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Abstract 
 

In recent years IS research has given attention to the topic of adaptation strategies or 

task technology adaptation in the information systems. However, what is missing in those 

studies are the reasons behind users making those adaptations and how those adaptations will 

benefit them. By focusing on the usage of the EMR in a health care setting and how it can 

lead to a more effective decision-making process, this thesis proposes a research model 

including behavioral EMR adaptation. To gain an understanding of behavioral adaptation, a 

sample of 133 doctors, nurses, doctor assistants, and other medical professionals that use the 

EMR for their daily work tasks has been collected.  PLS-SEM was used to analyze the 

dataset. Outcomes demonstrate that behavioral EMR adaptation has a significant effect on 

decision-making effectiveness. Furthermore, people that are open to new technologies score 

higher on behavioral EMR adaptation. No mediating effects have been found for behavioral 

EMR adaption due to the absence of a direct correlation between the independent variables 

(computer self-efficacy and personal innovativeness) and the dependent variable (decision-

making effectiveness). There have been no significant effects found for facilitating conditions 

as moderator. This suggests that facilitating conditions is better suitable as an independent 

variable.     

Keywords: Behavioral EMR adaptation, facilitating conditions, personal innovativeness, 

computer self-efficacy, decision-making effectiveness, user coping strategies 
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Summary 
 

In recent years IS research has been giving attention to the concept of adaptation in 

explaining the acceptance of new technologies in organizations. However, what is lacking is 

a clear explanation of why these users start making these changes and what drives those 

changes. This thesis will focus on the role of behavioral EMR adaptation. The EMR-system 

inside health care is used for sharing information about patients and their treatments. The 

EMR has been implemented in the Netherlands and 96% of all medical workers use it. 

Nonetheless, criticism for the EMR involves that the registration into the system takes too 

much time. Therefore doctors, nurses, and other users tend to use workarounds to work with 

EMR. This study will discuss how those workarounds can be used to increase the quality of 

medical decisions for patients. 

The main research question is to what extent does behavioral EMR adaptation 

influences medical decision-making effectiveness in health care. Differences in patterns 

between doctors, nurses, and other medical professionals will be examined. Users engage 

with IT and tend to make small changes to the system. The practical implications for this 

research are that it can reveal how EMR can be successfully implemented in hospitals. 

Moreover, the adaptive behavior of medical professionals can increase the effectiveness of 

their medical decisions. 

This research is based on the scientific theory of task-technology fit and its related 

adaptive structuration theory. Task-technology fit argues that technology should be used to 

create a match between the technology and the tasks it is supporting. New technologies can 

allow people to change work processes, perform their routine work, and allows individual 

decision-making. The adaptive structuration theory examines the reasons for how a fit 

between technology and tasks can be achieved. Two types of adaptation can be distinguished 

within this theory; exploitative technology adaptation and exploratory adaptation. 

Exploitative adaptation refers to users finding new ways to work with the system within the 

existing IT infrastructure. With exploratory adaptation, users will make adjustments to the 

system, and therefore the nature of the system changes. Based on this theory the concept of 

behavioral adaptation is selected in this thesis as the main theory that increases the decision-

making process. Decision-making effectiveness is defined by how well a person can make a 

decision in comparison to their colleagues. This construct is the dependent variable in this 

thesis. When a user can make adjustments to the system, they are better able to use that 

system to fit their daily work needs. The concept of behavioral adaptation is new in research 

and only Wu has written about it. Behavioral adaptation can be described as driving your 

preferences into the functions of a system and work procedures. This way a fit between tasks 

and technology can be discovered. 

Furthermore, in this thesis reasons are being sought why users would make 

adaptations to the system. These ideas are based on coping theory. Coping theory identifies 

that individuals can perceive technology as a threat or opportunity, and looks at the control a 

user has over the technology. The more freedom an individual has for working with a system 

in a way they desire, the more benefits a user will get out of this system. Based on these 

ideas, computer self-efficacy, personal innovativeness, and facilitating conditions were 

selected as the independent variables in this research. When a person is open to new 

technologies (personal innovativeness) they are more prone to find new ways to fit the system 

to their needs. Computer self-efficacy can be distinguished as how well a person perceives 

his or her abilities to work with computers. Facilitating conditions are the support from the 

management and the presence of documentation or support for the IT-system. Facilitating 

conditions would allow an individual to feel more assured if they encounter a problem in the 

system when they make their adjustments to fit in with their daily tasks. 
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An online survey has been conducted for two months to nurses, doctors, and other 

medical workers. A total of 133 useful respondents had been collected. These people were 

contacted through social media, calling the hospital department, and using the personal 

network of the researchers. A majority of the respondents access the EMR every day for their 

work tasks. 

A pretest was executed with two medical doctors and two researchers, to guarantee 

the validity of the questionnaire. Next, common method bias was checked. All the constructs 

scored a VIF under 3.3. This shows that differences in responses are not caused by the 

questions themselves and that the beliefs of the respondents have been measured. 

For this research, an analysis in PLS-SEM has been conducted. In PLS-SEM the 

structural and measurement models are tested. The advantage of using PLS-SEM is that it can 

be utilized to test theories that are still in the developing stage. In this research behavioral 

EMR adaptation is a new concept that has not yet been thoroughly researched. PLS-SEM 

does not require theories that have been already tested empirically. Another advantage of 

PLS-SEM is that it can handle data that has a nonnormal distribution. Since the dataset has an 

overrepresentation of nurses, females, and hospital workers, PLS-SEM is the preferred 

method of analysis. 

A measurement model was made for the constructs of computer self-efficacy, 

personal innovativeness, behavioral EMR adaptation, facilitating conditions, and decision-

making effectiveness. All the measurements were based on research that is empirical and 

validated. The measurement model was reviewed for the constructs of computer self-efficacy, 

personal innovativeness, facilitating conditions, behavioral EMR adaptation, and decision-

making effectiveness.  All the constructs had a Cronbach's Alpha above .8, a Composite 

Reliability above .8, and the AVE above .5. Thus, there were no issues with reliability or 

convergent validity. The items in the constructs explain at least fifty percent of the variance 

within them. Furthermore, the Fornell-Larcker criterion and the HTMT scores of the items, 

prove that the constructs are diverse from each other and there is no issue with discriminant 

validity. As a robustness check, CTA-PLS was performed. This check determines if items in 

the measurement model are reflective or formative. For facilitating conditions and behavioral 

EMR adaptation the CTA-PLS proves that they are reflective. Facilitating seems to be 

formative and personal innovativeness has items that both scored on reflective and formative. 

Since the measurement of these constructs is based on existing research that has been used 

multiple times by researchers, it was decided to keep all the items reflective in the model.  

The next step was to assess the structural model. First, the VIF scores were reviewed. 

All scores were below 5. No constructs were overlapping and no multicollinearity was found. 

To calculate the significance of the relationships between constructs in the model, the 

bootstrapping procedure of 5000 was performed. T-scores of 1.65 with a confidence level of 

90% was used. In other words, the significant scores that were calculated have a probability 

of 90% that they are correct. A significant effect between personal innovativeness and 

behavioral EMR adaptation (β = .236, t = 2.567, p < 0.01) was discovered. Moreover, the 

correlation between behavioral EMR adaptation and decision-making effectiveness (β = .156, 

t = 1.722, p < 0.1) was significant. The R² values show that 10% of the variance can be 

explained by behavioral EMR adaptation and 5.9% of the variance for decision-making 

effectiveness. To determine if these R² are meaningful, the effect f² was calculated. The score 

for personal innovativeness to behavioral EMR adaptation and the score from behavioral 

EMR adaptation to decision-making effectiveness was above 0.02, which states that it is a 

small effect. Additionally, the Q² is measured which looks at the predictive power of the data 

that is not included in the model. The score of Q² is negative 1.4% for decision-making 

effectiveness and behavioral EMR adaptation scored 4.4%. Therefore, the effect size q², 
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which uses Q² in its calculation, was low as well. This indicates that the model lacks 

predictive relevance.  

There is a model fit in this structural model. An SRMR score of 0.78 was calculated 

which is below the threshold of 0.8. No significant mediating effect of behavioral EMR 

adaptation was found for the independent variables computer self-efficacy or personal 

innovativeness. Furthermore, no moderating effects for facilitating conditions could be 

discovered as well.  

The multigroup analysis shows that the research model made no difference for age, 

education, type of institution, and years of experience with the EMR. Women score high on 

the relationship between computer self-efficacy and decision-making effectiveness. The same 

relationship is discovered for nurses. Moreover, there is a significant correlation for medical 

professionals, excluding nurses, between personal innovativeness and behavioral EMR 

adaptation. This would suggest that nurses are not engaged in making changes in the EMR 

system to find harmony between the technology and their tasks.  

The findings in this research oppose the views of Wu. He discovered no relationship 

between behavioral adaptation and post-adoption IT use. In this thesis, a significant 

relationship has been established. Thus, behavioral adaption is a concept worth exploring 

further in future research. Another result contradicts research conducted by Venkatesh in 

which he claimed that doctors do not engage with new technologies at work. It was 

established in this thesis that nurses do not show adaptive behavior when working with the 

EMR. 

In practice, hospitals should encourage people working with the EMR to engage in 

making changes to the system to make their work more effective. Furthermore, the EMR 

should be designed in a less complicated manner, so that the system can be utilized to make 

diagnoses to improve the quality of the decision-making process. 

Future research should focus on acquiring a more focused and bigger sample group. 

There was a lack of predictive power in the model and this in part can be explained by the 

diversity of the sample group. Data was collected at hospitals and other medical facilities, 

between different departments and different professions. Other research could also include 

different types of adaptation to discover if these appear at the same time.  

In short, this thesis has put behavioral EMR adaptation central. This can be a valuable 

tool in explaining how users engage inside hospitals and other workplaces with the EMR and 

it has opened new directions for future exploration.  
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1. Introduction 

1.1. Context 
 

Medical personnel has to deal with organizational, administrative, and technological 

changes in hospitals. The latest of these innovations has been the Electronic Medical Record 

(EMR) system and all the hospitals in the Netherlands have adopted this new technology due 

to governmental regulations. The implementation of the EMR reduces the number of paper-

based medical files, makes it easier for health care professionals to share medical data about a 

patient and thus accuracy of medical decisions can be improved. In 2017 96% of all general 

practitioners in the Netherlands started to use an EMR and share patient data this way with 

hospitals, laboratories, and other general practitioners (Nivel, 2018).  

 However, there has also been criticism of the EMR by health care professionals. 

Research commissioned by the NVZ Dutch Hospitals Association showed that doctors and 

doctor’s assistants complain that the registration of data into the EMR takes too much time 

(NOS, 2016). In designing the EMR the hospitals rely on the input of one or more doctors. In 

reality, each doctor has their preferences on what to add to the system. They experience this 

registration as a burden and they look for ways to work with the EMR in their way. This can 

be by workaround like using the note option in the EMR to add the data instead of in all the 

data fields. Furthermore, there has been a lack of standardization of digital patient data 

exchange (ICT & Health, 2019). Different hospitals use different systems for the EMR that 

each has their way of filling in data.  

This research will focus on how the medical professionals inside hospitals and other 

health care facilities work with the EMR and how they adjust this new technology to be able 

to make better decisions. Health care is an information-intensive environment. By having all 

the medical files in one place, doctors and their assistants should be able to make better 

judgments on the treatment of a patient. However, there has been little research on how 

clinicians use the EMR and how it can aid their decision-making (Liew, Poh, Koh, French, & 

Teh, 2018). In this thesis, the concepts of computer self-efficacy, personal innovativeness, 

facilitating conditions, behavioral EMR adaptation, and decision-making effectiveness are 

introduced. Computer self-efficacy can be defined as the perception that an individual has of 

his or her skills in performing computer-related tasks (Marakas, Johnson, & Clay, 2007). 

Personal innovativeness is the will of an individual to try any new technology (Agarwal & 

Prasad, 1998). Facilitating conditions signify whether an individual believes that the 

technological and organizational infrastructure in an organization exists to support the use of 

the new technology (Sun, 2012; Venkatesh, Morris, Davis, & Davis, 2003). The more help 

and support an individual gets, the more he or she is willing to do with a new system. 

Facilitating conditions can therefore be seen as a moderator (Sun, 2012). Behavioral EMR 

adaptation is interpreted as the exploration of the use of the EMR and to modify work 

processes to find a fit between medical tasks and the EMR system (Wu, Choi, Guo, & Chang, 

2017). The goal here is to attain a fit between daily work processes and technology (Barki, 

Titah, & Boffo, 2007). In IS-literature decision-making effectiveness is defined as the speed 

in which a decision is made and whether an organization understands its customers (Wang & 

Byrd, 2017; DeLone & McLean, 1992). 

1.2. Relevance 
 

It is thus important to get a clear idea of how IT is implemented after its adoption. 

Since the system after its implementation is a different system than a year later. Different 



9 

 

users add their own work processes into the system. How this process of adaptation is 

functioning in an EMR setting, will reveal how the EMR can be successfully implemented in 

hospitals. Moreover, it will be interesting to see how these changes in the EMR by medics 

can lead to more effective decision-making. The main focus is on how doctors and other 

members of staff in a health care setting make subtle changes in the EMR to improve the 

quality of the medical decisions. The EMR in the Netherlands has been recently implemented 

and there are still debates inside hospitals, but also in politics on how to standardize the 

information in the EMR system. By having a clear image of how medics are working with 

EMR daily, the implementation of the next-generation systems of EMR can be better guided. 

1.3. Research questions 
 

Based on the reasons mentioned above, the following research question is proposed: 

 

To what extent does behavioral EMR adaptation influence medical decision-making 

effectiveness in health care?   

 

The research objectives are as follows: 

1. To examine the role of behavioral EMR adaptation as a mediator of personal 

innovativeness and computer self-efficacy on decision-making effectiveness. 

2. To examine the moderating effect of facilitating conditions on behavioral EMR 

adaptation through personal innovativeness and computer self-efficacy.  

3. To examine differences in patterns between doctors, nurses, and other medical 

professionals working with the EMR and their willingness to adapt this new 

technology.  

1.4. Thesis outline 
 

The first chapter describes the background and relevance of behavioral EMR 

adaptation. Plus, the research question was introduced. In the next chapter existing literature 

on task-technology fit, adaptive structuration theory, and coping theory is reviewed. There is 

a need for a theory on behavioral adaptation with EMR. Furthermore, the research model will 

be presented here with the hypotheses. The third chapter describes the methodology. As a 

research method, a survey has been developed to collect data from health professionals 

working in hospitals or health care centers respectively. The data collection strategy describes 

how these health professionals were found. The measurement model with all the constructs is 

further elaborated. For the data analysis, a combination of SPSS and PLS-SEM was used. In 

chapter four the results from the survey will be tested on the research model. The final 

chapter will conclude this thesis by discussing the implications of the results and the research 

objectives will be reviewed.  
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2. Theoretical framework 
 

 This theoretical framework aims to formulate a conceptual model that can explain the 

relationship between behavioral EMR adaptation and decision-making effectiveness.  This 

chapter will begin by clarifying which methods were used to find relevant literature. It will 

then proceed to present the main theories concerning the acceptance of technology and the 

role of technology adaptation within this. Next, the conceptual model will be displayed. 

Finally, the hypotheses will be presented and explained with the existing literature.  

2.1. Research approach 
 

This critical literature review was conducted by searching for relevant papers related 

to the central research question: To what extent does behavioral EMR adaptation influences 

the medical decision-making effectiveness in hospitals? The first step was to search through 

the AIS eLibrary and Google Scholar. The collected articles had a publication date from 1992 

to 2019. As search queries a combination of the main concepts was used (i.e. “behavioral 

EMR adaptation”, ‘Behavioral AND EMR AND adaptation'). Models that were found in that 

literature gave the inspiration to search further for antecedents and mediators in combination 

with EMR (for example; EMR "personal innovativeness"). An overview of all the search 

queries with all the related concepts can be found in Appendix A.  

The next step was to look into Google Scholar and take one article as a starting point 

to find more publications by checking the related articles and who cited the article. This 

method is called forward snowballing. Relevant literature was selected by reading the 

abstracts. Up to this point, a total of eighty-two articles were found.  

A third step in the literature review was to check if any of the literature found was 

published in the eight top journals in the field of information systems. Some articles were in 

the AIS database. However, the sources were different. Since these articles were featured and 

thus endorsed by the AIS board, these articles have been included in the final literature list. 

These journals included ECIS, AMCIS, ICIS, PACIS, and ICEB. As a final result, thirty-

seven articles were selected to find the gap in current research into behavioral EMR 

adaptation and to develop a model from.  

The last step was to look into those thirty-seven selected articles and examine which 

theories those articles base their research on and to search for the original authors of those 

theories. An additional six articles were found this way.  

2.2. Literature review 
 

Information technology use in health care is a central topic in information system 

research (Venkatesh, Zhang, & Sykes, 2011; Ilie, 2013, Anja, Heiko, & Ulrich, 2014; 

Cocosila & Archer, 2016; Goh, Gao, & Agarwal, 2011; Holden, 2010; Hung, Yu, Tsai, & 

Yen, 2013; Liew et al., 2018; Mettler, 2012; Weigel, Landrum, & Hall, 2009; Weeger & 

Gewald, 2013). New technologies are developed and designed to make work faster and more 

efficient. However, these new technologies remain underused (Venkatesh & Davis, 2000). 

Understanding how new technology like the EMR, can lead to better and/or faster medical 

decision-making by medical professionals, is an important research issue. To explain how 

this can be achieved; this thesis will concentrate on task-technology fit and the related 

adaptive structuration theory.  
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2.2.1. Task-technology fit 
 

Goodhue and Thompson (1995) posit that it is crucial for technologies and the tasks it 

is supporting to have a fit to reach individual performance from information technology. 

They developed the task-technology fit model which incorporates both the utilization of 

technology and the match between the technology and the task it is assisting. Goodhue and 

Thompson (1995) also mention that task-technology fit research should focus on decision-

making since new technologies can provide better opportunities to make individual decisions, 

changing work processes, and perform routine tasks. 

2.2.2. Adaptive structuration theory 
 

Adaptive structuration theory (AST) goes one step further than the task-technology fit 

theory by also explaining how this fit can be achieved. AST argues that work processes can 

change as a result of the structures that are shaped by the technology itself and by the social 

interaction users have with the technology (DeSanctis & Poole, 1994, p.143/144). When 

users become involved with IT they have two choices. Either they perform the task with the 

technology as the technology was designed for, or they can supplement this technology and 

attempt making small changes to the technology. Schmitz, Teng, & Webb (2016) make a 

distinction between two types of adaptation: Exploitive technology adaptation and 

exploratory technology adaptation. Exploitive adaptation means that the users add their ideas 

to the existing infrastructure. They make incremental improvements so the needs of the user 

can be better fulfilled. An example is adding photos of products in an ERP system; then other 

users know what product code belongs to which product. Exploratory adaptation is to use IT 

in a way as it was not originally designed to. This can lead to divergent structures (Schmitz et 

al., 2016). To illustrate this, a company app that was originally designed for suppliers to 

quickly contact the company in case of an emergency can be used by employees to arrange 

private meetings. Benlian (2015) investigates how IT-use changes over time. His main focus 

is on IT-use after implementation when capability-broadening (using current knowledge of 

technology) and capability-deepening patterns (learning new skills) may arise (Argyres, 

1996). IT skill acquisition decreases over time. The more time someone spends on using IT, 

the less involved they will become (Benlian, 2015).   

2.2.3. Coping theory 
 

Coping theory originated from psychology and explains that people will develop 

different methods to deal with stress. One of those methods is adaptation (Lazarus, 1993). 

Scholars have brought these concepts into the field of IS research by looking at user 

adaptations (Beaudry & Pinsonneault, 2005; Wu et al., 2017; Kashefi, Abbott, & Ayoung, 

2015) and feature usage (Sun, 2012). New technologies can be disruptive for the existing 

processes in an organization. Beaudry and Pinsonneault (2005) see adaptation as a coping 

strategy. The researchers make a distinction between four types of coping behaviors 

depending on whether the technology is perceived as a threat or opportunity, and whether the 

user has the authority to change the technology itself or not. To get the benefits out of 

technology, users would need to make adaptations to it. This can be by making changes in the 

information system (for example modify, add, delete screens, by personalization or changing 

the functionalities), the work processes (by changing operational procedures or prioritizing 

the workload), or in themselves (get training, put effort in learning how to operate the 

system) (Beaudry & Pinsonneault, 2005). Sun (2012) investigates how and why individuals 
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revise their system use at a feature level. He proposes the concept of adaptive system use as 

the main driver. Adaptive system use is the revisions a user will make into the system, such 

as trying new features, feature substituting, combining features, and give features a new 

meaning (Sun, 2012). 

Ilie (2013) looked at how users in health care handle complex IT systems. To deal 

with complex systems users will try to work around a problem. Bypasses occur when users 

cannot do their job effectively and if the workaround can be achieved in a short time (Ilie, 

2013). Workarounds can be defined as alternative methods to achieve the same goals (Goh et 

al., 2011). The study from Wu et al. (2017) tries to understand the mechanism behind the 

post-adoption of a new EMR system. User coping strategies are divided into cognitive 

adaptation (users focus on the positive effects of IT to confront changes by that IT system), 

affective adaptation (users try to dissociate themselves from the IT system and avoid 

engaging with it) and behavioral adaptation (making personal preferences in the functions of 

a system and work procedures). In the study from Wu et al. (2017) behavioral adaptation is 

not significant. Nonetheless, the other two strategies are significant. Behavioral adaptation is 

a concept that has been overlooked by researchers. Most research focuses on an umbrella 

term of adaptation such as task technology adaptation (Schmitz et al., 2016) or adaptation 

strategies (Sun, 2012). This thesis will give behavioral EMR adaptation a central role to see if 

the concept has explanatory power.  

2.3. Hypotheses and model development 
 

The research model contains five constructs with related hypotheses. Figure 1 displays 

the research model that will be tested. Computer self-efficacy and personal innovativeness 

are independent variables. Facilitating conditions is the moderator and behavioral EMR 

adaptation is the mediator in the model. Finally, decision-making effectiveness is the 

dependent variable. Below an elaboration of the hypotheses will be given.   

 

Figure 1 Research model 
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2.3.1. Computer self-efficacy 
 

Computer self-efficacy is the belief of the individual in his or her own ability to use 

computers in a competent manner (Compeau & Higgins, 1995). If a user of a system has 

good computer literacy, he or she will have the knowledge and skills to make adaptations into 

the system (Marakas et al., 2007). This person knows what the possibilities and limitations 

are of a system. Several studies found a significant effect between computer self-efficacy and 

the intention to use EMR (Hung et al., 2013; Ilie, Seha, & Sun, 2009; Weeger & Gewald, 

2013). Doctors claiming to have high computer skills found working with the EMR easier 

(Hung et al., 2013). Physicians who think they possess computer skills would be better able 

to add information into the EMR. Those people would not experience the system as a barrier 

to their work. Benlian (2015) tested that people with high computer self-efficacy more slowly 

discover new features in a system, than individuals with low computer self-efficacy. 

However, Gaskin, Godfrey, and Vance (2018) found that adaptive behaviors mediate the 

effect of computer self-efficacy on the perceived added value of a technology.   

Therefore, in this thesis, it is hypothesized that a high level of computer self-efficacy 

will more likely allow people to figure out how their tasks and the EMR system can be 

aligned.     

 
Hypotheses 1: Computer self-efficacy is positively associated with behavioral EMR adaptation. 

2.3.2. Personal innovativeness 
 

Scientists interpret personal innovativeness as the willingness to try out new 

applications or technologies (Agarwal & Karahanna, 2000; Cocosila & Archer, 2016). In the 

paper from Agarwal and Karahanna (2000), personal innovativeness has a strong significant 

effect on cognitive absorption. They define cognitive absorption as a strong mental 

connection with technology (Agarwal & Karahanna, 2000). One of the indicators is if 

someone feels they have control over the technology. There is an overlap between the 

construct of cognitive absorption and technology adaptation as defined in this thesis. Personal 

innovativeness also has a positive effect on behavioral intention to adopt EMR (Cocosila & 

Archer, 2016; Kashefi, Nuhu, Abbott, Ayoung, & Alwzinani, 2018). For Ebner, Bassellier, & 

Smolnik (2019) innovation of IT is strongly related to feature adaptation. According to 

Gaskin et al. (2018), innovative users will more easily play with the new technologies they 

encounter and are more likely to discover new ways of using technology for their benefits. 

Furthermore, these users are also more likely to take risks and in return get more benefits out 

of technology. In their study, they discovered that adaptive behavior has a mediating effect 

for personal innovativeness on successful system use (Gaskin et al., 2018). Li, Hsieh, and Rai 

(2013) posit two usage behaviors. Namely using IT routinely (routine use) or finding new 

ways to work with the IT (innovative use). These scholars use personal innovativeness as a 

moderator for innovative use.  

 Hence, it is hypothesized that people with high personal innovativeness are more 

willing to explore all the options a new system has to offer and are therefore more likely to 

make adjustments to that system.    

 
Hypotheses 2: Personal innovativeness is positively associated with behavioral EMR adaptation. 
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2.3.3. Moderating effect of facilitating conditions 
 

Facilitating conditions are defined as the extent to which a person believes that the 

infrastructure of the company exists to support the use of the system (Venkatesh et al., 2003). 

This can either be by training, the availability of a helpdesk, or by support from supervisors 

(Sun, 2012). The control someone has over his or her work is closely related to facilitating 

conditions. A person that feels he or she has the freedom to explore all the options that new 

technology offers and senses the support from his or her organization, will be more favorable 

towards making small adaptations in the way of work or to the system itself (Venkatesh et al., 

2003).  Zhou (2003) discovered that the more developmental feedback supervisors gave to 

their employees, the more likely those employees would show creativity at their work. 

Computer self-efficacy is used in the IS-literature to explain the adoption of new technologies 

or can be used to reinforce the value of learning to administer IT in an organization (Marakas 

et al., 2007). 

In the literature facilitating conditions have been used as independent variable 

(Venkatesh, Brown, Maruping, & Bala, 2008; Anja et al., 2014; Cocosila & Archer, 2016; 

Mettler, 2012) or as moderator (Sun, 2012; Haake, Schacht, & Maedche, 2018). 

Facilitating conditions have no direct significant effect on the behavioral intention to 

use IT (Venkatesh et al., 2003, p.468; Venkatesh et al., 2008; Mettler, 2012). In their research 

Anja, Heiko, & Ulrich (2014) show that physicians who claim to have high computer self-

efficacy, use the medical digital archive system inefficiently. This is due to the lack of 

training with the new system. Huang, Chen, & Hsieh (2014) examined the effect of training 

on computer self-efficacy. They found a positive relationship and advised hospitals to give 

training to their employees. Cocosila and Archer (2016) found no significant relationship for 

facilitating conditions and the expected performance of the EMR. One explanation they give 

is that not all the functionalities of the EMR system are being used since doctors are not 

aware of the existence of those functionalities.   

Sun (2012) discovered that facilitating conditions is a moderator for adaptive systems 

use. If people feel they are supported by their supervisors, they are inclined to do more with a 

new system and are more willing to explore all the options (Zhou, 2003). Other research from 

Haake et al. (2018) used facilitating conditions likewise as a moderator on adaptive system 

use. Nonetheless, as an independent variable, they used situations where an individual has to 

learn and adapt the new technology. As a result, this research found no significant moderating 

effect for facilitating conditions (Haake et al., 2018).   

 Based on the arguments in the literature, the choice was made for facilitating 

conditions to be used as a moderator for computer self-efficacy and personal innovativeness 

in the research model. It seems likely that computer self-efficacy becomes stronger if the 

facilitating conditions are favorable. On the occasion that a company supports an employee in 

exploring new technologies, an individual will have more confidence in working with the 

technology. In return, this person will think highly of his or her computer skills.  

It is further theorized that even if an individual is competent in using new 

technologies, but the organization does not provide the resources to use that technology 

effectively, the individual will not attempt to make adaptations to that system. 

 

Hypotheses 3: The higher the degree of facilitating conditions, the stronger the positive 

relationship between computer self-efficacy and behavioral EMR adaptation. 

Hypotheses 4: The higher the degree of facilitating conditions, the stronger the positive 

relationship between personal innovativeness and behavioral EMR adaptation. 
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2.3.4. Mediating effect of behavioral EMR adaptation on 

decision-making effectiveness  
 

The EMR can be used to make more effective medical decisions if the EMR would 

provide the necessary information (Holden, 2010). The system holds the power to reduce 

human mistakes and improve medical diagnoses (Liew et al., 2018). In the medical field 

making the right decision is important for doctors to give high-quality care to their patients 

(Wang & Byrd, 2017). In the literature, decision-making effectiveness is referred to if a 

decision leads to the desired outcome (Cao, Duan, & Cadden, 2019). Research on decision-

making mostly focuses on the role of IT (DeLone & McLean, 1992; Boulesnane & Bouzidi, 

2013; Sun, 2017). There is a lack of literature that describes the link between decision-

making effectiveness and IT adaptation. Venkatesh (2006) mentions that research on IT 

usage should pay more attention to why a certain IT is not being used in a certain field. For 

instance, if someone believes that the EMR is difficult to use and will not make their lives 

easier, then they will also not try to work with the EMR (Liew et al., 2018). Liew et al. 

(2018) discuss the acceptance of the EMR by doctors working in an Intensive Care Unit. 

Those doctors need a holistic view to treat their patients and the EMR can provide that. They 

see decision-making effectiveness as part of increased productivity. Sun (2017) discovered 

that the use of IT does improve decision-making effectiveness. However, Liew et al. (2018) 

and Sun (2017) do not look into what kind of adaptation behaviors people perform. 

 Wu et al. (2017) is the only research that makes a distinction between three different 

types of adaptation behaviors; cognitive adaptation, affective adaptation, and behavioral 

adaptation. However, their research shows no significant effect on behavioral adaptation and 

post-adoption IT use (Wu et al., 2017). Also, the study from Weigel, Landrum, & Hall (2009) 

shows that if there is no perfect fit between an EMR and a user, this person will make 

adaptations to the technology if possible. Nonetheless, the paper from Weigel et al. (2009) 

did not delve into what drives a doctor or assistant to start making adaptations.  

Barki et al. (2007) assert that researchers must include task-technology and individual 

adaptation behavior when researching the interactions with IT. They found no relationship 

between task-technology adaptation and IS-use related activities (Barki et al., 2007). Schmitz 

et al. (2016) explain that there is a difference between task adaptation behaviors and 

technology adaptation behaviors. In the work of Sun, Wright, & Thatcher (2019) adaptive 

system use will first lead to lower task productivity. These are short term effects since users 

that make adaptations to the system would at first require more time to finish their tasks. 

Eventually, the long-term positive benefits will follow.   

To conclude, the behavioral adaptation of the EMR could be a possible explanation 

for how physicians would achieve high-quality medical decisions. After all, if they would 

make adjustments to the EMR that would make their task easier or they can do their job 

faster, their decision-making would also improve.   

 

Hypotheses 5: Behavioral EMR adaptation is positively associated with decision-making 

effectiveness. 

 

 

 



16 

 

3. Methodology 
 

To research the main research question, an online survey was picked as the research 

method. Explanations will be given why this is the best way to investigate the research 

model. Next, the data collection strategy is discussed. How are the research questions 

researched and where does the data come from? This is followed by the measurement model. 

It will be explained how the constructs are measured and from which existing research the 

indicators are adapted. An analysis of the data was done with SmartPLS 3.3.2 and IBM SPSS 

Statistics 26. The analysis in the measurement model and structural model are explained. 

Lastly, a justification for the use of PLS-SEM can also be found here.  

3.1. Research method 
 

In this study, a deductive approach was followed. The research is designed to test the 

main research question and therefore follows a top-down approach (Saunders, Lewis, & 

Thornhill, 2016, p.51). First, the theory has been crafted and out of this theory, the 

hypotheses followed. Next, the hypotheses of the model are tested. This is also a cross-

sectional study. Only one point in time is being researched (Saunders et al., 2016, p.200).  

An online survey was chosen, so a large sample group of medical professionals, who 

work with the EMR daily, could be collected in a short period. Secondly, a large sample is 

needed to check if the results would be significant. For the type of research, a sample group 

of at least 130 respondents would be desirable if the significance level of 1% would be tested 

because there are two independent variables in the research model in this thesis (Hair, Hult, 

Ringle, & Sarstedt, 2017, p.26).  

An online survey tool named LimeSurvey was used to collect the data. The online 

questionnaire was self-completed by the respondents. This way a large sample could be found 

that was geographically dispersed. Questionnaires can be used for explanatory research to 

explain the causal relationship between variables (Saunders et al., 2016, p.176). A 

questionnaire with closed questions was developed. The goal of this research was to discover 

if doctors and nurses in a hospital make adjustments to the EMR and how it affects the 

quality of the decision making.  

Educational level, age, gender, occupation (specialized doctor, AIOS, nurse or doctors 

assistant, general practitioner), hospital or non-hospital, years of experience with the EMR, 

and frequency per week that the EMR is consulted or adjusted, were collected, to be used as 

control groups in the research model. The full questionnaire can be found in both sections of 

Appendix B.   

3.2. Data collection strategy 
 

Several strategies were used to recruit respondents. The first method of collecting 

respondents was by calling the policlinic departments of hospitals in the Netherlands to ask 

them whether they could spread the questionnaire to doctors or assistants within their 

organization. Another method that was used was snowball sampling, by asking within the 

personal network on Facebook, Linkedin, or by e-mail, if they could forward the 

questionnaire to doctors, nurses, and/or assistants and ask those to help forward the survey to 

their colleagues. A further strategy was using Facebook. Facebook has the option to join 

community groups. In those groups in which nurses are mostly active, the questionnaire was 

posted. The last method to recruit medical professionals for the survey was by using 

LinkedIn. LinkedIn has the option to send people private messages. This was exploited to 
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search for medical professionals and send them a message in which was asked to cooperate 

with the survey and to forward it to their coworkers. Several of the respondents posted the 

survey in the private Facebook groups that they were active in or forwarded the questionnaire 

to their colleagues. This method can be called convenience sampling (Saunders et al., 2016, 

p.303). Anybody who comes in contact with the EMR at their workplace was eligible to be 

contacted. The survey was opened online for 8 weeks between April 2020 and June 2020 and 

in that period 136 people responded to the survey.  

3.2.1. Demographics of the sample 
 

The sample of this study consisted of 136 medical professionals. On average thirteen 

minutes and sixteen seconds was spent by the respondents on the questionnaire. There was no 

missing data in the collected dataset. In LimeSurvey, the option was selected that people 

could only upload the response if every question had been answered. 

Three respondents were deleted due to unengaged responses. Two people answered 

every question as neither agree nor disagree. They were found by looking in Excel at the 

standard deviation. For those respondents, the standard deviation was 0. For another 

respondent, the standard deviation was 0.333 with most answers being neutral. Also, the time 

spent on the questionnaire by these three respondents was below four minutes. After 

inspection of the dataset, no other respondents were found that answered the survey within 

four minutes.   

For the question regarding the educational level, eight respondents answered with 

other. They supplied answers ranging from HBO, post-HBO to courses from the Open 

University. After looking through the answers, it was decided to replace their answers by the 

option most related to their answer. For instance, the answer HBO was replaced by 

Bachelor's degree, post-HBO by Master's degree, opleiding A verpleegkundige plus banaba 

spoed en IZ were replaced by MBO and the answer for additional courses by Bachelor’s 

degree. This way the data was not negatively influenced by these answers and within the 

variable education, two control groups could be created.  

For the question ‘in what type of institution do you work with the EMR?’ the first five 

type of answers referred to a type of hospital (academic hospital, general hospital, specialized 

hospital, etc.) and the possible answers from number six to nine identify workplaces outside 

the hospital, such as general practice center, revalidation center, or nursing home. To analyze 

the data a new dummy variable was created that would make a dichotomy between hospital 

and other medical centers. Respondents that answered with other (nineteen in total) were 

further investigated and divided into hospital and non-hospital.  

One question inquired about the occupation of the respondents. They could answer 

that they identify themselves as a doctor, nurse, assistant doctor, general practitioner, a doctor 

in training or other. Of the 133 respondents, thirty-one replied with other. When cross-

examining their answers, a wide range of professions could be discovered. For example 

anesthetist, dietician, paramedic, midwife, or nurse in a nursing home. Over twenty-one, 

different categories could be distinguished. In the class doctor, all people that are specialized 

doctors are included. In the category assistant doctor, the following job titles were included 

such as an assistant doctor, doctor in training, and doctor in training with a specialization. 

The next category was the nurses and these include nurses, nurses in training, EVV’s, and 

specialist nurses. Only nurses working inside a hospital were included in this category. As a 

consequence of the scope of this research, the categorization was simplified into two groups; 
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one for nurses and one for doctors, assistant doctors, and other medical professionals. The 

sample size of doctors and assistants was below 25. With the inclusion of other medical 

professionals, these three groups made a sample of 48. The group of nurses contained 85 

samples. Hence, a multigroup analysis could be performed.  

 

 Mean  Median Std. 

Dev.   

Kurto-

sis 

Skew-

ness 

Age 3.47 (3 = 36-45 years) 4 (4 = 46-55 years) 1.335 -0.867 -0.344 

Education 3.05 (3 = Bachelor) 3 0.999 -0.400 -0.544 

Frequency of EMR use 1.24(1 = every day) 1 0.709 15.119 3.766 

Years of experience with EMR 2.60 (2 = between 1 

and 5 years) 

2 0.945 -1.020 0.222 

 

Gender 28% male, 72% female 

Institution 65% hospital, 35% other medical institution 

Occupation 9% doctor, 64% nurse, 5% assistant doctor, 22% other 

Table 1 Demographics of the sample (N=133) 

Table 1 shows the demographics of the 133 final participants. Almost two-thirds of 

the participants were nurses. Doctors and assistant doctors accounted for fourteen percent of 

the respondents. A fifth of the respondents had different occupations. Over seventy percent 

was female. Nearly two-thirds of the sample consists of people working inside a hospital. 

Slightly more than a third worked in other medical institutions, for instance, general practice 

centers or nursing homes. A majority of the respondents were between 46 and 55 years old. 

The distribution of age is nonnormal and skewed to the left. In the sample group, most of the 

respondents had completed a Bachelor’s degree on either HBO or university level. Education 

has a nonnormal distribution with also skewness to the left. This was expected since doctors 

and nurses need to be highly qualified to get their credentials. By focusing on experience with 

EMR, the most common group has between one and five years of experience. Again a 

nonnormal distribution of the data can be found. Furthermore, the sample mostly consists of 

medical professionals using the EMR every day. The kurtosis shows a score of 15.119, which 

is high. Additionally, this distribution is strongly skewed to the right. Since this research 

focuses on doctors and nurses working with the EMR, it is acceptable to have this type of 

distribution in the data.  

3.2.2. Ethical issues 
 

To ensure the anonymity of the respondents is an ethical issue. LimeSurvey was used 

for collecting the data in a way that it was not possible to recognize the respondents. All the 

answers were grouped into classes. LimeSurvey is designed for the use of collecting 

anonymous data. The respondents had freedom of choice to complete the questionnaire. They 

were not forced by the HR-departments or their supervisors to join this research. They could 

withdraw their participation at any time during the questionnaire without further 

investigation. Only filled in questionnaires were saved. Before respondents started the 

questionnaire they would get a disclaimer about their privacy and that the answers to the 

questions would only be used for scientific research. Moreover, EMR is a topic that is closely 

related to the privacy of patients. No questions about patient data were asked. Therefore, this 

research complies with the General Data Protection Regulation (GDPR) within the European 

Union.  
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3.3. Measurements 
 

The research model and its constructs are based on former empirical and validated 

research. In this thesis, five constructs are researched e.g. computer self-efficacy, personal 

innovativeness, facilitating conditions, behavioral EMR adaptation, and decision-making 

effectiveness. To be able to measure these constructs a Likert scale of 1 to 7 was developed. 

In Table 10 of Appendix B, the reflective measurement model can be found inside the 

questionnaire. All the constructs in the model are reflective. The reflective measurement 

model indicates that the direction of the construct is to the measures. Furthermore, the 

measures are correlated and are interchangeable. Removing one measure would not change 

the nature of the indicator (Hair et al., 2017, p.43/44). A formative measurement model 

would have no expected measures that are correlated, the indicators are not interchangeable 

and the direction is from the measures to the construct (Hair et al., 2017, p.47). In the 

literature, these five constructs are regarded as reflective. Thus, in this thesis, the constructs 

stayed reflective.   

Each indicator was build up by several questions from the survey. For computer-self 

efficacy, ten items were incorporated from the research of Compeau and Higgens (1995). The 

questionnaire had statements such as “I could complete any particular job using the software 

if someone showed me how to do it first” to measure computer self-efficacy. Personal 

innovativeness was measured with four items (Agarwal & Karahanna, 2000). Statements 

regarding personal innovativeness included “If I heard about new information technology, I 

would look for ways to experiment with it”. The work from Venkatesh et al. (2003) was 

adapted to design the construct of facilitating conditions. Three items were utilized for the 

moderator facilitating conditions. Statements were provided that looked into guidance or 

manuals that are available to the staff (e.g. “guidance was available to me for the use of the 

EMR”). Behavioral EMR adaptation is a mediator in the model and was measured by 

exploring the effort users put to change the functions of the EMR (e.g. “I spent efforts (in 

time and energy) so that the EMR and my tasks fit each other”). For this construct, a 

synthesis between the work of Wu et al. (2017) and Barki et al. (2007) was developed. 

Decision-making effectiveness is the dependent variable and was examined with statements 

about the ability to respond quickly to changes, understanding patients, and making real-time 

decisions (e.g. "I am more capable than my colleagues in responding quickly to change"). 

The items were adapted from the analysis of Cao et al. (2019) to fit the concept of decision-

making into the field of health care.  

3.3.1. Reliability and validity 
 

A pretest has been performed, to ensure the validity of the questionnaire. The survey 

was pretested on two researchers that both have written articles about the EMR and two 

medical doctors to establish whether the research subjects would understand the questions 

and how medical professionals would answer them. An explanation of the goal of the 

research and definitions of the constructs were included in the questionnaire to ensure that 

every interviewee would understand the question at hand. According to the results of the pre-

test, two questions were regarded as too similar by the doctors. These two questions were 

related to the variable behavioral EMR adaptation; ‘I spent efforts (in time and energy) so 

that the EMR and my tasks fit each other’ and ‘I spent efforts (in time and energy) so that the 

EMR and my tasks would be in harmony with each other’. For this reason, the question 'I 

spent efforts (in time and energy) so that the EMR and my tasks fit each other' has been 

deleted from the final questionnaire.   
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To warrant the reliability alternative form was used. Thus, the same question has been 

asked twice (in a separate form) in the questionnaire to spot if the answer would be the same. 

To avoid respondents’ fatigue, only two questions have been asked twice. In particular for the 

concepts of behavioral EMR adaptation and facilitating conditions these control questions 

have been asked. The question ’there is an instruction note for extending or modifying the 

system’ is an alternative for ‘specialized instruction concerning the EMR system was 

available to me’. Sixty-four participants gave the same answer on both the control question as 

to the original question. More than half of the respondents gave a different answer. This 

proves that the control question and the original question have different meanings to the 

people who undertook the survey. Besides, in the pretest, it was not mentioned that these 

questions were too similar. It was decided to keep the control question in the analysis since it 

also increased the Cronbach’s Alpha of facilitating conditions. Furthermore, in the literature, 

it is recommended to use four indicators if possible (Hair, Black, Babin, & Anderson, 2010, 

p.678) 

For behavioral EMR adaptation, the control question was 'I'm using the EMR in a 

different way than when I began using the EMR'. This question was added to verify if 

medical professionals are aware that they are using the EMR differently now.  

The last step was to control for the common method bias. Common method bias 

(CMB) occurs if differences in responses are caused by the instrument instead of measuring 

the beliefs that the instrument should unravel (Kock, 2015, p2). The CMB can exist in 

reflective factors. Formative factors rarely suffer from CMB (Gaskin, 2017). Kock (2015) 

claims that if the factor level VIF occurs to be lower than 3.3, then the model can be 

considered free of common method bias. He reasons that high collinearity leads to inflated 

path coefficients (Kock, 2015, p.5). The VIF proves if the independent variables are 

correlated and were measured by connecting one factor with the remaining factors. For 

example, the VIF for CSE was calculated by connecting BEA to CSE, DME to CSE, FC to 

CSE, and PI to CSE. Every factor got this treatment. As shown by Table 2 all VIF scores are 

below 3.3 and thus no common method bias is present.  

  BEA CSE DME FC PI 

BEA   1.094 1.063 1.039 1.058 

CSE 1.040   1.026 1.016 1.036 

DME 1.062 1.046   1.047 1.059 

FC 1.062 1.063 1.045   1.057 

PI 1.038 1.054 1.059 1.021   

VIF < 3.3 = no common method bias 

Table 2 Common method bias 

3.4. Data Analysis 
 

For the data analysis, IBM SPSS Statistics 26 and SmartPLS 3.3.2 were used. With 

SPSS the data was cleaned up. For the variable personal innovativeness the question ‘in 

general, I am hesitant to try out new information technology’ needed to be recoded. A 

negative answer signifies that the respondent scores high on personal innovativeness while 

the other questions in this variable suggested that a positive answer would express high 

personal innovativeness. Moreover, the variables institution and occupation have been made 

into new variables that can be utilized for the multigroup analysis.  

Next, with SPSS the distribution of the variables was examined for skewness and 

kurtosis. The majority of the items had skewness between 1 and -1. This is within the norm 
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for the data (Hair et al., 2017, p.61). The items CSE_2, BEA_2, PI_2, gender, experience, 

and the institution had negative skewness to the left (>-1). While CSE_4, CSE_5, FC_3, and 

frequency were positively skewed to the right. Except for frequency (kurtosis of 15.119) and 

FC_3, none of them were bigger than 2.2. Based on the published threshold of 2.2, there were 

no kurtosis issues (Sposito, Hand, & Skarpness, 1983). Besides, FC_3 scored 2.605. In the 

literature, it is mentioned that a threshold of 7 can be used for SEM (Byrne, 2013, p.103). The 

kurtosis for FC_3 can be interpreted as not an extreme value. It was opted to retain this 

variable to keep the integrity of the scale and as noted by Byrne (2013) SEM can handle a 

high kurtosis without further issues.  

A PLS path model was created in SmartPLS 3.3.2 consisting of the structural model 

and the measurement model. The structural model is formed by the constructs and the 

underlying relationships between them (inner model or path model). The measurement model 

contains the indicators for the constructs (outer model or factor model). To assess the 

measurement model indicator loadings are calculated. These factor scores determine the 

influence of an indicator on the construct. The closer to 1 the stronger the influence. Next, the 

internal consistency reliability is tested by inspecting the Cronbach’s alpha and composite 

reliability. Internal consistency reliability refers to if the test is performed again, whether the 

same outcomes would be measured. Following, the AVE is tested for convergent validity. 

Convergent validity checks if the measures in the model are related to each other. Following 

is the discriminant validity in which is reviewed if the constructs that should not correlate, do 

not correlate. To demonstrate the discriminant validity the Fornell-Larcker Criterion and the 

Heterotrait-Monotrait Ratios are calculated. The final step is to determine if the measurement 

model is reflective or formative. Therefore the CTA-PLS is applied.  

The structural model is assessed by reviewing the collinearity to see if the 

independent variables of personal innovativeness and computer self-efficacy are correlating 

with each other. Next, to calculate the significance of the regression coefficients, a 

bootstrapping confidence interval was used. Hence, the standard error can be acquired (Hair 

et al., 2017, p.195). The bootstrapping procedure takes the original sample group and 

resamples them into a new sample group (Hair et al., 2017, p.149). Bootstrapping of 5000 

was executed. T-scores above 1.65 are significant at the 90% confidence level for exploratory 

research (Hair et al., 2017, p.153). Thereupon, the R² was estimated. This is the coefficient of 

determinant and will tell about the predictive power of the model (Hair et al., 2017, p.198). 

From the R², the effect size f² can be computed. This is a technique where the exogenous 

construct is removed to discover what its impact is on the endogenous constructs (Hair et al., 

2017, p.201). The f² determines if a significant effect is a meaningful effect. As a guideline 

an effect size of higher than 0.02 is a small effect, higher than 0.15 is a medium effect, and 

higher than 0.35 shows a large effect (Cohen, 1988). 

An examination of the Stone-Geisser’s Q² value followed. This value proves the 

predictive power of the data that is not included in the model (Hair et al., 2017, p.202). An 

omission distance of 8 was selected for the blindfolding procedure. The default setting in 

SmartPLS is 7. However, since there are 133 respondents, the omission distance of 7 could 

not be used. It is not allowed to have an integer value when the sample size is divided by the 

omission distance. There is currently no standard for the omission distance value in the 

literature (Evermann & Tate, 2012, p.3). Furthermore, the lower the distance, the higher 

number of the sample will be discarded. A value of between 5 and 10 is recommended (Hair 

et al., 2017, p.204). By performing a blindfolding procedure on the model and applying the 

cross-validated redundancy approach, the Q² scores were enumerated. From the Q², the effect 

size q² can be quantified. SmartPLS does not provide a calculation for q² and therefore this 

had to be done manually with the following formula: 
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To check if the data fit the model, the Standardized Root Square Residual (SRMR) 

needs to be calculated. SRMR is the square-root difference between the residuals of the 

sample and the hypothesized model.  

Next, the research model was tested by evaluating the mediating effects and 

moderating effects. At last, a multigroup analysis (MGA) was employed to test the research 

model for different groups of respondents. MGA can be used to verify the stability of the 

research model. Ideally, the model has the same significant relationships in the total sample 

as in each subgroup of the sample. If the p-value is significant then there is a significant 

difference in traits instead of measurements. A significant parametric test shows that this 

significance has meaning. MGA can assess at most two distinct groups at the same time (Hair 

et al., 2017, p.42/43).  

SmartPLS is designed to test models with Partial Least Squares Structural Equation 

Modeling (PLS-SEM). This method can be applied when the theory is less developed and the 

goal is to explain why something is happening (Hair et al., 2017, p.15). For PLS-SEM it is 

not necessary to have theories that are already empirically supported (Lowry & Gaskin, 2014, 

p.131). In this thesis, the focus is on behavioral EMR adaptation. Both Wu et al. (2017) and 

Barki et al. (2007) use the concepts of task-technology adaptation or behavioral adaptation in 

their investigations, but not in the context of the EMR. This thesis is a new type of 

exploration of the construct. For PLS-SEM the data distribution can either be normal or 

nonnormal since PLS-SEM is a nonparametric statistical method (Hair et al., 2017, p.60). 

This means that it can be applied to the data that was discovered by the questionnaire, since 

age, frequency of use, education, and years of experience with EMR had nonnormal 

distributions. Each question or statement in the questionnaire was coded from 1 to 7. To 

apply PLS-SEM, the points had to be equidistant. That way the Likert scale can come close to 

an interval-level measurement and then PLS-SEM can be applied (Hair et al., 2017, p.10).  
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4. Results 
 

The analysis in PLS-SEM was divided into three sections. First, the reflective 

measurement model was reviewed by testing for reliability, convergent validity, and 

discriminant validity. Additionally, PLS-SEM was used to examine the structural model to 

establish the relationships between the variables and how strong this relationship is (Hair et 

al., 2017, p.191). To conclude the analysis a multigroup analysis was performed to see if the 

structural model is different for certain groups. 

4.1. Assessment of reflective measurement model 
 

The first step in the assessment of the reflective measurement model is to focus on the 

indicator loadings. Ideally, the loadings of the items are higher than 0.708 (Hair et al., 2019, 

p8) The factor-loadings for all the constructs were above 0.708 apart from BEA_5 and seven 

items in computer self-efficacy. This construct has an issue with item reliability. BEA_5 

scored 0.703 and this difference between the recommended score can be disregarded. In 

Appendix C an overview can be found of the item loadings and their corresponding mean and 

standard deviation.  

Next, the internal consistency reliability was tested by applying Cronbach’s alpha. 

Cronbach’s alpha (α) looks at the intercorrelations between the indicator variables. It is 

recommended to have an α between 0.70 and 0.90 (Fornell & Larcker, 1981). The lowest 

Cronbach’s Alpha calculated was for computer self-efficacy (α is 0.744) and the highest α is 

0.854 for facilitating conditions. These are all in the acceptable range.  

Following, the composite reliability (CR) was measured for all the constructs. CR can 

be used as an alternative to review internal consistency reliability. CR verifies the outer 

loading of the indicator variables (Hair et al., 2017, p.111). The composite reliability should 

also be higher than 0.70. Computer self-efficacy did not meet this requirement, because of the 

score of 0.498. Fornell and Larcker (1981) have said that a score of 0.5 for the composite 

reliability is acceptable if the convergent validity (AVE) is higher than 0.6.  

Afterward, the AVE was scrutinized by evaluating the outer loadings of the indicator 

and the variance between them (Hair et al., 2017, p.114). In the literature, a threshold of 0.50 

is common for AVE (Fornell & Larcker, 1981). At least fifty percent of the variance of the 

items in the construct is explained. All the items met the criteria of at least 0.50, except for 

computer self-efficacy. Computer self-efficacy scored an AVE of 0.319 

 The construct of computer self-efficacy needed to be further investigated, because 

there were problems with the composite reliability and the convergent validity.  After looking 

over the outer loadings, four items of computer self-efficacy were removed from the 

construct. These include CSE_1, CSE_2, CSE_3 and CSE_8, which each had a loading of -

.496, -638, -.043 and .015. Meanwhile, the remaining items had positive loadings. Removing 

these items has increased the AVE to .562, the Cronbach's Alpha to .847, and the Composite 

Reliability to .882 for the construct computer self-efficacy. Besides no issues with 

discriminant validity were detected after removing the four items. Removing more items than 

these four items did not improve the AVE. Moreover, in Appendix D the outer loadings can 

be found for the final analysis.  

The discriminant validity was tested next to check if the constructs are distinctive 

from each other by using cross-loadings. More specifically, if an indicator’s outer loading on 

a construct is higher than its correlation on other constructs (Hair et al., 2017, p.115).  For all 

the items the Fornell-Larcker Criterion shows a higher score on the construct itself than on 
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the other constructs. Therefore, the constructs are all different. Table 3 summarizes all this 

data.  

 

 BEA CSE DME FC PI 

1. Behavioral EMR adaptation (BEA) .777     

2. Computer self-efficacy (CSE) -.134 .749    

3. Decision-making effectiveness (DME) .168 .139 .855   

4. Facilitating conditions (FC)  .193 -.062 .220 .831  

5. Personal innovativeness (PI) .242 -.192 .059 .023 .809 

      

Cronbach’s Alpha .838 .847 .834 .854 .830 

Composite Reliability .883 .882 .893 .899 .883 

AVE .602 .562 .737 .692 .655 
Table 3 Convergent and discriminant validity of reflective constructs 

 

The next step is to calculate the Heterotrait-Monotrait Ratios (HTMT). The HTMT 

calculates the mean value of correlations of items across constructs in comparison with the 

average correlations of the items within the same construct. The HTMT ratio must be less 

than 0.85 for conceptually different constructs (Hair et al., 2019, p.9). Table 4 shows that the 

HTMT ratios were all below the 0.85 thresholds. 
 

 

BEA CSE DME FC 

Computer self-efficacy 0.228 

   Decision making-effectiveness 0.170 0.222 

  Facilitating conditions 0.206 0.135 0.258 

 Personal innovativeness 0.249 0.378 0.097 0.104 
Table 4 Heterotrait-Monotrait Ratios 

A robustness check was done to determine if the items of all the constructs are 

formative or reflective by applying a confirmatory tetrad analysis for PLS-SEM (CTA-PLS). 

This technique calculates tetrads for all the items in a construct. A score that is significantly 

different from zero supports the claim that the measurement is formative. A score of zero 

between the confidence interval low adjustment and the confidence interval high adjustment 

proves to be a reflective model (Hair et al., 2017, p. 287). The results of the CTA-PLS can be 

found in Appendix E. In the research model the constructs computer self-efficacy and 

behavioral EMR adaptation are reflective. Facilitating conditions seems to be a formative 

model. Personal innovativeness has one tetrad making the statement for reflective 

measurement and another tetrad states that it is a formative measurement model. It should be 

noted that even if the CTA-PLS claims that a tetrad is formative instead of reflective or 

reversed, it does not necessarily mean that the measurements should be reversed. The 

measurement model is based on existing research and it can be claimed that the items 

personal innovativeness (Agarwal & Karahanna, 2000), computer self-efficacy (Compeau & 

Higgins, 1995), facilitating conditions (Venkatesh et al., 2003), behavioral EMR adaptation 

(Wu et al., 2017; Barki et al., 2007) and decision-making effectiveness (Cao et al., 2019) are 

all reflective.  
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4.2. Assessment of structural model 
 

The first step in assessing the structural model is to check the collinearity with the 

variance inflation factors (VIF). The VIF scores were all below 5. Plus, only four items 

scored between three and five. This indicates there is sufficient construct validity in the 

model and there is no multicollinearity.  

It was observed that there is a significant effect between personal innovativeness and 

behavioral EMR adaptation (β = .236, t = 2.567, p < 0.01). Furthermore, a significant 

correlation was distinguished between behavioral EMR adaption and decision-making 

effectiveness (β = .156, t = 1.722, p < 0.1). There was no significant effect from computer 

self-efficacy to behavioral EMR adaptation. Additionally, no direct effects between computer 

self-efficacy and personal innovativeness to decision-making effectiveness exist. This implies 

that there is no direct effect of the independent variables on the dependent variable. Since 

there is a significant effect between the dependent variable and the mediating variable plus a 

significant effect between the mediating variable and the dependent variable, there could be a 

cross-over interaction. A further assessment of the model is required, to see if there is a 

significant mediating effect between personal innovativeness and decision-making 

effectiveness for behavioral EMR adaptation.  Moreover, the moderating effect of facilitating 

conditions has not been tested yet.  

Subsequently, the result of the R² analysis shows that behavioral EMR adaptation 

explains 10% of the variance when it is impacted by computer self-efficacy and personal 

innovativeness (R² = 0.10). The impact of computer self-efficacy, personal innovativeness, 

and behavioral EMR adaptation explains 5.9% of the variance of decision-making 

effectiveness. In addition, a calculation of the effect size f² was performed. The effect size for 

the relationship between personal innovativeness and behavioral EMR adaptation is 0.053, 

which indicates a small effect. Behavioral EMR adaptation to decision-making effectiveness 

scores a small effect size of 0.033.   

By applying the cross-validated redundancy approach the Q² was calculated. The Q² 

value for behavioral EMR adaptation scored 0.044. A score larger than 0 indicates that the 

model has predictive relevance (Hair et al., 2017, p.207). Nonetheless, decision-making 

effectiveness had a Q² value of -0.014 which suggests a lack of predictive relevance. The 

effect size q² were computed to examine the relevance of the model (Hair et al., 2017, p.208). 

The q² is evaluated for its relative impact of predictive relevance. Personal innovativeness on 

behavioral EMR adaptation achieved a score of 0.042. This means that personal 

innovativeness has a small predictive relevance for behavioral EMR adaptation. All other 

constructs scored below 0.02 and therefore have no predictive relevance. Table 5 presents an 

overview of the findings. 

 

Relationship Std Beta 

Std 

Error t-value f²  q² 

95% CI 

LL 

95% CI 

UL 

BEA -> DME 0.156 0.105 1.722* 0.033 -0.02 -0.031 0.314 

CSE -> BEA -0.069 0.186 0.402(ns) 0.006 0.005 -0.320 0.279 

CSE -> DME 0.154 0.210 0.837(ns) 0.031 -0.001 -0.252 0.393 

FC -> BEA 0.194 0.104 1.785* 0.038 0.012 0.029 0.338 

PI -> BEA 0.236 0.087 2.567** 0.053 0.042 0.100 0.364 

PI -> DME 0.048 0.115 0.422(ns) 0.002 -0.023 -0.145 0.233 
*** p<0.001 ** p<0.01, *p<0.1, (ns) not significant  

R² (Behavioral EMR adaptation = 0.100; Decision-making effectiveness = 0.059) 

Q² (Behavioral EMR adaptation = 0.044; Decision-making effectiveness = -0.014) 

Table 5 Direct causal model coefficients 
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To check the model fit, the SRMR was calculated. The SRMR in the final structural 

model was 0.078, which indicates there is a model fit since the SRMR should be below 0.080 

(Gaskin et al., 2018, p.68).  

In the structural model, behavioral EMR adaptation is the mediator. To measure the 

effect of this mediator, the indirect effects had to be calculated from the independent 

variables computer self-efficacy and personal innovativeness to the dependent variable 

decision-making effectiveness. The mediating effects can be found in Table 6. The effect of 

personal innovativeness on decision-making effectiveness does increase when it goes through 

behavioral EMR adaptation. The t-value increases from 0.422 to 1.376. However, the t-value 

is lower than 1.65 and is therefore not significant. For computer self-efficacy, the effect even 

shrinks. The t-value of 0.837 drops to 0.379 when behavioral EMR adaptation is used as a 

mediator. In conclusion, there is no significant mediating effect of behavioral EMR 

adaptation on decision-making effectiveness for computer self-efficacy as well as personal 

innovativeness.  
 

Relationship Std Beta Std Error t-value 

95% CI 

LL 

95% CI 

UL 

CSE -> BEA -> DME -0.015 0.036 0.379(ns) -0.083 0.036 

FC -> BEA -> DME 0.032 0.029 1.164(ns) -0.002 0.096 

PI -> BEA -> DME 0.037 0.029 1.376(ns) 0.002 0.102 

** p<0.01, *p<0.05, (ns) not significant 

Table 6 Indirect causal model coefficients 

It is theorized that the relationship between computer self-efficacy and behavioral 

EMR adaptation is positively moderated by facilitating conditions. For moderation, also a 

bootstrapping of 5000 was executed. The moderating effect of facilitating conditions for 

computer self-efficacy is slightly negative with a standardized beta of -0.067.  This implies 

that the higher someone scores on computer self-efficacy and the lower on facilitating 

conditions, the less likely they are going to make adaptations in the EMR. The standardized 

beta for facilitating conditions as a moderator of personal innovativeness is 0.049. The results 

of the moderation analysis are presented in Table 7. 

Relationship Std Beta 

Std 

Error t-value 

95% CI 

LL 

95% CI 

UL 

BEA -> DME 0.149 0.105 1.645(ns) -0.029 0.314 

CSE -> BEA -0.026 0.155 0.147(ns) -0.249 0.262 

CSE -> DME 0.149 0.214 0.800(ns) -0.257 0.396 

FC -> BEA 0.161 0.090 2.362** -0.005 0.290 

FC*CSE -> BEA -0.067 0.158 1.199(ns) -0.253 0.207 

FC*PI -> BEA 0.049 0.108 1.026(ns) -0.137 0.170 

PI -> BEA 0.215 0.089 2.250** 0.069 0.350 

PI -> DME 0.045 0.122 0.426(ns) -0.159 0.239 

*** p<0.001 ** p<0.01, *p<0.1, (ns) not significant  

Table 7 Moderation analysis 
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This is also shown in the simple slope analysis in figure 1. If facilitating conditions 

are present and someone scores low on computer-self efficacy they will score high on 

behavioral EMR adaptation. Nonetheless, there is no moderating effect of facilitating 

conditions on computer self-efficacy to behavioral EMR adaptation due to the t-value not 

being significant.  

 
Figure 2 Simple slope analysis for the moderating effect of FC on CSE  

The simple slope analysis in figure 2 depicts that facilitating conditions has a slight 

positive effect between personal innovativeness on behavioral EMR adaptation. This proves 

that facilitating conditions allow personal innovative doctors or nurses to make adaptations in 

the EMR. The effect is not significant, and no meaningful moderating effect can be 

established.  

 
Figure 3  Simple slope analysis for the moderating effect of FC on PI  

The analysis of the structural model is compiled in figure 4. In conclusion, there was 

support for two of the five hypotheses. Personal innovativeness affects behavioral EMR 

adaptation (hypothesis 2). Furthermore, behavioral EMR adaptation has a significant 

correlation with decision-making effectiveness (hypothesis 5). No support was found for the 

link between computer self-efficacy and behavioral EMR adaptation (hypothesis 1). 

Facilitating conditions present no moderating effects between computer self-efficacy and 

behavioral EMR adaptation (hypothesis 3) or between personal innovativeness and 

behavioral EMR adaptation (hypothesis 4). 
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*** p<0.001 ** p<0.01, *p<0.1, (ns) not significant  
Figure 4 Indirect mediated moderation model 

4.3. Multigroup analysis 
 

By focusing on different groups within the sample to discover if the research model is 

significant, new patterns could be discovered. With PLS-MGA the significant relationships in 

the demographics of the respondents for the variables occupation, age, gender, the frequency 

of use of EMR, education, institution, and experience with the EMR can be demonstrated. 

The frequency of the use of EMR, however, could not be tested in PLS since 113 

respondents said they are using the EMR every day. The group that is working less with 

EMR in the workplace is too low to perform MGA on. MGA requires at least 25 cases. For 

age, there was no significance between people younger and older than 45 years old. Also, 

experience with EMR showed no significance for people working longer than 5 years and for 

those who worked less than 5 years with the EMR. The level of education made no difference 

in the model. The parametric test showed no significance between people who have a 

Bachelor’s degree or higher and medical staff who have a lower educational background. A 

similar result was discovered for the institution. There was no difference between hospital 

workers and people working at other medical institutions.  

Only for gender and occupation, the parametric test showed several significant results. 

According to Table 14 in Appendix F, there is a strong correlation between computer self-

efficacy and decision-making effectiveness for females (β = .397, t = 3.208, p < 0.001). 

Women tend to make better decisions due to computer self-efficacy. The parametric test was 

also significant (t = 2.111, p < 0.1).  

Table 15 in Appendix G shows the MGA for the occupation. The relationship 

between computer self-efficacy and decision-making effectiveness is significant for nurses (β 

= .342, t = 2.372, p < 0.1). In addition, personal innovativeness and behavioral EMR 

adaptation are significant for other medical professionals (β = .452, t = 3.499, p < 0.001) and 

so is the parametric test (β = .397, t = 3.208, p < 0.001). By being personally innovative a 

medical professional other than a nurse will make adaptations to the EMR to align it with 

their daily work. It was expected that nurses would be more favorable in adjusting the EMR. 

However, it is the medical professionals that engage in this type of behavior. 
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5. Discussion, conclusions, and recommendations 

5.1. Discussion  
 

Behavioral adaptation and its effect on the decision-making process is underexposed 

in the literature about IS research, while at the same time studies have shown that users tend 

to make adjustments in the system (Schmitz et al., 2016; Barki et al., 2007; Sun, 2019; 

Weigel et al., 2009). It has, however, not been properly researched what drives doctors, 

nurses, or assistants to make those adaptations. This gap has been addressed in this thesis by 

proposing a model including behavioral EMR adaptation. The main research question 

explores to what extent behavioral EMR adaptation influences medical decision-making 

effectiveness in health care. It was theorized that by adapting the EMR for their tasks doctors, 

nurses, and assistant doctors will make better medical decisions. Or, by not making any 

adaptations to the EMR, and instead only use the system as it was originally intended, would 

not lead to an additional improvement in decision-making. Thus, this study tried to extend the 

literature on task-technology fit.  

The first research objective in this thesis was to examine the role of behavioral EMR 

adaptation as a mediator of personal innovativeness or computer self-efficacy on decision-

making effectiveness. It was discovered in the research model that behavioral EMR 

adaptation has no mediating effect on decision making-effectiveness. Although, there is a 

direct significant relationship between behavioral EMR adaptation and decision-making 

effectiveness. By making adaptations to the EMR, doctors, and nurses do believe that they 

can make better medical decisions. This outcome contradicts the results of Wu et al. (2017). 

Wu et al. (2017) did not find any significant effect on behavioral adaptation and post-

adoption of IT.  

The second research objective was to observe the moderating effect of facilitating 

conditions on behavioral EMR adaptation through personal innovativeness or computer self-

efficacy. No moderating effect could be discovered for facilitating conditions on the 

relationship between personal innovativeness and behavioral EMR adaptation to decision-

making effectiveness. This verifies that when people are more willing to try out new 

software, they will not need additional support from the hospital or medical facility to make 

additional changes in the functions of a system. Instead, they will figure out by themselves 

how to change the functions of the EMR. Facilitating conditions have no moderating effect as 

well on the relationship between computer self-efficacy and behavioral EMR adaptation. It 

seems highly probable that facilitating conditions is an independent variable. While testing 

with SmartPLS, the scores for facilitating conditions were calculated and there was a direct 

significant effect from facilitating conditions on behavioral EMR adaptation.  

The third research objective investigates the different patterns between doctors, 

nurses, and other medical professionals working with the EMR and their willingness to adapt 

this new technology. The findings of this thesis demonstrate that personal innovativeness 

affects behavioral EMR adaptation. Medical professionals that are more open to new 

technologies have a high probability that they will also make adaptations to the EMR to align 

the software with their daily tasks. While comparing nurses with all other medical 

professionals, this relationship is not significant for nurses. It is proven that doctors, doctor 

assistants, and other medical professionals spent effort on harmonizing the EMR and their 

tasks. This counters the research from Venkatesh et al. (2011). Venkatesh et al. (2011) point 

out that doctors with a central role are more negative over a new system and influence the 

supporting medical personnel around them to think negatively about the systems as well. 

However, central players in the supporting role, like nurses, influence usage positively. The 



30 

 

findings of this thesis do not confirm this view and in fact, nurses are the ones who show less 

adaptive behaviors with the EMR.  

5.2. Recommendations for practice  
 

From a practical standpoint, hospitals should encourage their employees to explore 

new functions of the EMR and other software packages. For example, trying new features, 

substituting features, and give new meaning to features (Sun, 2012). Beaudry and 

Pinsonneault (2005) have argued that to get the advantages out of new technologies, users 

have to be able to make adjustments to that technology. One respondent wrote that the EMR 

is too rigid and that they have given up on working with it. Gaskin et al. (2018) claimed that 

adaptive behaviors are best for unstructured tasks. Therefore, hospitals should motivate their 

personnel to make adaptations. The system should be designed so that it allows people to 

make adjustments. There has been evidence that different departments inside hospitals have 

different information needs en thus have different willingness to work with the EMR 

(CHIPSOFT, 2020).  

Another implication is that with the implementation of the EMR, the system should 

also be used for complex data entry to improve the diagnostics that can be made with the 

EMR. This would increase the quality of medical decisions. If the EMR could improve the 

quality of the data that is entered into the system, it should become easier to make diagnostics 

for the medical staff and therefore better medical treatments can be provided. 

One respondent has said the EMR has improved the quality of work inside the 

hospital in comparison to the situation before the EMR. This person, additionally, said that it 

is difficult to use the EMR to make diagnoses with the available data and instead, medics 

have opted for avoidance instead of showing adaptive behaviors. This demonstrates that 

health care workers also use affective adaptation and not only behavioral adaptation. This is 

in line with the research by Wu et al. (2017).   

5.3. Recommendations for further research  
 

This research contains some limitations that further research could address. One of the 

main findings in this research was that there is no mediating effect between behavioral EMR 

adaptation and decision-making effectiveness. Because there were no direct relationships 

between the independent variables (computer self-efficacy and personal innovativeness) and 

the dependent variable (decision-making effectiveness). This might be explained by how the 

questions were framed regarding the variable decision-making effectiveness. For this 

variable, three questions were used. Each question states whether the respondent is more 

capable than his colleagues in responding, quickly to change, making real-time decisions, and 

understanding patients. It could be that the respondents want to be modest and not claim that 

they are better than their coworkers. Instead, a more suitable way of framing would be ‘I am 

more capable now due to the information system than before in responding quickly to 

change, making real-time decisions and understanding patients’. Thus, it is possible to 

measure the change in improving the decisions over time.  

Furthermore, the low explanatory power of the model in this thesis could be due to 

medical professionals using different strategies to gain benefit from the EMR. It might be 

possible that nurses, assistant doctors, or doctors display different kinds of adaptive 

behaviors. Gaskin et al. (2018) have hinted that adaptive behaviors can be in adapting the 

content of the IT-system or by making adaptations in the spirit of the system. By including 
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affective adaptation and cognitive adaptation, it could be discovered which type of adaptation 

correlates with higher quality medical decisions.  

Another limitation involves the sample size and sample group in this study. The 

nature of the data made it difficult to conclude from and the lack of significant correlations 

can be an indication of a too diverse sample group. By focusing the research on hospitals, 

perhaps stronger significant correlations could be found. In addition, a different research 

method could be beneficial. For instance, in-depth interviews or a case study. It might be 

possible that the respondents misinterpret the questions in the survey. The questionnaire 

includes themes the respondents are not familiar with. By applying in-depth interviews or 

case study research, the concept can be better explained by the researchers to the 

interviewees. Benlian (2015) stated that IT skills decrease over time and that people stop 

learning new skills. A majority of the respondents work with the EMR every day for the past 

one to five years. It might be that they made adaptations when they just started to work with 

the EMR. Yet years later stopped doing this. With in-depth interviews, this could be exposed. 

With these recommendations, further research might be able to find significant effects 

between decision-making effectiveness and computer self-efficacy, personal innovativeness, 

or behavioral EMR adaptation.   

Although this current study has a limited scope, the concept of behavioral adaptation 

is worth further exploring. This study justifies the use of behavioral adaptation in research for 

the post-adoption of IT-systems, such as the EMR. The significance between personal 

innovativeness and behavioral EMR adaptation opens avenues for further exploration.  
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Appendix A: Search queries 
 

Construct Search Term(s) AIS 

# of 

articles 

Google 

Scholar 

# of 

articles 

Articles used 

Behavioral EMR 

adaptation 

behav* AND emr AND 

adaptation 

184 16400 Barki et al., 2007; 

Beaudry & Pinsonneault, 

2005; Benlian, 201; 

Ebner, et al.,  2019; 

Gaskin et al., 2018; Goh 

et al., 2011; Ilie, 2013; 

Schmitz et al., 2016; 

Sun, 2012; Sun et al., 

2019; Venkatesh et al., 

2003; Wu et al., 2017  

"behavior* emr 

adaptation" 

0 0 

individual emr 

adaptation 

249 31700 

“individual emr 

adaptation”  

262 0 

"individual adaptation 

behavior"  is 

20 33 

"individual adaptation 

behavior"  it 

20 29 

“task technology 

adaptation” 

13869 55 

"adaptive system use" 67 253 

adaptations of electronic 

health records 

2208 152000 

“IT feature use”  20025 36 

Personal 

innovativeness 

emr "personal 

innovativeness" 

9 374 Agarwal & Karahanna, 

2000; Agarwal & Prasad, 

1998; Cocosila & 

Archer, 2016; Ebner et 

al., 2019; Gaskin et al., 

2018; Kashefi et al., 

2018; Li et al., 2013; Wu 

et al., 2017 

"personal 

innovativeness" 

551 9550 

Decision-making 

effectiveness 

emr "decision-making 

effectiveness" 

2 61 Boulesnane & Bouzidi, 

2013; Cao et al., 2019; ; 

DeLone & McLean, 

1992; Holden, 2010; 

Liew et al., 2018; Sun, 

2017; Venkatesh, 2006; 

Wang & Byrd, 2017 

emr adaptation 

"decision-making 

effectiveness" 

1 115 

"information technology" 

adaptation "decision-

making effectiveness" 

75 1930 

"information technology" 

adaptation "better 

decisions" 

490 18100 

"information technology" 

adaptation "better 

decisions" healthcare 

115 10900 

"information technology" 

"decision*" healthcare 

3714 77000 
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adaptive "information 

technology" "decision*" 

healthcare 

2182 41600 

adaptive "information 

technology" "quality of 

decision*" healthcare 

24 1660 

behavioral expectation 

system use healthcare 

decision 

2471 95200 

"it feature use"  

healthcare decision 

making 

3 12 

Computer self-

efficacy 

emr "computer self-

efficacy" 

25 946 Anja et al., 2014; 

Benlian, 2015; Cocosila 

& Archer, 2016; 

Compeau & Higgins, 

1995; Hung et al., 2013; 

Ilie et al., 2009; Marakas 

et al., 2007; Mettler, 

2012; Weeger & Gewald, 

2013 

"computer self-efficacy" 1076  

Facilitating 

conditions 

emr "facilitating 

conditions " 

32 674 Ilie et al., 2009; Haake et 

al., 2018; Huang, Chen, 

& Hsieh, 2014; Sun, 

2012; Venkatesh et al., 

2000; Venkatesh et al., 

2003; Venkatesh et al., 

2008; Venkatesh et al., 

2011; Weeger & Gewald, 

2013; Zhou, 2003 

emr “facilitating 

conditions “ adaptation 

24 1030 

Task-technology 

fit 

“task-technology fit”  1101 15300 Goodhue & Thompson, 

1995 

Coping theory “Coping theory”  91 22700 Beaudry & Pinsonneault, 

2005; Ilie, 2013; Kashefi 

et al., 2015; Lazarus, 

1993; Wu et al., 2017 

Adaptive 

Structuration 

Theory 

“Adaptive structuration 

theory”  

15597 5700 DeSanctis & Poole, 

1994; Argyres, 1996; 

Schmitz et al., 2016; 

Weigel et al., 2009 
Table 8 Results research found in AIS and Google Scholar, 1992 – 2019 
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Appendix B: Questionnaire 

Section 1: General questions 
Label Question Choose an answer 

Profess What is your current qualification?  

  

o Specialist doctor (1) 

o Resident (specialist) (3)  

o General practitioner (4) 

o Resident (3) 

o Nurse (2) 

o Doctor’s assistant (3)  

o Other (2 or 4) 

Edu What is your highest educational level?  o Doctorate (1) 

o Master (2) 

o Bachelor (3) 

o MBO (4) 

o High school (5)  

o Other (2, 3 or 4) 

Insti In what type of medical facility do you work 

with the EMR? (In case of employment in 

multiple facilities, please select the one choice 

in which you work the most with the EMR) 

o General hospital (1) 

o University Medical Center 

(NL) (1) 

o University Medical Center 

(BE) (1) 

o Clinical hospital (1) 

o Military hospital(1) 

o Centre for Nursing(2) 

o Rehabilitation Center(2) 

o GGD (NL)(2) 

o Other(1 or 2) 

Freq How many times do you enter data in the EMR 

or consult the EMR?  

o Every day (1) 

o Several times a week (2) 

o Once a week (3) 

o Less than once a week (4) 

o Never (5) 

Exp How long have you been working with the 

EMR? 

o Less than 1 year (1) 

o Between 1 and 5 years (2) 

o Between 5 and 10 years (3) 

o Longer than 10 years (4) 

Age What is your age? 

 

o 18-25 (1) 

o 26-35 (2) 

o 36-45 (3) 

o 46-55 (4) 

o 56-65 (5) 

o 65+ (6) 

Gender What is your gender? o Male (1) 

o Female (2) 
Table 9 General questions (coding is in parentheses) 
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Section 2: Research questions 
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Personal innovativeness Agarwal & Karahanna, 2000 

Personal innovativeness is defined as an individual trait reflecting one’s willingness to try 

out any new technology. 

If I heard about new information technology, 

I would look for ways to experiment with it 
PI_1 0 0 0 0 0 0 0 

In general, I am hesitant to try out new 

information technology 
PI_2 0 0 0 0 0 0 0 

Among my peers, I am usually the first to try 

out new information technologies 
PI_3 0 0 0 0 0 0 0 

I like to experiment with new information 

technologies 
PI_4 0 0 0 0 0 0 0 

Computer self-efficacy  Compeau & Higgins, 1995 

Computer self-efficacy can be considered the belief that one has the capability to perform a 

particular behavior. 

I could complete any particular job using the 

software if there was no one around to tell 

me what to do as I go 

CSE_1 0 0 0 0 0 0 0 

I could complete any particular job using the 

software if I had never used a package like it 

before 

CSE_2 0 0 0 0 0 0 0 

I could complete any particular job using the 

software if I had only the software manuals 

for reference 

CSE_3 0 0 0 0 0 0 0 

I could complete any particular job using the 

software if I had seen someone else using it 

before trying it myself 

CSE_4 0 0 0 0 0 0 0 

I could complete any particular job using the 

software if I could call someone for help if I 

got stuck 

CSE_5 0 0 0 0 0 0 0 

I could complete any particular job using the 

software if someone else had helped me get 

started 

CSE_6 0 0 0 0 0 0 0 

I could complete any particular job using the 

software if I had a lot of time to complete the 
CSE_7 0 0 0 0 0 0 0 
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job for which the software was provided 

I could complete any particular job using the 

software if I had just the built-in help facility 

for assistance 

CSE_8 0 0 0 0 0 0 0 

I could complete any particular job using the 

software if someone showed me how to do it 

first 

CSE_9 0 0 0 0 0 0 0 

I could complete any particular job using the 

software if I had used similar packages 

before this one to do the same job 

CSE_10 0 0 0 0 0 0 0 

Facilitating conditions Adapted from Venkatesh et al., 2003 

The extent to which a person believes that there is an organizational and technical 

infrastructure to support his or her use of a system. As in this case, the EMR. It is used to 

represent the external support one can get from the working environment.   

Guidance was available to me for the use of 

the EMR system  
FC_1 0 0 0 0 0 0 0 

Specialized instruction concerning the EMR 

system was available to me 
FC_2 0 0 0 0 0 0 0 

A specific person (or group) is available for 

assistance with EMR difficulties 
FC_3 0 0 0 0 0 0 0 

There is an instruction note for extending or 

modifying the system 
FC_4 0 0 0 0 0 0 0 

Behavioral EMR adaptation  Wu et al., 2017; Barki et al., 2007 

Concerns the degree to which users change the functions of the EMR system and task 

procedures to fit personal preferences. 

I spent efforts (in time and energy)on 

changing functions of the EMR system to fit 

my work 

BHA_1 0 0 0 0 0 0 0 

I spent efforts (in time and energy) on 

changing my tasks so that they better fit the 

EMR system 

BHA_2 0 0 0 0 0 0 0 

I spent efforts (in time and energy) so that the 

EMR and my tasks would be in harmony 

with each other 

BHA_3 0 0 0 0 0 0 0 

Overall, I spent efforts in recommending 

changes to the EMR system 
BHA_4 0 0 0 0 0 0 0 
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I’m using the EMR in a different way than 

when I began using the EMR 
BHA_5 0 0 0 0 0 0 0 

Decision-making effectiveness  Adapted from Cao et al., 2019 

To adapt the functions in the EMR-system and task procedures on personal preferences can 

improve the effectiveness of the decision-making process. 

I am more capable than my colleagues in 

responding quickly to change in the status of 

a patient by consulting the EMR 

DME_1 0 0 0 0 0 0 0 

I am more capable than my colleagues in 

making the correct decisions based on real-

time data in the EMR 

DME_2 0 0 0 0 0 0 0 

I am more capable than my colleagues in 

understanding patients in their treatment 
DME_3 0 0 0 0 0 0 0 

Table 10 Research questions (coding in parentheses) 
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Appendix C: Indicator item loadings 
 

Construct & Items Item loadings Mean 

Standard 

Deviation 

Behavioral EMR adaptation 

   BEA_1 0.804 4.556 1.736 

BEA_2 0.758 4.015 1.690 

BEA_3 0.809 4.684 1.605 

BEA_4 0.801 4.556 1.624 

BEA_5 0.703 4.752 1.652 

Computer self-efficacy 

   CSE_1 -0.496 5.218 1.553 

CSE_2 -0.638 4.120 1.645 

CSE_3 -0.043 4.586 1.452 

CSE_4 0.737 5.376 1.180 

CSE_5 0.622 5.782 0.976 

CSE_6 0.742 5.248 1.253 

CSE_7 0.370 5.278 1.178 

CSE_8 0.015 4.992 1.265 

CSE_9 0.821 5.466 1.167 

CSE_10 0.506 5.376 1.128 

Decision-making effectiveness 

   DME_1 0.890 4.474 1.549 

DME_2 0.929 4.789 1.344 

DME_3 0.747 4.699 1.487 

Facilitating conditions 

   FC_1 0.901 5.338 1.481 

FC_2 0.906 5.135 1.481 

FC_3 0.769 5.737 1.195 

FC_4 0.735 5.090 1.390 

Personal innovativeness 

   PI_1 0.825 5.068 1.287 

PI_2 0.695 4.752 1.633 

PI_3 0.826 4.173 1.620 

PI_4 0.879 4.256 1.639 
Table 11 Items and descriptive statistics 
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Appendix D: Outer loadings  
 

 

BEA CSE DME FC PI 

BEA_1 0.802 

    BEA_2 0.762 

    BEA_3 0.813 

    BEA_4 0.796 

    BEA_5 0.705 

    CSE_10 

 

0.667 

   CSE_4 

 

0.833 

   CSE_5 

 

0.752 

   CSE_6 

 

0.834 

   CSE_7 

 

0.495 

   CSE_9 

 

0.851 

   DME_1 

  

0.892 

  DME_2 

  

0.934 

  DME_3 

  

0.723 

  FC_1 

   

0.901 

 FC_2 

   

0.907 

 FC_3 

   

0.768 

 FC_4 

   

0.735 

 PI_1 

    

0.825 

PI_2 

    

0.695 

PI_3 

    

0.826 

PI_4 

    

0.879 
Table 12 Outer loadings after removal 4 items in CSE 
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Appendix E: CTA-PLS  
 

Tetrads Std Beta Std Error t-value p-value CI  

Behavioral EMR adaptation 

     1: BEA_1,BEA_2,BEA_3,BEA_4 0.928 0.424 2.220 0.026* [-0.033, 1.939] 

2: BEA_1,BEA_2,BEA_4,BEA_3 0.178 0.551 0.322 0.747(ns) [-1105, 1.460] 

4: BEA_1,BEA_2,BEA_3,BEA_5 0.900 0.406 2.248 0.025* [-0.018, 1.873] 

6: BEA_1,BEA_3,BEA_5,BEA_2 -0.494 0.258 1.968 0.049* [-1120, 0.080] 

10: BEA_1,BEA_3,BEA_4,BEA_5 -0.862 0.393 2.230 0.026* [-1805, 0.024] 

Computer self-efficacy 

     1: CSE_10,CSE_4,CSE_5,CSE_6 0.109 0.064 1.736 0.083* [-0.049, 0.277] 

2: CSE_10,CSE_4,CSE_6,CSE_5 0.081 0.082 0.974 0.330(ns) [-0.130, 0.287] 

4: CSE_10,CSE_4,CSE_5,CSE_7 0.113 0.056 2.082 0.037* [-0.023, 0.261] 

6: CSE_10,CSE_5,CSE_7,CSE_4 -0.091 0.074 1.296 0.195(ns) [-0.287, 0.087] 

7: CSE_10,CSE_4,CSE_5,CSE_9 0.010 0.056 0.219 0.826(ns) [-0.128, 0.158] 

10: CSE_10,CSE_4,CSE_6,CSE_7 0.075 0.071 1.071 0.284(ns) [-0.103, 0.258] 

16: CSE_10,CSE_4,CSE_7,CSE_9 -0.022 0.101 0.224 0.823(ns) [-0.279, 0.234] 

22: CSE_10,CSE_5,CSE_6,CSE_9 -0.001 0.060 0.048 0.962(ns) [-0.158, 0.148] 

26: CSE_10,CSE_5,CSE_9,CSE_7 -0.052 0.060 0.890 0.373(ns) [-0.208, 0.098] 

Facilitating conditions 

     1: FC_1,FC_2,FC_3,FC_4 0.733 0.319 2.331 0.020* [0.130, 1.382] 

2: FC_1,FC_2,FC_4,FC_3 0.842 0.315 2.717 0.007** [0.253, 1.489] 

Personal innovativeness 

     1: PI_1,PI_2rev,PI_3,PI_4 0.584 0.317 1.900 0.057* [-0.001, 1.241] 

2: PI_1,PI_2rev,PI_4,PI_3 0.923 0.305 3.108 0.002** [0.375, 1.571] 

*** p<0.001 ** p<0.01, *p<0.1, (ns) not significant 
Table 13 CTA-PLS  
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Appendix F: Multigroup Analysis for gender 
 

Relationship Gender Std Beta 

Std 

Error  t-value p-value 

BEA -> DME 

  

  

Female 0.088 0.122 0.704 0.482(ns) 

Male 0.173 0.204 0.853 0.394(ns) 

Parametric test     0.380 0.705(ns) 

CSE -> BEA 

  

  

Female 0.086 0.124 0.730 0.466(ns) 

Male -0.184 0.224 1.236 0.217(ns) 

Parametric test     1.523 0.130(ns) 

CSE -> DME 

  

  

Female 0.397 0.115 3.208 0.001*** 

Male -0.129 0.274 0.570 0.569(ns) 

Parametric test     2.111 0.037* 

FC -> BEA 

  

  

Female 0.163 0.100 1.942 0.053* 

Male 0.045 0.194 0.019 0.985(ns) 

Parametric test     0.954 0.342(ns) 

Moderating Effect 

FC*CSE -> BEA 

   

Female 0.043 0.179 0.489 0.625(ns) 

Male -0.127 0.173 0.653 0.514(ns) 

Parametric test     0.656 0.513(ns) 

Moderating Effect 

FC*PI -> BEA 

   

Female -0.029 0.127 0.915 0.360(ns) 

Male 0.126 0.108 0.860 0.390(ns) 

Parametric test     0.975 0.332(ns) 

PI -> BEA 

  

  

Female 0.240 0.104 2.422 0.016* 

Male 0.153 0.208 0.853 0.394(ns) 

Parametric test     0.357 0.722(ns) 

PI -> DME 

  

  

Female 0.092 0.128 0.688 0.492(ns) 

Male 0.102 0.243 0.433 0.665(ns) 

Parametric test     0.067 0.947(ns) 
*** p<0.001 ** p<0.01, *p<0.1, (ns) not significant 

Sample size: female = 96; male =  37 
Table 14 Multigroup analysis for gender 
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Appendix G: Multigroup Analysis for occupation 
 

Relationship Occupation Std Beta Std Error  t-value p-value 

BEA -> DME 

  

  

Nurse 0.124 0.120 0.978 0.329(ns) 

Medical professional 0.188 0.192 0.917 0.360(ns) 

Parametric test     0.274 0.784(ns) 

CSE -> BEA 

  

  

Nurse -0.041 0.137 0.340 0.734(ns) 

Medical professional 0.092 0.168 0.821 0.412(ns) 

Parametric test     0.838 0.404(ns) 

CSE -> DME 

  

  

Nurse 0.342 0.139 2.372 0.018* 

Medical professional -0.200 0.329 0.943 0.346(ns) 

Parametric test     2.095 0.038* 

FC -> BEA 

  

  

Nurse 0.156 0.100 1.749 0.081* 

Medical professional 0.102 0.165 0.782 0.434(ns) 

Parametric test     0.255 0.799(ns) 

Moderating Effect 

FC*CSE -> BEA 

  

Nurse -0.076 0.163 0.899 0.369(ns) 

Medical professional -0.056 0.356 1.018 0.309(ns) 

Parametric test   

 

1.492 0.138(ns) 

Moderating Effect 

FC*PI -> BEA 

   

Nurse -0.038 0.121 1.039 0.299(ns) 

Medical professional 0.118 0.097 0.981 0.327(ns) 

Parametric test     1.258 0.211(ns) 

PI -> BEA 

  

  

Nurse 0.131 0.132 1.019 0.309(ns) 

Medical professional 0.452 0.177 3.499 0.001*** 

Parametric test     2.212 0.029* 

PI -> DME 

  

  

Nurse 0.070 0.169 0.181 0.856(ns) 

Medical professional -0.079 0.218 0.236 0.814(ns) 

Parametric test     0.297 0.767(ns) 
*** p<0.001 ** p<0.01, *p<0.05 

Sample size: nurse = 85; medical professional = 48 

Table 15 Multigroup analysis for occupation 
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Appendix H: Reflective essay 
 

For the past ten months, I have been writing and mostly rewriting my thesis. This 

journey has given me new insights into how to conduct research and has updated my existing 

knowledge. In this reflective essay, I would like to contemplate what I have learned, what 

part of my research project could go better, and what segment went well.   

The questionnaire and the main model were already given by the supervisor. The basis 

of the thesis is already constructed on a strong foundation. Instead, the effort by me could be 

put into selecting relevant literature and to gain a better understanding of the field of 

technology acceptance. My search was therefore more focused.  

One aspect of my research project did not go well and that is finding respondents 

through e-mail. I made an e-mail list containing the e-mail addresses of 1068 nurses and 

doctors. The intention was to send this through Mailchimp, which at my current work is 

commonly used. Most of the e-mails got bounced or ended up in the spam filter. Normally a 

response of 8% would be expected. Instead, this approach has led to almost none additional 

respondents. I discovered that the days of finding respondents through e-mail and forums are 

over and instead this has changed to social media. By using Facebook and LinkedIn Premium 

most of my respondents could be collected. On Facebook, there are community groups that 

mostly include nurses. By joining and posting the survey in these groups, has led to 

additional responses. The most effective method is writing a private message through InMail 

to nurses and ask them to help fill in the questionnaire and sent it further to their coworkers. 

The downside is that LinkedIn Premium only allows 15 private messages and you need to 

have a link with them (for example if you went to the same university or worked at the same 

workplace). Asking nurses to connect on LinkedIn for you to send the questionnaire to them 

has proven zero results.    

The biggest adjustment I made to my research practice was changing the approach 

from an exploratory approach to an affirmative approach. After the data was collected from 

the survey, I analyzed the survey responses in SPSS by checking the reliability and the 

number of factors by applying exploratory factor analysis (EFA). I was testing if the 

assumptions, which were made a priori of this research, were correct. However, the factors 

chosen a priori were based on prior research and thus this approach was not necessary. 

Instead administering the model in SmartPLS to test the reliability, then the AVE, and lastly 

the discriminant reliability would be a more fitting procedure. Furthermore, Hair et al. (2017) 

mention that cluster analysis and EFA is a first-generation technique and that PLS-SEM has 

been developed to overcome the weaknesses of these first-generation methods. PLS-SEM is a 

second-generation technique (Hair, et al., 2017, p3/4). 

By using SmartPLS to analyze the answers of the respondents, I could improve my 

knowledge of statistics. Concepts like model fit and effect size were new to me. SmartPLS 

proved to be an intuitive tool that was easy to use. Furthermore, videos by James Gaskin and 

others that explain how to perform certain tests in SmartPLS were a valuable resource. This is 

a new way of learning for me and it opens possibilities to go deeper into the data. I could, for 

example, figure out how to do the CTA-PLS test or calculate the q² from the Q². 

Further, adjustments that I could have made was to do the data collection at an earlier 

time. Especially in my network people work in the Thorax department at the Erasmus MC 

(specialized in the part of the human body between the neck and the abdomen). These doctors 

and nurses were extremely busy preparing for the influx of patients due to Covid-19. 

  What I would do the same in the event of another research project is how the 

theoretical framework was done. The first step was to find related articles and to review the 

quality of the journals that published those articles. The next step would be, to inspect the 
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theories in those papers and theorize which would fit into my research. In this thesis, I chose 

coping theory as an important theory to base my work on, instead of TAM or UTAUT 

models, which are common in research on the acceptance of technology. Due to this thesis 

using personal traits of nurses and doctors to explain how the EMR is being used in daily 

work routines, coping theory which comes from psychology proved to be a better fit.  

All in all, my learning experience from this research project has been positive. One of 

my main goals of joining this university was to refresh my knowledge of the statistical field 

and discover what new methods have been developed. I have learned how to use the internet 

effectively to do better research and reach out to respondents. New skills were acquired 

regarding PLS. It was interesting to see how computer sciences also started to look into the 

importance of the human factor in handling the software. Companies can build a great EMR, 

but if the people for who it is designed are using it differently or even rejecting it, this can 

have strong results on the effectiveness of the EMR. 

 

 

 

 

 

 


