in the LogEx ITS.

3.2.1. SOURCES OF INFORMATION

A number of sources were used to gather information on the usage of Heuristic Steps, both

in theory and in practice.

1. LogEx logfiles: LogEx logs every step a student has entered as well as the system

response in great detail. Analysis of the logfiles of several experiments, some of which

was conducted before this graduation project started will provide insight in how the

system is used. Some automation to help the analysis may be possible.

2. Homework Submissions on Paper: A second source of information are the submis-

sions (on paper) of mathematics homework done by students in a Discrete Mathe-

matics course. These paper submissions have to be studied by hand. Since these

results represent the students’ train of thought most accurately, this source might

prove to be the most valuable.

16

3. Textbooks: A third source of potential Heuristic Steps are mathematics textbooks,

which may contain examples or solutions that qualify as Heuristic Step.

3.2.2. VALIDATION

The validity and usefulness of the typology is tested using experiments with students solv-

ing LogEx exercises. From the logfiles generated during experiments and survey-data gath-

ered afterwards, the usage of Heuristic Steps is determined.

3.3. RQ2: HOW CAN WE DESCRIBE HEURISTIC STEPS IN AN ITS?

Specifically: how can Heuristic Steps be described in such a way that LogEx is able to use

them.

3.3.1. APPROACH

In order to answer this question, a subset of the identified Heuristic Steps is implemented

in an experimental version of LogEx. The implementation adheres to the IDEAS standards

and works without disrupting the “normal” program flow.

The implementation is written in Haskell and is accessible online for testing purposes. 1

3.3.2. BACKWARDS COMPATIBILITY AND PERFORMANCE

Besides working correctly, the solution also has to perform reasonably well (no exact de-

mands have been specified) and solution entered without Heuristic Steps still need to be

supported.

The potential explosion of state-space is taken into account when choosing a solution. Ev-

ery addition to the rule-set potentially increases the amount of work the LogEx-services

have to perform.

3.3.3. VALIDATION OF RESULTS

The results will be tested in multiple experiments with students and by running manual

and automated tests against the application.

1https://ideastest.science.uu.nl/logic-step/, retrieved 2020-07-01

17

3.4. RQ3: HOW CAN WE DETECT HEURISTIC STEPS IN ENTERED

SOLUTIONS?

This research question has been answered with a prototype of LogEx that is able to detect

(a subset of) the identified Heuristic Step-types.

3.4.1. APPROACH

An extension to LogEx has been be written in Haskell that allows the ITS to detect (a number

of) Heuristic Steps in stepwise solutions entered in the tool.

3.4.2. VALIDATION

A set of test cases has been devised based on the different Heuristic Step-categories defined

in RQ1. These are used to determine if and how easy LogEx is able to detect the Heuristic

Steps. Performance levels for the solution should also be acceptable (the thresholds for

which have to be determined as well) and impact will be measured.

3.4.3. EXPERIMENTS WITH STUDENTS

A real-life test of the prototype has been conducted twice with different groups of students.

These were heterogeneous in terms of knowledge level, but for quite a few students con-

version to DNF or CNF was most likely a relatively new topic and a very brief explanation

on the DNF and CNF.

The used were offered a chance to use LogEx in preparation for their exams. The students

were informed beforehand that certain experimental features were being tested as well, but

the specifics were not disclosed. They received a quick explanation on LogEx.

PREDEFINED EXERCISES

While students were free to enter any exercise they liked, or work on an auto-generated

one, a list of pre-defined exercises was supplied. This list was chosen in such a way that the

Heuristic Steps implemented in the prototype could be used in solving them.

EXPERIMENT 1, 10-2019

In October 2019 an experiment was conducted with about fifteen volunteers, all students

following the course “Premaster formele technieken 1: discrete wiskunde en logica” (“Pre

Master formal techniques 1: discrete mathematics and logic”) as part of their studies at the

Open University. The students were asked to use LogEx to rewrite several expressions into

DNF. After the explanation students used the tool for about one hour. A list of exercises was

shared with the students at the start of the experiment. It contained thirteen exercises of

18

different difficulty level as shown in Table 3.1. The qualification (“Easy”, “Normal” etc. are

those used in LogEx as well).

Nr Exercise Level

1 ¬(p →¬q) Easy

2 ¬(¬p ∧¬(q ∨ r)) Easy

3 ¬¬p ↔¬¬q Easy

4 ¬¬(q ∨p)∧¬¬(q ∨ r) Medium

5 ¬((q → r) →¬q) Medium

6 q ∧p ∧q ∧ (¬q ↔¬r) Medium

7 (¬(p → q)∨¬(r → s)) →¬s Medium

8 ¬(p ∧q) ↔¬p Medium

9 r ↔ ((p ∧q)∨ (p ∧ r)) Medium

10 (p → q) ↔ (r → s) Difficult

11 ¬(¬p ∨ (r ↔ s)) Difficult

12 ((r → s) ↔ (p ∨ s))∧ ((p ∧ r)∨ (q ∧p)) Very Difficult

13 ((s ↔ q)∧¬r) ↔ p Very Difficult

Table 3.1: Predefined exercises for the first experiment

At the time of this first experiment, the only heuristic step that was supported was the ho-

momorphic double negations. Afterwards most students (thirteen) filled out a survey.

EXPERIMENT 2, 02-2020

The second experiment was conducted in January of 2020 with a group of 23 students, all

following the course “Logica, verzamelingen en relaties” (“Logic, Sets and Relations”) as

part of their studies at the Open University. Again, the students were asked to use LogEx to

rewrite several expressions into DNF. After the explanation students used the tool for about

one hour.

At this point in time, the Homomorphic Subformula Heuristic Steps: multiple double nega-

tion, multiple implication and multiple equivalence, as well as the Granularity-based DeMorgan/Double-

negation combination were supported. Again, a large portion of the students (nineteen)

filled out a survey on their experience with the tool.

This time, students could choose from the list of pre-defined exercises from within the ap-

plication. The options to manually enter formulae or have the system auto-generate one

were also available. The list of included exercises is shown in Table 3.2.

3.4.4. SURVEY QUESTIONS

The survey used for the different experiments contains the following questions:

1. What was your account number?

2. How would you rate your level of proficiency in propositional logic?

19

Nr Exercise Level

1 ¬(p →¬q) Easy

2 ¬(¬p ∧¬(q ∨ r)) Easy

3 ¬¬p ↔¬¬q Easy

4 ¬((q → r)∨q ∨ r Easy

5 (p → r)∨ (q → r) Easy

6 ¬(¬p ∨¬q) Medium

7 ¬(p ∧q) ↔¬p Medium

8 (p → q) ↔ (r → s) Difficult

9 ¬(¬p ∨ (r ↔ s)) Difficult

Table 3.2: Predefined exercises for the first experiment

(a) Fundamental Awareness (basic knowledge)

(b) Novice (limited experience)

(c) Intermediate (practical application)

(d) Advanced (applied theory)

(e) Expert (recognized authority)

3. How many problems did you attempt to solve using the LogEx Logic Tutor?

(a) <5

(b) 6-10

(c) >10

(d) Unspecified

4. How easy was entering solution steps in the LogEx Logic Tutor?

(a) Very easy

(b) Easy

(c) Not particularly hard or easy

(d) Hard

(e) Very Hard

5. Did any of your solution steps get rejected even though you knew they were correct?

(a) No, not at all

(b) Yes, once or twice

(c) Yes, on multiple occasions

6. Did you make use of the option to rewrite two double negations in a single step (e.g.

¬¬p ∨¬¬q ⇔ p ∨q)?

(a) Yes

20

(b) No

(c) Not sure

7. Did you make use of the ability to rewrite using De Morgan and Double Negation in

a single step (e.g. ¬(¬p ∨¬q) ⇔ p ∧q)? 2

(a) Yes

(b) No

(c) Not sure

8. How much does using the LogEx Logic Tutor contribute to your understanding of

propositional logic?

(a) Not at all

(b) A little bit

(c) A lot

9. How satisfied (on a scale of 1-10) were you about your overall experience with the

LogEx Logic Tutor?

10. Do you have any remarks (open question)?

2This question appeared only in the survey for the second experiment

21

4
RESULTS

This chapter provides an overview of the most relevant findings for each research question.

4.1. CLASSIFICATION OF HEURISTIC STEPS

To establish this classification the LogEx log-files of experiments with students were studied

to determine if common Heuristic Steps could be identified. Four different experiments

were conducted with groups of students on four occasions, two of which as part of this

graduation project and homework of twelve students was analysed.

4.1.1. IDENTIFIED CATEGORIES OF HEURISTIC STEPS

After analysing the logs and homework assignments, the following categories have been

defined. The names initially assigned to them during analysis were altered to better reflect

the nature of the type of Heuristic Step.

1. Homomorphic Sub-formulae

2. Housekeeping

3. Granularity Based

HOMOMORPHIC SUB-FORMULAE

Many students apply the same rewriting rule on multiple sub-formulae in a particular for-

mula at the same time if these sub-formulae are homomorphic, that is, only the proposi-

tional letters are different, but the structure is the same. The original name for this category

“Symmetry” was too narrow a description.

22

Figure 4.1: Parse tree for ((r → q)∨ (p → q))

Formally this means that the sub-formulae follow the same schema. For instance p → q ,

r → s and (r ∨p) → (s ∧q) are all instances of the formula schema φ→ψ.

If students recognize that multiple parts of a formula follow the same schema, they might

attempt to apply the same rule to all of them in a single step. The most frequent application

of this has been observed for exercises that contained multiple double negations.

If say, a formulae contains the sub-formula ¬¬p ∨¬¬q , a number of student will try to

apply the “DoubleNeg”-rule to both instances of the schema ¬¬φ in one go and submit

p ∨q

Not all multiple applications of the same rule fall into this category. For instance in¬¬(¬¬p),

although the double negation (¬¬) occurs twice in the formula, the approach is different:

there is overlap between the two expressions.

If we would make parse trees for Formula 4.1, and Formula 4.2, as shown in in Figure 4.1

and Figure 4.2 the difference would become more clear.

The homomorphic sub-formulae need to be either the same level in the hierarchy of the

tree or there should be no overlap. If this is the case, the same rewrite can be applied with-

out problems. If not, they fall into a different category.

((r → q)∨ (p → q)) (4.1)

(p → (q → t)) (4.2)

GRANULARITY BASED

As can be seen in the second parse tree, the homomorphism is found on different levels.

This “nested homomorphism” is in fact a shift in grain size: the student is using a more

coarse-grained approach. This requires her to reason about the formula on several levels

23

Figure 4.2: Parse tree for (p → (q → t))

of granularity at the same time, whereas in the first category all homomorphisms are of the

same grain size. This warrants introduction of a second category, that of the Granularity

Based Heuristic Steps.

Another shift in grain size is seen in the following scenario. While the strategy described

in Section 2.3.3 will always lead to the correct normal form, it is not guaranteed this is the

most efficient way.

Take as an example the formula ¬((p → q)∧p)∨p). If we ask LogEx to show the complete

derivation we get the following steps:

¬((p → q)∧p)∨p)

¬((¬p ∨q)∧p)∨p) Implication definition

¬((¬p ∧p)∨ (q ∧p))∨p Distribution

¬(F ∨ (q ∧p))∨p F-rule complement

¬(q ∧p)∨p F-rule disjunction

¬q ∨¬p ∨p De Morgan

¬q ∨T T-rule complement

¬T T-rule disjunction

If we postpone applying the “Implication Definition” we get a much simpler solution:

¬((p → q)∧p)∨p)

¬(p → q)∨¬p ∨p) De Morgan

¬(p → q)∨T T-Rule Complement

T T-rule Disjunction

Furthermore, some steps can be considered less important than others, depending on the

level of the student. For these students all the “hoops” they have to jump through could

24

be frustrating. The learning gain would presumably be lower in this case. Consider the

following rewrite steps:

¬(¬p ∨¬q)

¬¬p ∧¬¬q De Morgan

p ∧q Double Negation (2x)

The double negation, once mastered, is trivial to apply. Conceivably, a student can work at

a level that requires less detailed “in-between” steps, and write this instead:

(¬p ∨¬q)

p ∧q De Morgan

The grain size can be coarser allowing the student to rewrite in bigger chunks.

Another example would be:

(p → (q → (s → r)))

¬p ∨¬q ∨¬s ∨ r Implication Definition

HOUSEKEEPING

The third category is about cleaning up and reordering the formulae while performing an-

other rewrite operation. When rewriting a formula by meticulously following the strategy

and all rules to the letter, a lot of extra steps have to be taken to “clean up” the formula. In

the following (partial) derivation to DNF we see that in order to use “Idempotency” in step

4, we need to first explicitly reorder the first disjunct by applying “Commutativity”:

(p ∧q) ↔ p

(p ∧q ∧p)∨ (¬(p ∧q)∧¬p) Equivalence Definition

(p ∧p ∧q)∨ (¬(p ∧q)∧¬p) Commutativity

(p ∧q)∨ (¬(p ∧q)∧¬p) Idempotency

Much more intuitive would be to either allow the student to apply the “Commutativity”-

rule at the same time as the “Equivalence Definition” or allow the “Idempotency”-rule a

bigger scope, taking more siblings into account:

(p ∧q) ↔ p

(p ∧q ∧p)∨ (¬(p ∧q)∧¬p) Equivalence Definition

(p ∧q)∨ (¬(p ∧q)∧¬p) Idempotency

The “Housekeeping”-category also includes the removal of unnecessary parentheses:

25

(p ∨q) → (q ∨ s)

¬(p ∨q)∨ (q ∨ s) Implication Definition

¬(p ∨q)∨q ∨ s Remove Parentheses

Because LogEx works with abstract syntax trees, parentheses are removed and added auto-

matically, this latter feature is already supported by the current version.

4.1.2. LOG ANALYSIS RESULTS

LOGS FROM EARLIER EXPERIMENTS

The first two sets of logs that were analysed, were taken from two experiments done with

a large group of computer science students at a University of Applied Science (“HBO” in

Dutch) in The Netherlands. One group used the complete tool with all functionality avail-

able at that time, including hints about how to proceed and possible next steps. This set

is identified by “logex-hints” from now on. The second group of students used the tool

but could not use hints and the next step functionality. This set is identified with “logex-

nohints”. The experiments were done to test the value of these features and are described

in [LHJ19].

The assumption was that the logfiles of the “logex-hints” would have limited evidence

of the usage of Heuristic Steps. Since LogEx provided stepwise feedback, most students

quickly learn that the Heuristic Steps they want to take are not supported by the tool.

They will adapt their input and no longer utilize the Heuristic Steps. It turned out how-

ever that both sets contained evidence of Heuristic Steps, the “logex-hints”-set even more

than “logex-nohints”-set.

Each of these sets of log data was analysed by utilizing the tool describes in Section 5.1.

Table 4.1 shows a quantitative breakdown of each dataset. Each log-entry consists of a

single interaction with the user and is either a requests for a new exercise, for feedback or a

submission of a single step of the solution. The system contained a small set of predefined

exercises from which students could choose, but each exercise could be attempted any

number of time by any student, so there are many more solutions than there are exercises.

Table 4.2 shows for each of these categories how many solutions were found containing an

(attempted) heuristic step. Some solutions contained evidence of multiple types, so they

are included in more than one category.

4.1.3. HOMEWORK ANALYSIS

Homework assignments submitted by students, were another source of potential usage of

heuristic steps. Twelve students were allowed their homework to be analysed. They all

submitted solutions to the following two exercises:

26

logex-hints logex-nohints

Total number of log entries 6734 3760

Number of distinct users 45 32

Number of distinct exercises 13 13

Number of solutions 555 373

Entries with status Irrelevant 552 617

Entries with status LookedAt 5344 2506

Entries with status Relevant 838 637

Solutions with HS Evidence 41 43

% of solutions with HS Evidence 11,5 % 7,4 %

Table 4.1: Numerical analysis of log data of earlier experiments

logex-hints logex-nohints

Homomorphic Subformulae 19 14

Housekeeping 5 18

Granularity Based 19 20

Table 4.2: Different types of heuristic steps

Exercise 1
Let φ be the formula ¬p ∨ (q → p)

Prove in two different ways φ is a tautology:

a using the truth table for φ.

b using standard equivalences.

Exercise 2
Let φ be the formula ((p ∧q) → r) → (¬p ∧q).

Give both the disjunctive normal form and conjunctive normal form of φ .

Of the twelve submissions, ten contained evidence of Heuristic Step usage. About half of

the students applied double negation twice in one step for instance, an example of which

is shown in Figure 4.3

4.1.4. LITERATURE STUDY

No extensive literature study of mathematics and logic textbooks has been done, but a cur-

sory glance through a number of textbooks, showed little to no results. Most descriptions

found explained the “proper” way to rewrite formulae and provided as much detail and

intermediate steps as possible.

27

Figure 4.3: Part of homework submission with evidence of Heuristic Step

4.1.5. VALIDATION OF CATEGORIES

Two experiments were conducted to validate the identified categories. At the time of the

first experiment, the only supported category was Homomorphic Subformulae, and only

for double negation. At the time of the second experimen, the Granularity-based combina-

tion of De Morgan and double negation was also supported.

The logs of both experiments were analysed in a similar fashion as the “historical” logs

therefore the results can be compared.

LOGS FROM EXPERIMENTS

The log files from both experiments (see Sections 3.4.3 and 3.4.3 for details on the partic-

ipants and setup) were analysed in the same way as the older experiments. The statistics

are found in Table 4.3.

COMPARISON

As can be seen from the data, the availability of Heuristic Steps leads to a much higher

usage percentage, from about 10 % of the exercises to more than a quarter of the solutions

in the first experiment and more than half of the exercises in the second one.

exp1 exp2

Total number of lines 1499 2141

Number of users 13 20

Number of different exercises 78 96

Number of tasks 167 309

Lines with status Irrelevant 93 107

Lines with status LookedAt 930 831

Lines with status Relevant 476 1159

Tasks with HS Evidence 46 175

% of tasks with HS Evidence 27,5 % 56,6 %

Table 4.3: Numerical analysis of log data from new experiments

A more detailed analysis has also been (partially) conducted to determine the type of Heuris-

tic Step actually used. The results are shown in Table 4.4.

The data shows that when Heuristic Steps are available, they tend to be used frequently by

28

epx1 exp2

Homomorphic Subformulae 44 158

Housekeeping - -

Granularity-based 2 23

Table 4.4: Different types of heuristic steps in experimental versions

students. This is also a clear indication that the identified types of steps are relevant. No

evidence of new categories was found during analysis of the data.

4.2. IMPLEMENTING HEURISTIC STEPS IN LOGEX

In order to make use of all the work already done, an effort was made to stay within the

current structure of how LogEx is setup. For example, the main strategy for rewriting to

DNF is coded (in Haskell) as follows:

1 dnfStrategy :: LabeledStrategy (Context SLogic)
2 dnfStrategy = label "DNF" $ repeatS $
3 orRules <|> somewhere (nnfStep |> distrAnd)

The Choice combinator (<|>) 1 indicates that there is no preference for either side. So ei-

ther one of the orRules is applied, or the second option can be used. This is again a choice,

but one with a bias for the left option (|>). So preferably a “nnfStep” is applied, somewhere

to a subformula (or the entire formula), but if this is not applicable, “distrAnd” is also ac-

ceptable.

Since the disrtAnd will convert a Negation Normal Form (NNF) formula into DNF form, our

new rules should really be part of the nnfStep-strategy. A number of implementation op-

tions were considered, which are described here very briefly. More implementation details

can be found in Chapter 5.

1. Client-Only Implementation: change only the UI-module of the ITS and use the un-

derlying back-end as-is. This would be a breach in the architecture of LogEx, would

move complex application logic to the frontend and would cause performance chal-

lenges. There are currently 44 rules in LogEx. Using this approach would lead to

442 = 1936 additional checks which might lead to performance issues. If the number

of steps we want to check increases, the state-space will grow exponentially. Because

of this, this approach was rejected.

2. Heuristic Steps as Rules: add every Heuristic Step as a rewriting Rule to the set al-

ready in LogEx. While this option requires very little modification in the current Lo-

gEx code, the number of different Rules that have to be defined would be very large,

1Note that LogEx uses the legacy version of this combinator. In the current version of IDEAS this combinator

is .|.

29

Figure 4.4: Showing an attempt at using Multiple Implication Elimination in original LogEx

Figure 4.5: Multiple Implication Elimination in the experimental version of LogEx

which would a) be a lot of work and b) cause the same performance issues as in the

Client-Only approach. This solution was also rejected in the end, though the proto-

type used in the October 2019 experiment was built using this technique.

3. Partial Strategies as Rules: define partial strategies that describe the Heuristic Steps

and collapse them into Rules. This allows us to describe the Heuristic Step in a more

abstract fashion. For example: “apply the rule “double.negation” one or more times

in a single step.” The definition of the different Heuristic Steps is more complex than

with the other two approaches, but this solution follows the IDEAS framework best

and does not lead to a large amount of new Rules.

SEEING IT IN ACTION

These Heuristic Steps were all implemented and in use during the second experiment (see

Section 3.4.3).

Figure 4.4 shows how an attempt to apply the rule Implication Elimination multiple times

will give an error. In Figure 4.5 we can see that the experimental version will accept this.

When showing an example derivation it will however still favour the single application of

the rule, as can be seen in Figure 4.6. Finally, in Figure 4.7 we see a combination of DeMor-

gan with two double negations being accepted in one step.

4.2.1. UNIT TEST AND TEST RESULTS

For each of the implemented Heuristic Steps a set of tests were written, which can be run

(automatically or manually) to validate their functioning. More details on these tests and

the full output of the test-runner has been included in Appendix A.

These test use the IDEAS-framework test facilities which have no out-of-the-box support

for calculating code coverage no attempt has been made to calculate this by hand or us-

ing external tooling, such as Haskell Program Coverage (HPC). 2 Using Haskell Program
Coverage In this regard, the test report does not provide a formal proof of any kind. Nev-

2https://wiki.haskell.org/Haskell_program_coverage, retrieved 2020-07-01

30

Figure 4.6: The “Show Complete Derivation” option prefers single Implication Elimination

Figure 4.7: DeMorgan combined with (multiple) Double Negation

ertheless, the fact that all these test pass gives some confidence in the correct workings of

the implemented rules.

4.3. PUTTING HEURISTIC STEPS TO THE TEST

After a number of Heuristic Steps were implemented they were put to the test using two

experiments with students. The response rates were]high: 87% of participants in the first

experiment and 83% of those in the second filled out the survey after the experiment.

4.3.1. SURVEY QUESTIONS AND ANSWERS

A summary of the results from survey held after the two experiments conducted, is shown

here. Some results were redacted to ensure participant anonymity. 3

PROFICIENCY IN PROPOSITIONAL LOGIC

We asked all participants to self-assess their level of proficiency in rewriting propositional

logic. The results are shown in Table 4.5. Most students considered themselves novices or

lower for both sessions.

Proficiency Level 10-2019 01-2020

Fundamental Awareness (basic knowledge) 23 % 32 %

Novice (limited experience) 46 % 53 %

Intermediate (practical application) 31 % 16 %

Advanced (applied theory) 0 % 0 %

Expert (recognized authority) 0 % 0 %

Table 4.5: Proficiency levels of participants

3The complete, unabridged and un-redacted answers are available on request.

31

NUMBER OF PROBLEMS ATTEMPTED

As can be seen from Table 4.6 most participants solved between 6 and 10 problems during

the 1 hour session.

Number of exercises 10-2019 01-2020

<5 8 % 10 %

6-10 77 % 74 %

>10 0 % 10 %

Unspecified 15 % 6 %

Table 4.6: Number of exercises attempted by participants

EASE OF ENTERING STEPS

The ease of entering steps may influence the desire or participants to take “shortcuts” and

apply Heuristic Steps. However, most participants did not feel like this posed much of a

challenge and considered it easy as Table 4.7 shows. The keyboard shortcuts were perceived

as helpful.

Level of ease 10-2019 01-2020

Very easy 8 % 5 %

Easy 46 % 63 %

Not particularly hard or easy 31 % 32 %

Hard 8 % 0 %

Very Hard 8 % 0 %

Table 4.7: Level of ease of entering solution steps

UNEXPECTED REJECTED STEPS

The first experiment was done with a version of LogEx in which the Multiple Double Nega-

tion Heuristic Step was implemented, but none of the others. This lead to false expectations

by the participants with many rejected steps as a result. During the second session a lot

more Heuristic Steps were supported, so less solution steps were (unexpectedly) rejected,

as can be seen in Table 4.8.

Level of ease 10-2019 01-2020

No, not at all 25 % 63 %

Yes, once or twice 50 % 26 %

Yes, on multiple occasions 25 % 11 %

Table 4.8: Rejected valid steps

32

USAGE OF MULTIPLE DOUBLE NEGATION, IMPLICATION AND EQUIVALENCE

Table 4.9 shows that most participants made use of the Homomorphic Sub-formulae Heuris-

tic Step. This is especially true in the second experiment, where more variants of that

Heuristic Step were implemented. These results are supported by the data in the log files.

These show that in the first experiment nine out of thirteen participants entered one or

more steps using the “multiple double negation”-rules. The second experiment nineteen

out of 23 participants did.

Used heuristic step 10-2019 01-2020

Yes 58 % 78 %

No 25 % 11 %

Not sure 17 % 11 %

Table 4.9: Usage of multiple double negations heuristic step

USAGE OF DEMORGAN EN DOUBLE NEGATION

Since the Granularity Based Heuristic Step “DeMorgan and Double Negation” was not im-

plemented in the version of LogEx used in the first experiment, this question was only

asked in the second survey, shown in Table 4.10. A small number of students made use

of this Heuristic Step, which is explainable since it is more advanced in nature than the Ho-

momorphic Sub-formulae are. Data shows that nine out of 23 participants entered one or

more steps containing the demorgan.doubleneg rule.

Used heuristic step 01-2020

Yes 21 %

No 63 %

Not sure 16 %

Table 4.10: Usage of DeMorgan and double negation in one go (only in second experiment).

USEFULNESS OF THE ITS

Table 4.11 show that overall, the participants considered LogEx a valuable tool in aiding

their understanding of propositional logic. In the second experiment the value of the tool

was considered higher than in the first experiment. This could be due to the fact that more

Heuristic Steps were available.

OVERALL SATISFACTION

As can be seen in Table 4.12 most participants are satisfied with their overall experience

using the tool. Though the average score is somewhat higher, and there are no negative

outliers, there does not seem to be a clear indication the students in the second experiment

33

Level of ease 10-2019 01-2020

Not at all 8 % 5 %

A little bit 54 % 63 %

A lot 38 % 42 %

Table 4.11: Contribution to understanding of propositional logic

10-2019 01-2020

Average 7,3 8,0

Mean 8 8

Mode 8 8

Table 4.12: Average, mean and mode for the given grades

were more satisfied than those in the first. The distribution of the scores is similar as can

be seen in Tables 4.13 and 4.14.

The answers to the open questions have been omitted here.

4.3.2. ON PERFORMANCE

To assess the performance impact of the newly implemented rules, a rudimentary sta-

tistical analysis was done using the log-data from the four experiments conducted. The

“before”-situation is comprised of the “logex-hints” and “logex-nohints” sets. None of the

changes were made in LogEx to support Heuristic Steps. The “exp1”-set contained some

(see also Section 5.2.2), the “exp2”-set was from the latest version. All values are in Seconds
4.

MEDIAN, MODE, MAX AND MIN

The Median response time for each set of logs was calculated by taking the average of the

middle two records (when the number of records was even), or the value of the middle one

(when odd) in a sorted list of response times. The following query does this calculation 5:

1 SELECT AVG(responsetime)
2 FROM (
3 SELECT responsetime
4 FROM requests
5 ORDER BY responsetime
6 WHERE source =<log -set -name >
7 LIMIT 2 - (
8 SELECT COUNT (*)
9 FROM requests

4https://hackage.haskell.org/package/time-1.9.2/docs/Data-Time-Clock.html#:NominalDiffTime retrieved

April 20,2020
5From: https://stackoverflow.com/a/15766121/1280810 retrieved April 20, 2020

34

1 2 3 4 5 6 7 8 9 10

0

2

4

Table 4.13: Overall satisfaction scores for the LogEx tooling, 1st session

1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

Table 4.14: Overall satisfaction scores for the LogEx tooling, 2nd session

35

10 WHERE source =<log -set -name >
11) % 2 -- odd 1, even 2
12 OFFSET (
13 SELECT (COUNT (*) - 1) / 2
14 FROM requests
15 WHERE source =<log -set -name >
16)
17)

Since most response times are unique, they were rounded to four decimals before calculat-

ing the Modes:

1 select round(responsetime ,4) , count (*)
2 from requests
3 group by round(responsetime ,4)
4 order by count (*) desc

The minimal and maximal log values were determined by using the MAX and MIN functions

in SQLite. It has to be noted that the log set of “exp1” contains a number of corrupted

records, in which the response time was either NULL or garbage data. These records where

filtered out before doing the calculations.

MEAN RESPONSE TIME AND STANDARD DEVIATION

The mean response time gives an indication for the general performance of the system. It

was calculated using the AVG-function of SQLite. The Variance was also calculated, using

the Mean-value and the following query:

1 select (sum((responsetime -<average >) * (responsetime -<average >))
2 / (count (*) -1))
3 from requests

The Standard Deviation (SD) was calculated by taking
p

Variance. Table 4.15 shows these

values for each of the different log sets.

logex-hints logex-nohints exp1 exp2

Max 0.120186 0.122776 0.339796 0.847603

Min 0.004494 0.004823 0.001350 0.001993

Mean 0.013632 0.016933 0.014189 0.016144

Median 0.010104 0.011517 0.009213 0.012167

Mode 0.0049 0.0053 0.0021 0.0022

Variance 0.000132 0.000186 0.000739 0.000823

SD 0.011481 0.013656 0.027176 0.028689

Table 4.15: Response times in different log-sets of LogEx (rounded)

36

PERFORMANCE IMPACT

Based on the numbers in Table 4.15, it seems that the addition of Heuristic Steps does not

have a large impact on the average response time for LogEx. The lower mode seems to

indicate that most requests perform a bit faster although the difference is very small. The

data shows that the Standard Deviation for “exp1” and “exp2” is roughly twice as high as

those of the earlier experiments, so the performance behaviour is perhaps a little bit more

erratic. There could be any number of explanations for this, ranging from code changes in

the IDEAS framework, server load, or other infrastructural differences. No effort was made

to create comparable circumstances for the different experiments.

Since the first two experiments were conducted using an older version of the Ideas-framework

and development work on LogEx has also continued, it is hard to say the differences in per-

formance are directly linked to the implementation of Heuristic Steps. The numbers show

however that their inclusion does not seriously hamper the average response time of LogEx.

37

5
IMPLEMENTATION DETAILS

This chapter contains technical details on the cleaning up and processing of the Logdata

as well as details on the different implementation considerations made in the prototype.

The chapter can be skipped (or skimmed) by those with less interest in the technological

underpinnings.

5.1. LOG DATA PROCESSING

LOGFILES ENCODING ISSUES

The logs gathered are stored in a SQLite database, which is an open-source file-based database

system and library. 1 Unfortunately the data contained in the log file was encoded incor-

rectly, resulting in poorly readable results, as shown in Figure 5.1

Before any attempt was made to process the logs, the data had to be converted into a prop-

erly encoded version. It turned out the data was encoded using ISO 8859-1 (also known

less formerly as Latin-1) which does not allow Unicode characters used for the connectives

and negations in the equations. As can be seen in Figures 5.2 and 5.3, the tooling used can

correctly display those characters after the conversion.

LOG FILES PROCESS AND TOOLING

In order to find the heuristic steps occurring in the log files, each line, representing a single

step in a solution, had to be examined for evidence of heuristic steps. Next, we could assign

a category to each line as an indication of the presence or absence thereof. An overview of

the different categories assigned and their meaning is shown in Table 5.1.

1https://www.sqlite.org/index.html, retrieved October 14, 2019

38

Figure 5.1: Screenshot DB Browser for SQLite showing a sample of the LogEx log

Category Meaning

Irrelevant
This entry in the log is invalid because it contains only errors, single-line

entries, or steps supplied by the NextStep-service

LookedAt This is a valid log entry, but no evidence of heuristics steps is found in it

Relevant This log entry contains evidence of a heuristic step being used.

Table 5.1: Different categories for log entries.

Some of these classifications were done automatically using SQL, such as the single-line

entries, which were filtered out using the following query:

1 update requests set status = ’Irrelevant ’ where sessionid in
2 (
3 select sessionid s from

39

Figure 5.2: Screenshot of the LogParser tool showing two Tasks

4 (
5 select sessionid , count (*) as cntRows
6 from requests
7 where status is null
8 group by sessionid
9)

10 where cntRows = 1
11)

The other entries had to be manually processed. In order to facilitate this process, a tool

was developed using .NET-Core Razor Pages 2. The web based tool, which is available on-

line 3 made it easier to mark entries in the log. The Log Parser retrieves its information from

the detailed JSON-results that are extracted from the log file.

The interface of the tool is shown in Figure 5.2. As can be seen, the buttons on the right side

of the application allow the reviewer to classify a step.

After evidence of a heuristic step was found, the step was marked as “Relevant”, as can be

seen in Figure 5.3. This screenshot also shows that this particular user has attempted to

resolve the two implications in the original exercise (the first line) in a single step (resulting

in the second line). Although the LogEx tool detected the equivalence of both lines (as can

be seen from the “Correct” message), it was unable to detect a correctly applied rewriting

2https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio, re-

trieved October 14, 2019
3https://logexlogparser.azurewebsites.net/requests

40

Figure 5.3: Screenshot of the LogParser with evidence showing

rule (as can be seen from the empty “Rule” column).

5.2. IMPLEMENTATION DETAILS

The following section contains additional, mostly technical, details on the different imple-

mentation approaches.

5.2.1. CLIENT-ONLY IMPLEMENTATION

The first approach that was considered was to change only the web-application that calls

the LogEx services.

• logic.allfirst: We could simply build support into the LogEx web client by allowing

it to call the “allfirst” service twice in a row to see if two subsequent steps match the

input the student has given. This will only allow us to detect Heuristic Steps that are

part of the ideal solution strategy in the first place.

• logic.allapplications: To allow any two subsequent steps to be matched, we could

also use the “allapplications”-service, which tests the result of all rules in the system

on the current formula. There are currently 44 rules in LogEx. Using this approach

would lead to 442 = 1936 additional checks and might lead to performance issues. If

the number of steps we want to check increases, the state-space will grow exponen-

tially.

41

A major downside to this approach is that all logic moves to the frontend of the system. This

would be a breach of the service-oriented architecture used by IDEAS/LogEx. Furthermore,

the number of calls made by the frontend to the different services would increase, as would

presumably, latency and loading times. Finally, there would not be any usage of the flexible

model the IDEAS-framework offers, nor of the testing facilities already available.

5.2.2. WRITING RULES FOR HEURISTIC STEPS

A second solution that was attempted was to capture all Heuristic Steps into “regular”

rewrite Rules, thus requiring very few adjustments to LogEx code.

Rules in LogEx are defined as Haskell lambda expressions:

1 ruleDoubleNeg :: Rule SLogic
2 ruleDoubleNeg = ruleFor groupDoubleNegation " NotNot " $
3 \x -> Not (Not x) :~> x

The rule is labelled (“NotNot” in this case) and made part of a group of related rules. Finally

the actual rewrite is given. In this expression x is a meta-variable and can be any formula.

In the first implementation used for the first experiment (exp1 in Section 3.4.3) a number

of Heuristic Steps were implemented as simple rewrite rules:

1 ruleDoubleDoubleNegAnd :: Rule SLogic
2 ruleDoubleDoubleNegAnd =
3 ruleFor groupDoubleNegation " DoubleNotNotAnd " $
4 \x y -> Not (Not x) :&&: Not (Not y) :~> x :&&: y

This allows student to use the multi.doubleneg.and rule in their solutions. By adding it to

the groupDoubleNegation the rule falls under the Double Negation umbrella and student

don not even have to indicate whether or not they use the singular of multiple version of

the rule. During the experiment students were actually able to use this Heuristic Step and

made frequent use of it in their solutions.

For many Heuristic Steps, especially those in the Homomorphic Sub-formulae category we

can easily set up additional rules, as shown in Equations 5.1 and 5.2.

DOUBLENOTNOT: ¬¬φä¬¬ψ⇐⇒φäψ (5.1)

DOUBLEDEFIMPL: φ→ψä χ→ω⇐⇒¬φ∨ψä¬χ∨ω (5.2)

The major downside to this approach is that for every possible variant of the Heuristic Step

that needs to be supported, a new Rule has to be defined. Not only for each support bi-

nary connective, but also for the number of double negations that could occur in a given

formula.

42

SIDESTEP: TEMPLATEHASKELL

One of the more interesting possible solution to this downside was to generate different

permutations of expressions dynamically at compile time using TemplateHaskell (for two

occurrences of the same pattern, for three etc.) [SP02].

1 myFunc :: Q Exp
2 myFunc = do
3 x <- newName "x" -- generate a unique variable name , we ’ll cover names

later
4 y <- newName "y"
5 return $ LamE -- lambda expression
6 [VarP x, VarP y] -- pattern matching on ’x’
7 (InfixE (Just (VarE x)) (VarE ’(:&&:)) (Just (VarE y)))

Eventually this route is considered needlessly complicated and unfeasible within the time

frame of the project.

5.2.3. PARTIAL STRATEGIES FOR HEURISTIC STEPS

The approach that best seems to follow the framework is to define partial strategies for the

different Heuristic Steps. In order to allow them to be slotted in between the “normal” rules,

the Strategies are collapsed into Rules.

HOMOMORPHIC SUB-FORMULAE

First we define a strategy that simply consists of applying a particular rule one or more

times, using repeat1 and somewhere. We’re using a Haskell idiom called Zipper, which

allows us to bring part of some data structure into focus, or context, to operate on it [Hue97].

This is what liftToContext does in the following code:

1 multipleApply :: Rule SLogic -> Strategy (Context SLogic)
2 multipleApply r = repeat1 $ somewhere $ liftToContext r

Now we can use this generic strategy to implement all Heuristic Steps in the Homomorphic

Sub-formulae category. Again using the application of Multiple Double Negations as an

example, we could formulate this as follows:

1 multipleDoubleNeg :: Strategy (Context SLogic)
2 multipleDoubleNeg = liftToContext ruleDoubleNeg
3 >|> multipleApply ruleDoubleNeg

Here we make a Strategy that either uses the original ruleDoubleNeg or (>|>) 4 the multiple

application of this Rule. The left-preference choice is used here so in example derivations

and next-step hints LogEx will provide the single application of the Rule by default.

4This is written as .\. in the current version of IDEAS.

43

All we have to do now is to collapse this Strategy into a Rule so it can be used as a solution-

step:

1 ruleMultiDoubleNeg :: Rule (Context SLogic)
2 ruleMultiDoubleNeg = siblingOf groupDoubleNegation $
3 collapseToRule "multi. doubleneg " multipleDoubleNeg

Here, the siblingOf function is used to add the Rule to the Double Negation-group. We then

simply call collapseToRule providing a name and our strategy:

1 collapseToRule :: String -> Strategy a -> Rule a
2 collapseToRule name strategy = makeRule name (applyAll strategy)

Here, applyAll is again a Zipper that will attempt to apply the specified Strategy to every

part of the formula. In this way, Multiple Implication Elimination and Multiple Equivalence

Elimination have been defined.

GRANULARITY BASED RULES

To implement the Heuristic Steps of the Granularity Based type, multiple rules have to be

combined into a strategy, which then has to be collapsed to a Rule once again. For this, the

same mechanisms used for the Homomorphic Sub-formulae can be used.

1 deMorganAndDoubleNegStrategy :: Rule SLogic -> Strategy (Context SLogic
)

2 deMorganAndDoubleNegStrategy dm =
3 (somewhere (liftToContext dm))
4 <*>
5 (multipleApply ruleDoubleNeg)

First we make a Strategy from one of the DeMorgan-rules where we apply a sequence

(<*>) 5 DeMorgan somewhere followed by multiple applications of the ruleDoubleNeg. Af-

ter that we simply use collapseToRule function to turn our strategy into a rule, specifying

the ruleDeMorganAnd and ruleDeMorganOr:

1 ruleDeMorganAndDoubleNeg :: Rule (Context SLogic)
2 ruleDeMorganAndDoubleNeg = siblingOf groupDeMorgan $
3 collapseToRule " demorganand . doubleneg " (deMorganAndDoubleNegStrategy

ruleDeMorganAnd)

HOUSEKEEPING

A number of Housekeeping rules was already available in LogEx, such as the removal of

excessive parentheses. Both of the following partial rewrites are accepted:

¬(¬q ∨ (q → r))

(¬¬p ∧¬(q → r)) De Morgan

5This is written as .*. in the current version of IDEAS.

44

This examples shows De Morgan being applied very strictly. The outer parentheses can be

removed without any problem:

¬(¬q ∨ (q → r))

¬¬p ∧¬(q → r) De Morgan

No other housekeeping Heuristic Steps were part of this prototype implementation.

45

6
THREATS TO VALIDITY

While the findings are promising, there are potential threats to their validity.

6.1. EXTREME BIAS IN THE TEST GROUP.

The group of students that participated in the experiments were not chosen at random.

They volunteered for the experimental sessions. These were students with an interest in

the subject matter or at least a desire to improve their skills.

How this influences the results is hard to predict, but the bias is unmistakeably there. If true

and reliable data is needed, a full Randomized Control Trial (RCT) should be conducted,

preferably with at least two sets of students, one of which has to solve the problems having

Heuristic Steps at their disposal and one group without. That way the effects of the newly

implemented features can be assessed much better.

6.2. BIAS IN EXERCISES

In both experiments the students were given a predefined list of exercises they could solve.

These exercises were chosen in a way that would make the usage of Heuristic Steps more

attractive. An experiment with completely random exercises would provide a much more

realistic usage percentage for Heuristic Steps and might potentially yield new types that

were not present in the log sets analysed in this project.

6.3. SMALL SAMPLE SIZE

The survey data gathered has not been analysed using statistical methods in any way due

to very small sample size. This makes any finding potentially unreliable. An experiment

46

with a much larger sample size could improve this.

6.4. CURRENT PROTOTYPE IS NOT FORMALLY PROVEN CORRECT

No formal proof of the correctness and completeness of the current implementation of

Heuristic Steps is done. Not even the informal checks that are in place (i.e. the test-cases)

have been checked with regards to code coverage. There might well be edge cases that give

erroneous or unexpected results.

6.5. PERFORMANCE STATISTICS ARE TO GENERAL

The performance statistics used in this thesis have been taken from all service calls. This

might lead to a skewed view on actual performance, since many of services do not use the

Heuristic Step code, such as the one to generate a new exercise. Performance was only

measured from a usability standpoint and not quantified beforehand, so the current num-

bers can be seen as an indication that the addition of Heuristic Steps cause no performance

problems, in general.

6.6. LACK OF FEEDBACK MIGHT LEAD TO UNDER-USE

No feedback specifically on Heuristic Steps is generated by the prototype. This may re-

sult in being underused. The current approach to not use the Heuristic Steps in the “Next

Step”-hint might lead to students being unaware of the existence of them. Since no “Buggy

rules” have been implemented for Heuristic Steps, it might also be the case that students

attempted to apply a Heuristic Steps but made an error. They only got back generic feed-

back and altered their solution strategy to exclude heuristic steps.

47

7
CONCLUSIONS AND RECOMMENDATIONS

7.1. CONCLUSIONS

The main research question “How can heuristic steps in solutions for proposition logic

rewriting exercises in the LogEx tutoring system be detected?” was subdivided into three

sub-questions. A brief summary of the answer to each question is listed here:

1. What are common Heuristic Step taken by students and how can they be classified?
Log and homework analysis have indicated that there are at least three distinct types

of Heuristic Steps taken by students: those based on Homomorphic Sub-formulae,

Granularity-Based and Housekeeping. We have focussed most on the first two cat-

egories since the data shows those are used frequently by novices using the LogEx

tutoring system.

2. How can we describe Heuristic Steps in an ITS? We have described a number of

Heuristic Steps using the Domain Specific Language for Strategies available in the

IDEAS-framework. Using this DSL, we were able to efficiently add a number of new

possibilities to the current set of solution steps available to students. The new addi-

tions have been proven to work and are used frequently in experimental sessions.

3. How can we detect Heuristic Steps in entered solution? Since we’re using the me-

chanics built-in to the IDEAS-framework, detection comes “out-of-the-box”. The ex-

isting categories (e.g. DeMorgan-rules or Double Negation-rules) have simply been

extended with our new rules.

Heuristic Steps can be detected in the LogEx tutoring system by implementing them as

Partial Strategies which are collapsed into Rules. The main types of Heuristic Steps have

been identified and when available will be used by users of the ITS.

48

7.2. RECOMMENDED FURTHER RESEARCH

7.2.1. HEURISTIC STEPS MAY PROMOTE SLOPPY WORK

Analysis on logs seems to suggest that when the Heuristic Steps are available they are used

a lot. How will this affect student performance? Having Heuristic Steps at their disposal,

a student might skip over steps they do not fully comprehend. Fact is that in the current

version of LogEx, each and every step entered simply contains a single rewrite action. This

makes it easy for a student to learn them at a very basic level (the smallest grain size possible

in terms of granularity).

Being able to skip over certain steps without full comprehension might lower the learning

effect of the tutoring system. The RCT mentioned earlier in Chapter 6 might be provide

insight into what the effect on the students’ learning is of Heuristic Steps.

A randomized trial to compare student’s performance with and without Heuristic Steps

should be performed analogous to the one performed by Lodder e.a. for previous versions

of LogEx [LHJ19].

7.2.2. STUDENT MODEL

Incorporating a Student Model into the LogEx tutoring system would be a considerable

improvement. The inner feedback loop is covered well, and each exercise in itself can be

solved using hints and appropriate feedback [Van11]. Taking the student’s achievements

and performance into account when generating new exercises might increase the value of

the tutor. Knowing how far a long a student is, can make the system even more dynamic

by allowing access to additional Heuristic Steps, once a certain skill has been adequately

proven. For Granularity Based Heuristic Steps this would be especially important, since

students are in effect skipping over certain steps they may not have completely understood.

The research into and implementation of such a Student Model would be a strong recom-

mendation.

7.2.3. FEEDBACK ON HEURISTIC STEPS

Providing feedback on Heuristic Steps has not been investigated in the context of this project,

but is very important. Most notably, hints could be given about existing Heuristic Steps, or

they could be used as potential “next steps” by LogEx itself. In the current version the non-

heuristic variants or rules have been given precedence over the heuristic ones, but with

proper feedback, this need not be the case. Looking into potential “buggy” Heuristic Steps

could also be a valuable addition in this regard.

49

7.2.4. DIFFERENT TYPES OF HEURISTIC STEPS IN DIFFERENT DOMAINS

The categories for Heuristic Steps found in this thesis might only apply to propositional

logic and can not be extrapolated to other domains. While this does not invalidate the

findings, it diminishes their applicability. In order to find out if the categories translate

into other domains, different types of ITSs can be analysed in a manner similar to the one

described in this thesis. A more universally applicable categorisation of Heuristic Steps

may be found.

7.2.5. PERFORMANCE ANALYSIS

The new additions made to LogEx do not seem to have an adverse effect on the perfor-

mance of the tool. No real evidence of any decrease in responsiveness of the system has

been witnessed, although the analysis was not very extensive. Adding rules to the system

increases the solution space, but by what amount? A rigorous analysis of the performance

impact of the new Strategy-as-rules has to be done, taking into account traversal strategies

in the IDEAS framework 1.

1Bastiaan Heeren, “Traversals with class”. In Een Lawine van Ontwortelde Bomen. Universiteit Utrecht, 2013

50

8
ACKNOWLEDGEMENT

While doing a research project and writing a thesis is often lonely work, especially during a

pandemic with mandatory stay-at-home regulations in place, it would be unfair to take all

the credit for it. This endeavour couldn’t have been completed without guidance and help

from others:

1. First and foremost I want to thank Josje Lodder for being my supervisor. Our bi-

weekly meeting were short and to the point, but enjoyable nevertheless. Your feed-

back and knowledge about LogEx were invaluable and I hope my work is of value to

you when you finish up your doctoral;

2. Bastiaan Heeren proved to be a true fountain of knowledge on all things Haskell and

IDEAS. His keen eye for detail and utter thoroughness in reviewing my work greatly

improved its quality;

3. The students who were kind enough to let me use their homework submissions con-

tributed to the validity of the typology;

4. My employer Fontys Hogescholen was kind enough to provide time and funding which

made it possible to finish the project in the first place;

5. And last, but most certainly not least, my family and friends, who were kind enough

to tolerate my moaning, obsessive late-night LATEX-sessions and missed quality time.

They have supported me throughout the entire process.

Thank you all so very, very much.

Nuenen, July 2020

51

BIBLIOGRAPHY

[Ale+06] Vincent Aleven, Bruce M. McLaren, Jonathan Sewall, and Kenneth R. Koedinger.

“The Cognitive Tutor Authoring Tools (CTAT): Preliminary Evaluation of Effi-

ciency Gains”. In: Intelligent Tutoring Systems. Ed. by Mitsuru Ikeda, Kevin D.

Ashley, and Tak-Wai Chan. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,

pp. 61–70. ISBN: 978-3-540-35160-3.

[Ben+14] JFAK van Benthem, HP van Ditmarsch, JS Lodder, J Ketting, and WPM Meyer-

Viol. Logica voor informatica. Open Univeristeit, Heerlen, 2014.

[BO11] Edward C. Benzel and R. Douglas Orr. “A steep learning curve is a good thing!”

In: The Spine Journal 11.2 (2011), pp. 131–132. ISSN: 1529-9430. DOI: https://
doi.org/10.1016/j.spinee.2010.12.012. URL: http://www.sciencedirect.
com/science/article/pii/S152994301001449X.

[DL07] Ludmila Dostálová and Jaroslav Lang. “ORGANON — The Web Tutor for Basic

Logic Courses”. In: Logic Journal of the IGPL 15.4 (Aug. 2007), pp. 305–311. ISSN:

1367-0751. DOI: 10.1093/jigpal/jzm021. eprint: http://oup.prod.sis.
lan/jigpal/article-pdf/15/4/305/1709324/jzm021.pdf. URL: https:
//doi.org/10.1093/jigpal/jzm021.

[Ger12] Alex Gerdes. “AskElle: a Haskell tutor”. PhD thesis. Open Universiteit Neder-

land, 2012.

[GM89] Jim E Greer and Gordon I McCalla. “A Computational Framework for Granular-

ity and its Application to Educational Diagnosis.” In: IJCAI. 1989, pp. 477–482.

[HJ14] Bastiaan Heeren and Johan Jeuring. “Feedback services for stepwise exercises”.

In: Science of Computer Programming 88 (2014), pp. 110–129. ISSN: 01676423.

DOI: 10.1016/j.scico.2014.02.021. URL: http://dx.doi.org/10.1016/
j.scico.2014.02.021.

[HJ17] Bastiaan Heeren and Johan Jeuring. “An Extensible Domain-Specific Language

for Describing Problem-Solving Procedures”. In: Artificial Intelligence in Edu-

cation. Ed. by Elisabeth André, Ryan Baker, Xiangen Hu, Ma. Mercedes T. Ro-

drigo, and Benedict du Boulay. Cham: Springer International Publishing, 2017,

pp. 77–89. ISBN: 978-3-319-61425-0.

[Hob90] Jerry Hobbs. “Granularity”. In: Readings in qualitative reasoning about physical

systems. Elsevier, 1990, pp. 542–545.

52

https://doi.org/https://doi.org/10.1016/j.spinee.2010.12.012
https://doi.org/https://doi.org/10.1016/j.spinee.2010.12.012
http://www.sciencedirect.com/science/article/pii/S152994301001449X
http://www.sciencedirect.com/science/article/pii/S152994301001449X
https://doi.org/10.1093/jigpal/jzm021
http://oup.prod.sis.lan/jigpal/article-pdf/15/4/305/1709324/jzm021.pdf
http://oup.prod.sis.lan/jigpal/article-pdf/15/4/305/1709324/jzm021.pdf
https://doi.org/10.1093/jigpal/jzm021
https://doi.org/10.1093/jigpal/jzm021
https://doi.org/10.1016/j.scico.2014.02.021
http://dx.doi.org/10.1016/j.scico.2014.02.021
http://dx.doi.org/10.1016/j.scico.2014.02.021

[Hue+11] Antonia Huertas, Josep M Humet, Laura López, and Enric Mor. “The SELL project:

a learning tool for e-learning logic”. In: International Congress on Tools for Teach-

ing Logic. Springer. 2011, pp. 123–130.

[Hue97] Gérard Huet. “Functional pearl”. In: J. functional programming 7.5 (1997), pp. 549–

554.

[KF15] James A. Kulik and J. D. Fletcher. “Effectiveness of Intelligent Tutoring Systems”.

In: Review of Educational Research 86.1 (2015), pp. 42–78. ISSN: 0034-6543. DOI:

10.3102/0034654315581420.

[KHJ17] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. “Code Quality Issues in

Student Programs”. In: Proceedings of the 2017 ACM Conference on Innovation

and Technology in Computer Science Education. ITiCSE ’17. Bologna, Italy: As-

sociation for Computing Machinery, 2017, pp. 110–115. ISBN: 9781450347044.

DOI: 10.1145/3059009.3059061. URL: https://doi.org/10.1145/3059009.
3059061.

[LHJ15] Josje Lodder, Bastiaan Heeren, and Johan Jeuring. “A pilot study of the use of

LogEx, lessons learned”. In: Technical Report (2015), pp. 1–8. ISSN: 18688969.

DOI: 10.4230/LIPIcs.xxx.yyy.p. arXiv: 1507.03671v1. URL: http://
arxiv.org/abs/1507.03671v1.

[LHJ16] Josje Lodder, Bastiaan Heeren, and Johan Jeuring. “A domain reasoner for propo-

sitional logic”. In: Journal of Universal Computer Science 22.8 (2016), pp. 1097–

1122. ISSN: 09486968.

[LHJ19] Josje Lodder, Bastiaan Heeren, and Johan Jeuring. “A comparison of elaborated

and restricted feedback in LogEx, a tool for teaching rewriting logical formulae”.

In: Journal of Computer Assisted Learning (June 2019). DOI: 10.1111/jcal.
12365.

[Ma+14] Wenting Ma, Olusola O. Adesope, John C. Nesbit, and Qing Liu. “Intelligent

tutoring systems and learning outcomes: A meta-analysis.” In: Journal of Ed-

ucational Psychology 106.4 (2014), pp. 901–918. ISSN: 0022-0663. URL: http:
//search.ebscohost.com.ezproxy.elib11.ub.unimaas.nl/login.aspx?
direct=true&db=pdh&AN=2014-25074-001&site=ehost-live.

[MB17] Behrooz Mostafavi and Tiffany Barnes. “Evolution of an Intelligent Deductive

Logic Tutor Using Data-Driven Elements”. In: International Journal of Artificial

Intelligence in Education 27.1 (Mar. 2017), pp. 5–36. ISSN: 1560-4306. DOI: 10.
1007/s40593-016-0112-1. URL: https://doi.org/10.1007/s40593-016-
0112-1.

[MG94] Gordon I. McCalla and Jim Greer. “Granularity-Based Reasoning and Belief Re-

vision in Student Models”. In: Student Modelling: The Key to Individualized Knowl-

edge Based Instruction. Ed. by Jim Greer and Gordon McCalla. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 1994, pp. 39–62. ISBN: 978-3-662-03037-0.

53

https://doi.org/10.3102/0034654315581420
https://doi.org/10.1145/3059009.3059061
https://doi.org/10.1145/3059009.3059061
https://doi.org/10.1145/3059009.3059061
https://doi.org/10.4230/LIPIcs.xxx.yyy.p
https://arxiv.org/abs/1507.03671v1
http://arxiv.org/abs/1507.03671v1
http://arxiv.org/abs/1507.03671v1
https://doi.org/10.1111/jcal.12365
https://doi.org/10.1111/jcal.12365
http://search.ebscohost.com.ezproxy.elib11.ub.unimaas.nl/login.aspx?direct=true&db=pdh&AN=2014-25074-001&site=ehost-live
http://search.ebscohost.com.ezproxy.elib11.ub.unimaas.nl/login.aspx?direct=true&db=pdh&AN=2014-25074-001&site=ehost-live
http://search.ebscohost.com.ezproxy.elib11.ub.unimaas.nl/login.aspx?direct=true&db=pdh&AN=2014-25074-001&site=ehost-live
https://doi.org/10.1007/s40593-016-0112-1
https://doi.org/10.1007/s40593-016-0112-1
https://doi.org/10.1007/s40593-016-0112-1
https://doi.org/10.1007/s40593-016-0112-1

[Mos+03] Jack Mostow, Greg Aist, Paul Burkhead, Albert Corbett, Andrew Cuneo, Susan

Eitelman, Cathy Huang, Brian Junker, Mary Beth Sklar, and Brian Tobin. “Eval-

uation of an automated reading tutor that listens: Comparison to human tutor-

ing and classroom instruction”. In: Journal of Educational Computing Research

- J EDUC COMPUT RES 29 (Oct. 2003), pp. 61–117. DOI: 10.2190/06AX-QW99-
EQ5G-RDCF.

[Nar13] Susanne Narciss. “Designing and Evaluating Tutoring Feedback Strategies for

digital learning envi”. In: 23 (2013), pp. 7–26. ISSN: 20139144.

[Pra14] Rein Prank. “A tool for evaluating solution economy of algebraic transforma-

tions”. In: Journal of Symbolic Computation 61-62 (2014), pp. 100–115. ISSN:

0747-7171. DOI: https://doi.org/10.1016/j.jsc.2013.10.014. URL:

http://www.sciencedirect.com/science/article/pii/S0747717113001338.

[SP02] Tim Sheard and Simon Peyton Jones. “Template meta-programming for Haskell”.

In: Proceedings of the 2002 Haskell Workshop, Pittsburgh. Oct. 2002, pp. 1–16.

URL: https : / / www . microsoft . com / en - us / research / publication /
template-meta-programming-for-haskell/.

[Van11] Kurt VanLehn. “The Relative Effectiveness of Human Tutoring, Intelligent Tu-

toring Systems, and Other Tutoring Systems”. In: Educational Psychologist 46.4

(2011), pp. 197–221. DOI: 10.1080/00461520.2011.611369. eprint: https:
//doi.org/10.1080/00461520.2011.611369. URL: https://doi.org/10.
1080/00461520.2011.611369.

[Yac03] Kalina Yacef. “Experiment and evaluation results of the Logic-ITA”. In: Techni-

cal report / University of Sydney. School of Information Technologies 542 (2003).

[Yac05] Kalina Yacef. “The Logic-ITA in the classroom: a medium scale experiment”. In:

International Journal of Artificial Intelligence in Education 15.1 (2005), pp. 41–

62.

[ZH10] Marc Zimmermann and Daniel Herding. Entwicklung einer computergestützten

Lernumgebung für bidirektionale Umformungen in der Mengenalgebra. Univer-

sitätsbibliothek Dortmund, 2010.

54

https://doi.org/10.2190/06AX-QW99-EQ5G-RDCF
https://doi.org/10.2190/06AX-QW99-EQ5G-RDCF
https://doi.org/https://doi.org/10.1016/j.jsc.2013.10.014
http://www.sciencedirect.com/science/article/pii/S0747717113001338
https://www.microsoft.com/en-us/research/publication/template-meta-programming-for-haskell/
https://www.microsoft.com/en-us/research/publication/template-meta-programming-for-haskell/
https://doi.org/10.1080/00461520.2011.611369
 https://doi.org/10.1080/00461520.2011.611369
 https://doi.org/10.1080/00461520.2011.611369
https://doi.org/10.1080/00461520.2011.611369
https://doi.org/10.1080/00461520.2011.611369

Appendices

55

A
COMPLETE SOURCE CODE, TESTS AND

TESTRESULTS

A.1. SOURCE CODE ADDED TO LOGEX

A.1.1. RULES.HS

Most of the rules and strategies-as-rules are defined here:

1

2 -- Make a rule out of a strategy
3 collapseToRule :: String -> Strategy a -> Rule a
4 collapseToRule n s = makeRule n (applyAll s)
5

6 -- MultiRules
7

8 -- Create a Strategy to apply a particular Rule multiple times
9 multipleApply :: Rule SLogic -> Strategy (Context SLogic)

10 multipleApply r = repeat1 $ somewhere $ liftToContext r
11

12

13 -- Make the multiple application strategy so that at single application
14 -- is preferred above a multiple application .
15 multipleDoubleNeg :: Strategy (Context SLogic)
16 multipleDoubleNeg = (liftToContext ruleDoubleNeg)
17 >|> multipleApply ruleDoubleNeg
18

19 multipleImplication :: Strategy (Context SLogic)
20 multipleImplication = (liftToContext ruleDefImpl)
21 >|> multipleApply ruleDefImpl
22

23 multipleEquivalence :: Strategy (Context SLogic)
24 multipleEquivalence = (liftToContext ruleDefEquiv)

57

25 >|> multipleApply ruleDefEquiv
26

27

28 -- Make actual nameds rule out of the multiple application strategies
29 ruleMultiDoubleNeg :: Rule (Context SLogic)
30 ruleMultiDoubleNeg = siblingOf groupDoubleNegation $
31 collapseToRule "multi. doubleneg " multipleDoubleNeg
32

33 ruleMultiEquivalences :: Rule (Context SLogic)
34 ruleMultiEquivalences = siblingOf groupEquivalence $
35 collapseToRule "multi. equivalence " multipleEquivalence
36

37 ruleMultiImplications :: Rule (Context SLogic)
38 ruleMultiImplications = siblingOf groupImplication $
39 collapseToRule "multi. implication " multipleImplication
40

41 -- CombinationRules
42

43 -- Make Rules out of the application of DeMorgan and double negation in
one go.

44 ruleDeMorganAndDoubleNeg :: Rule (Context SLogic)
45 ruleDeMorganAndDoubleNeg = siblingOf groupDeMorgan $
46 collapseToRule " demorganand . doubleneg " (deMorganAndDoubleNegStrategy

ruleDeMorganAnd)
47

48 ruleDeMorganOrDoubleNeg :: Rule (Context SLogic)
49 ruleDeMorganOrDoubleNeg = siblingOf groupDeMorgan $
50 collapseToRule " demorganor . doubleneg " (deMorganAndDoubleNegStrategy

ruleDeMorganOr)
51

52 ruleDeMorganAndCommunativity :: Rule (Context SLogic)
53 ruleDeMorganAndCommunativity = siblingOf groupDeMorgan $
54 collapseToRule " demorganor .comm" deMorganAndCommunativityStrategy
55

56 -- Formulate the strategy that applies (a) DeMorgan rule followed by
multiple applications of ruleDoublNeg

57 deMorganAndDoubleNegStrategy :: Rule SLogic -> Strategy (Context SLogic
)

58 deMorganAndDoubleNegStrategy dm =
59 (somewhere (liftToContext dm))
60 <*>
61 (multipleApply ruleMultiDoubleNeg)
62

63 deMorganAndCommunativityStrategy :: Strategy (Context SLogic)
64 deMorganAndCommunativityStrategy =
65 (somewhere (liftToContext ruleDeMorganAnd))
66 <*>
67 (somewhere (liftToContext ruleCommOr))

58

A.1.2. STRATGIES.HS

The set of Simplification steps has been extended to include “ruleMultiDoubleNeg”

1 simplifyStep :: LabeledStrategy (Context SLogic)
2 simplifyStep = label " Simplify " $ oncetdPref $
3 orRules <|> andRules <|>
4 useRules [ruleNotTrue , ruleNotFalse]
5 <|>
6 ruleMultiDoubleNeg

Both DeMorgan-strategies have been extend to include the combination of DeMorgan and

Double Negation:

1 deMorganOr :: Strategy (Context SLogic)
2 deMorganOr = liftToContext generalRuleDeMorganOr
3 >|> liftToContext ruleDeMorganOr
4 >|> ruleDeMorganOrDoubleNeg
5

6

7 deMorganAnd :: Strategy (Context SLogic)
8 deMorganAnd = liftToContext generalRuleDeMorganAnd
9 >|> liftToContext ruleDeMorganAnd

10 >|> ruleDeMorganAndDoubleNeg
11 >|> ruleDeMorganAndCommunativity

Finally, the Implication- and Equivalence-elimination strategy has been expanded with out

newly defined ones:

1 eliminateImplEquiv :: LabeledStrategy (Context SLogic)
2 eliminateImplEquiv = label " EliminateImplEquiv " $
3 somewhere (liftToContext ruleDefImpl)
4 >|>
5 ruleMultiImplications
6 >|>
7 oncebuPref (liftToContext ruleDefEquiv)
8 >|>
9 ruleMultiEquivalences

All newly added rules were added to the Module-description in both files. Those changes

are not included here.

A.2. TESTCASES DEFINED

A.2.1. TESTCASES

A set of testcases was defined. They are listed in Tables A.1 and A.2. This mechanism is

built-in into the LogEx CGI-service. Before implementation started, there already was a

large set of testcases for LogEx. Because quite a few of those were in a failing state, this test

set could unfortunately not be used to do regression testing.

59

Input Service Selected Rule Expected

¬(¬p ∧¬q) apply demorganand.doubleneg p ∨q

¬(¬p ∨¬q) apply demorganor.doubleneg p ∧q

¬(¬p ∨¬q) diagnose-string demorganor.doubleneg p ∧q

¬¬p ∧¬¬q ∧¬¬s apply multi.doubleneg p ∧q ∧ s

¬¬p ∨¬¬q ∨¬¬s apply multi.doubleneg p ∨q ∨ s

(¬¬p ↔¬¬q)∨ (¬¬s ↔¬¬r) apply multi.doubleneg (p ↔ q)∨ (s ↔ r)

(¬¬p →¬¬q)∨ (¬¬s →¬¬r) apply multi.doubleneg (p → q)∨ (s → r)

(p ↔ q)∨ (¬¬s ↔ r) apply multi.equivalence
(p ∧ q) ∨ (¬p ∧ ¬q) ∨
(¬¬s∧r)||(¬¬¬¬s∧¬r)

(p → q)∨ (¬¬s → r) diagnose-string demorganor.doubleneg ¬p ∨q ∨¬¬¬s ∨ r

Table A.1: Testcases for different rules

Input Service Expected

¬¬p ∨ (¬¬q−>¬¬r) allfirsts x ∨ y (multi.doubleneg)

x ∨¬¬y (multi.doubleneg)

¬¬x ∨ y (multi.doubleneg)

¬¬x ∨¬¬y allfirsts p ∨ (q → r) (multi.doubleneg)

p ∨ (¬¬q →¬¬r) (multi.doubleneg)

¬¬p ∨ (q → r) (multi.doubleneg)

¬¬p ∨ (q →¬¬r) (multi.doubleneg)

¬¬p ∨ (¬¬q → r) (multi.doubleneg)

Table A.2: Testcases for “allfirst” service

A.2.2. TESTREPORT

The testcases can be run from the command-line using the following command:

1 ./ logic.cgi --test=test/ bigsteps

The output usually only contains details if there are errors during the test-run. Running the

testset above returns the following output, showing that all testcases succeeded:

Directory bigsteps
.
Directory bigsteps/homomorphicSF
.........
Directory bigsteps/granularity
...
–––––––––––––––––––––––––––––––––––––-
Tests : 13
Errors : 0
Warnings : 0

Time : 0.296194843s

60

Suites:
Directory bigsteps (tests: 13, errors: 0, warnings: 0, 0.2926422s)
–––––––––––––––––––––––––––––––––––––-

61

	Summary
	Samenvatting
	Introduction
	Context
	Research method
	Results
	Implementation Details
	Threats to Validity
	Conclusions and recommendations
	Acknowledgement
	Appendix Complete Source Code, Tests and Testresults

