
Open Universiteit
www.ou.nl

MASTER'S THESIS

Finding Chinks in the Armour

Software Vulnerability Prediction using Deep Learning on Graph Representations of
Source Code

Elema, B.W.A (Bart)

Award date:
2020

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 09. Sep. 2021

https://research.ou.nl/en/studentTheses/03616b2b-e4bd-4dbe-bdbb-1138435933a3

Finding Chinks in the Armour
Software Vulnerability Prediction using
Deep Learning on Graph Representations
of Source Code

B.W.A. Elema

St
ud

en
t:

D
at

e:
27

/0
3/

20
20

FINDING CHINKS IN THE ARMOUR
SOFTWARE VULNERABILITY PREDICTION USING

DEEP LEARNING ON GRAPH REPRESENTATIONS OF
SOURCE CODE

by

B.W.A. Elema

in partial fulfillment of the requirements for the degree of

Master of Science
in Software Engineering

at the Open University of the Netherlands, Faculty of Management, Science & Technology
Master’s Programme in Software Engineering

to be defended publicly on Friday, 27 March 2020 at 13:00.

Student ID number:
Course code: IM9906
Graduation committee: Prof. dr. M. C. J. D. van Eekelen (Chair), Open University

Dr. A. J. Hommersom (Supervisor), Open University
Dr. ir. H. P. E. Vranken (Supervisor), Open University

An electronic version of this thesis is available at http://dspace.ou.nl/.

http://dspace.ou.nl/

DEDICATION

−?−
For

Alex & Marc
−?−

ii

ACKNOWLEDGEMENTS

In pursuing a master’s degree I have encountered more hurdles than can be summarised
in this section. I have been very fortunate to have been able to count on family, friends,
teachers, and colleagues to offer me a helping hand or welcome distraction during this,
sometimes trying, period. In this light, I would like to thank my supervisors Dr. A.J. Hom-
mersom and Dr. ir. Harald Vranken. Your excellent advice, suggestions and comments have
kept me on track during the final stages of this study. I would also like to express my eternal
gratitude to Marieke, my wife-to-be, for standing by my side during the difficult times as
well as the magical ones. I know I have spent more than a reasonable amount of time star-
ing seemingly blankly at pages of incomprehensible text scrolling across a laptop screen
when there was plenty of other work to be done around the house. I do however vow to
make it up to you and Marc for the rest of our lives.

Bart

iii

CONTENTS

Dedication ii

Acknowledgements iii

List of Figures vi

List of Tables vii

Summary viii

1 Introduction 1
1.1 Deep Learning Vulnerability Prediction with Graphs 2
1.2 Thesis Outline . 2

2 Preliminaries 3
2.1 Software Vulnerabilities . 3

2.1.1 Injection vulnerabilities . 3
2.1.2 Related vulnerability types . 5

2.2 Vulnerability Research . 5
2.2.1 Static analysis using graphs . 6

2.3 Machine Learning . 8
2.3.1 Reinforcement, unsupervised and supervised Learning 8
2.3.2 Performance metrics for classifiers . 10

2.4 Deep Learning . 12
2.4.1 Architecture . 12
2.4.2 Training . 14
2.4.3 Hyperparameters . 15
2.4.4 Deep learning for vulnerability prediction 16

3 Research Design 18
3.1 Research Questions . 18
3.2 Research Method . 18

3.2.1 PHP Source code representation as code property graphs. 20
3.2.2 Vulnerability classification using deep learning classifiers 25
3.2.3 Evaluating the performance of our classifiers 28

3.3 Research Contribution . 28

4 Classifier Development 30
4.1 Classifiers per Vulnerability . 30

4.1.1 Classifier for OS command injection (CWE-78) 31
4.1.2 Classifier for cross site scripting (CWE-79) 32
4.1.3 Classifier for SQL-injection (CWE-89) . 33
4.1.4 Classifier for open redirect (CWE-601) . 34

iv

CONTENTS v

4.2 Conclusion . 35
4.2.1 Limits to the grid search . 35

5 Classifier Comparison 37
5.1 Tools . 37

5.1.1 RIPS . 37
5.1.2 Pixy . 38
5.1.3 WIRECAML . 38

5.2 Results . 38
5.2.1 OS Command injection (CWE-78) . 38
5.2.2 Cross-site scripting (CWE-79). 39
5.2.3 SQL-injection (CWE-89) . 39
5.2.4 Open redirect (CWE-601) . 40

5.3 Conclusion . 40

6 Discussion 41
6.1 Research Outcome . 41

6.1.1 R.Q. 1 Representing code property graphs 41
6.1.2 R.Q. 2 Classifier development. 42
6.1.3 R.Q. 3 Classifier comparison . 43
6.1.4 Research question and answer . 44

6.2 Research Contributions . 44
6.3 Limitations . 44

6.3.1 Processing power . 44
6.3.2 Data set . 45

6.4 Related Work . 45
6.5 Future Work . 46

A Appendix SAMATE PHP Code Sample 47

B Appendix Full Code Property Graph
sample№167182 49

Bibliography 51
Books . 51
Academic articles . 51
Miscellaneous . 52

Glossary 55

LIST OF FIGURES

2.1 AST, CFG and PDG representations . 7
2.2 Example of a property graph . 7
2.3 Different types of typical ML problems . 9
2.4 Accurracy vs precision bullseye . 10
2.5 Artificial neural perceptrons . 12
2.6 Sigmoid, hyperbolic tangent and ReLu . 13
2.7 An example of a neural network . 13
2.8 Overfitting example . 14
2.9 K -fold cross validation . 15

3.1 Our general research approach visualised . 19
3.2 Pruned CPG representation of sample№167182 22
3.3 Feature distribution per sample and per line of code 24
3.4 Splitting the data set . 25
3.5 Examples of trends encountered in a grid search 27

4.1 PR-curve for Cerium . 31
4.2 PR-curve for Nitrogen. 32
4.3 PR-curve for Lithium . 33
4.4 PR-curve for Arsenic . 34

B.1 CPG representation of sample№167182 . 50

vi

LIST OF TABLES

2.1 Confusion matrix . 10
2.2 Different hyperparameters explained . 15

3.1 Vulnerability categories used in our research . 20
3.2 Examples of features in the CPG . 23
3.3 Example of a path data set . 24
3.4 Hyperparameter ranges for the grid searches . 26

4.1 Optimised configuration for CWE-78 . 31
4.2 Classification report and confusion matrix for Cerium 31
4.3 Optimised configuration for CWE-79 . 32
4.4 Classification report and confusion matrix for Nitrogen 32
4.5 Optimised configuration for CWE-89 . 33
4.6 Classification report and confusion matrix for Lithium 33
4.7 Optimised configuration for CWE-601 . 34
4.8 Classification report and confusion matrix for Arsenic 34
4.9 Summarising the different vulnerability classifiers. 35
4.10 Manual tuning: Nitrogen versus Tellurium . 35

5.1 Origin of evaluation data per tool used. 38
5.2 OS Command injection score comparison . 38
5.3 XSS score comparison . 39
5.4 SQLi score comparison . 39
5.5 Open redirect score comparison . 40

6.1 Summary of the performance of our vulnerability classifiers. 42

vii

SUMMARY

A vulnerability could be compared to a weak link in a chain, exploiting this weakness will
affect the integrity of the entire chain. As modern day software becomes more and more
interlinked, software systems could be considered more akin to a chain mail than a single
chain – with a single vulnerability having a possible devastating effect on the ’armour’ of a
software system.

With software playing an ever increasing part in daily life, the need to prevent vulner-
abilities is also unrelenting. This is the reason why research into detecting and preventing
vulnerabilities remains a popular subject.

As PHP is one of the most prevalent programming languages, and notoriously vulner-
able to ’injection’ – an attacker introducing malicious instructions into the program flow
to detrimental effect on the integrity of the system – we decide to focus our research on
detecting these specific types of vulnerabilities.

We base our research largely on the research on graph representations of software by Ya-
maguchi, Lottmann, and Rieck. [1] The code property graphs defined by Yamaguchi, Golde,
Arp, et al. combine the expressiveness of abstract syntax trees, control flow, and program
dependence graphs to capture syntactic, semantic and structural properties of source code.
We propose a novel variation on these code property graphs, from which we extract paths
based on edges within these graphs. These path based data points retain the syntactic,
semantic and structural expressiveness while discarding superfluous elements.

We build a data set out of samples from the SAMATE PHP test suite pertaining to SQL-
injection, Cross site-scripting, OS Command injection and Open Redirect vulnerabilities.
We split these data sets in a training, testing and validation data set for each of these vul-
nerability categories with which we will train a densely connected feed-forward neural net-
work to predict the presence of each of these vulnerabilities. Using a grid search we deter-
mine the most effective configuration for the individual deep learning vulnerability classi-
fiers.

In comparing our classifiers to other open source approaches to vulnerability predic-
tion, using several tools (WIRECAML, Pixy and RIPS), we find that our novel approach
yields classifiers which generally match or surpass the performance of these methods. More-
over it shows the potential of combining graph representations of source code with ma-
chine learning classifiers.

Our tooling, including our pre-trained models, will be made available under the MIT
licence.

viii

1
INTRODUCTION

Software systems are becoming a more and more integral part of our lives, with any think-
able device ranging from your smartphone, your refrigerator, and billions of other devices
getting connected through software and the internet. These software systems are designed
to make things better or easier for their human owners and operators, allowing for food to
be ordered by addressing your digital assistant or unlocking incredible computing power
to anyone who requires it at the click of a button.

Many interactive software systems today are unfortunately not impervious to malicious
use. Specially crafted input can be put to detrimental use on the integrity of carefully de-
signed software. As a result, control flows might be altered, data might be tampered with
or privileges might be modified to make software divert from the specification which the
author had in mind. Where an isolated flaw in a stand-alone system might be allowable, an
individual flawed system, when connected to other systems, forms a possible attack vector
for a would-be attacker with sufficient access.

There are many attack paths an attacker could choose in an effort to gain access to a
target’s IT infrastructure. [3] The world’s most extensive network, the Internet, has proven
to be one of the most popular of these stepping stones for attackers into a specific target
network. Websites are the best-known services offered on the internet, used by most if not
all medium sized to large companies as a way to present their business to the world. Their
prevalence makes for a interesting target for attackers. By gaining access to a target system
via their web-server, an attacker could potentially escalate his privileges and move laterally
through the victim’s network connected to this server until he completes his objective (e.g.
information theft, website defacement and using the website to infect visitors). [4]

Detecting flaws before they can be exploited by would be attackers is a central interest
for the cyber security market which has grown immensely in the past decade. In 2017 Gart-
ner predicted worldwide information security spending to reach $113 billion by 2020. [5]
Research by Global Market Insights indicates that the global Cyber Security market size will
continue to grow to $300 billion by 2024. [6] Gartner expects detection capability tot be a
key priority for the security sector in the years to come. [5] Along with the growth of the
information security market, research in vulnerability detection has been on a steady in-
cline. As a result, data related to vulnerability detection (e.g. test suites and public code
repositories) is more readily available. This in turn has opened the doors for approaches
to vulnerability detection such as machine-learning. A recent survey of machine-learning

1

2 1. INTRODUCTION

techniques in vulnerability research show that these techniques have been gaining in pop-
ularity in the past years. Academia is following this trend as well. Where, in the past, the
focus had mainly been on using formal methods to prove software to be correct, more re-
cently researchers are looking at real-world vulnerability detection. [7][1]

1.1. DEEP LEARNING VULNERABILITY PREDICTION WITH GRAPHS
We strongly believe that the role which machine learning can play in vulnerability detec-
tion will become more prevalent in the coming years. It is by this reasoning that we have
chosen to look into a research question which would combine machine learning, or rather
deep learning, with vulnerability detection. Furthermore we focus on the most popular
web programming language at this moment: PHP. [8] Our research will present a method
for vulnerability detection by answering our central research question: "How can we ef-
fectively predict the presence of injection vulnerabilities using features learned from graph
representations of source code?". We propose a novel method based on the notion that
all software vulnerabilities originate from source code. The source code will contain in-
dicators to the vulnerability in either syntax, structure or semantics. We build on research
which abstractly represents the syntax, structure and semantics of the source code as a
Code Property Graph. [1] By training a deep neural classifier to identify and recognise tell-
tale signs of vulnerable code in these graphs aim to predict the presence of vulnerabilities
in PHP-source code with relatively high accuracy and precision.

1.2. THESIS OUTLINE
In chapter 2 we discuss some preliminary concepts used throughout the thesis such as
our definition of software vulnerabilities, specifically injection vulnerabilities, and existing
research in the field of vulnerability detection. This chapter also explains the various graph
representations used to abstract from source code. We end this chapter with a discussion
on machine and deep learning. Chapter 3 describes our research design in a number of
separate phases. Chapter 4 will go into how we build, optimize and evaluate our model
and chapter 5 continues to compare these results with results of other open source tools.
Chapter 6 concludes this thesis with summing up our research contribution, listing some
limitations to our work and discussing related and future work.

2
PRELIMINARIES

This chapter touches upon a number of preliminary concepts and technologies used in our
research. In particular the definition of software vulnerabilities and the analysis of software
vulnerabilities as they pertain to our research, which will be covered in section 2.1 and 2.2.
In section 2.3 we explore basic concepts in machine learning, which we will build upon in
section 2.4 on deep learning.

2.1. SOFTWARE VULNERABILITIES
A vulnerability is a "flaw or weakness in a system’s design, implementation, or operation and
management that could be exploited to violate the system’s security policy". [9] A vulnera-
bility could be compared to a weak link in a chain, exploiting this weakness will affect the
integrity of the entire chain. As modern day software becomes more and more interlinked,
software systems could be considered more akin to a chain mail than a single chain – with
a single vulnerability having a possible devastating effect on the ’armour’ of an intercon-
nected software system.

The National Institute of Standards and Technology (NIST), part of the U.S. department
of Commerce, aims to index and publicize all known software vulnerabilities in the Na-
tional Vulnerability Database (NVD) in order to enable users, developers and security ex-
perts to take appropriate action should their software turn out vulnerable. Each vulnerabil-
ity entered into the NVD is assigned their own Common Vulnerability and Exposures (CVE)
number and are placed in one of many Common Weakness Enumeration (CWE) categories.

In 2019 alone, NIST has assigned over 15,500 CVEs relating to software used around the
globe on a daily basis.[10] A relatively large portion of these reported vulnerabilities can be
classified as injection type vulnerabilities.

2.1.1. INJECTION VULNERABILITIES

An injection type vulnerability enables a would-be attacker to relay specially crafted data
to a part of a system which will process it. The nature of this data can vary from textual
input entered into a web form to manipulating a script to use malicious files in its control
flow. Some well known examples of injection-type vulnerabilities are cross-site scripting
and SQL injection which make up a large part (roughly 15%) of the NIST National Vulner-
ability Database. Another, less predominant injection vulnerability is OS command injec-

3

4 2. PRELIMINARIES

tion. In total the NVD defines five types of injection vulnerabilities. [11] We will describe
the most common of these vulnerability types in more detail below.

CROSS-SITE SCRIPTING

OWASP, one of the best known online security communities, defines Cross-site scripting
(XSS) as follows:

Cross-site scripting attacks are a type of injection, in which malicious scripts
are injected into otherwise benign and trusted websites. XSS attacks occur when
an attacker uses a web application to send malicious code, generally in the form
of a browser side script, to a different end user. Flaws that allow these attacks to
succeed are quite widespread and occur anywhere a web application uses input
from a user within the output it generates without validating or encoding it. [12]

SQL INJECTION

OWASP defines SQL Injection (SQLi) as follows:

A SQL injection attack consists of insertion or "injection" of a SQL query
via the input data from the client to the application. A successful SQL injec-
tion exploit can read sensitive data from the database, modify database data
(Insert/Update/Delete), execute administration operations on the database (such
as shutdown the DBMS), recover the content of a given file present on the DBMS
file system and in some cases issue commands to the operating system. SQL in-
jection attacks are a type of injection attack, in which SQL commands are in-
jected into data-plane input in order to effect the execution of predefined SQL
command. [13]

Our running example in listing 1 contains an example of a SQL-injection vulnerability.
It is an abbreviated version of a PHP file, which contains an SQL-injection vulnerability
which originates in line 2, where tainted data is introduced into the system. The data is
subsequently not sanitised correctly (line 2) before being added to the intended query (line
4). The tainted data is subsequently used to query a database in line 8, completing the
chain of instructions which make up this vulnerability.

OS COMMAND INJECTION

OWASP defines (OS) Command injection as follows:

Command injection is an attack in which the goal is execution of arbitrary
commands on the host operating system via a vulnerable application. Com-
mand injection attacks are possible when an application passes unsafe user sup-
plied data (forms, cookies, HTTP headers etc.) to a system shell. In this attack,
the attacker-supplied operating system commands are usually executed with the
privileges of the vulnerable application. Command injection attacks are possible
largely due to insufficient input validation. [14]

2.2. VULNERABILITY RESEARCH 5

Listing 1 Sample№167182, CWE_89__POST__func_mysql_real
_escape_string__multiple_AS-interpretation.php from the SAMATE test suite (abbreviated
version, appendix A contains the full listing)

1 <?php
2 $tainted = $_POST['UserData'];
3 $tainted = mysql_real_escape_string($tainted);
4 $query = "SELECT Trim(a.FirstName) & ' ' & Trim(a.LastName) AS employee_name,

a.city, a.street & (' ' +a.housenum) AS address FROM Employees AS a
WHERE a.supervisor= $tainted ";

,→
,→

5 $conn = mysql_connect('localhost', 'mysql_user', 'mysql_password'); //
Connection to the database (address, user, password),→

6 mysql_select_db('dbname');
7 echo "query : ". $query ."

";
8 $res = mysql_query($query); //execution
9 while($data = mysql_fetch_array($res)){

10 print_r($data);
11 echo "
";
12 }
13 mysql_close($conn);
14 ?>

2.1.2. RELATED VULNERABILITY TYPES
Although the NVD only defines five types of injection vulnerabilities, many more vulner-
abilities related to injection can be found. [11] If an attacker can use a different avenue
of approach with which to introduce tainted data in the system, for instance by modify-
ing http parameters, this would also constitute a risk. An example of one of these types of
vulnerabilities which we consider to be part of the injection type is Open Redirect.

OPEN REDIRECT

MITRE, a well known software security organization, defines Open Redirect as follows:

An http parameter may contain a URL value and could cause the web appli-
cation to redirect the request to the specified URL. By modifying the URL value to
a malicious site, an attacker may successfully launch a phishing scam and steal
user credentials. Because the server name in the modified link is identical to the
original site, phishing attempts have a more trustworthy appearance. [15]

2.2. VULNERABILITY RESEARCH
As mentioned, a single vulnerability can result in failure of entire software systems. It is
therefor of the utmost importance to prevent and detect vulnerabilities in software before
systems are exposed to the outside world and possible attackers. Extensive research has
been done in the past into how to prevent vulnerabilities in new systems, and detect vul-
nerabilities in existing systems.

Ghaffarian and Shahriari have done a comprehensive study on different approaches
to vulnerability research. Their findings categorize three general approaches on software
analysis (static, dynamic and hybrid analysis). [7]

• Static Analysis
Static analysis methods are aimed at analyzing software without executing it. Most

6 2. PRELIMINARIES

often this is done by analyzing source code (static source code analysis). Two tech-
niques often used during static analysis are data flow and control flow analysis, which
use a graph representation of the program as the basis for the analysis. Using these
types of analysis, these techniques leverage both a syntactical as a semantic view of
the program under inspection. [7]

• Dynamic Analysis
In dynamic analysis, in contrast to static analysis, the program is executed. By mon-
itoring the program behavior and outputs while varying the input, this method is
capable of drawing conclusions on the validity of the program based on the confor-
mity of the displayed behavior to the specified behavior. Unit, integration and system
testing, as well as penetration testing all fall into the category of dynamic analysis. [7]

• Hybrid Analysis
Hybrid analysis uses the insight gained in static analysis to improve dynamic analysis
methods. [7]

Static analysis is particularly useful in vulnerability research as it considers all the possible
execution paths of the system. In the next section we will zoom into a specific type of static
analysis where we represent source code using a number of directed graphs.

2.2.1. STATIC ANALYSIS USING GRAPHS
In their paper “Modeling and discovering vulnerabilities with code property graphs”, Yam-
aguchi, Golde, Arp, et al. introduce the notion of source code represented as (directed)
graphs. These graphs contain identifiable properties indicating vulnerabilities in the rep-
resented source code. Yamaguchi, Golde, Arp, et al. use three different types of graphs, the
AST, CPG and PDG, as building blocks to create a so called Code Property Graph. [2]

AST The abstract synax tree (AST) represents the basic elements (e.g. statements, vari-
ables, conditions) in a tree structure which can be represented as a property graph
as defined above. While the AST purposefully captures structure, it does not capture
control flow or dependencies (see figure 2.1(a)).

CFG The control flow graph (CFG) captures the ordering of the statements in the source
code. This includes any alternative paths or loops which might be present in the
source code. Furthermore the CFG might capture some of the basic properties of the
structure, it does not, however, capture any data dependencies (see figure 2.1(b)).

PDG The final graph used by Yamaguchi, Golde, Arp, et al., is the program dependence
graph (PDG) which aims to capture dependencies in source code both in data as
in control dependencies. In this sense it has some overlap with the CFG (see figure
2.1(c)).

Kronjee, in his master’s thesis titled “Discovering vulnerabilities using data-flow analy-
sis and machine learning.” proposes a method to use properties extracted from control flow
graphs and abstract syntax trees for vulnerability detection in PHP applications when ap-
plying machine learning techniques. In his thesis he shows that his approach outperforms
four existing tools which were built for this same purpose.

2.2. VULNERABILITY RESEARCH 7

$quer y

Ar gument mysql _quer y

FnCal l

Assi gn

$r es

whi l e st mt

$dat a

Ar gument pr i nt _r

FnCal l

" <br / >"

Ar gument echo

FnCal l

$conn

Ar gument mysql _cl ose

FnCal l

$r es

Ar gument mysql _f et ch_ar r ay

FnCal l

Assi gn

$dat a

Pr edi cat e

(a) AST

$r es = mysql _quer y($quer y) ;

whi l e ($dat a = mysql _f et ch_ar r ay($r es))

pr i nt _r ($dat a) ;

echo " <br / >" ;

mysql _cl ose($conn) ;

(b) CFG

$r es = mysql _quer y($quer y) ;

$dat a = mysql _f et ch_ar r ay($r es)

pr i nt _r ($dat a)

mysql _cl ose($conn)

$conn

$dat a

$r es

$quer y

(c) PDG

Figure 2.1: An AST, CFG and PDG representation of lines 8-13 of listing 1

Instead of using these graphs separately, Yamaguchi, Golde, Arp, et al. propose to com-
bine these graphs in so-called Code Property Graphs (CPGs). These CPGs strive to capture
structure, control flow and dependencies of source code. [2]

CODE PROPERTY GRAPHS

Code Property Graphs capture structure, control flow and dependencies of source code. [2]
Yamaguchi, Golde, Arp, et al. build on the concept of a property graph for their definition
of a code property graph.

Definition 2.2.1. Property graph is defined as G =
(V ,E ,λ,µ), a directed, edge-labeled, attributed multi-
graph, where V is a set of nodes, E is a set of directed
edges, and λ : E → Σ is an edge labeling function as-
signing a label from the alphabetΣ to each edge. Prop-
erties can be assigned to edges and nodes by the func-
tionµ : (V ∪E)×K → S where K is a set of property keys
and S the set of property values. [2]

A

BC

42

Figure 2.2: Example of a prop-
erty graph with three nodes and
three edges

A property graph can consist of multiple nodes which may be connected by multi-
ple edges. Figure 2.2 illustrates a simple property graph consisting of three nodes (V =

8 2. PRELIMINARIES

{A,B ,C }), connected by three edges. The edge labeling in this case, could be based on
color that is Σ = {r ed , g r een,bl ue} (e.g. {A,B} → g r een). If we keep track of the color,
text and weight of nodes and/or edges then we can define K = {color, text , wei g ht }. Ex-
amples of key-value pairs from figure 2.2 would be {wei g ht → 42} for the green edge and
{color → r ed , text → "C "} for the red node.

Yamaguchi, Golde, Arp, et al. define a code property graph as a property graph constructed
by combining properties from the AST, CFG and PDG of a single code snippet into a single
graph. [2]

Definition 2.2.2. Code property graph is defined as G = (V ,E ,λ,µ) with, V = VA, E = E A ∪
EC ∪EP , Σ is one of AST,C FG or PDG and µ = µA ∪µP . Where the A, C and P represent
the AST, CFG and PDG respectively.[2]

By traversing these code property graphs and looking for specific predefined patterns,
Yamaguchi, Golde, Arp, et al. leverage the CPG to detect vulnerabilities. In their research
they specifically looks for paths representing buffer overflow vulnerabilities, memory dis-
closures, memory mapping and zero byte allocations. Using these graph representations,
the authors of “Modeling and discovering vulnerabilities with code property graphs” have
managed to identify 18 formerly unknown vulnerabilities in the Linux kernel. [2]

Backes, Rieck, Skoruppa, et al., in their paper “Efficient and Flexible Discovery of PHP
Application Vulnerabilities” apply this same approach in detecting vulnerabilities in PHP-
source code. The authors show the efficacy and scalability of the approach, applying it to a
fairly large codebase of 1854 popular open-source projects. [17]

2.3. MACHINE LEARNING
Machine learning (ML) techniques have been gaining popularity with the availability of
large amounts of data and a growing availability of storage capacity and processing power.
Machine learning is based on statistical models built for a specific task which infer patterns
from properties of data points rather than explicitly be programmed how to interpret this
data. In machine learning these properties of data points are referred to as features.

As Ghaffarian and Shahriari note, the application of ML in vulnerability detection or
prediction is increasing. [7] This section dives into the basic concepts in machine learning.

2.3.1. REINFORCEMENT, UNSUPERVISED AND SUPERVISED LEARNING
In ML, data is represented as features; measurable properties or characteristics of the indi-
vidual samples. Machine learning solutions strive to predict the value, or label of a given
sample by evaluating these features. A ML-model can ’learn’ how to combine and weigh
each of these features using a variety of statistical models to predict these labels. Training
ML-models is generally done using one of two categories of approaches: supervised and
unsupervised learning.

• Unsupervised learning
Unsupervised learning is aimed at grouping data according to commonalities in each
sample without or with minimal human intervention. [18, pp. 104-110] An unsuper-
vised learning technique often applied is clustering. Clustering or grouping could
be applied when the training data does not have explicit labeling, but the expected

2.3. MACHINE LEARNING 9

outcome is a label based on similarity to other samples i.e. the model infers the pres-
ence of distinct relations in the data without indicating on which features it should
base this categorization. Clustering is illustrated in 2.3(c) where two clusters can be
discerned from the data by a ML-model.

• Supervised learning
Supervised learning utilizes a labeled training set to define the categories in which
each sample falls. This labeling is used in order to efficiently train the machine learn-
ing model. [18, pp. 104-110]

A third category of machine learning exists which is reinforcement learning. Reinforcement
learning trains an algorithm to react to an environment by providing feedback to choices
by the algorithm. The agent providing the feedback will however not provide the correct
answer. This means that choices made in earlier steps will influence future outcomes. As
such it significantly differs from the former categories. [19]

Each of these approaches are chosen based on both the available data for training and
the definition of the problem.

REGRESSION AND CLASSIFICATION

Supervised learning has a number of different implementations which each have their mer-
its based on the problem one would like to solve and the data at hand. After the data has
been thoroughly analysed and understood, the next choice in implementing a machine
learning solution is determining the type of problem. We will focus on two types of prob-
lems which supervised learning can solve.

• Regression problems
Regression problems are problems where the model is tasked to find as an outcome, a
continuous value based on the values in the training data. An example of a regression
problem would be predicting a persons income based on their age and education.
Figure 2.3(b) illustrates regression by inferring a predicted value Y for every X from
the data points present; [18, pp. 100-101]

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

1.2
5

1.5
0

1.7
5

2.0
0

X

2

3

4

5

6

Y

Prediction
Data points

(a) Regression (b) Classification

0 1 2 3
X

1

2

3

4

5

Y

(c) Clustering

Figure 2.3: Examples of different types of typical ML problems.

10 2. PRELIMINARIES

• Classification problems
Classification problems have as an intended outcome a label based on the data with
which the model has been trained. One of the best known examples is the MNIST
handwritten digit classification problem. In this problem a large data set of images of
handwritten numerals from 0-9 are provided. The object is to predict which number
a given image from this data set represents. Figure 2.3(b) shows a part of the (labeled)
MNIST data set. Classification problems typically have distinct categories or labels,
which are also present in the training data; [18, pp. 100-101]

2.3.2. PERFORMANCE METRICS FOR CLASSIFIERS
In order to evaluate the performance of a given classification model, a number of metrics
can be used.

Figure 2.4: This bullseye indicates the
difference between accuracy and pre-
cision. The red and green dots are
grouped in small groups, they indi-
cate precise scores. The red and white
dots are close to the bullseye and in-
dicate accurate scores. The black dots
are nether precise nor accurate. Only
the red dots are both accurate and pre-
cise.

Generally these metrics do not refer to (computation)
time or complexity, but rather to the ability of the model
to correctly predict outcomes.

When dealing with classification problems, the num-
ber of True Positives (T P), True Negatives, (T N), False
Positives (F P) and False Negatives (F N) are leading
concepts in defining these metrics. Generally speak-
ing, classifieres primarily output a real value which has
to meet a certain classification threshold to determine
a definitive label. True Positives and True Negatives
refer to correctly classified samples, be they a posi-
tive sample classified as positive or a negative sample
classified as negative. False Positives and False Nega-
tives refer to incorrectly classified samples i.e. posi-
tive samples classified as negative or negative samples
classified as positive. [20] We can combine these val-
ues in a so called confusion matrix, shown in table
2.1.

Table 2.1: Example of a confusion matrix with two classes: A and B

Classified
A

Classified
B

Actual A 50 (TP) 10 (FN) 60 (Total actual class A)
Actual B 20 (FP) 100 (TN) 120 (Total actual class B)

70 (Total 110 (Total 180 (Total
classified classified A+B)
as A) as B)

DERIVED METRICS

From the number of true and false positives and negatives we are able to derive a number
of secondary metrics:

• False Positive Rate (FPR)
The FPR is the negative variant to recall. It gives an indication of what percentage

2.3. MACHINE LEARNING 11

of the negative samples it will reliably classify correctly. FPR is defined as F PR =
F P

F P +T N
. [20]

• Accuracy
Accuracy, as indicated in fig. 2.4, is the rate of correctly classified samples. Note that
this includes both positive and negative (TP and TN) samples. This rate is calculated

as Accur ac y = T P +T N

T P +F P +F N +T N
. [21]

• Precision
Precision indicates the reliability of the prediction i.e. the rate of correctly classified

positive samples. Pr eci si on = T P

T P +F P
[22]

• Recall
Recall is related to to the precision, the difference being that recall indicates the rate
of positive samples classified correctly. This means that this score gives an indica-
tion of what percentage of the positive samples it will reliably classify correctly. We

calculate recall as Recal l = T P

T P +F N
. [22]

• F1 Score
In practice, machine learning solutions often have to make a trade off between pre-
cision and recall; Improving precision will often negatively influence recall and vice
versa. This trade off is quantified by the F1-score or F1-measure:

F1 = 2∗ Recal l ∗Pr eci si on

Recal l +Pr eci si on
. [23]

• ROC-AUC
The ROC curve or receiver operating characteristic curve is a graph which depicts rel-
ative trade-offs between benefits (true positives) and costs (false positives). [24] It
plots the relationship between recall and the false positive rate at all classification
thresholds. By taking the area under the ROC curve (AUC) as a measure we obtain
the ROC-AUC. AUC provides an aggregate measure of performance across all possi-
ble classification thresholds. [25] The downside of the ROC-AUC is that it does not
always provide a meaningful metric with heavily skewed data sets (i.e. one class is
heavily underrepresented in the data set). [26]

• PR-curve
The PR curve or precision-recall curve is a graph which depicts the performance of a
classification model. It shows the relationship between precision and recall for every
possible classification threshold. Every point on the PRC represents the precision and
the recall for every chosen threshold. By taking the area under the PR curve (AUC) as
a measure we obtain the PR-AUC. [26]

Precision and recall (and the derived F1-score) are by definition based on the ratio of cor-
rect positive predictions to the total predicted positives (precision) or to the total positives
examples (recall). Switching the viewpoint on these classes (positive → negative and nega-
tive → positive) will possibly give more insight into the performance of a classifier on nega-
tive samples. [27] The average scores for each of these viewpoints can be represented in two

12 2. PRELIMINARIES

x

1

m

b
Σ f y1

1

m

b
Σ f y2

Figure 2.5: Two perceptrons in tandem as part of an artificial neural network. With x representing an input
and b and m representing bias and weight. Function f represents the activation function.

ways, macro and weighted averages. Weighted averages incorporate the distribution of the
different classes by adding more weight to the most predominant class. Macro averages do
not incorporate the difference in distribution and take a naive average of the positive and
negative value. [28]

2.4. DEEP LEARNING
Deep learning is a subcategory of ML which, in contrast to basic ML, allows a model to
learn features from (unstructured) data, where traditional ML needs these features to be
provided. This means that deep learning, using a so called (artificial) neural network, does
not require structured data as is the case with traditional machine learning. This trait allows
neural networks to successfully tackle computationally difficult problems such as image
and voice recognition, and natural language processing.
This section will describe the workings of a neural network by zooming into three basic
elements – the architecture, training and (hyper)parameters.

2.4.1. ARCHITECTURE
Each neural network is built up out of a number of different building blocks, each with
a distinct function in processing or learning behavior in the model. The type of building
blocks and the way they are arranged and interconnected is referred to the architecture or
topology of a neural network.
Neural networks can be tailored to a specific problem by varying the architecture. We will
focus on describing a generic densely connected (feed forward) neural network. There are
many variations to this type of neural network (e.g auto-encoders, long/short term memory
models, recurrent neural networks and gated recurrent neural networks) which are outside
the scope of this thesis.

PERCEPTRON

The basic building block of the artificial neural network is the equation y = f (mx+b) which
can be represented as a perceptron. Figure 2.5 illustrates the basic outline of two per-
ceptrons, where the first perceptron’s output feeds into the next perceptron’s input. Gen-
erally speaking, a single perceptron will take in a weighted input and add a certain bias
before feeding that outcome into an activation function. Without the activation function
y = mx+b would be no more than a linear function. By adding an activation function, i.e. a
threshold value which mx +b needs to reach, this linear trait is removed. The result is that

Arjen Hommersom

2.4. DEEP LEARNING 13

(a) σ(x) = 1
1+e−x (b) t anh(x) = ex−e−x

ex+e−x (c) ReLu(x) = max(0, x)

Figure 2.6: Plot of the (a) sigmoid, (b) tanh and (c) ReLu activation functions

by manipulating the weight for each perceptron (or unit) we will be able to influence which
units are activated and which are not for a given input. [29, p. 65] The activation function is
generally chosen to be some type of non linear equation such as a sigmoid (σ(x)) or hyper-
bolic tangent (t anh(x)). In recent years however, the Rectified Linear Unit (ReLu(x)) has
been the activation function of choice to use in hidden layers as it has several traits superior
to the former two, figure 2.6 illustrates these activation functions. [30]
The output unit does typically not use a ReLu activation function. As its task is to output
a predicted value and a confidence in this prediction, the output unit generally uses ei-
ther linear activation (for linear regression problems), sigmoid for binary classification and
softmax when predicting multiple classes. [30][31, p. 71][18, p. 184-187] The specifics of the
softmax activation function lie outside the scope of this thesis.

LAYERS

The first stage of building a neural network is placing a number of perceptrons in parallel to
form a layer. The exact number of perceptrons is determined by the number of data points
in the input data. Stacking multiple layers builds a multilayer perceptron or neural network.
A typical neural network consists of at least three types of layers; The first is the input layer,
which, as the name suggests, is the primary data interface for the model. Connected to the
input layer are generally one or more hidden layers before reaching an output layer. [29]
With each added layer, the network is able to extract progressively abstract characteristics
or features from the data. [29]

I1

I2

I3

I4

Hidden

layer

Input

layer

Dropout

Layer

Hidden

Layer

Hidden

Layer

Output

Layer

Figure 2.7: An example of a densely connected neural network featuring four hidden layers. The second
hidden layer is a dropout-layer which, in this example, disables 20% of the nodes.

Figure 2.7 also features the use of a dropout layer where a certain percentage of the nodes

14 2. PRELIMINARIES

in that layer is disabled. Adding dropout makes a trained network more robust.[29, pp. 103-
104]

2.4.2. TRAINING
In training a neural network we strive to adjust the way the network processes input, along
its layers, to match an expected output. We can use a labeled (training) data set for this pur-
pose. By feeding the network samples from this data set we are able to determine how the
output produced by the network (ŷ) differs from the desired output or label (y). This differ-
ence is expressed as loss. As noted in the previous section we can manipulate the weights of
perceptrons to alter their behavior. By adjusting weigths to reduce the difference between
the labels of the samples and the given output (i.e. minimize loss) after each training cycle,
we are telling the network which behavior is desired. We refer to the combination of archi-
tecture and the (trained) weights and biases of a neural network as a model or in the case
of a classification model, a classifier. [18][30]

BACKPROPAGATION

This manipulation of the weights is however not straightforward. The adjustments need
to be propagated back through the network to allow every hidden layer from output to
input to be adjusted. This process is called back-propagation or backprop and it defines
the ’learning’ ability of the network. [32][31, pp. 51-52][29, pp. 57-65]

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

1.2
5

1.5
0

1.7
5

2.0
0

X

3

4

5

6

Y

Prediction
Training data
New data

(a) underfitting

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

1.2
5

1.5
0

1.7
5

2.0
0

X

2

3

4

5

6

Y

Prediction
Training data
New data

(b) correct fit

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

1.2
5

1.5
0

1.7
5

2.0
0

X

3

4

5

6

Y

Prediction
Training data
New data

(c) overfitting

Figure 2.8: Three different stages of fitting the model (labeled Prediction) to the training data.

OVERFITTING

Neural networks are prone to a number of unwanted effects during training. The most
common being overfitting. Overfitting occurs when a model learns to recognise the train-
ing data set itself. This will mean that the model will perform extremely well on the training
data set, but will be unable to correctly predict labels of unknown input. [18, pp. 110-116]
This effect is demonstrated in figure 2.8 with a model underfitting the data (fig. 2.8(a)), cor-
rectly fitting the data (fig. 2.8(b)) and overfitting the data (fig. 2.8(c)). As the figure shows,
the model is able to match the new data most closely to the prediction with a correct fit.
This phenomenon is the primary motivation for strictly dividing testing an training data
sets. A model which does not suffer from overfitting will have similar performance when

2.4. DEEP LEARNING 15

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Complete (training) data set

Figure 2.9: K -fold cross validation illustrated, with the (changing) validation data set in red.

used to predict labels for the training or testing data set. Adding dropout also prevents
a model from recognizing individual samples and as a result it prevents overfitting.[18,
pp. 258-267][33]

K -FOLD CROSS-VALIDATION

If a given data set has very few observances of a certain class the model is prone to learning
to favor the other class. In order to prevent this behavior, with minimal risk of overfitting, in
some cases K -fold cross validation is applied. K -fold cross-validation divides the training
data in K parts, with each part consisting of roughly equal proportions of classes of data
(e.g. safe and unsafe) as the proportions featured in the whole training data set. Subse-
quently a model is trained on K − 1 of these parts and evaluated on the remaining part,
illustrated by figure 2.9. This process is repeated K times with a different part used as eval-
uation each time. By training K models, and averaging the scores of these models we get a
relatively accurate estimate of the performance of a given classifier. [31, p. 99][18, p. 122]

2.4.3. HYPERPARAMETERS
Hyperparameters are the parameters which control both architecture and training. Hy-
perparameters could be compared to knobs and dials with which to tune the model.
Finding the right settings of these hyperparemeters is often a challenge as it is not always
predictable which configuration is best suited for which problem, goal and input. [30]

Table 2.2: Different hyperparameters explained

Parameter Description

Hidden layers The number of hidden layers used in a model. Increasing the
number of hidden layers allows the model to learn more specific
behaviour. A larger number of layers will however require more
memory and more time to train. [18, p. 169]

Units per layer The number of units per (hidden) layer. By reducing the num-
ber of units per layer the model is forced to describe more
data using less (weigths of) units. The intuition here is that
these units will only retain those values which are most descrip-
tive. [18, p. 429]

Dropout The percentage of units which are ’disabled’ in a given layer.

16 2. PRELIMINARIES

Parameter Description

Activation function As described in fig. 2.6 there are a number of possible activation
functions per hidden layer, each presenting a different behav-
ior. [18, pp. 174-190]

Epochs The number of times each sample is used to train the model.
This includes both a forward and backward pass through the
network. [18, p. 246]

Batch size The training data set is divided up into multiple batches which
are processed consecutively. Between each batch loss is calcu-
lated and backprop is performed. The batch size is the number
of samples Batch size, as a result determines how often a mod-
els weights are adjusted. Larger batches might take longer to
train, but tend to consume a lot of memory. Models trained us-
ing smaller batches tend to train faster, but less efficient due to
fluctuating gradients. [18, p. 78]

Learning rate The learning rate describes the factor by which the weights are
corrected per iteration. [18, pp. 185-186]

Optimization function The optimization function is the function driving backprop.
It feeds back outcomes through the network and varies the
weights. Popular optimizers are Adaptive Moment Estima-
tion (Adam) and Stochastic Gradient Decent (SGD), which each
have their individual merits. [34]

Loss function The loss function is the function which indicates the difference
between your goal and the actual output. The loss in deep
learning is used to tell whether the adjustments made to the
weights of the model by the optimizer are beneficial or detri-
mental to the model. [18, p. 82]

2.4.4. DEEP LEARNING FOR VULNERABILITY PREDICTION
As Ghaffarian and Shahriari note, the application of ML and deep learning in vulnerabil-
ity detection or prediction is increasing. [7] Li, Zou, Xu, et al. in their paper “VulDeeP-
ecker: A deep learning-based system for vulnerability detection” propose a deep learning
approach (VulDeePecker) to detect vulnerabilities in source code based on semantically
linked lines of (C/C++) code. [35] The authors improve on this concept in their paper “Sy-
SeVR: A Framework for Using Deep Learning to Detect Software Vulnerabilities”, where they
combine two different types of source code representations (i.e. semantic and syntactic)
to allow for better representation of potentially vulnerable elements in source code. They
train a Long/short term memory (LSTM) deep leaning model which significantly improves
on their earlier work.[36]
In “Building program vector representations for deep learning”, Mou, Li, Liu, et al. suggest
using ASTs as a basis for program vector representations to use in classification of source
code using deep learning. This concept is elaborated on by Alon, Zilberstein, Levy, et al.,
where the author attempts to classify source code by vector representations of source code
tokens.
We believe that capturing both semantic and syntactic details of source code is key in pre-

2.4. DEEP LEARNING 17

dicting vulnerabilities. Our approach will combine the expressive power of descriptive
graphs as Yamaguchi, Lottmann, and Rieck and Kronjee have done, with deep learning,
using concepts used by Mou, Li, Liu, et al. and Alon, Zilberstein, Levy, et al.

3
RESEARCH DESIGN

Our research is designed around a central research question, which we will describe in the
first section of this chapter. Subsequently, in section 3.2 we will go into the method we have
designed and employed in this research. The final section will elaborate on the contribu-
tions of our research.

3.1. RESEARCH QUESTIONS
This thesis describes our research in creating a deep learning based approach to detecting
injection type vulnerabilities using graph representations of PHP source code. To this end
we will answer the following research question:
"How can we effectively predict the presence of injection vulnerabilities using features
learned from graph representations of source code?"
We answer this question by employing empirical research based, in part, on research done
by Kronjee, Yamaguchi, Lottmann, and Rieck and Li, Zou, Xu, et al. [16][1][2][39][35][36] To
answer this question we break it down in three sub-questions:

R.Q.1 How can we represent Code Property Graphs so that they can be successfully exploited
in a deep-learning approach?

R.Q.2 How can we develop a classifier, able to predict vulnerabilities based on features gener-
ated from code property graphs?

R.Q.3 How does the proposed method perform compared to other automated approaches to
vulnerability detection (i.e. open-source tools and comparable research)?

The notion of capturing properties of software by representing the source code as a graph
presents an interesting view. Yamaguchi, Lottmann, and Rieck and Xiaomeng, Tao, Runpu,
et al. have shown the advantages of using the code property graph as a basis for vulnerabil-
ity prediction.

3.2. RESEARCH METHOD
Our general approach is visualised in figure 3.1. Generally speaking, we first extract vul-
nerable and safe source code samples from the publicly available SAMATE test suite. The
samples in this data set are subsequently transformed to code property graphs. From these

18

3.2. RESEARCH METHOD 19

Vertex-to-Vertex
edges

(Partial)
CFG Paths

CPG Generation

Graph generation

Sample
#1671182

CWE
Training
data set

CWE
Testing
data set

Open Source
tooling

Grid search and
manual tuning

Test
 performance

Model
Performance

Deep
learning

configuration
Classifier

+

-

Development
data set

Data collection and
preprocessing

CWE-78/79/89/601
Samples

SAMATE PHP
vulnerability test suite

Path data set

Data set splitPath representation

Training
data set

Optimized
classifier

Possible
configurations

Train
and test

Build
model

Performance

Benchmark
model

Figure 3.1: Our general approach visualised in 8 stages (Data collection and preprocessing steps, including
graph generation, path extraction and data set splitting. Followed by building, tuning and optimizing a deep
learning classifier which is subsequently tested and compared to other tools.)

graphs we extract path based data points and combine these in a data set. The data sets re-
sulting from these initial stages are used to automatically train and evaluate deep learning
classifiers in search of the top performing classifier for each vulnerability category in table
3.1. In the next phase we test our optimised classifiers, their performance is subsequently
compared to the results of several publicly available vulnerability detection tools.
Our method varies on Yamaguchi, Lottmann, and Rieck by proposing a novel variation on
the code property graph, from which we extract specific paths. We furthermore use a grid
search based on a predefined set of hyperparameters to determine the most effective deep
learning classifier for each vulnerability in table 3.1. In comparing our classifiers to other
open source approaches to vulnerability prediction we find that our novel approach has
some advantages over other methods. Moreover it shows the potential of combining deep
learning with graph representations of source code.

20 3. RESEARCH DESIGN

3.2.1. PHP SOURCE CODE REPRESENTATION AS CODE PROPERTY GRAPHS
Yamaguchi, Maier, Gascon, et al. suggest that the Code Property Graphs described in sec-
tion 2.2.1 present us with a method for successfully capturing semantics and syntax of
source code. [39]
Based on this notion, we try to answer the following sub-question: How can we represent
Code Property Graphs so that they can be successfully exploited in a deep-learning approach?

DATA SET SELECTION

The data available to train a model is a key factor in choosing the approach to solving a
problem using machine, or in our case deep learning. Furthermore the quantity and qual-
ity are key factors in successfully training an accurate model. To make certain the model
has enough information to adjust its weights and biases to match the required behavior, a
sufficient amount of data is required. It is difficult to know beforehand how much data is
sufficient, the accuracy of a model will however generally benefit from larger quantities of
data.
The quality of the data is also an important factor. With a classification problem, care
should be taken that all classes are distinct and that all the identified categories are repre-
sented in adequate proportions by the data. A data set is allowed to contain some ’noise’ in
the form of incorrectly labeled data. Noise, in moderate amounts, creates a robust model,
decreasing the impact of outliers. It is therefor not necessary to inspect the labeling of each
input sample individually.
Even though our approach should generally be applicable to other programming languages
and vulnerabilities as well, we have chosen to primarily focus our research on PHP. The rea-
soning behind the choice for PHP is twofold. Firstly, PHP has held a top 10 spot on the niobe
list of most popular web programming languages worldwide since 2003, furthermore PHP
is used in over 75% of all server side programming. [8] Secondly, the substantial number of
entries of PHP related vulnerabilities in the National Vulnerability Database indicate that
applications built using PHP are prone to containing vulnerabilities. [41]

SAMATE PHP TEST SUITE

On their website the National Institute of Standards in Technology (NIST) hosts a number
of reference data sets specifically for vulnerability research. One of these is the Software
Assurance Reference Data set for PHP, generated by Bertrand Stivalet and Arelien Delaitre.
The test suite was published by the Software Assurance Metrics And Tool Evaluation (SA-
MATE) project. [42] The aim of the SAMATE project is to allow automated tools to evaluate
their performance in vulnerability detection against standardised data sets. The PHP test
suite contains 42239 test cases labeled by vulnerability category of which 41712 pertain to
injection vulnerabilities. The freely available data set comes with a manifest providing a
short description on each sample and outlining the type of vulnerability.
Although the data set contains eight categories of injection vulnerabilities (i.e. CWE-78:
OS Command injection, CWE79: XSS, CWE-89: SQLi, CWE-90: LDAP injection, CWE-91:
XML-injection, CWE95: Eval injection, CWE-98: Remote file inclusion and CWE-601: Open
redirect), we limit our research to the categories listed in table 3.1 as they comprise the
vulnerabilities most often exploited. [10]

Table 3.1: Distribution of vulnerability categories for the subset of the SAMATE test suite used in our research

3.2. RESEARCH METHOD 21

Category Description # Safe samples # Unsafe samples # Total

CWE-78 OS command injection 1872 624 2496
CWE-79 Cross site scripting 5728 4352 10080
CWE-89 SQL injection 8640 912 9552
CWE-601 Open redirect 2208 2592 4800

18448 8480 26928

Each test case is stored in a separate PHP file containing a preamble in the form of a
comment describing whether the file represents a safe or unsafe sample and a disclaimer
(see listing 2). Secondly it contains a section of PHP code, commented if needed. The data
set was generated to contain a single vulnerability per sample. The type of the vulnerability
can be derived from the filename, which also includes the CWE-category. An abbreviated
sample from the SAMATE data set is shown in listing 1. This sample will serve as a running
example throughout this thesis.

GRAPH REPRESENTATION

Our research builds on research by Yamaguchi, Lottmann, and Rieck into using graph rep-
resentations of source code for vulnerability detection. To prepare the data set for use as
input for training our model, we represent the PHP samples as a code property graph much
like defined in section 2.2.1.
We do alter the definition given by Yamaguchi, Golde, Arp, et al. slightly, reusing the label-
ing function for both nodes and edges, see definition 3.2.1. The code property graph (CPG),
as explained in section 2.2.1, is a complete representation of the semantic and syntactical
data present in the source code. The created graph consists out of all the basic syntactic ele-
ments from the AST and CFG representing nodes. The semantics such as data dependency
are captured by the edges which indicate the relations between the nodes.

Definition 3.2.1. Our Code Property Graph is defined as G = (V ,E ,λ,µ), a directed, edge-
labeled, multigraph where V is a set of nodes, E is a set of directed edges, andλ : (V ∪E) →Σ

is a labeling function assigning a label from the alphabet Σ : (AST, CFG or PDG) to each
node and edge and where node values are mapped by the function µ : V → S where S is the
set of node values (e.g. If, Expr_assign, Terminal_Echo, etc.).

Where Yamaguchi, Golde, Arp, et al. build the CPG by combining properties derived from
the AST, CFG and PDG into a single graph, we have opted to use a tool named PHP-CFG1

by Anthony Ferrara to generate a CPG from PHP-source code. As the name indicates, PHP-
CFG is intended to generate the control flow graph. In parsing the tools output however we
reconstruct the AST on which the CFG is based. At a later stage we add data and control
dependencies, based on the AST-CFG combination and add them to form the final (full)
CPG.
The code property graph in the full form as displayed in figure B.1 contains a num-
ber of nodes and edges very specific to a given sample. To allow our solution to
apply to generalize more effectively, the generated graph requires a certain degree
of abstraction. Figure B.1, for instance shows each variable, including its name as
a separate node in the CPG, while we believe these variable names to be of lit-

1PHP-CFG by Anthony Ferrara on Github https://github.com/ircmaxell/php-cfg

https://github.com/ircmaxell/php-cfg

22 3. RESEARCH DESIGN

tle informative value. An extremely specific example is the node labeled "LITERAL('
SELECT Trim(a.FirstName). . . WHERE a.supervisor=')", which is unique to this sample.

Expr_ArrayDimFetch

Expr_Assign

Var#1<$_POST>

Va r# 2

Expr_FuncCall-mysql_real_escape_string

Va r# 3 < $ ta in te d >

Expr_Assign

Va r# 5

Expr_ConcatList

Va r# 6 < $ ta in te d >

Expr_Assign

Va r# 8

Expr_FuncCall-mysql_connect

Expr_Assign

Va r# 1 1

Expr_FuncCall-mysql_select_db

Expr_BinaryOp_Concat

Va r# 9 < $ q u e ry >

Expr_BinaryOp_Concat

Va r# 1 5

Terminal_Echo

Va r# 1 6

Expr_FuncCall-mysql_query

Va r# 9 < $ q u e ry >

Expr_Assign

Va r# 1 7

Expr_FuncCall-mysql_fetch_array

Va r# 1 8 < $ re s >

Expr_Assign

Va r# 2 0

If

Va r# 2 2

Expr_FuncCall-print_r Expr_FuncCall-mysql_close

Va r# 2 1 < $ d a ta >

Terminal_Echo

Va r# 1 2 < $ c o n n >

Terminal_Return

Figure 3.2: Pruned CPG representation of
sample №167182. Blue vertices represent
control flow dependencies, green vertices
represent a data dependency and blue ver-
tices indicate a relation in terms of the ab-
stract syntax tree.

Training a classifier on these types of specific
entities will not likely benefit its functionality. We
believe that removing such sample-specific entities
will allow features extracted from these graphs to be
more generally applicable. We prune the graph by
removing nodes representing variable names and
strings which we deem to hold little expressiveness
outside of the context of a single specific sample.
This step removes nearly all of the AST nodes.
As is shown in the resulting
graph in fig. 3.2 we do retain nodes representing
so called superglobals (e.g. $_POST and $_GET).
Superglobals hint at data which is introduced
into the system by end-users and as such
could be an indicator for a possible exposed attack
vector. Furthermore we retain function names
as a part of the underlying function call. Function
names could hint at how variables are processed
in potentially vulnerable functions or if and
how tainted data is sanitised. An added advantage
of pruning is that the feature space (i.e. the corpus
of generated features) is significantly reduced.

Definition 3.2.2. Our Pruned CPG, G = (V ,E ,λ,µ)
limits the V in to V = AST ′ ∩C FG ′, with AST ′ as
the subset of AST -nodes representing Superglob-
als and C FG ′ as the full set of C FG-nodes, with
function call nodes (i.e. Expr_FuncCall) modified
to include the function name (e.g. Expr_FuncCall-
mysql_real_escape_string).

Pruning the graph allows us to make a tradeoff be-
tween expressiveness and generalization. Retaining
specific details will most likely result in more accu-
rate classification, removing specific details will re-
duce precision. We believe we have found an ade-
quate balance by using definition 3.2.2 as a guide-
line.
We generate 22491 graphs from the available samples.2

2Roughly 17% of the samples fail to process, this is due limitations of the underlying php_cfg-script which
seems unable to handle a number of node types (e.g. group use). As the samples and the specific rea-
sons for failure are quite diverse we assess that the loss of these samples will not significantly influence the
performance of our classifiers negatively.

3.2. RESEARCH METHOD 23

PATH EXTRACTION

We believe that the CPG holds all the useful elements needed to represent the vulnerable
syntax and semantics of the source code. In order for a neural network to discern useful
features from these structures we opt to represent the CPG by deriving path-based data
points from the CPG structure.
As we would like to capture as many data points as needed, we consider every connection
in the graph to be of importance i.e. every tuple of the form (V ,E ,V), where V represents a
node and E represents a (labeled) edge of type AST, CFG or PDG. This guarantees that each
node is represented, as part of these node-to-node tuples in the data set.
These node-to-node tuples however do not fully capture the order in which statements are
executed in code. This ordering is especially important when evaluating whether variables
have been sanitised before being passed to a possibly vulnerable function.
This is why we also consider every possible path from the first node (i.e. the first line of
code) to the last (i.e. the last line of code). These full paths will undoubtedly include any
sanitation statements present between introduction of a variable and using it in a function.
The collection of full paths derived from a single sample offers complete coverage of all the
elements, syntactical and structural, of the underlying graph. Hence we do not lose any
information in this conversion.
Despite earlier measures to generalise the graphs as much as possible (see pruning, section
3.1), these full paths will be quite specific for a sample. To allow us to generalise these paths,
we generate unique sub-paths.

Definition 3.2.3. These (sub) paths can be defined as (Vi ,Ei , . . . ,E j−1,V j), where V repre-
sents a node, E represents a (labeled) edge of type AST, CFG or PDG, and i and j represent
different nodes in the sub-path. The minimal and maximal length of these sub-paths are
determined by parameters (equal to j − i).

Examples of both categories of features are shown in table 3.2. The top four samples repre-
senting the former category of node-to-node data point and the last line representing the
latter of a path-based data point.
Note that by changing the minimal and maximal sub-path length, we can influence to what
extent a path is specific to a certain sample. If the minimal parameter is equal to the length
of the longest path in the graph then the sub paths are equivalent to the full paths. If the
maximal parameter is equal to 1 then the sub-paths are equivalent to the node-to-node
tuples. Too specific (i.e. long sub-paths) will not generalise to other samples, not specific
enough (i.e. very short sub-paths) will not contain enough information on the ordering of
statements and as a result, will not be useful in prediction of the presence of vulnerabilities.

Table 3.2: Examples of tuples of edges used as features generated from sample№167182. The ’a’,’p’ and ’c’
represent the type of node or arc: ast, pdg or cfg.

a:$_POST/a/c:Expr_ArrayDimFetch
c:Expr_ArrayDimFetch/c/c:Expr_Assign
c:Expr_Assign/p/c:Expr_ArrayDimFetch
...
c:Expr_FuncCall-mysql_fetch_array/c/c:Expr_Assign/c/c:If/c/c:Expr...

When grouping samples according to vulnerability category and plotting the number of
features generated per sample for each category (fig. 3.3) we see that on average each sam-
ple is represented by ≈56 features, which comes down to ≈1½ feature per line of code.

24 3. RESEARCH DESIGN

CWE 78 CWE 79 CWE 89 CWE 601
0

50

100

150

200

250
Fe

at
ur

es

Features per sample

CWE 78 CWE 79 CWE 89 CWE 601
0.0

0.5

1.0

1.5

2.0

2.5

3.0

#f
ea

tu
re

s/
#l

oc

Features per line of code per category

Figure 3.3: Distribution of number of features per sample and per line of code for each CWE-category

It is noteworthy that SQL-injection (CWE-89) generates more features per sample and line
of source code on average, compared to other categories. A reason for this phenomenon
could be that this specific category of vulnerabilities requires more source code to be ex-
pressed. More source code per sample will invariably yield a more elaborate CPG which in
turn will contain more features.
The relatively large difference in features per category also indicates that it would be quite
difficult to build a comprehensive model for all of the vulnerability categories which could
take into account these differences. This is the primary reason why we choose to build
separate classifiers for each category of vulnerabilities.

TRAINING, VALIDATION, DEVELOPMENT AND TEST DATA SETS

After having extracted edges and paths from all the Code Property Graphs we aggregate
these outcomes in a separate path data set for each vulnerability category. This is illustrated
in box 3 in figure 3.4. This leaves us with four path data sets which represent all the paths
and edges from the converted graphs generated from the original selection of PHP files.
Table 3.3 shows part of the path data set for SQL injection.

Table 3.3: Example of (part of) a path data set. Besides the presence of any of the generated paths and edges
for each sample (represented by the columns), we also store the label as provided by the SAMATE test suite.

a:$_POST c:Expr c:Expr

/a/c:Expr... _ArrayDim... _Assign/p... . . . label
Sample№167182 1 1 1 . . . unsafe
Sample№167183 1 0 0 . . . safe
Sample№167184 0 0 0 . . . safe

Sample№

Before building our models we split the path data sets in training, development and test
data sets. This is shown in figure 3.4 by the path data set, labeled 3, ultimately being split
into a development data set (3a1), a training data set (3a2) and a test data set (3b). The
development data set is used to evaluate the performance of the classifier during its devel-
opment, the training data sets are used to train the classifier, either during development
(3a2) or when training the final classifier (3a). The split ratio we use is approximately 58%,
32%, and 10% for the training (3a2), development (3a1) and test data sets respectively (3b).

3.2. RESEARCH METHOD 25

Vertex-to-Vertex
edges

(Partial)
CFG Paths

Sample
#1671182

CWE
Training
data set

CWE
Test

data set

Development
data set

Data collection and
preprocessing

Selection of
CWE-78/79/89/601

Samples

Full SAMATE PHP
vulnerability test suite

Path data set

Data set splitPath representation

 Training data set

Graph generation

PHP
Test

data set

1

2

3

3b 4

3a2

3a1

3a

Figure 3.4: We select the samples pertaining to four classes of (injection) vulnerabilities (2) from the SAMATE
PHP test suite (1). After generating graphs and extracting paths from these PHP files into path data sets (3),
these four data sets are subsequently split in development (3a1), training (3a2), and test data sets (3b). For
benchmarking purposes we also create a PHP test data set (4) populated with the PHP samples matching
those in our path-based test data set.

The test data is kept separate from the training and development data. The training and de-
velopment data set are chosen at random from the CWE training data set (3a) per iteration.
Care is taken that the distributions of safe and unsafe-labeled samples in the development
(3a1), training (3a2) and test data set (3b) are kept roughly equal to the distributions of the
underlying data set (3). After our classifier development we will benchmark our models. For
benchmarking we use the same PHP samples from the SAMATE PHP test suite as the ones
used to generate our path-based data set, illustrated by data set 4 in figure 3.4. This guar-
antees a honest comparison of performance between our method and the performance of
the tools used.
Using split training and test data sets is important as we want to evaluate the performance
of the final model using samples in a data set which has not been used to train the model.
Splitting guarantees that the model does not learn to recognise specific samples.

3.2.2. VULNERABILITY CLASSIFICATION USING DEEP LEARNING CLASSIFIERS
In order to predict vulnerabilities using the features generated in the previous step, we an-
swer the following research question: How can we develop a classifier, able to predict vul-
nerabilities based on features generated from code property graphs?
We strive to find the best performing configuration for a densely connected feed-forward
neural network per vulnerability category. To this end we train different classifiers for a
number of vulnerability categories using the training data set shown in figure 3.4. This al-
lows us to leverage the best possible performance per category. At a later moment, different
models can be used together to predict multiple vulnerabilities based on the same graph
based data.
In order to find the configuration of hyperparameters which yields a classifier which out-
performs others we do a grid search to discern patterns in hyperparameters, top perform-
ing hyperparameters are subsequently tuned in a manual tuning phase to yield the final

26 3. RESEARCH DESIGN

classifier.

GRID SEARCH

To get an intuition for which hyperparameters might yield a promising classifier, we do a
grid search. In this grid search we generate a ’grid’ of configurations for every combination
of predefined ranges for each hyperparameter (see table 3.4). We then train and test clas-
sifiers from this grid and score the best version according to an appropriate metric. This
metric depends greatly on the available data set for the vulnerability. Any model unable to
attain scores higher than a random classifier (i.e. F1-scores > 0.5 and ROC-AUC > 0.5) will
be discarded at this point. For the grid search we adhere to the following two principals.
Firstly, we observe the whole grid, looking for trends as opposed to a single optimal solu-
tion. Secondly, we start coarse grained and zoom into finer grained grids as we move along.
The most granular searches are done by manually manipulating the hyperparameters in-
dividually.
Three hyperparameters in the grid search are limited to a single default value as table 3.4
shows, the activation, optimization and loss functions. As explained in section 2.4.1 the
ReLu is considered the ’golden standard’ when it comes to activation functions for the hid-
den layers. We feel it is safe to limit the grid search to only using ReLu activators. As far as
the optimization function is concerned, we set the default value to Adaptive Moment Esti-
mation (Adam). Adam is a popular optimization function which has several merits, which
makes it preferable over stochastic gradient decent. [34] Our main consideration in using
Adam is that we will not need to pay as much attention to choosing a correct learning rate
at the start, as Adam will be able to correct the learning rate based on the training process.
Dropout is implemented as a separate hidden layer, which in our case is always placed as
the first hidden layer, disabling a certain percentage of the inputs.

Table 3.4: Hyperparameter ranges for the grid searches

Parameter Range

Hidden layers [2, 3, 5, 7, 9, 11, 13]
Units per layer (shape)3 [linear, curve]
Dropout [10%, 15%, 20%]
Activation function ReLu
Epochs [5, 10, 20, 50, 150, 200]
Batch size [32, 64, 128, 256, 512]
Learning rate [0.0005, 0.001, 0.0015, 0.002]
Optimization function Adam
Loss function Binary cross-entropy

The full grid consists of 5040 separate configurations. These configurations are stored
in a file so we might reuse the configurations at a later point. Training and evaluating
5040 different configurations would take an exorbitant amount of time. We reduce this
time by (randomly) sampling 200 configurations before evaluating which hyperparameter

3We aggregate the size of each hidden layer as the shape of the model. A linear model has a linear decline from
the size of the input layer to the size of the ouput layer, which is 1. The layers size is computed as follows:
wi =W −bW /I e∗ i , where wi is the size of layer i , I is the total number of hidden layers and W is the size of
the input layer. The curved shape has a greater decline in the first layers but levels off near the output layer.
We compute these sizes as follows: wi = d(i +1)∗W ∗e−i e.

3.2. RESEARCH METHOD 27

values consistently undderperform. Figure 3.5 shows this strategy. After training 200 of the
possible configurations, we conclude that models with 5-10 hidden layers with a curved
shape outperform other models. This allows us to no longer consider linear models, or
models with 2, 3, 11 or 13 hidden layers for the rest of the grid search.

2 3 5 7 9 11 13
Hidden Layers

0.74

0.76

0.78

0.80

0.82

AU
C-

RO
C

ROC-AUCR
O

C
-A

U
C

curve linear
Shape

0.72

0.74

0.76

0.78

0.80

0.82

AU
C-

RO
C

R
O

C
-A

U
C

Figure 3.5: Trends identified early in the grid search, allow for reliable reduction of the search space.

As the grid search progresses we monitor the performance of the models to develop an
intuition for which values in table 3.4 will and will not likely yield promising values. If anal-
ysis shows that certain hyperparameter values will most likely not yield high performance,
these will be excluded from the ongoing grid search. This method greatly reduces the num-
ber of configurations which need to be tested.
For the grid search we rely solely on the training and development data set. We train the
model using the training data set, after each epoch we track the performance of the model-
in-training using a small portion of the training data (15%) as a validation data set and we
use the development data set to measure the performance of the model after training is
complete.

MANUAL FINE TUNING

The grid search presents us with an intuition for which parameters, from the selection in
table 3.4, yield the best models. As the possible values of the parameters in the grid leave
some gaps, we need to consider values not included in the aforementioned table. We do
this by taking the optimal performing model according to the grid search and, subsequently
tuning each hyperparameter separately following the trends found in the grid search. The
resulting configuration will be used to train our optimised (final) model for this vulnera-
bility category. Because results can vary due to a certain degree of entropy in training we
run several experiments before drawing a conclusion on whether to focus on or discard a
certain hyperparameter value.
In the manual fine tuning we will make use of the same training and development data
sets as we have used in the grid search. This ensures that we can objectively compare the
performance of our tuned models with the performance of the grid search models.

28 3. RESEARCH DESIGN

Having developed models for each category of vulnerabilities which yield good results, we
test these models. We combine and shuffle the training and development data sets used in
the grid search and manual tuning steps to create a new training data set. We measure the
performance of our final model by using the unused test data set.

3.2.3. EVALUATING THE PERFORMANCE OF OUR CLASSIFIERS
We benchmark our classifiers in order to answer the following research question: How does
the proposed method perform compared to other automated approaches to vulnerability
detection (i.e. open-source tools and comparable research)?

We compare the results of our classifiers to results obtained from several open source vul-
nerability scanners. Firstly we use the output generated by Pixy[43]4 to compare the results
of our classifiers for SQL Injection and Cross-Site Scripting. Pixy, as many vulnerability
scanners do, uses data flow analysis to track possibly tainted data through the control flow
of a program. If potentially tainted input reaches a so called ’sink’ (i.e. a point where the
data is used to perform for instance a query or call a system function), without being sani-
tised, the source code is deemed vulnerable by the scanner. As Pixy is unable to detect
open redirect or OS command injection type vulnerabilities, we are not able to compare
these specific results.
Secondly we evaluate results generated by RIPS(v.0.55)5, another static (data flow) analyzer.
RIPS uses a similar method to Pixy to detect different types of vulnerabilities including
Cross-Site Scripting, SQL Injection, HTTP Response Splitting, File Disclosure, PHP Object
Injection and Code Execution.
In generating the results for RIPS and Pixy, we use the same test data set as we have used
in testing our classifiers. This allows us to directly compare the results of the tools to our
classifiers.
We also compare the performance of our classifiers to the performance of WIRECAML[16]6,
WAP7, and Yasca8), based on the results described by Kronjee in his thesis “Discovering
vulnerabilities using data-flow analysis and machine learning.” We were unable to redo the
tests with our test data set due to mismatches in dependencies. We do however feel safe
to rely on the results described by Kronjee as they too, are based on the SAMATE PHP test
suite. Note that the results described by Kronjee are limited to SQL Injection and Cross site
scripting only.

3.3. RESEARCH CONTRIBUTION
In this research, we explore whether graph representations of source code can be used in a
deep learning approach to detect vulnerable source code. We build on work by Kronjee and
Yamaguchi, Golde, Arp, et al. by using characteristics derived from code property graphs as
indicator for vulnerable elements in source code. Kronjee and Yamaguchi, Golde, Arp, et
al. base their detection of vulnerable code on specific sink to source traces, matching a
predefined pattern.

4https://github.com/oliverklee/pixy
5http://rips-scanner.sourceforge.net/
6https://github.com/jorkro/wirecaml
7http://awap.sourceforge.net/
8https://github.com/scovetta/yasca

https://github.com/oliverklee/pixy
http://rips-scanner.sourceforge.net/
https://github.com/jorkro/wirecaml
http://awap.sourceforge.net/
https://github.com/scovetta/yasca

3.3. RESEARCH CONTRIBUTION 29

Our method significantly differs from these approaches in that we depend on a deep learn-
ing classifier to indicate which syntactical, structural and semantic aspects of the code
property graph represent vulnerabilities. With little to no need to manually identify specific
elements in a given programming language representing a given vulnerability our method
can be applied easily across a broader spectrum of vulnerabilities and programming lan-
guages. With the method used to construct our PHP classifiers serving as an example, we
enable straightforward development of similar classifiers for other types of vulnerabilities
and other programming languages.
Our primary research contribution is a well founded answer to our research question "How
can we effectively predict the presence of injection vulnerabilities using features learned from
graph representations of source code?" in the form of this thesis, and the results on which
the answer is founded. Secondarily we will make tooling and models available to enable
others to build on our research.
Our first deliverable is the tooling to convert PHP files to code property graphs in the form
of a CodePropertyGraph python module. From the graphs generated using this module, we
subsequently extract edges and paths into a data set for developing our classifiers. The
aforementioned module includes methods to extract these elements from the graph. We
develop a classifier for each category of vulnerability in 3.1. We will make the both the
tooling used to develop the classifiers and the models themselves available.
Used in unison, this tooling enables one to retrace the steps in this research for other (PHP)
data sets, or to use the classifiers to predict vulnerabilities in (PHP) projects. Furthermore
the tooling in conjunction with this thesis might serve as a basis to develop new classifiers
for other vulnerability categories or other programming languages.
Tools will be made available as Jupyter notebook9 under the MIT-licence. Classifiers will be
made available as hierarchical data format file (HDF5), also under the MIT-licence.

9Jupyter notebook is an open-source browser-based, python IDE, available from https://jupyter.org/

https://jupyter.org/

4
CLASSIFIER DEVELOPMENT

As described in chapter 3, we develop four classifiers in total; one for each category of vul-
nerabilities in our selection (OS command injection, Cross site scripting, SQL-injection,
and Open redirect). In developing these classifiers we follow the same four steps.

1. We perform a partial grid search by randomly selecting 200 of the 5040 possible con-
figurations to train classifiers;

2. The scores of these classifiers are evaluated in an attempt to discern patterns with
respect to their hyperparameter values (e.g. "do models with 7 or more hidden layers
generally outperform models with fewer hidden layers?"). Based on these conclusions
we remove configurations with underperforming hyperparameters from the grid;

3. We train and evaluate the classifiers in the remaining grid;

4. From the classifiers we select the top-performing configuration to retrain and subse-
quently evaluate its final performance using our test data set.

In developing these classifiers we name them after chemical elements for easy reference.
Sections 4.1.1 to 4.1.4 feature both the optimised configuration for the individual classifiers
(Cerium, Nitrogen, Lithium, and Arsenic), as well as their respective test scores. Section 4.2
concludes the chapter with some general observations.

4.1. CLASSIFIERS PER VULNERABILITY
As noted in section 3.2.1 each category of vulnerability will require a different classifier.
As a consequence we have split the data set based on the vulnerability categories. Table
3.1 shows that not every data set is equally balanced between safe and unsafe samples. To
be able to successfully train the classifiers with data sets with a limited portion of unsafe
samples (i.e. OS command injection and SQL-injection (SQLi)), we apply K -fold cross val-
idation during classifier development to ensure that every observation from the original
data set has the chance of appearing in training and test set. We choose to monitor the
(weighted average) F1-scores during classifier development. We will use a classification
threshold of 0.5 for all the classifiers. For each classifier we include a classification report,
indicating the performance of the classifier based on test data. This classification report in-
cludes a (macro) average for precision, recall and F1-scores and a weighted average where

30

4.1. CLASSIFIERS PER VULNERABILITY 31

the number of occurrences per class are incorporated in the average. We also include a
plot for the primary metric (PR) used in developing the classifier, indicating the trade-off
between precision and recall for different thresholds.

4.1.1. CLASSIFIER FOR OS COMMAND INJECTION (CWE-78)
We train the Cerium configuration against the full training set, and use the test data set to
measure performance.

Cerium configuration

Hidden layers 5
Learning rate 0.001
Dropout 20%
Epochs 5
Batch Size 128
Shape curve
Optimizer Adam
Activation function ReLu
Loss function Binary

cross-entropy

Table 4.1: Optimised configuration for Cerium.
Note that the optimizer function, loss function
and activation function for the hidden layers
were preset to Adam, binary cross-entropy, and
ReLu respectively.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

PR-Curve (AUC:0.980)

Figure 4.1: PR-curve for Cerium

Cerium PERFORMANCE

Table 4.2: Classification report and confusion matrix for Cerium

Classification report Confusion matrix Support

Precision Recall F1-score Predicted
unsafe

Predicted
safe

Unsafe 0.714 0.714 0.714 35 14 49
Safe 0.909 0.909 0.909 14 140 154

Accuracy 0.862 49 154 203
Macro avg 0.812 0.812 0.812
Weigthed avg 0.862 0.862 0.862

ROC-AUC 0.93
PR-AUC 0.980

Considering the results for Cerium, it seems that the unbalanced data set, despite our best
efforts to counter its effects, does have an impact on the stability of the classifier indicated
by the significant difference between F1-scores for safe and unsafe classes.

32 4. CLASSIFIER DEVELOPMENT

4.1.2. CLASSIFIER FOR CROSS SITE SCRIPTING (CWE-79)
The configuration resulting from the grid search and manual tuning, which we dub Nitro-
gen is described in table 4.3.

Nitrogen configuration

Hidden layers 7
Learning rate 0.00325
Dropout 30%
Epochs 4
Batch Size 70
Shape curve
Optimizer Adam
Activation function ReLu
Loss function Binary

cross-entropy

Table 4.3: Optimised configuration for Nitro-
gen. Note that the optimizer function, loss func-
tion and activation function for the hidden layers
were preset to Adam, binary cross-entropy, and
ReLu respectively.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

PR-Curve (AUC:0.889)

Figure 4.2: PR-curve for Nitrogen.

Nitrogen PERFORMANCE

Table 4.4 lists the classification report and confusion matrix for our Nitrogen model.

Nitrogen PERFORMANCE

Table 4.4: Classification report and confusion matrix for Nitrogen

Classification report Confusion matrix Support

Precision Recall F1-score Predicted
unsafe

Predicted
safe

Unsafe 0.638 0.828 0.720 317 66 383
Safe 0.831 0.644 0.725 180 325 505

Accuracy 0.723 497 391 888
Macro avg 0.735 0.736 0.723
Weigthed avg 0.748 0.723 0.723

ROC-AUC 0.830
PR-AUC 0.889

In contrast to Cerium, Nitrogen does not suffer from a significant difference between the
ability to accurately and precisely classify safe or unsafe samples, supporting our hypothe-
sis that the root cause is the unbalanced training set.

4.1. CLASSIFIERS PER VULNERABILITY 33

4.1.3. CLASSIFIER FOR SQL-INJECTION (CWE-89)

Lithium configuration

Hidden layers 9
Learning rate 0.002
Dropout 15%
Epochs 50
Batch Size 32
Shape curve
Optimizer Adam
Activation function ReLu
Loss function Binary

cross-entropy

Table 4.5: Optimised configuration for
Lithium. Note that the optimizer function,
loss function and activation function for
the hidden layers were preset to Adam, bi-
nary cross-entropy, and ReLu respectively.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.90

0.92

0.94

0.96

0.98

1.00

Pr
ec

isi
on

PR-Curve (AUC:0.990)

Figure 4.3: PR-curve for Lithium

Lithium PERFORMANCE

Table 4.6: Classification report and confusion matrix for Lithium

Classification report Confusion matrix Support

Precision Recall F1-score Predicted
unsafe

Predicted
safe

Unsafe 0.742 0.554 0.634 46 37 83
Safe 0.948 0.977 0.962 16 669 685

Accuracy 0.931 62 706 768
Macro avg 0.845 0.765 0.798
Weigthed avg 0.925 0.931 0.927

ROC-AUC 0.919
PR-AUC 0.990

The configuration for Lithium differs significantly from its counterparts. It is trained for
many more epochs, has a much smaller batch size, and features more hidden layers. Fur-
thermore the difference in scores (based on F1(unsafe)) is quite telling. We believe the pri-
mary reason to be that the data set for SQLi has many more features per sample and line of
code than the other data sets (see fig. 3.3). It would appear that a manifestation of a SQL
injection vulnerability in source code requires more code, yielding more features, requiring
a more intricate neural network to detect successfully.

34 4. CLASSIFIER DEVELOPMENT

4.1.4. CLASSIFIER FOR OPEN REDIRECT (CWE-601)

Arsenic configuration

Hidden layers 7
Learning rate 0.002
Dropout 20%
Epochs 5
Batch Size 64
Shape curve
Optimizer Adam
Activation function ReLu
Loss function Binary

cross-entropy

Table 4.7: Optimised configuration for Ar-
senic. Note that the optimizer function,
loss function and activation function for
the hidden layers were preset to Adam, bi-
nary cross-entropy, and ReLu respectively.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

PR-Curve (AUC:0.918)

Figure 4.4: PR-curve for Arsenic

Arsenic PERFORMANCE

Table 4.8: Classification report and confusion matrix for Arsenic

Classification report Confusion matrix Support

Precision Recall F1-score Predicted
unsafe

Predicted
safe

Unsafe 0.784 0.939 0.855 200 13 213
Safe 0.904 0.689 0.782 55 122 177

Accuracy 0.826 255 135 390
Macro avg 0.844 0.814 0.818
Weigthed avg 0.838 0.826 0.822

ROC-AUC 0.919
PR-AUC 0.918

Even though open redirect is not formally classified as an injection vulnerability, we were
able to train a classifier which performs well using the same methodology as we have used
with Lithium, Cerium and Nitrogen. This indicates that our method for graph representa-
tions of source code and for classifier development can be used outside the formal scope
of injection vulnerabilities.

4.2. CONCLUSION 35

4.2. CONCLUSION
Table 4.9 shows a summary of our classifiers, their configurations, and their performance.

Table 4.9: Summarising the different vulnerability classifiers.

Name CWE HL LR Drop- Ep. Batch Weighted F1 F1

out Size avg. F1 Unsafe Safe

Cerium 78 5 0.001 20% 5 128 0.862 0.714 0.909
Nitrogen 79 7 0.00325 30% 4 70 0.723 0.720 0.725
Lithium 89 9 0.002 15% 50 32 0.927 0.634 0.962
Arsenic 601 7 0.002 20% 5 64 0.822 0.855 0.782

HL: Hidden Layers, LR: Learning rate, Ep.: Epochs.

Note that all of the configurations are based on a curved ’shape’, Adam optimizers, ReLu activation functions

in hidden layers, and a binary cross-entropy loss function.

When inspecting the scores in general, our method appears to be sound, only yielding clas-
sifiers which score quite high looking at their respective F1 and AUC-scores. This indicates
that the Code Property Graphs and the features we generate from them are sufficiently ex-
pressive so that they might be leveraged to train classifiers and be used to predict vulner-
abilities. We will explore how our classifiers compare to other methods of vulnerability
prediction in the next chapter.

4.2.1. LIMITS TO THE GRID SEARCH
We are aware that, by limiting our grid to the values in table 3.4, we might miss some op-
timal configurations with hyperparameter values which are not incorporated in the grid.
This applies to two cases: on the one side when trends indicate that hyperparameter val-
ues fall outside the grid (e.g. more than 13 hidden layers). The other case is concerned with
the intermediary hyperparameter values (e.g. 6 hidden layers).
Regarding the former case, all of the trends we were able to discern in regard to the hyperpa-
rameter values, manifested themselves contained within the values dictated by the original
grid. None of the trends gave cause to expand the grid beyond the values described in table
3.4.
Regarding the latter case, we set out to prevent missing these intermediate values by ap-
plying a manual tuning step following the grid search as described in section 3.2.2, after
which we explore other hyperparameter values close to the configuration which yields the
optimal after the grid search.

Table 4.10: Manual tuning: Nitrogen versus Tellurium

Name CWE HL LR Drop- Ep. Batch Weighted F1 F1

out Size avg. F1 Unsafe Safe

Tellurium 79 7 0.001 15% 5 64 0.722 0.721 0.723
Nitrogen 79 7 0.00325 30% 4 70 0.723 0.720 0.725

HL: Hidden Layers, LR: Learning rate, Ep.: Epochs.

Note that all of the configurations are based on a curved ’shape’, Adam optimizers, ReLu activation functions

in hidden layers, and a binary cross-entropy loss function.

36 4. CLASSIFIER DEVELOPMENT

However when applying this second step when developing a classifier for XSS, we conclude
that the manual tuning step does not add significant improvements in performance. The
grid search for XSS initially led us to a model dubbed Tellurium before finally settling on
the (Nitrogen) configuration after manual tuning.
When comparing weighted average F1-scores for Tellurium and Nitrogen, we noticed that
the difference is negligible with Tellurium scoring 0.722 versus the tuned version, Nitrogen,
scoring 0.723 (see table 4.10).
Based on this finding we feel safe in omitting the manual tuning step in developing the
other classifiers and choosing the top performing classifier based solely on the results of
the grid search.

5
CLASSIFIER COMPARISON

In this chapter we attempt to answer the question How does the proposed method perform
compared to other automated approaches to vulnerability detection (i.e. open-source tools
and comparable research)? To do so we compare the performance of our four classifiers to
the performance of other solutions sharing the same goal of predicting the presence of a
specific type of vulnerability in source code.

5.1. TOOLS
We compare the performance of our classifiers to the results on identical or similar data
sets by other tools.
We have selected three tools for this comparison, RIPS, Pixy and WIRECAML. In addition to
the aforementioned tools, we had intended to compare the performance of our classifiers
agains the performance of Yasca1 and WAP2. Both tools are open source static analyzers
using data flow analysis. Yasca allows for several plugins to be added to a core program,
which allows it to provide better judgment on vulnerability of PHP source code. We were
however unable to run either one of these tools. The low scores described by Kronjee, has
led us to omit both tools from the results as they under perform strongly to WIRECAML.
In the next subsections we discuss each of the tools used and we will indicate which data
sets are used. Note that the origin of each individual data set is described in figure 3.4. We
provide a summary of which tool–data set combinations were used in table 5.1.

5.1.1. RIPS
RIPS has been a popular open source tool for static PHP vulnerability analysis for several
years. RIPS works by tracing user input to potentially vulnerable functions, referred to as
sinks, in the source code. As explained in section 2.1, tainted data introduced to a sink
could lead to a system being compromised.
The publicly available version 0.55 of RIPS3 offers a web interface from where users can
start the analyses. Although a newer (commercial) version of RIPS is available4 we were
unable to obtain a copy for evaluation purposes.

1https://github.com/scovetta/yasca
2http://awap.sourceforge.net/
3http://rips-scanner.sourceforge.net/
4https://www.ripstech.com/

37

https://github.com/scovetta/yasca
http://awap.sourceforge.net/
http://rips-scanner.sourceforge.net/
https://www.ripstech.com/

38 5. CLASSIFIER COMPARISON

RIPS is built to analyse the PHP source code files. For our evaluation of the performance of
RIPS we have selected those source code files from which we have built our own data sets.
Results can therefor be directly compared to our own results.

5.1.2. PIXY

Pixy5, as many vulnerability scanners do, uses data flow analysis to track possibly tainted
data through the control flow of a program. [43] If potentially tainted input reaches a sink,
without being sanitised, the source code is deemed vulnerable by the scanner. As Pixy is
unable to detect open redirect or os command injection type vulnerabilities, we are not
able to compare these specific results.

Table 5.1: Origin of evaluation data per tool used.

Tool SQL XSS Command Open Data set
Injection Injection Redirect
CWE-89 CWE-79 CWE-78 CWE-601

RIPS X X X X PHP test data set†

Pixy X X PHP test data set†

WIRECAML* X X SAMATE PHP test suite
† This data set is identical to the data set used in developing and evaluating our classifiers.

*These results were obtained from Kronjee. [16]

5.1.3. WIRECAML
We have based this research in part on Kronjee’s Masters Thesis “Discovering vulnerabil-
ities using data-flow analysis and machine learning.”. [16] Kronjee also makes use of the
SAMATE PHP test suite to evaluate the performance of his classifier WIRECAML. The eval-
uation of WIRECAML is based on the SAMATE PHP test suite samples pertaining to SQLi
and XSS vulnerabilities. The data set used in developing our own classifiers is based on a
subset of these samples. As such we are able to copy his results to allow us to compare our
classifiers to WIRECAML. [16, p. 42]
WIRECAML is limited to detecting SQLi and XSS. OS command injection (CWE-78) and
open redirect (CWE-601) have not been implemented and will therefor not be compared.

5.2. RESULTS
We aggregate the results of each tool for each type of vulnerability. For each class of vulner-
ability we provide the weighted average precision and recall and the individual F1-scores
for safe and unsafe classes.

5.2.1. OS COMMAND INJECTION (CWE-78)
Table 5.2 clearly shows that Cerium outperforms the other tools on every metric. Cerium
shows to be able to accurately (86%) predict the presence of unsafe constructs in the pre-
sented code. RIPS shows to be incapable of accurately detecting Command injection vul-
nerabilities in our test data set.

5https://github.com/oliverklee/pixy

https://github.com/oliverklee/pixy

5.2. RESULTS 39

Table 5.2: OS Command injection score comparison

Tool Precision Recall F1-score F1-score
unsafe safe

Cerium 0.86 0.86 0.71 0.91
RIPS 0.18 0.04 0.07 0.86

5.2.2. CROSS-SITE SCRIPTING (CWE-79)
With this category, our classifier Nitrogen performs adequately, attaining a F1-scores of
0.72 and 0.73 for unsafe and safe classes respectively, which indicates it outperforms other
methods. RIPS and Pixy fail to yield a significant performance, with RIPS classifying every
single sample as unsafe. and Pixy only slightly outperforming the random classifier. WIRE-
CAML shows stable performance well above the random classifier. Note that Nitrogen and
WIRECAML follow a similar pattern, with a slightly higher precision and a surprisingly uni-
form Recall and F1-scores. This pattern is what we would expect to see with data sets with
a high level of similarity. This legitimizes our choice to base our comparison on the scoring
supplied by Kronjee even though the testing data sets are not 100% identical. [16]

Table 5.3: XSS score comparison

Tool Precision Recall F1-score F1-score
unsafe safe

Nitrogen 0.75 0.72 0.72 0.73
RIPS* 0.43 1.00 0.60 0.00
Pixy 0.51 0.48 0.50 0.63
WIRECAML 0.79 0.71 0.71 0.70

*RIPS has not found any safe samples, which results in a recall of 1 and F1-score for safe samples of 0.

5.2.3. SQL-INJECTION (CWE-89)
Table 5.4 shows that WIRECAML scores highest across the board for SQLi, with Lithium
only slightly trailing in every category. Here, similar to the patterns seen with WIRECAML
and Lithium for XSS, there are many similarities between the two, confirming again that
our choice for copying the scores directly from Kronjee is sound. As far as RIPS and Pixy go,
the conclusions for XSS also apply here. Note that in this case RIPS is unable to detect any
unsafe samples.

Table 5.4: SQLi score comparison

Tool Precision Recall F1-score F1-score
unsafe safe

Lithium 0.93 0.93 0.63 0.96
RIPS* 0.50 0.00 0.00 0.94
Pixy 0.22 0.58 0.32 0.70
WIRECAML 0.94 0.94 0.66 0.97

*RIPS has not found any unsafe samples, which results in a recall of 0 and F1-score for unsafe samples of 0.

40 5. CLASSIFIER COMPARISON

5.2.4. OPEN REDIRECT (CWE-601)
The performance of Arsenic shows that our approach can be used for vulnerabilities which
are not formally classified as injection vulnerabilities. Arsenic outclasses the performance
RIPS entirely as table 5.5 shows.

Table 5.5: Open redirect score comparison

Tool Precision Recall F1-score F1-score
unsafe safe

Arsenic 0.84 0.83 0.86 0.78
RIPS 0.62 0.23 0.34 0.58

5.3. CONCLUSION
The results of our comparisons show that our series of classifiers generally perform well on
the different data sets. When inspecting the ability to accurately and precisely predict the
presence of unsafe source code, which we see as the classifiers’ primary objective, we find
that, our models outperform or closely match other tools.
We do find that the ability to successfully predict the presence of vulnerabilities, repre-
sented by the F1-score for the unsafe class decreases when the classifier is trained with
fewer unsafe training samples. This is represented by the difference between the F1-scores
for the safe and unsafe classes for OS command injection and SQLi.
In comparing the results of our classifiers with WIRECAML, we chose to obtain the scores
for WIRECAML from Kronjee. [16, p. 42] The scoring for WIRECAML might not be based
on a 100% identical data set as we lose some samples from the SAMATE test suite in pre-
processing. Scores for XSS and SQLi for both our classifiers and WIRECAML however show
very similar patterns and score fairly close to each other, which we conclude to be a con-
firmation that both data sets are comparable and that our choice to copy these scores is
sound.

6
DISCUSSION

Our final chapter discusses the outcome of our research, per research question before an-
swering our central question: How can we develop a classifier, able to predict vulnerabilities
based on features generated from code property graphs? We will also list our deliverables
which we will make available. In the final sections we will discuss limitations, related and
future work.

6.1. RESEARCH OUTCOME
Our research has led us to develop a variation of the code property graph as defined by
Yamaguchi, Lottmann, and Rieck. Using our tooling we have converted samples from the
SAMATE PHP vulnerability data set to these code property graphs. Paths extracted from
these graphs were subsequently used to train, optimize and evaluate deep learning clas-
sifiers for each category of vulnerabilities in table 3.1. The classifiers were subsequently
compared to other publicly available solutions (using the same data set where possible).
In our research we have strived to answer the following research question:"How can we ef-
fectively predict the presence of injection vulnerabilities using features learned from graph
representations of source code?" From this question we derive the following sub-questions:

R.Q.1 How can we represent Code Property Graphs so that they can be successfully exploited
in a deep-learning approach?

R.Q.2 How can we develop a classifier, able to predict vulnerabilities based on features gener-
ated from code property graphs?

R.Q.3 How does the proposed method perform compared to other automated approaches to
vulnerability detection (i.e. open-source tools and comparable research)?

In the following sections we will describe the outcome for each of these questions sepa-
rately.

6.1.1. R.Q. 1 REPRESENTING CODE PROPERTY GRAPHS
How can we represent Code Property Graphs so that they can be successfully exploited in a
deep-learning approach?
Where Yamaguchi, Lottmann, and Rieck and Kronjee predefine features based on traces

41

42 6. DISCUSSION

within the graph, we propose a novel approach. We propose to extract edges and paths
of a certain (parameterized) length between CFG nodes from these graphs following every
possible control flow to allow a neural network to discern useful features from. To do so we
present a new definition of the Code Property Graph, based on Yamaguchi, Lottmann, and
Rieck. We simplify the CPG by defining a pruned version of the original.
As mentioned in section 3.1, the expressiveness of the extracted paths, and as a result our
features, is generally a tradeoff between specificity and the models ability to generalize. We
opt, for instance, for path lengths of 3 to 9. Longer path lengths will inadvertently make the
model recognise more specific paths but will not make it generalize better. This tradeoff
is also present in pruning the initial graph, we opt to prune all but a few of the AST nodes.
More detailed pruning might result in models which perform better on a specific data set,
but will as a result perform poorer on previously unseen samples. This tradeoff is linked
in some respect to the availability of data; if more (diverse) data is available one might
produce more specific features without loss of ability to generalise these results to other
samples.
Our tooling to convert PHP-source code to code property graphs, and from there to data
sets with paths, offers flexibility by parameterising the minimal and maximal path lengths
and the possibility to adjust the pruning of the graph when desired. We believe that we have
proposed a workable method to successfully extract meaningful path-based data points
from code property graphs, on which deep learning algorithms might base vulnerability
classification.

6.1.2. R.Q. 2 CLASSIFIER DEVELOPMENT
How can we develop a classifier, able to predict vulnerabilities based on features generated
from code property graphs?
After having generated path-based data sets based on code property graphs we set out to
develop four different classifiers for each of the vulnerabilities listed in table 3.1.
We have used a grid search to get an intuition as to which configurations (i.e. combina-
tions of hyperparameters) will yield deep learning feed-forward classifiers with good per-
formance, measured by several metrics. We randomly sample 200 of the possible config-
urations and reduce the queue of the unprocessed configurations based on these prelimi-
nary results. The top performing configuration of the full search is subsequently described
in detail and used for evaluation.
After our initial intent to manually tune the models, we find, with developing our Nitrogen
classifier that this (rather time consuming) step only yields marginally higher performance.
We conclude that a grid search as we have described above yields a sufficiently representa-
tive classifier as is.
We further note that balanced data sets seem to yield more stable classifiers. Despite our
efforts to counter the effects of a skewed data set, the scores of Cerium and Lithium show a
fairly large difference between F1-scores for safe and unsafe samples.
The results described in section 4.2 show that the classifier for SQLi (Lithium) is based on
a significantly different configuration to achieve optimum performance, this indicates that
different types of vulnerabilities require different configurations. Looking at the difference
in the number of features per line of code (figure 3.3) indicates that the path length used
to generate features from the code property graphs might also require differentiation per
vulnerability.

6.1. RESEARCH OUTCOME 43

Table 6.1: Summary of the performance of our vulnerability classifiers.

Name CWE ROC- PR- F1 F1 F1

AUC AUC Unsafe Safe Weighted
avg.

Cerium 78 0.930 0.980 0.714 0.909 0.862
Nitrogen 79 0.834 0.889 0.735 0.738 0.737
Lithium 89 0.919 0.990 0.634 0.962 0.927
Arsenic 601 0.919 0.918 0.855 0.782 0.822

We believe we have successfully managed to develop four effective vulnerability classifiers
based on paths extracted from Code Property Graphs, which all show high levels of perfor-
mance as seen in table 6.1.
We must note that one of the major drawbacks of the method for developing our classifiers
in comparison to other (non-deep learning) methodologies is that training the classifier re-
quires a large amount of training data. A traditional static-analysis method will be based
on prior knowledge of a vulnerability which has to be translated into a detection method.
Our method on the other hand will need to infer this knowledge from data, which takes a
lot of sample data, computing power and time. On the other hand, our method does not
rely specifically on the ability to be able to correctly translate the properties of a certain vul-
nerability to a detection rule. It is likely that our method used to develop these classifiers is
also able to yield effective vulnerability classifiers for other (similar) types of vulnerabilities
and furthermore for other programming languages, if a sufficient amount of training data
is available.

6.1.3. R.Q. 3 CLASSIFIER COMPARISON
How does the proposed method perform compared to other automated approaches to vul-
nerability detection (i.e. open-source tools and comparable research)?
We have compared the performance of our classifiers to the performance of the open
source vulnerability scanners, RIPS, Pixy and WIRECAML. We have used the identical PHP
data sets to compare the performance of our classifiers to those of RIPS, and Pixy (see figure
3.4). For the comparison with WIRECAML we base our conclusions on the results described
by Kronjee. [16]
The results of our comparisons show that our series of classifiers generally perform well on
the different data sets. When inspecting the ability to accurately and precisely predict the
presence of unsafe source code, which we see as the classifiers’ primary objective, we find
that, our models outperform or closely match other tools. Furthermore our classifiers score
quite high on other metrics.
We believe we have been able to show that classifiers, developed using our method, are able
to closely match or outperform contemporary tools designed for vulnerability detection.
We also note that the performance of our classifiers greatly depends on the available data
for training. It must be noted that our classifiers, in contrast to RIPS, Pixy and WIRECAML,
have not been tested with data from outside the SAMATE test suite. We will elaborate more
on this limitation in section 6.3.2.

44 6. DISCUSSION

6.1.4. RESEARCH QUESTION AND ANSWER
How can we effectively predict the presence of injection vulnerabilities using features
learned from graph representations of source code?
We have shown that by using our novel method we are able to extract meaningful data from
PHP-based code property graphs. We have shown to be able to train and evaluate classifiers
based on this data and have shown that our classifiers outperform or closely match other
tools specifically designed for vulnerability detection. In sum, we believe that, based on
the answers on the sub-questions in sections 6.1.1, 6.1.2, and 6.1.3 we have conclusively
answered our research question by demonstrating the contribution our method can have
to vulnerability research.

6.2. RESEARCH CONTRIBUTIONS
We believe that the most important research contribution our method offers in compari-
son to other described methods, is that our method allows us to develop effective classi-
fiers for any related type of vulnerabilities using the exact same methodology of data (pre-
)processing and classifier development without specific knowledge of the vulnerability at
hand. Aside from a vulnerability-specific data set, the method requires little to no customi-
sation to be used in developing classifiers for other types of vulnerabilities. We demonstrate
this with our Arsenic classifier, which was developed using an identical method to Cerium,
Lithium and Nitrogen, without any vulnerability-specific customisation of the dataset or to
the method in which the classifier was developed. Other methods might require a security
researcher to predefine potentially vulnerable functions for a specific type of vulnerablity,
our method has no such dependency; our classifiers will infer the potential volatility of
these functions from the training data.
Besides this methodology we plan to make the Python 3 CodePropertyGraph-module avail-
able which will convert PHP source code to our version of the (pruned) Code Property
Graph. This module also allows the user to generate path-based data sets from these
graphs. Annotations in the source code should enable researchers to develop similar ver-
sions of this module for different programming languages. We will also share Jupyter note-
books which implement the grid search used for our classifier development and evaluation,
these can be used directly to develop new classifiers based on different data sets.
We will also make our pre-trained classifiers available as hierarchical data format file
(HDF5). This will allow others to directly use the classifiers described in chapter 4.
Lastly we make this report, outlining our research, outcomes and decisions, available via
the online library of the Open University.

6.3. LIMITATIONS
In our research we have occasionally run into a number of limitations, which we will de-
scribe in the sections below.

6.3.1. PROCESSING POWER

For our research we have used Google Colaboratory1 (Colab) which provides free access to
the Google Compute Backend via a web-interface based on the Jupyter Notebook. Colab

1https://colab.research.google.com/

https://colab.research.google.com/

6.4. RELATED WORK 45

gives us access to 25GB RAM, 68GB cloud storage, integrates Google Drive2 (Drive) support
and gives us the option to use hardware acceleration via GPU or TPU free of charge.
Use of hardware acceleration on Colab is, however restricted to twelve hours per day. Fur-
thermore Colab requires constant monitoring to prevent the interface from timing-out.
This limits how we execute the grid search and fine tuning. Would we have had more re-
sources available, we might have opted to include more hyperparameter values in the grid
search. This would have guaranteed that would find the optimal configuration by solely
relying on the outcome of the (full) grid search.

6.3.2. DATA SET
Because of time restrictions we have opted to only use the SAMATE test suite, as described
in chapter 4. The data set is computer generated, which might result in the source code
containing elements, in either syntax or structure, specific to the method of generation.
If our method is trained to recognise these specific artefacts, our model will not be able
to generalize; it might not be able to accurately categorize samples which were not in the
SAMATE test suite.
We believe that, because of the translation of the source code to the code property graphs,
abstracts away from most of the artifacts which might be left over from the generation pro-
cess largely mitigating these unwanted effects. Unwanted effects from the data set can
however not be completely discounted.

6.4. RELATED WORK
As noted in chapter 2 vulnerability research using machine or deep learning approaches are
gaining interest. We have often referenced the work of Yamaguchi, Lottmann, and Rieck
and Kronjee as the basis for our research. [1][16] Both studies have relied on the use of
Code Property graphs as a basis for their research and have obtained admirable results with
them.
Using the expressive power of Code Property Graphs, Xiaomeng, Tao, Runpu, et al. have
obtained good results, predicting vulnerabilities in C/C++ source code based Code Prop-
erty Graphs by using a combination of classifiers built with recurrent neural networks
(RNN). [40] Combining classifiers might be of added use to amend our method as well.
Other approaches, not focusing on the use of Code Property Graphs, but rather concentrat-
ing on the textual representations of source code also seem promising. The research by Li,
Zou, Xu, et al., “VulDeePecker: A deep learning-based system for vulnerability detection”
breaks source code up in semantically related "gadgets" which are subsequently vectorised
and used in a Binary Long Short-Term Memory (BLSTM) model to achieve commendable
results. [35]
Recent research by Wang, Liu, and Tan proposes to leverage Deep Belief Network (DBN)
to automatically learn semantic features from token vectors extracted from programs’ Ab-
stract Syntax Trees to predict defects in software. [44]
A similar approach is proposed by Russell, Kim, Hamilton, et al. in “Automated Vulnerabil-
ity Detection in Source Code Using Deep Representation Learning”, where they tokenize
source code before applying a convolutional filter to the data set. [45] Their method en-
ables the authors to detect and indicate where vulnerabilities in source code are situated,

2https://drive.google.com/

https://drive.google.com/

46 6. DISCUSSION

an added benefit compared to our own method.
Dam, Tran, Pham, et al. also applies tokenizing, followed by K-means clustering before ap-
plying a Long Short-Term Memory model (LSTM) to detect vulnerabilities. Their research
is particularly interesting as they successfully apply their method to real world Android ap-
plications to validate their work. [46]

6.5. FUTURE WORK
Our work proves the feasibility of using deep learning classifiers to predict vulnerabilities in
source code using graph representations. Our approach leaves a number of opportunities
to expand on or vary on our method.
A future implementation of our method might consist of a given piece of source code being
assessed by multiple (vulnerability specific) classifiers to reach a verdict on which vulnera-
bilities are present. A researcher can vary in the scope he tests – where one might start out
with evaluating files and, based on the outcome for a given file, do a more granular (e.g.
function level) assessment to narrow down where the vulnerability is present. Care must
however be taken in preserving the origin of variables introduced by users as they are key
in identifying possible flaws.
One obvious variation to our research is to apply our method to detect vulnerabilities
in samples written in a different programming language to PHP. Most programming lan-
guages are suited to converting source code to AST, CFG and/or PDG, which opens the
door for constructing a Code Property Graph after which our method for classifier devel-
opment can be applied without modification. Furthermore, future work might explore the
applicability of our approach to different vulnerabilities. Overflow vulnerabilities for in-
stance are based on similar concepts to injection vulnerabilities and might be detectable
using a classifier developed using our method.
As we have noted, we have limited the feature generation on path lengths to a maximum
length of nine edges. We expect different vulnerability types to perform differently when
varying this path length parameter. Future work could investigate this hypothesis and at-
tempt to establish an optimal path length for every type of vulnerability.
An interesting variation would be to implement different deep-learning models in classifier
development. Perhaps the performance of our densely connected feed-forward networks
can be surpassed by other topologies such as Recurrent Neural Networks (RNN) or LSTM.
We strongly believe that code property graphs yield a comprehensive source of information
on a given piece of source code. We have chosen to extract paths from these graphs to train
our models. Future work might aim to omit this step of extracting paths and research if
classifiers based on graph neural networks (GNN) can achieve similar performance based
solely off the data and structure in the CPGs.

A
SAMATE PHP CODE SAMPLE

1 <?php
2 /*
3 Unsafe sample
4 input : get the field UserData from the variable $_POST
5 SANITIZE : use of mysql_real_escape string
6 construction : interpretation
7 */
8

9 /*Copyright 2015 Bertrand STIVALET
10 Permission is hereby granted, without written agreement or royalty fee, to
11 use, copy, modify, and distribute this software and its documentation for
12 any purpose, provided that the above copyright notice and the following
13 three paragraphs appear in all copies of this software.
14

15 IN NO EVENT SHALL AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT,
16 INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
17 USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF AUTHORS HAVE
18 BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
19

20 AUTHORS SPECIFICALLY DISCLAIM ANY WARRANTIES INCLUDING, BUT NOT
21 LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
22 PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
23

24 THE SOFTWARE IS PROVIDED ON AN "AS-IS" BASIS AND AUTHORS HAVE NO
25 OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
26 MODIFICATIONS.*/
27

28

29 $tainted = $_POST['UserData'];
30 $tainted = mysql_real_escape_string($tainted);
31 $query = "SELECT Trim(a.FirstName) & ' ' & Trim(a.LastName) AS employee_name, a.city,

a.street & (' ' +a.housenum) AS address FROM Employees AS a WHERE a.supervisor=
$tainted ";

,→
,→

32

33 //flaw
34 $conn = mysql_connect('localhost', 'mysql_user', 'mysql_password'); // Connection to

the database (address, user, password),→
35 mysql_select_db('dbname') ;
36 echo "query : ". $query ."

" ;

47

48 A. SAMATE PHP CODE SAMPLE

37

38 $res = mysql_query($query); //execution
39

40 while($data =mysql_fetch_array($res)){
41 print_r($data) ;
42 echo "
" ;
43 }
44 mysql_close($conn);
45 ?>

Listing 2: Sample №167182, CWE_89__POST__func_mysql_real_escape_string__multiple_AS-
interpretation.php from the SAMATE test suite

B
FULL CODE PROPERTY GRAPH

SAMPLE№167182

49

50
B. FULL CODE PROPERTY GRAPH

SAMPLE№167182

Figure B.1: CPG representation of sample№167182, CWE_89__POST__func_mysql_real_escape_string
__multiple_AS-interpretation.php from the SAMATE test suite. Blue vertices represent control flow depen-
dencies, green vertices represent a data dependency and red vertices indicate a relation in terms of the ab-
stract syntax tree.

BIBLIOGRAPHY

BOOKS
[18] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT press Cam-

bridge, 2016, vol. 1.

[23] W. Richert, Building machine learning systems with Python. Packt Publishing Ltd,
2013, p. 142.

[29] J. Patterson and A. Gibson, Deep learning: A practitioner’s approach. " O’Reilly Media,
Inc.", 2017.

[31] F. Chollet, Deep learning with python. Manning Publications Co., 2017.

ACADEMIC ARTICLES
[1] F. Yamaguchi, M. Lottmann, and K. Rieck, “Generalized vulnerability extrapolation

using abstract syntax trees”, in Proceedings of the 28th Annual Computer Security Ap-
plications Conference, ACM, 2012, pp. 359–368.

[2] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discovering vulnerabil-
ities with code property graphs”, in Security and Privacy (SP), 2014 IEEE Symposium
on, IEEE, 2014, pp. 590–604.

[4] E. M. Hutchins, M. J. Cloppert, and R. M. Amin, “Intelligence-driven computer net-
work defense informed by analysis of adversary campaigns and intrusion kill chains”,
Leading Issues in Information Warfare & Security Research, vol. 1, no. 1, p. 80, 2011.

[7] S. M. Ghaffarian and H. R. Shahriari, “Software vulnerability analysis and discovery
using machine-learning and data-mining techniques: A survey”, ACM Computing
Surveys (CSUR), vol. 50, no. 4, p. 56, 2017.

[17] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Yamaguchi, “Efficient and flexible
discovery of php application vulnerabilities”, in Security and Privacy (EuroS&P), 2017
IEEE European Symposium on, IEEE, 2017, pp. 334–349.

[24] T. Fawcett, “Roc graphs: Notes and practical considerations for researchers”, Ma-
chine learning, vol. 31, no. 1, pp. 1–38, 2004.

[26] T. Saito and M. Rehmsmeier, “The precision-recall plot is more informative than the
roc plot when evaluating binary classifiers on imbalanced datasets”, PloS one, vol. 10,
no. 3, e0118432, 2015.

[33] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting”, The journal of machine
learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization”, arXiv preprint
arXiv:1412.6980, 2014.

51

52 BIBLIOGRAPHY

[35] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong, “Vuldeep-
ecker: A deep learning-based system for vulnerability detection”, arXiv preprint
arXiv:1801.01681, 2018.

[36] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, Z. Chen, S. Wang, and J. Wang, “Sysevr: A
framework for using deep learning to detect software vulnerabilities”, arXiv preprint
arXiv:1807.06756, 2018.

[37] L. Mou, G. Li, Y. Liu, H. Peng, Z. Jin, Y. Xu, and L. Zhang, “Building program vector
representations for deep learning”, arXiv preprint arXiv:1409.3358, 2014.

[38] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2vec: Learning distributed rep-
resentations of code”, arXiv preprint arXiv:1803.09473, 2018.

[39] F. Yamaguchi, A. Maier, H. Gascon, and K. Rieck, “Automatic inference of search pat-
terns for taint-style vulnerabilities”, in Security and Privacy (SP), 2015 IEEE Sympo-
sium on, IEEE, 2015, pp. 797–812.

[40] W. Xiaomeng, Z. Tao, W. Runpu, X. Wei, and H. Changyu, “Cpgva: Code property
graph based vulnerability analysis by deep learning”, in 2018 10th International Con-
ference on Advanced Infocomm Technology (ICAIT), IEEE, 2018, pp. 184–188.

[42] B. Stivalet and E. Fong, “Large scale generation of complex and faulty php test cases”,
in 2016 IEEE International conference on software testing, verification and validation
(ICST), IEEE, 2016, pp. 409–415.

[43] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis tool for detecting web
application vulnerabilities (short paper)”, 2006.

[44] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features for defect pre-
diction”, in 2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE), IEEE, 2016, pp. 297–308.

[45] R. L. Russell, L. Kim, L. H. Hamilton, T. Lazovich, J. A. Harer, O. Ozdemir, P. M. Elling-
wood, and M. W. McConley, “Automated vulnerability detection in source code using
deep representation learning”, arXiv preprint arXiv:1807.04320, 2018.

[46] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and A. Ghose, “Automatic feature
learning for vulnerability prediction”, arXiv preprint arXiv:1708.02368, 2017.

MISCELLANEOUS
[3] B. E. Strom, J. A. Battaglia, M. S. Kemmerer, W. Kupersanin, D. P. Miller, C. Wampler,

S. M. Whitley, and R. D. Wolf, “Finding cyber threats with att&ck-based analytics”,
Technical Report MTR170202, MITRE, Tech. Rep., 2017.

[5] A. Forni and R. van der Meulen. (2017). Gartner says detection and response is top
security priority for organizations in 2017, Gartner, [Online]. Available: https://
www.gartner.com/newsroom/id/3638017 (visited on 08/09/2019).

[6] A. Bhutani and P. Wadhwani, Global cyber security market size worth $300bn by 2024,
2019. [Online]. Available: https://www.gminsights.com/pressrelease/cyber-
security-market.

https://www.gartner.com/newsroom/id/3638017
https://www.gartner.com/newsroom/id/3638017
https://www.gminsights.com/pressrelease/cyber-security-market
https://www.gminsights.com/pressrelease/cyber-security-market

MISCELLANEOUS 53

[8] W3 techs, Usage statistics and market share of server-side programming languages
for websites, november 2018, [Online; accessed 25-November-2018], 2018. [Online].
Available: https : / / w3techs . com / technologies / overview / programming _
language/all.

[9] R. Shirley. (). Internet security glossary - ietf, [Online]. Available: https : / / www .
ietf.org/rfc/rfc2828.txt.

[10] National Vulnerability Database, Ed. (2019). Nvd - search results for 2019. (visited on
1/12/2019), [Online]. Available: https://nvd.nist.gov/vuln/search/results?
form_type=Advanced&results_type=overview&search_type=all&pub_start_
date=01%2F01%2F2019&pub_end_date=12%2F31%2F2019.

[11] National Vulnerability Database, Ed. (). Nvd - cwe slice, [Online]. Available: https:
//nvd.nist.gov/vuln/categories (visited on 09/09/2018).

[12] The OWASP Foundation. (). Cross-site scripting. OWASP, Ed., [Online]. Available:
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS) (visited
on 12/01/2019).

[13] ——, (). Sql injection - owasp. OWASP, Ed., [Online]. Available: https://www.owasp.
org/index.php/SQL_Injection (visited on 12/01/2019).

[14] ——, (). Command injection. OWASP, Ed., [Online]. Available: https://owasp.org/
www-community/attacks/Command_Injection.

[15] MITRE. (). Open redirect. MITRE, Ed., [Online]. Available: https://cwe.mitre.
org/data/definitions/601.html.

[16] J. Kronjee, “Discovering vulnerabilities using data-flow analysis and machine learn-
ing.”, Master’s thesis, Open Universiteit Nederland, Mar. 2018.

[19] M. White and A. White, “Lecture1: Course introduction”, in Fundamentals of Rein-
forcement Learning, Coursera Course, 2019. [Online]. Available: https://https:
//www.coursera.org/learn/fundamentals-of-reinforcement-learning.

[20] Google. (2019). Classification: True vs. false and positive vs. negative, Google, [On-
line]. Available: https : / / developers . google . com / machine - learning /
crash-course/classification/true-false-positive-negative (visited on
08/15/2019).

[21] ——, (2019). Classification: Accuracy, Google, [Online]. Available: https : / /
developers.google.com/machine-learning/crash-course/classification/
accuracy (visited on 08/15/2019).

[22] ——, (2019). Classification: Precision and recall, Google, [Online]. Available: https:
/ / developers . google . com / machine - learning / crash - course /
classification/precision-and-recall (visited on 08/15/2019).

[25] ——, (2019). Classification: Roc curve and auc, Google, [Online]. Available: https://
developers.google.com/machine-learning/crash-course/classification/
roc-and-auc (visited on 08/15/2019).

https://w3techs.com/technologies/overview/programming_language/all
https://w3techs.com/technologies/overview/programming_language/all
https://www.ietf.org/rfc/rfc2828.txt
https://www.ietf.org/rfc/rfc2828.txt
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&pub_start_date=01%2F01%2F2019&pub_end_date=12%2F31%2F2019
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&pub_start_date=01%2F01%2F2019&pub_end_date=12%2F31%2F2019
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&results_type=overview&search_type=all&pub_start_date=01%2F01%2F2019&pub_end_date=12%2F31%2F2019
https://nvd.nist.gov/vuln/categories
https://nvd.nist.gov/vuln/categories
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/SQL_Injection
https://owasp.org/www-community/attacks/Command_Injection
https://owasp.org/www-community/attacks/Command_Injection
https://cwe.mitre.org/data/definitions/601.html
https://cwe.mitre.org/data/definitions/601.html
https://https://www.coursera.org/learn/fundamentals-of-reinforcement-learning
https://https://www.coursera.org/learn/fundamentals-of-reinforcement-learning
https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative
https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

54 BIBLIOGRAPHY

[27] scikit-learn developers. (). sklearn.metrics.precision_recall_fscore_support - scikit-
learn 0.22.2 documentation. Scikit-learn, Ed., [Online]. Available: https://scikit-
learn . org / stable / modules / generated / sklearn . metrics . precision _
recall_fscore_support.html.

[28] ——, (). sklearn.metrics.classification_report - scikit-learn 0.22.2 documentation.
Scikit-learn, Ed., [Online]. Available: https : / / scikit - learn . org / stable /
modules/generated/sklearn.metrics.classification_report.html.

[30] A. Ng, “Lecture: Neural networks basics”, in Neural Networks and Deep Learning,
Coursera Course, 2019. [Online]. Available: https://www.coursera.org/learn/
neural-networks-deep-learning?specialization=deep-learning.

[32] ——, “Lecture: Shallow neural networks”, in Neural Networks and Deep Learning,
Coursera Course, 2019. [Online]. Available: https://www.coursera.org/learn/
neural-networks-deep-learning?specialization=deep-learning.

[41] National Vulnerability Database, Nvd - vulnerabilities, https://nvd.nist.gov/
vuln, (Visited on 4/11/2018), 2018.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://www.coursera.org/learn/neural-networks-deep-learning?specialization=deep-learning
https://www.coursera.org/learn/neural-networks-deep-learning?specialization=deep-learning
https://www.coursera.org/learn/neural-networks-deep-learning?specialization=deep-learning
https://www.coursera.org/learn/neural-networks-deep-learning?specialization=deep-learning
https://nvd.nist.gov/vuln
https://nvd.nist.gov/vuln

GLOSSARY

CWE-601 Open redirect, Unvalidated redirects and forwards are possible when a web ap-
plication accepts untrusted input that could cause the web application to redirect
the request to a URL contained within untrusted input. By modifying untrusted URL
input to a malicious site, an attacker may successfully launch a phishing scam and
steal user credentials1.

CWE-78 OS command injection, Command injection is an attack in which the goal is exe-
cution of arbitrary commands on the host operating system via a vulnerable applica-
tion2.

CWE-79 Cross site scripting, Cross-Site Scripting (XSS) attacks are a type of injection, in
which malicious scripts are injected into otherwise benign and trusted websites. XSS
attacks occur when an attacker uses a web application to send malicious code, gen-
erally in the form of a browser side script, to a different end user. Flaws that allow
these attacks to succeed are quite widespread and occur anywhere a web application
uses input from a user within the output it generates without validating or encoding
it3.

CWE-89 SQL injection, A SQL injection attack consists of insertion or "injection" of a SQL
query via the input data from the client to the application. A successful SQL injection
exploit can read sensitive data from the database, modify database data (Insert/Up-
date/Delete), execute administration operations on the database (such as shutdown
the DBMS), recover the content of a given file present on the DBMS file system and
in some cases issue commands to the operating system. SQL injection attacks are a
type of injection attack, in which SQL commands are injected into data-plane input
in order to effect the execution of predefined SQL commands4.

1Definitions from https://www.owasp.org
2ibid
3ibid
4ibid

55

https://www.owasp.org

	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Summary
	Introduction
	Deep Learning Vulnerability Prediction with Graphs
	Thesis Outline

	Preliminaries
	Software Vulnerabilities
	Injection vulnerabilities
	Related vulnerability types

	Vulnerability Research
	Static analysis using graphs

	Machine Learning
	Reinforcement, unsupervised and supervised Learning
	Performance metrics for classifiers

	Deep Learning
	Architecture
	Training
	Hyperparameters
	Deep learning for vulnerability prediction

	Research Design
	Research Questions
	Research Method
	PHP Source code representation as code property graphs
	Vulnerability classification using deep learning classifiers
	Evaluating the performance of our classifiers

	Research Contribution

	Classifier Development
	Classifiers per Vulnerability
	Classifier for OS command injection (CWE-78)
	Classifier for cross site scripting (CWE-79)
	Classifier for SQL-injection (CWE-89)
	Classifier for open redirect (CWE-601)

	Conclusion
	Limits to the grid search

	Classifier Comparison
	Tools
	RIPS
	Pixy
	WIRECAML

	Results
	OS Command injection (CWE-78)
	Cross-site scripting (CWE-79)
	SQL-injection (CWE-89)
	Open redirect (CWE-601)

	Conclusion

	Discussion
	Research Outcome
	R.Q. 1 Representing code property graphs
	R.Q. 2 Classifier development
	R.Q. 3 Classifier comparison
	Research question and answer

	Research Contributions
	Limitations
	Processing power
	Data set

	Related Work
	Future Work

	Appendix SAMATE PHP Code Sample
	Appendix Full Code Property Graph sample 167182
	Bibliography
	Books
	Academic articles
	Miscellaneous

	Glossary

