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ABSTRACT

More software parallelization results in more software communication and therefore the
need for software communication protocols. Protocol logic in a program is also called the
coordination concern. Separating this coordination concern from the regular computation
concern in a distributed application can result in higher quality software code. This can be
achieved by providing a software engineer facilities for programming protocols based on
a global protocol definition. Not only will the coordination be separated from the compu-
tation concern, but the defined protocol can also be statically validated. Generating the
coordination layer for a distributed application also saves time and reduces programming
errors instead of implementing this layer manually.

This thesis reports on research for adding software protocol abstractions to the pro-
gramming language TypeScript. TypeScript is a statically compiled and typed version of
the programming language JavaScript, which is a popular language for programming dis-
tributed applications.

Various concrete abstractions that are needed for the protocol abstraction layer are di-
vided over three conceptual layers. The first conceptual layer provides abstractions needed
for starting the protocol and a role based messaging system. The second layer provides a
programming interface for each distributed process that is part of the protocol. This in-
terface will enable static protocol validation and with a professional development environ-
ment, facilities like code statement completion and code navigation will be present. The
third layer provides the global protocol definition with the corresponding programming
syntax, through an external DSL.

A runtime facility for starting up the protocol, to make sure all involved distributed soft-
ware processes are present, is called the Mediator. This Mediator role collects the physical
address details of all the protocol involved roles and delivers this information to these roles.
After this startup process the Mediator dies and the protocol has started for the involved
protocol roles. Messages are specified and can be continuously received, but processed
when a role is ready for a specific message. Static protocol validation is based on state
machine simulation per role. The generated API will have objects for all states, and the
methods of these objects represent the transitions between states. These transitions can
only be made once, which is checked at runtime to guarantee protocol safety. Performance
penalty tests indicate a low decrease of performance due to the extra abstraction layer, and
this happens only when the amount of messages increase to high volumes.

Normally the implementation of the coordination concern of a distributed application
can be error prone, but with a generated coordination layer and static validation, protocol
constraints are enforced and therefore errors are reduced.
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1
INTRODUCTION

It is very likely that software processes will become increasingly concurrent in the future,
and that parallel processing of software will become more ubiquitous than it is already to-
day. As the amount of parallel processing increases, the amount of communication be-
tween processes increases too, and when there is communication, there are communica-
tion protocols.

Parallel processing exists in the large, like distributed systems as for example the public
Internet or a company enterprise system where several software services cooperate to de-
liver a piece of functionality. And parallel processing exists in the small, as for example the
parallel execution of software on a single computer with a multi-core processor.

This first chapter of this Master thesis starts with an introduction in parallel processing
in the large in the form of distributed systems in Section 1.1. In Section 1.2 a definition and
explanation of a software protocol is given. Then in Section 1.3 the importance of sepa-
rating concerns in software applications is mentioned concerning software protocols. Do-
main specific languages for programming software protocols are introduced in Section 1.4.
Then the main research question of this Master thesis is formulated in Section 1.5 with the
narrowed down sub questions. This chapter ends with an explanation of the contribution
that is done with this research in Section 1.6.

1.1. DISTRIBUTED SYSTEMS
In computer science, a distributed system is a system that consists of different autonomous
systems that cooperate and communicate by using message passing techniques. Distributed
software systems are already omnipresent; nowadays, all software on Internet connected
devices communicate with centralized or decentralized services. An upcoming architec-
ture paradigm as Micro-services (MSA) also exemplifies trend towards distributed software,
programmed as tiny little services [Dra+17a]. Notably, Dragoni [Dra+17b] argues that a
software architecture based on micro-services is a natural fit for the Internet Of Things
(IOT). According to Zhang [Zha16], at this moment, there are more than 20 billion con-
nected devices, while trillions of Internet-connected sensor devices are expected to be con-
nected within ten years. In addition, there are also indications, like the multikernel archi-
tecture [Pfe16], that computers with operating systems that treat their multi-core proces-
sors as distributed systems tend to be more scalable. This can also be thought of as using
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1.2. SOFTWARE PROTOCOL 7

message passing instead of shared memory and these ideas have already resulted in a few
operating system implementations, like Barrelfish and Singularity [Pfe16].

An increase of parallelism among distributed software processes will likely result in an
increase of communication between these processes. For successful communication be-
tween processes, software protocols are essential.

1.2. SOFTWARE PROTOCOL
A software protocol defines the admissible communication patterns between software pro-
cesses; this includes infrastructure specifications to make communication possible and a
description of the flow of the communication itself. The infrastructure specification in-
cludes physical network addresses with corresponding network protocols and a description
of the exchanged message format. The flow description consists of the order of execution
of the software processes and other behavioral constraints that define the behavior of an
instance of the defined software protocol; this is also called a conversation.

As more software-services join the computing environment, distributed software exe-
cution will become increasingly important, and a lot of these services will participate in a
software protocol to produce the desired functionality. The responsibility of the coordina-
tion of protocols can be handled within specific enterprise architectures, like SOA or MSA
and their corresponding techniques, or it can be implemented directly in a program. If
a piece of software is not a part of an enterprise, the latter will often be the most prefer-
able option, because enterprise architectural facilities for coordination will be missing. Of
course it is possible to implement distributed coordination logic directly into the software,
but this increases complexity. Specifically, intermixing of different pieces of logic with dif-
ferent concerns, across the whole program code violates a software engineering best prac-
tice principal, called ’Separation of Concerns’.

1.3. SEPARATION OF CONCERNS (SOC)
SoC is a popular and well known principle for engineering software, the benefits have been
known for decades within the field of computer science by Parnas [Par94] and also our own
Dutch computer scientist Edsger Dijkstra [Dij79]. With this principle, programming logic
becomes much more comprehensible and understandable for humans and therefore more
maintainable.

When implementing software protocols, the coordination concern can be separated
from the computation concern. This way programming code becomes more comprehen-
sible and therefore easier to understand [GC92] and adjust.

Achieving better quality programming code which is more maintainable, is one of the
main goals of this master thesis. Therefor this subsection deserves its own separate space.
In this document there are references to this section to show the practical loyalty to this
principal.

1.4. PROTOCOL LANGUAGES
As argued for many years [GC92; Cia96], in many papers and congresses [Cia+18], the sep-
aration of computation and coordination logic increases the quality and maintainability
of software code in which a software protocol is implemented. A protocol language is a
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programming language tailored to implementing the coordination concern of a software
protocol. Examples of these kind of languages are Linda [CG89] and Reo [Arb04]. These
two languages are capable of implementing the coordination part of parallel software pro-
cesses on a single physical machine, with the use of shared memory (although distributed
implementations exist as well). The revolution and evolution of multi-core processors from
dual cores in 2004 to processors with eighteen cores at this moment, makes the develop-
ment of these protocol languages an interesting research topic in software engineering.
Writing parallel programs is not standard in most languages, and maybe a bit unnatural for
many programmers who are used to sequential program processing. But the complexity of
non-sequential programs is needed to fully use the multi-threaded capabilities of a modern
processor.

There are also protocol programming languages in which the focus is on message pass-
ing for communication between software processes, instead of using shared memory. Ex-
amples of these kinds of languages are Jolie [MGZ14] and Scribble [Hon+11]. The idea is the
same: a programming language specifically tailored to coordination of software processes
is used to program the coordination concern. A programming language for a specific con-
cern is also called a Domain Specific Language (DSL).

A software communication protocol between different distributed autonomous soft-
ware processes, which are called the roles in the protocol, can be described on a global
level. This way the complete constrained interaction between the roles is described in
one program. Describing the protocol on a local level than the protocols are described
per role separately. The protocol DSL Scribble is discussed in Chapter 2.1.3. This language
describes from a high global perspective the interactions between the roles which can be
seen as distributed processes. With Scribble a complete protocol can be defined, the syntax
encapsulates the interaction of the different parties. This is a difference with the DSL Jolie
discussed in Chapter 2.1.4 in which the protocol is defined by describing local perspectives.
With Jolie the interactions of the different parties in the protocol are described separately
and not globally as with Scribble.

One description of a multi party communication protocol on a global level is less work
for a software engineer then describing each protocol for each role that is involved in the
protocol. Also the higher abstraction level of a global description should make the inter-
action flows more comprehensive and therefore more understandable. A description of a
software communication protocol on a global level is the preferred way of describing a con-
strained distributed software communication pattern for this Master graduation project.

A generated software communication framework based on a description of a global pro-
tocol, could be used by a software engineer to build his distributed application. Such an
API generation process should be applicable and beneficial for any statically compiled lan-
guage [Hu17]. The advantages of statically compiled languages in opposite of dynamic
languages are for example the static validation of the protocol constraints and the ease of
syntax completion facilities when using an appropriate IDE.

1.5. MASTER RESEARCH
As distributed processing becomes ubiquitous, facilities for describing protocols in pro-
gramming languages become increasingly important. Existing GPL programming languages
lack facilities for software protocols and are therefore inadequate.

Memory management in an software application once was the responsibility of the pro-
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grammer. The introduction of the garbage collector changed this, and languages like Java
took away this responsibility, making the programmer’s job easier. Will this be a future
scenario for software communication protocol abstractions, and is an evolution with these
abstractions in programming languages a logical step forward? A field in Computer Science
that researches the parallelization of software exists, and several domain specific program-
ming languages have been developed for defining constrained software communication
patterns.

A contribution to this research field is done with this Master project. This project aims
to develop facilities for software protocols in the GPL language TypeScript. TypeScript is a
typed version of JavaScript which is a frequently used distributed programming language
in the world at the moment [hac18; bus18; fre18; use18; red18]. This way, with the help of
TypeScript, static protocol syntax validation can be achieved for JavaScript. The protocol
description is formulated with higher abstraction level definitions describing the allowed
interactions between distributed processes.

The main research question proposed in this research proposal is:

How can protocol abstractions be added to TypeScript?

This research question can be narrowed down to five questions:

• RQ1: What abstractions do we need?
• RQ2: Do we need a protocol engine for validating and execution of protocol instances?
• RQ3: How is message passing implemented?
• RQ4: Is it possible to add these abstractions as GPL or will it better to add them as

embedded DSL.
• RQ5: What is the performance penalty of these abstractions?

1.5.1. RQ1: WHAT ABSTRACTIONS
What are the concrete abstraction facilities that are needed for implementing the distributed
software communication abstraction layer in TypeScript?

1.5.2. RQ2: PROTOCOL ENGINE
Is there a need for runtime facilities for execution and validation of software communica-
tion protocols in TypeScript? And if a runtime engine is required, for what is it needed and
how is this runtime engine implemented?

1.5.3. RQ3: MESSAGE PASSING
How will the message passing between distributed software processes take place? What
abstraction facilities are needed and how are these implemented?

1.5.4. RQ4: GPL OR DSL
What is the most convenient way for adding software communication protocol abstrac-
tions to TypeScript? Directly adding these abstractions to the language, and make them a
part of the TypeScript GPL language, or implement these abstractions as a separate DSL.
TypeScript is an open source language with its source code on GitHub, which makes it pos-
sible to directly modify the TypeScript language interpreter.
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1.5.5. RQ5: PERFORMANCE PENALTY
What is the performance penalty of the execution of a distributed application that is built
with the use of protocol abstractions? Generating the coordination concern of an appli-
cation, this way separating the computation concern and provide help with building the
distributed application could result in a loss of performance.

1.6. CONTRIBUTION
Generation of an API based on a global protocol description with the DSL Scribble to other
static compiled languages has been done before. For example a process for generating a
Java API is described in a paper by Hu [Hu17]. The uniqueness of this Master project is the
generation of an API based on a software communication protocol description to the static
compiled language TypeScript. There has not yet been a contribution in this field of soft-
ware engineering that generates a protocol API in this language. Since the language Type-
Script runs as JavaScript, which is the most used distributed programming language at this
moment, this is a relevant contribution to the field of parallel distributed programming.
The type system and static compilation offered by the TypeScript language in combination
with the generated protocol API make static protocol validation possible for JavaScript.

In Chapter 2 there is background information about protocol abstractions and also the
programming language TypeScript. Section 2.1 discusses protocol abstractions with con-
crete practical examples. Section 2.2 describes the programming language TypeScript and
related technologies, since the goal is to add protocol abstractions to this GPL.

Chapter 3 explains the result of the this master project, where concrete abstractions
are divided over three conceptual layers. With this solution software protocols can be pro-
grammed with static software protocol validation in TypeScript and executed as JavaScript.
Section 3.1 starts with an example of a distributed program and show the bare implemen-
tation in TypeScript. Then Sections 3.2, 3.3 and 3.4 explain the conceptual layers. Chapter
3 ends with a conclusion in Section 3.5.

This thesis ends with Chapter 4 in which the result of this research is evaluated and the
research questions are answered.



2
PRELIMINARIES

This chapter discusses background information concerning this project.
In Section 2.1 protocol abstractions are discussed. Concrete technologies for imple-

menting distributed protocols were studied and documented in this section.
Protocol abstractions are added to the programming language TypeScript, therefor Sec-

tion 2.2 introduces this general purpose language. Also other related technologies are dis-
cussed in this section.

2.1. PROTOCOL ABSTRACTIONS
Since the focus of this research is on message passing as communication technique for par-
allel software services, this chapter describes tools and techniques for the coordination of
distributed software services. Techniques that can deal with the coordination of processes
based on shared memory will not be discussed.

A big difference between architectures as SOA and MSA and implementing the protocol
directly in the software, is the separation of the coordination responsibility and the com-
putation responsibility. For better application management, separation is recommended
because software code becomes more comprehensible, and because generic facilities de-
livered by external coordination solutions, like visualization or statistics, can help in the
development of distributed processes. One can argue that another good reason for sep-
arating computation from coordination is the possibility to choose the most appropriate
technology for the job that has to be done; for example, for a computation-intensive, job
the C++ language can be used, while for coordination a language like BPEL could be cho-
sen.

There are also several examples of DSL programming languages with which coordi-
nation of distributed software can be implemented by leveraging type systems. Scribble
[Hon+11; Hu17] and Jolie [Ban+16; MGZ14] are examples of such DSL programming lan-
guages. In the book ’Behavioral Types in Programming Languages’, behavioral types are
discussed [Anc+16], and also the language Sing# is mentioned as a programming language
in which behavioral types are embedded in the type system, but since this language is only
for the operating system Singularity, it must be considered a DSL with a very specific scope.
The Singularity operating system is a prototype of a reliable operating system where the
kernel is treaded as a distributed system based on message passing communication, with-
out shared memory.

11
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In Section 2.1, first an introduction is given for behavioral abstractions and then three
technologies for coordinating distributed services are described. The first one in Section
2.1.2 is the tool Oracle Workflow which is used in enterprise environments to coordinate
business processes. This tool is a way to coordinate distributed services based on work-
flows and was used in some enterprise companies for distributed software processing be-
fore the SOA age. The second technology discussed in Section 2.1.3 is the coordination
language Scribble; this is a DSL programming language for implementing software proto-
cols. Section 2.1.4 deals with the language Jolie, also a DSL language specifically tailored
to the implementation of coordination logic. Section 2.1.5 discusses the possibilities for
architectures of software protocols.

2.1.1. BEHAVIORAL ABSTRACTIONS
Behavioral abstractions are facilities in technologies with which we can define the com-
munication and behavior of concurrent software processes. These can be statements or
datatypes in DSL languages for coordination or facilities in distributed architectures.

Software engineers all know primitive data types, like number, raw and character. But
also complex object types, like objects or interfaces with which we can define higher level
datatypes that are capable of representing the real world and the problem domain. Behav-
ioral types can sometimes be encoded by creating custom complex datatype abstractions
which are available in the used technology. Several programming languages also facilitate
Aspect Oriented Programming (AOP) with for example the help of annotations or decora-
tors. Functionality like for example logging is separated from the computation logic with
the use of these AOP constructions.

To focus on what kind of abstractions are needed for protocol programming, three dis-
tributed service technologies are discussed in following sections.

2.1.2. ORACLE WORKFLOW
Oracle Workflow is a tool for defining enterprise business workflows; this was a familiar
tool in Oracle-centric enterprises in the mid 2000s. Simply said, this was a gui tool that
could visually represent and build workflows of processes, and with this tool, a text file was
generated wherein a specific execution-order of and communication between distributed
software was described. An engine took subsequently care of the execution of the software
and the validation of the behavioral constraints.

The technology behind this tool has become deprecated and unsupported. The more
generic SOA architectural paradigm took over, with its supporting tools and technologies.
In a SOA architecture, typically, the coordination of distributed software is implemented
with the use of the Business Process Execution Language (BPEL). And nowadays, we have
entered the age of the MSA architectural paradigm [Dra+17a] with its facilities for dis-
tributed service coordination. An interesting example is the custom MSA architecture from
Netflix, called Conductor [Net18].

The Oracle Workflow technology was capable of coordinating distributed processes,
implemented using many forms of different technologies. The generated workflow could
contain processes, other workflows and logical operations, like routers or loops. Thus, a
process could be a workflow, a programming method, a unix shell script, interaction with
a user with the use of a graphical screen, and interaction with other systems based on for
example remote procedure calls or protocols like the File Transfer Protocol (FTP). The in-
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teraction of the processes with each other in the same workflow was dealt with by the ex-
change of predefined variables; these communication variables were specified in the work-
flow template. Of course, the workflow engine had some variables of its own too, which
made it possible to identify specific instances of workflows and collect some management
information of instances of workflows like timing.

When looking at this technology as an example of coordinating distributed processes
in enterprise environments in the old days, it is clear that several components can be ex-
tracted. These components can be classified in two groups, namely metadata and physical
data. There is metadata about workflows, processes in a workflow, and the interaction be-
tween the processes in the workflow, which could be called a message interface (i.e. an
agreed upon contract between processes). The information about processes include infor-
mation as the kind of process, if relevant the used protocol, and the interface it offers. A
workflow is nothing more than the predefined coordination of these processes, while the
instances of a workflow are the physical executions of this workflow.

2.1.3. SCRIBBLE
Scribble is a DSL programming language for implementing the coordination concern; its
purpose is to provide a programming language for implementing protocols between dis-
tributed processes [Hon+11; Yos+13; Hu17]. Scribble implements protocols and can also
describe an architecture of protocols. The computation concern is dealt with in the called
services with their own implementations and programming languages. These services are
called participants while the instantiation of a protocol, including the exchange of mes-
sages between two or more participants, is called a (multiparty) conversation or session.
The description of the flow of these messages is called the protocol.

The formal and intuitive Scribble language makes it possible to reason about commu-
nication protocols. In Figure 2.1 [Hon+11] an overview of the Scribble software framework
is visualized.

Distributed processes can implement interaction through the conversation API. These
are interfaces for passing messages between processes in the described protocol; in Scrib-
ble, these are called the messages in the conversations. Static validation is carried out with
the aid of the API. The runtime checking is done by the Runtime Monitor; this monitor
reads the protocol specification and inspects the runtime conversation behavior.

Let’s look at an example protocol named Alice and Bob (1), a client-server protocol for
a network service that adds two numbers. This example protocol will be described in the
Scribble language syntax in the rest of this section. This example is based on the Adder
example that is used on the Scribble website [Scr18].

(1) The outline of the protocol is: Alice may choose to send to Bob one of the following
two messages, an ADD message or a BYE message. The ADD message has a payload
of two Integers and after receiving the ADD, Bob sends to Alice a RES message with a
payload of one Integer (this is the sum of the received Integers). Then Alice and Bob
continue by looping back to the start of the protocol. A BYE message with an empty
payload will end the conversation. The protocol ends for Alice after sending the BYE
message, and the protocol ends for Bob after receiving the BYE message.

A sequence diagram illustrating the global perspective of the Alice and Bob protocol exam-
ple (1) is displayed in Figure 2.2.
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Figure 2.1: Scribble framework overview

Figure 2.2: Alice and Bob global protocol
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Listing 2.1: Scribble code for implementing Adder software protocol

1

module examples.AliceAndBob;
3

type <java > "java.lang.Integer" from "rt.jar" as Int;
5

global protocol AliceAndBob(role Alice , role Bob) {
7 choice at Alice {

ADD(Int , Int) from Alice to Bob;
9 RES(Int) from Bob to Alice;

do AliceAndBob(Alice , Bob);
11 } or {

BYE() from Alice to Bob;
13 }
}

The code example in Listing 2.1 is an implementation of the Alice and Bob software
protocol with the Scribble DSL; this implementation follows the description of example
(1). The code starts with a module declaration on the first line; after that the type for the
exchanged message is defined. Then, the protocol specification begins with the protocol
keyword. AliceAndBob is the name of the protocol and the curly braces indicate the pro-
tocol body; the two participants Alice and Bob are defined with the role keyword and are
specified as parameters of the protocol. The choice statement states that the protocol has
a choice between the two separated blocks of code In this example, Alice is the master
role that decides which block to follow. Alice communicates its decision to the participant
Bob by passing corresponding messages in each case. The message signature ADD(Int, Int)
specifies that ADD is the operator (this is a label or header that identifies the message) and
the payload is two integers (Int,Int). In the message passing statement ’ADD(Int, Int) from
Alice to Bob;’ Alice is the sender, which without blocking, asynchronously dispatches the
specified message; in turn, Alice is the receiver and blocks until the message is received.
The do statement ’do AliceAndBob(Alice, Bob);’ allows a protocol to be defined in terms
of other (sub)protocols. This makes the creation of an architecture with multiple proto-
cols possible. But it is also used for recursive protocol definitions, and can be used for the
iteration in the AliceAndBob protocol example.

This Scribble protocol definition can be parsed with the Scribble compiler, and after a
successful validation, the monitor code is generated. The generated endpoints are based
on Finite State Machines (FSM) [Hu17; Scr18], see Figures 2.3 and 2.4. Physical addresses
like hostnames and ports of distributed services have to be passed through with the initial-
ization of a protocol. These can be passed with the constructors of the generated code for
the participants.

In the FSM examples in Figures 2.3 and 2.4, the transitions are the exchange of the mes-
sages. A state sends or receives a message to proceed to a next state.

2.1.4. JOLIE
Jolie is a programming language for coordinating distributed processes. A lot of the litera-
ture on Jolie is also about the MSA architectural paradigm and how this language is the best
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Figure 2.3: Local perspective of Alice Figure 2.4: Local perspective of Bob

natural fit for this relatively new architecture [Dra+17b; Gui+17; MGZ14; Ban+16; GDM16;
MGZ14; Tch+16].

Jolie is an abbreviation of Java Orchestration Language Interpreter Engine and is an
open-source programming language. The Jolie project started in 2006 by Fabrizio Montesi
as part of his studies at the University of Bologna. In Jolie, separation of behavior and de-
ployment is a major design feature. Deployment information includes physical addresses
at which functionalities are exposed and the communication technologies and data proto-
cols used to interact with other services.

The example protocol Adder (1) from the previous section will be used to illustrate the
implementation code with the corresponding abstractions in the Jolie programming lan-
guage.

In the Listing 2.2, an interface for the distributed service is defined; this is the first ab-
straction in the Jolie language. The interface defines the messages that will be exchanged
during the conversation; this code listing follows the Adder example (1).

Listing 2.2: Implementation of a message interface in the Jolie language

1 interface AdderInterface {
RequestResponse: add( int , int )(int)

3 OneWay: bye
}

As said before, in Jolie, deployment is separated from behavior. For deployment ab-
stractions, there are inputPorts and outputPorts in which physical details of services can
be defined. These physical details include port number, domain names, IP addresses and
low level communication protocols. Following the Adder example of (1) the syntax for the
inputPort is shown in Listing 2.3. This code represents the server part of the protocol.

Listing 2.3: Implementation of an inputPort in Jolie

include "AdderInterface.iol"
2
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inputPort AdderService{
4 Location: "socket :// www.AdderSolutions.nl :8000/ v2/add"

Protocol: https
6 Interfaces: AdderInterface
}

The outputPort is also a deployment abstraction, Listing 2.4 contains the physical in-
formation for the client part of the protocol.

Listing 2.4: Implementation of an outputPort in Jolie

1 include "AdderInterface.iol"

3 ouputPort AdderService{
Location: "socket :// localhost :8000"

5 Protocol: https
Interfaces: AdderInterface

7 }

The inputPort and the outputPort are connected to the predefined AdderInterface in-
terface. This way the message that is exchanged is connected to the physical service. The
complete code for the server logic is shown in Listing 2.5.

Listing 2.5: server side implementation in Jolie

1 include "AdderInterface.iol"
inputPort AdderService{

3 Location: "socket :// www.AdderSolutions.nl :8000/ v2/add"
Protocol: https

5 Interfaces: AdderInterface
}

7 main
{

9 [ add( inputX , inputY )( result ) {
result = inputX + inputY;

11 } ]
[ bye {

13 // clear session etc ...
} ]

15 }

The Jolie implementation code for the client side of the software Adder protocol is
shown in Listing 2.6.

The recursive iteration in the Scribble code in Listing 2.1 with the use of a sub-protocol
on line 10 can not be achieved the same way in Jolie. In Jolie, this iteration is achieved with
the statements provide until: the add service will be called until the bye service is called.

Listing 2.6: client side implementation in Jolie
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1 include "console.iol"
include "AdderInterface.iol"

3 ouputPort AdderService{
Location: "socket :// localhost :8000"

5 Protocol: https
Interfaces: AdderInterface

7 }
main

9 {
provide

11 [ add( inputX , inputY )( response ) {
add@AdderService( inputX , inputY )( response );

13 }
] { println@Console( response )() };

15 until
[ bye {

17 bye@AdderService( );
}

19 ] { println@Console( "Session␣ended" )() };
}

Interestingly, whereas in Jolie deployment is separated from behavior, in Scribble these
physical details are parameterized and passed during object initialization. One can say a
developer has more flexibility this way, and can make its own deployment details solution,
without the constraint to wrap it in an inputPort object. However, Jolie forces developers to
think about deployment, and this is essential when services are distributed. Oracle Work-
flow just as Scribble, did not have separate objects for the deployment characteristics of
distributed services, these were also properties of process objects.

2.1.5. ARCHITECTURE OF SOFTWARE PROTOCOLS
An architecture of protocols is a set of multiple protocols combined; this is enabled by ar-
chitectural styles like MSA and SOA, but there are also protocol languages that are capable
of defining software protocol architectures. Examples of these programming languages are
the language Chor [CM13] and the framework Adaptive Interaction Oriented Choreogra-
phies in Jolie (AIOCJ) [Dal+14]. AIOCJ and Chor both generate Jolie programming code,
but AIOCJ can be adjusted runtime, which is often essential in enterprise production en-
vironments. This in theory makes AIOCJ a suitable candidate for MSA choreographies in
production environments. Scribble is also capable of defining an architecture of protocols
with the use of subprotocols.

In this research proposal, the focus will be on distributed protocols where the commu-
nication is based on message passing; architectures of protocols will be out of scope.
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2.2. TYPESCRIPT
Atwood’s Law: any application that can be written in JavaScript, will eventually be written
in JavaScript [cod18].

In this chapter, the GPL programming language TypeScript (TS) is described. The lan-
guage TS runs as JavaScript (JS). JS is one of the most popular programming language at
this moment [hac18; bus18; fre18; use18; red18]. JS language interpreters run on almost
every computer, game console, tablet, and smart phone, and is used almost always in a
distributed setting. TS extends this language with typed data and more, the language is
actively developed, and many programming facilities that are known from other GPL pro-
gramming languages have been integrated in the TS language. TS is also capable of produc-
ing JS that is compatible with most browsers. The popularity and distributed nature of JS,
and the sophisticated extras of TS make this GPL a highly suitable candidate to be extended
with facilities for distributed protocols.

TypeScript is statically compiled and has an advanced type system. This makes static
compilation of distributed protocol constraints possible. Also with the use of an advanced
IDE statement completion for protocol programming will be possible.

Section 2.2.1 gives an introduction on TypeScript. The JS programming language will
be discussed in Section 2.2.2. More detailed information about TS follows in Section 2.2.3
with some coding examples. Section 2.2.4 discusses Node.js, this is the server side solution
for JS. Section ?? ends with some remarks which will end this chapter.

2.2.1. INTRODUCTION
TS is an open-source GPL programming language that is originally developed by Microsoft
[Mic12]. After a development cycle of two years, the language was released in October 2012
as open source software, which made it possible for everybody to help with further devel-
oping the language. The first version of TS was 0.8 and at the moment of writing version 3.1
was already published.

TS is a superset of JS, all JS code compiles as TS, but TS has many language features that
are not part of JS and therefore TS cannot be interpreted as pure JS.

Figure 2.5: TypeScript a superset of JavaScript

Since the target runtime environments for TS code are JS interpreters, TS code is transpiled
into equivalent JS code. Transpilation is the process of converting code written in one pro-
gramming language into code written in another programming language at the same level
of abstraction. When a programming language is translated into a lower level program-
ming language, this process is called compilation; this is the case when compiling code to
assembly code.
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2.2.2. JAVASCRIPT

For TS to be run by a JS interpreter it is first transpiled to JS. JS is a well known program-
ming language that was originally developed around 1995 for the Netscape browser, one
of the first Internet browsers. The language was conceived to give websites more dynamic
content, also known as Dynamic HTML (DHTML); it was a scripting language for manip-
ulating the Document Object Model (DOM) of a browser. But the language has evolved
over the past two decades into a widely used language [Haf+16]. Widespread support for
the language by all Internet browsers has made JS the standard language to develop ad-
vanced websites that run on all computers without extra software required, contrasting for
example a Java Runtime Environment.

Standardization of the specifications of the JS language with the help of the European
Computer Manufacturers Association (ECMA) succeeded after a period of ten years The
ECMA specification for JS is called ECMAScript; JS is an implementation of a ECMAScript
specification. At the moment of writing, the JS language is the most popular language on
GitHub [hac18; bus18; fre18; use18; red18].

JS code is interpreted instead of compiled; this means the translation of the program-
ming code to a lower level representation is performed at runtime. Syntax and data type
checking are executed at runtime; in contrast, languages like Java and C# do this before ex-
ecution. This makes JS a scripting language with a lot of data type flexibility; for example,
variables can even change data type during execution. Or arrays can consist of different
elements with different data types, like number, boolean, object and even functions. A dy-
namically interpreted language with no type checking is quite flexible in a way, but it has
some downsides too. For example having no strict data types in a programming language
makes it hard to develop professional Integrated Development Environments (IDE) which
makes the life of software engineers harder. An IDE with code completion is quite useful
in a language like JS for which a huge amount of different libraries are written. Especially
software engineers that lack the necessary experience in a specific library will have im-
proved productivity when the objects and functions are known and described in the IDE.
Also static code analysis for security, code quality or performance is harder to implement
with an interpreted language that has no static typing of its data.

But besides the lack of type checking in JS, the programming language has some other
problems too, like difficulties with variable scoping, confusion about iterations on collec-
tions, deprecated problematic syntax like the with statement, complex object orientation
syntax, and unexpected behavior of the keyword this. The ’use strict’ declaration was in-
troduced in ECMAScript version 5 to prevent the use of deprecated features and prevent
other actions like the use of undeclared variables [Haf+16]. Generally with every release of
a new ECMA version, problematic issues are taken care of and new features to improve the
language are introduced.

Functional programming and object orientation are both possible in the JS language.
Moreover, functions are first class citizens: they can be given as a parameter of a function
or be the return type. Object orientation is implemented as prototype inheritance instead
of class-based inheritance, which is used in languages like Java or C#. Simply said, pro-
totypical inheritance means that every object has a prototype property that points to its
parent object. From ECMAScript 6, it is possible to use class-based syntax for object ori-
entation in JS, but underneath, it is translated to prototypical inheritance. However, the
syntax is much more familiar for most programmers [Sil+17].
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Figure 2.6: The JavaScript eventloop

[out18]

JS is also known for its non-blocking architecture, which is called the Event Loop. In
Figure 2.6 a visual representation of the Event Loop is illustrated [out18]. This Event Loop
architecture for JS is active in a JS engine in a web-browser, but also on a Node.js server
executing serverside JS code; a section about Node.js will follow.

In the Event Loop architecture, there is one main thread that runs inside the JS runtime
environment. This thread takes events from the DOM in the case of an interpreter that runs
for example in a Chrome web-browser. An event from the DOM is a piece of JS code that is
connected to HTML elements and their corresponding JS actions, like click, mousemove,
mouseenter etc. In the case of a server application running on Node.js, the JS engine runs
a JS application, as shown in Figure 2.6.

The important point here is that there is one main thread for handling the events or
executing the JS application code. This architecture ensures that developers are forced to
use the asynchronous facilities that are present in JS. These asynchronous facilities are ex-
ecuted in background threads separate from the main Event Loop thread. This Event Loop
architecture logically results in asynchronous non-blocking code. In other programming
languages like Java, asynchronous execution is not normal as in JS, and more effort has to
be taken to achieve this. The main thread executes all events and callbacks that are in the
queue sequentially following first in first out pattern.

In JS, programmers can use asynchronous facilities to submit code to background threads.
In the client, this is done with asynchronous APIs like XML HTTP Requests (XHR), also
called AJAX (Asynchronous JavaScript And XML), and other APIs and libraries like Web
Workers, which is a way to manage background processes in the browser. In Node.js, server-
side JS, almost everything is by default asynchronous, like writing and, reading to files and
databases. The way to deal with asynchronous program code in the Event Loop architec-
ture is with the callback programming pattern. When an asynchronous task is submitted
to be executed, a piece of code is given as a parameter to be executed by the Event Loop
after completion. This pattern uses the power of passing functions to other functions as
parameters.

A relatively simple example of the execution of this Event Loop with the callback pat-
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tern is given in code Listing 2.7; this example illustrates the power of callbacks with the
use of asynchronous code. The program in Listing 2.7 is a sequential example: first con-
sole.log(’start’) is executed, then the function go with the function callbackFunction as call-
back parameter, and then console.log(’eind’). The output in Listing 2.8 shows that first con-
sole.log(’start’) and console.log(’eind’) are executed, and last function go with the callback
parameter, function callbackFunction. This is because the callback function is placed on
the work queue of the Event Loop, with the help of setTimeout for asynchronously exe-
cuting a function. First the statements of the program are executed, and then the work of
the queue is handled by the main Event Loop thread. This is the code pattern to deal with
asynchronous code in JS and therefore TS.

Listing 2.7: callback code pattern

function go(callback) {
2 callback.call(this, 'Voorbeeld Argument');

}
4 function callbackFunction(arg) {

setTimeout(function () { return console.log(arg); }, 1);
6 }

console.log('start');
8 go(callbackFunction);

console.log('eind');

Listing 2.8: output of callback code pattern example

1 start
eind

3 Voorbeeld Argument

When blocking operations are executed asynchronously, and callback code is coupled
to deal with the actions followed after the completion of the asynchronous code, the Event
Loop does not have to wait. Often in JS, blocking operations have asynchronous APIs which
makes them non-blocking for the main thread this way. When an asynchronous blocking
operation succeeds, the callback is pushed on the queue of the Event Loop to deal with
the results of the successful asynchronous operation. Of course, there are also callbacks
possible for unsuccessful asynchronous execution; this follows a similar callback pattern.

So it is relatively easy to implement asynchronous functionality in JS and pass a callback
as a parameter. With the Event Loop architecture, and the corresponding programming
style, the idle time of the cpu is minimized. Of course it is easy to block the main Event
Loop thread with large computation, but this blocking piece of code can usually be re-
factored to an asynchronous function with a callback parameter, so the main Event Loop
thread can continue working with non-blocking code. There are also downsides to this
style of programming, like the callback hell that arises. A callback hell is a chain of nested
callbacks which is very difficult to understand and maintain. Newer ECMAScript versions
have a promise API to deal with this callback hell.
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Figure 2.7: TypeScript a superset of ECMAScript

2.2.3. TYPESCRIPT, JAVASCRIPT THAT SCALES
On the website of TS [Mic12], TS is described as, ’TypeScript, JavaScript that scales’. Indeed,
the primary reason why TS was created, was to make professional software development
for big JS applications possible, manageable and maintainable.

A big issue is that to write JS code that most browsers support, JS code has to be written
for interpreters in browsers for older ECMA standards; most Internet devices will not be
equipped with the most recent JS interpreters. With TypeScript, it is possible to write code
with the newest ECMAScript syntax and TypeScript features and transpile the code to the
desired ECMAScript version. Beside static type checking, this is also a feature that increases
the productivity of a software engineer who wants to work with all the recent features. As
said before, TS is a superset of JS, but to be more specific, TS is a superset of ES7, ES7 is a
superset of ES6, and ES6 is a superset of ES5; see Figure 2.7.

In code Listing 2.9, a simple program coded in TypeScript is given; this program has
an interface, a class definition, an arrow function and the const keyword. These are all
language features that are not yet available in ECMAScript version 5.

Listing 2.9: a TypeScript code example

1 interface ArgumentInterface {
giveArgument():string;

3 }

5 class ArgumentSupplier implements ArgumentInterface {
private argument:string;

7

constructor(arg:string){
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9 this.argument = arg;
}

11

giveArgument():string {
13 return this.argument;

}
15 }

17 const arg:ArgumentInterface = new ArgumentSupplier('A nice Argument');

19 setTimeout( ()=>console.log(arg.giveArgument()), 1);

After transpilation of the TypeScript code to JavaScript code following ECMAScript stan-
dard 5 (this is a version that is supported by most JS interpreters) the code in Listing 2.10 is
produced.

Listing 2.10: The corresponing transpiled JavaScript following ECMAScript 5 specifications

1 var ArgumentSupplier = /** @class */ (function () {
function ArgumentSupplier(arg) {

3 this.argument = arg;
}

5 ArgumentSupplier.prototype.giveArgument = function () {
return this.argument;

7 };
return ArgumentSupplier;

9 }());
var arg = new ArgumentSupplier('A nice Argument');

11 setTimeout(function () { return console.log(arg.giveArgument()); }, 1);

2.2.4. NODE.JS, ONE LANGUAGE TO RULE THEM ALL
As said before, JS was originally developed to run on the client, in the web browser, and
used for DOM manipulation. Around 2010, JS became available for application servers as
well, in the form of Node.js; this made it possible to implement server-side logic in the
same language as the client. The idea to run JS on the server was not new, and there were
other implementations as well, but Node.js has become the most popular one. The package
manager of Node.js, which is called Node Package Manager (NPM) is even more popular
than the well known Maven package manager for Java at this time of writing. It has more
than 800000 software packages available on the NPM website [npm18].

Node.Js made it possible to implement certain functionality in JS which was not possi-
ble before, like reading and writing to the file-system, or querying databases. Besides the
same language, also the non-blocking architecture of the JS interpreter was copied to the
server; this non-blocking architecture is called the Event Loop and was discussed in the
previous section.

TypeScript is a Node.js package, which means that for using TypeScript, Node.js has to
be installed too. There are some IDE tools that support TypeScript out of the box, but the
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regular way of installing the TypeScript transpiler is to install the NPM package. An IDE like
Visual Studio Code detects the availability of TypeScript as a NPM module and uses this
software.

Since the popularity of JS, its practical field in the distributed software world and the
ideas and professional state of the art technology behind TypeScript, this language was
chosen as GPL programming language for this project.



3
RESULTS

Programming the coordination concern between software processes can be a complex job.
It involves communication between partners that do not share resources, these partners
are also called the roles in the software communication process.

The programming of the communication interactions between distributed processes is
often done on relatively low level. By for example on the lowest protocol level with the use
of sockets only using tcp/ip, and directly connecting and receiving data between machines.
Or for example on a little higher level with the use of the http protocol on top of tcp/ip,
constructions for remote procedure calls can be made. This is already a higher and more
easier level than the level of sockets. Because instead of directly pushing bytes to another
socket, and having the responsibility of making the right byte conversions yourself, this is
taken care of in the http protocol. But both these ways of communication involve sending
and listening for communication messages, that have to be composed and extracted. This
is a lot of work and can be error prone, a violation of a rule that says one message must be
received before the other is easily made.

To ease this process of programming parallel distributed communication between dif-
ferent autonomous software processes and facilitate in interaction constraints three archi-
tectural abstraction layers are proposed.

The first architectural abstraction layer is placed upon the low-level tcp/ip communi-
cation facilities that are already present. This layer will supply facilities to make role based
communication possible. Role based communication means facilities for easily sending
predefined messages to the predefined parties of the software communication protocol.
The roles and the messages of the protocol are defined in the protocol description and
therefore known, this layer delivers the tools for directly communicating with the roles.
Constructing the low-level messages and physical addresses of the roles every time, is no
longer needed. This first layer will be based on the roles and the messages from the proto-
col. Messages can be sent to roles involved in the protocol and messages will be received
by roles from other roles and stored. This way these messages can be fetched by processes
that expect and want a specific message on a specific moment. This layer uses the base
tcp/ip facilities for communicating with other software processes.

The second abstraction layer will come on top of the first abstraction layer and will fa-
cilitate in static validation of the defined protocol constraints. This layer will deliver an
API for the software engineer with which the distributed application can be built. Protocol

26
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Layer 3 ’Global protocol definition’

Layer 2 ’Static protocol validation’

Layer 1 ’Role based communication’

Low level distributed software communication (TCP/IP,HTTP)

Figure 3.1: Layered abstraction architecture for distributed software communication

constraints like the the order of messages will be statically checked. With the use of a more
advanced IDE, facilities like auto statement completion, code navigation or code refactor-
ing are also possible. This second layer is based on a textual JSON definition describing the
protocol. This description contains a textual representation of the FSM of all the different
role perspectives that are involved in the complete protocol.

The third abstraction layer comes on top of the second layer, and supplies the second
layer with the different local perspectives of the involved roles of the global protocol. In
this third layer a global description of the flow of the messages between the roles in the
protocol is formulated. This global description will be used to generate the JSON file with
textual representations of the FSM of the involved roles. This file is used to generate the
second layer with the static protocol validation facilities.

In Figure 3.1 these architectural abstraction layers for easing the process of implement-
ing distributed software application are visualized. These layers are built on top of each
other, every layer needs the layer beneath it.

In this chapter these three conceptual layers are discussed. A simple example that will
be used in following sections is explained in Section 3.1. This example is provided with the
TypeScript implementations without using generated protocol facilities. Referring to Pic-
ture 3.1, this section discusses an implementation with only facilities from the base layer
’Low level software communcation’. Section 3.2 will then discuss the first abstraction layer,
and show an implementation based on the facilities present in this layer. Section 3.3 deals
with the second abstraction layer and the used example is implemented with the facilities
from this layer. Section 3.4 explains the third abstraction layer and shows the global proto-
col definition from the example. Finally there will be some additional comments in Section
3.5 and this will end this chapter.

3.1. ALICE AND BOB
A protocol code generation framework that generates an API based on a global description
of a distributed protocol. This API will validate the distributed communication constraints
from the specified global protocol. This will not only provide static protocol validation fa-
cilities but also give the programmer a head start developing the distributed application.
Also separation of the coordination concern from the computation concern is enforced,
which will make the application more maintainable. To illustrate this conceptual descrip-
tion of a protocol generator the example ’Alice and Bob’ (1) from Chapter 2.1.3 is used. In
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Figure 3.2: Alice and Bob global protocol

Chapter 2.1.3 Figure 2.2 shows the UML sequence diagram of the global protocol of the
’Alice and Bob’ example, a global description of this protocol with higher level abstraction
syntax is shown in Chapter 3.4 Listing 3.14. The local perspectives from different roles in
the ’Alice and Bob’ example can be illustrated with STD diagrams, one for the role Alice
and one for Bob. These local perspectives are illustrated in Chapter 2.1 Figure 2.3 and 2.4.
To reduce the page turns the Sequence diagram of this example is shown again in Figure
3.2. A visualization of the flow of messages between the Alice and Bob roles simplifies this
example.

In Listings 3.1 and 3.2 a complete implementation of the Alice and Bob example in Type-
Script is shown. This implementation is a standard implementation without the use of a
protocol API and a possible way to follow when no protocol generation facilities are avail-
able. Each message is an object with a name property that serves for the identification. So
when a message object needs to be identified the name property can be used. The object
with the name ADD has two additional number properties. The object with the name RES
has one number property and the BYE object has no properties. These anonymous objects
with name identifiers are the messages that are sent during the protocol conversation.

There are two distributed processes, one called Alice and one called Bob. In Listings
3.1 the implementation of the autonomous Alice process is given. The implementations of
Alice and Bob start with importing two standard JavaScript libraries. The first library is the
http library and is used for creating a http listener. The second library is the request library
and is used to send a http message to a http server. These JavaScript libraries facilitate in
the sending and receiving of message objects between the two processes.

Listing 3.1: TypeScript implementation of Alice
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1 import * as http from 'http';
import * as request from 'request';

3

const httpHeaders = {'cache-control':'no-cache'
5 ,'Content-Type':'application/json'

,'charset':'utf-8'};
7 var messageResolver: (msg: any) => void;

9 const httpServer:http.Server = http.createServer(
(req,res) => {

11 let body = '';
req.on('data', (chunk:string) => body += chunk );

13 req.on('end', () => { messageResolver(JSON.parse(body));
res.write("OK");

15 res.end(); } );
}

17 );

19 httpServer.listen(30001);

21 async function waitForMessage():Promise<any>{
let promise = new Promise<any>( resolve => messageResolver = resolve );

23 return promise;
}

25

async function sendMessage (host:string, port:number,msg:any) {
27 let resolver: () => void;

const promise = new Promise( resolve => resolver = resolve );
29 const httpInfo = { url: `http://${host}:${port}`

, headers: httpHeaders
31 , body: msg

, json: true };
33 request.post( httpInfo, () => resolver() );

return promise;
35 }

37 async function startProtocol() {
const hostBob='localhost';

39 const portBob=30002;
for(let i=0;i<5;i++) {

41 sendMessage(hostBob, portBob, {name:"ADD", value1:21, value2:21});
const res = await waitForMessage();

43 if (res && res.name === "RES" && res.sum)
console.log(`Received ${res.sum}`);

45 }
await sendMessage( hostBob, portBob, { name:"BYE" } );

47 console.log('the protocol stops for Alice');
httpServer.close();

49 }
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51 startProtocol();

In the code listing from Alice 3.1 and Bob 3.2 from the first line to the function startPro-
tocol all the code is responsible for the coordination concern of the program. A http server
is created on line nine, and the listening starts on line nineteen. A function for receiv-
ing messages is created on line twenty one, which is called waitForMessage. This funcion
returns a promise for a message, that is received by the http server. A promise is an ob-
ject that corresponds with an asynchronous function that has not yet been fully executed.
When an asynchronous function resolves the promise, the object inside the promise can
be retrieved. On line twenty six the function sendMessage is created, which is used to send
an http message to another distributed software process.

The async function startProtocol implements the computation logic from the protocol
for Alice. Some low-level communication details are required here like the hostname and
portnumber of Bob. Also validation checks on the message on line 43 have to be done to
let the TypeScript code compile. In the startProtocol function a loop of five iterations exists
on row 40, in this loop an ADD object message is sent to Bob. Then Alice waits for a RES
message from Bob, the message is checked for a name string with the value RES and a valid
sum property. After receiving this RES message, the message is displayed in line 44. After
five iterations Alice sends an object with the string BYE to Bob to indicate the protocol ends
and then stops the http server on line 48.

In Listing 3.2 the TypeScript implementation of Bob is shown. Bob starts listening on
port 30002 on line nineteen. After executing the startProtocol function on line forty nine,
Bob starts waiting for messages in the function startProtocol. When an ADD is received,
Bob sums the numbers and sends a RES back with the result. When a different message
than ADD is received, the protocol stops for Bob.

Listing 3.2: TypeScript implementation of Bob

1 import * as http from 'http';
import * as request from 'request';

3

const httpHeaders = {'cache-control':'no-cache'
5 ,'Content-Type':'application/json'

,'charset':'utf-8'};
7 var messageResolver: (msg: any) => void;

9 const httpServer:http.Server = http.createServer(
(req,res) => {

11 let body = '';
req.on('data', (chunk:string) => body += chunk );

13 req.on('end', () => { messageResolver(JSON.parse(body));
res.write("OK");

15 res.end(); } );
}

17 );

19 httpServer.listen(30002);
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21 async function waitForMessage():Promise<any>{
let promise = new Promise<any>( resolve => messageResolver = resolve );

23 return promise;
}

25

async function sendMessage (host:string, port:number,msg:any) {
27 let resolver: () => void;

const promise = new Promise( resolve => resolver = resolve );
29 const httpInfo = { url: `http://${host}:${port}`

, headers: httpHeaders
31 , body: msg

, json: true };
33 request.post( httpInfo, () => resolver() );

return promise;
35 }

37 async function startProtocol() {
let msg = await waitForMessage();

39 while ( msg && msg.name !== "BYE" && msg.value1 && msg.value2 ) {
console.log(`Received ${msg.value1} and ${msg.value2}`);

41 const res = Number(msg.value1) + Number(msg.value2);
await sendMessage('localhost', 30001, {name:"RES", sum:res} );

43 msg = await waitForMessage();
}

45 console.log('the protocol stops for Bob');
httpServer.close();

47 }

49 startProtocol();

The developer of the distributed application will have to know the protocol thoroughly.
Mistakes in object names, wrong role specifications or a wrong order of messages to send
are easily made. There is no static validation on protocol constraints, and when a protocol
becomes more complex with more roles and messages, it is a tedious task to program the
business logic without errors. When for example Alice starts waiting before a RES object is
sent, the protocol hangs. In this example this is relatively easy to reason about, but with
more roles and messages complexity increases, and debugging will become a time con-
suming task for a programmer when the distributed application is implemented as in this
example. Also a check for all roles of the protocol being active, is missing. As a result the
roles of the protocol have to be started in the right order as described by the protocol. In
this case it is important to start Bob first, since the protocol of Bob and Alice starts with a
message from Alice to Bob. When Alice first starts the protocol, the http server of Bob is not
ready for receiving the messages from Alice, and messages will be lost.

Alice and Bob illustrate an easy example of a distributed application. Because of this
easiness mistakes are easily solved. For example the reasoning that Bob has to start before
Alice, because Bob starts listening, and Alice starts with sending. Also, the definition of all
the required physical details in the beginning of the program is much easier with an exam-
ple with only two roles. But as more roles join the party, the harder it becomes. In these
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two code examples Alice and Bob can send each message whenever they want, which will
also break the protocol. When for example two roles both start waiting on each other, a
deadlock situation follows. There is no validation for the order of the messages, the soft-
ware engineer will have to reason all the flows, and implement, debug and correct these
by hand. There is no validation for the correctness of the messages, this will have to be
implemented by the software engineer by hand. There is no validation of the details of the
involved roles of the protocol. There is no validation for the presence of the roles during
the runtime of the protocol, the order of the startup of the roles will also have to be man-
aged and executed by hand. This will probably become a responsibility of the distributed
application user. Also the computation logic from the startProtocol methods contain code
related to the coordination concern of the distributed application. This involves low level
connection details, parsing of messages and http server closing code. This easy Alice and
Bob example could have been even more easier when the computation and coordination
were separated.

Three conceptual layers with corresponding concrete programming abstractions for
distributed applications are discussed in Sections 3.2, 3.3 and 3.4. In Section 3.2 and 3.3
the Alice and Bob example is implemented with the facilities that are present in the cor-
responding conceptual layer. These code example show the difference between the layers
and also the power of the introduced solution. Section 3.4 shows the global description of
the Alice and Bob example protocol that serves as the base for the protocol facilities.

3.2. LAYER ONE, ROLE BASED COMMUNICATION
Abstraction layer 1, the role based communication, supplies an abstraction layer directly
on the low level tcp/ip facilities of sending and receiving of messages. For the distributed
communication between the roles, messages are used. Roles can receive messages from
other roles and messages can be sent to other roles. Of course all the roles need the phys-
ical Internet address details of the involved roles in the protocol. This way messages can
be received by physically separated distributed roles. Also sending and receiving messages
is only possible when roles are actively listening for messages. Otherwise messages will be
lost, and the communication constraints of the protocol cannot be validated. Also mes-
sages can be received out of order, for example due to timing differences between different
roles and the used physical networks. An Internet connection between a role that acts via a
satellite or a role that communicates via optical fiber will probably result in significantly dif-
ferent timing of the message responses. Therefore messages have to be stored immediately
on arrival and will be retrieved when a role needs the specific message. This cannot be a
simple sequential queuing mechanism, but a more advanced message database is needed.
Storage and selective retrieval of messages is required. The arrival of messages is uncon-
trollable and can happen continuously, while the receipt of a message when a role needs it
is controllable for the receiving role. For a successful first abstraction layer several facilities
are essential. Facilities for role based sending, for the arrival of messages and the receiving
of messages are needed. But also a warranty for every role to be active when the protocol
starts is essential.

In Section 3.2.1 the mediator role is discussed. This system mediator role supplies roles
involved in the protocol with physical connection information of other roles. Also the me-
diator guarantees that all roles will be active when the protocol starts. In Section 3.2.2 the
message store is explained. This facility makes storage and selective retrieval of messages
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Figure 3.3: Mediator role responsible for protocol startup

possible. Section 3.2.3 describes the role based sending and receiving of messages with an
example implementation of Alice and Bob.

3.2.1. MEDIATOR
For a protocol to start, all the roles involved in the protocol should be actively listening
at the same time. This way messages that are sent will be received, since all roles are
active. This requirement that all roles involved in the protocol have to be active will be
enforced with a standard mediator role. This mediator role is a software process that is
autonomously active and always has to be started first. All protocols need a mediator for
starting up. All custom roles in a protocol will send their connection information to this
mediator. When all the physical connection details from the different roles of the protocol
are received by the mediator, then the mediator sends the connection details of the dif-
ferent involved protocol roles to all the roles from the protocol. This way all the roles in
the protocol know the connection information of all the participant roles in the protocol.
When a role has received physical connection details of all the involved roles, the protocol
will be started for the role. This way all the roles will be listening actively for messages, and
no messages will be lost when a role sends a message. When the protocol has started up,
the mediator stops executing and ends its work. The mediator role with the correspond-
ing startup process is illustrated in Figure 3.3. An implementation of the mediator role in
TypeScript is shown in code example 3.3.

Listing 3.3: TypeScript implementation of the mediator role
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1 import {receiveMessageServer} from './receiveMessageServer';
import {ROLEMESSAGE} from './Message';

3 import {sendMessage} from './sendMessage';
import {roles, connectedRoles} from './globalObjects';

5 import {messageDB} from './messageDB';

7 async function initProtocolByMediator(){
while ( true ) {

9 const msg = await messageDB.remove((m)=>m.name===ROLEMESSAGE.name);
connectedRoles.save(msg);

11 const allRoles = Object.values(roles);
const missingRoles = allRoles.filter(

13 (role) => connectedRoles.missing(role)
);

15

missingRoles.forEach(
17 (role) => console.log(`${role} has not started`)

);
19

if ( missingRoles.length > 0){
21 continue;

}
23

const relevantRoles = allRoles.filter(
25 (role) => role !== roles.mediator

);
27

for ( let i=0; i<relevantRoles.length; i++ ) {
29 for ( let j=0; j<relevantRoles.length; j++ ) {

if (i!=j) {
31 const rm = new ROLEMESSAGE(relevantRoles[j]);

sendMessage( roles.mediator, relevantRoles[i], rm );
33 }

}
35 }

37 receiveMessageServer.terminate();
console.log(`protocol started ${new Date()}`);

39 break;
}

41 }

43 receiveMessageServer.start(connectedRoles.getInfo(roles.mediator).port);
initProtocolByMediator();

The code starts with imports for sending and receiving messages, the complete code
of these imported objects can be found in Appendix A. Also a global object that has all in-
volved roles from the protocol is imported with a collection for saving the information of
the connected roles. The mediator role starts a local server to be able to receive messages,
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which is done in line 43. Then the function initProtocolByMediator is called, which exe-
cutes an infinite loop and starts waiting for a ROLEMESSAGE.

Listing 3.4: The system ROLEMESSAGE

export class ROLEMESSAGE extends Message {
2 public host:string;

public port:number;
4 constructor(public roleName:roles){

super(ROLEMESSAGE.name);
6 this.host = connectedRoles.getInfo(roleName).host;

this.port = connectedRoles.getInfo(roleName).port;
8 }
}

A ROLEMESSAGE is a predefined system message for sending physical connection in-
formation. The implementation is show in Listing 3.4. This message has physical connec-
tion details from a role filled by using a internal map with physical connection role details.
When mediator role has received a ROLEMESSAGE from every involved role, the collected
physical information is sent to all the involved roles. This way the roles know when to start
and where to send messages to. Internally for every involved role the connectedRoles map
is filled with the physical connection information of all the involved roles.

3.2.2. MESSAGES STORE

A protocol between distributed software processes will easily involve timing issues in the
sending and receiving of messages. Some processes will act faster or slower than others.
This can have numerous of reasons. The arrival of messages is an uncontrollable process
for a role and can happen continuously. The receive of messages is a controllable action
of a role, meaning that a message is fetched when a role needs it. To deal with a proto-
col constraint like the order of messages, messages will have to be saved on arrival. But
the message will be fetched when it is needed following the constrained order sequence
declared in the distributed protocol definition.

For example, a distributed role process named A has to actively listen for messages from
all the involved roles in the protocol. It is possible a message is received from another role
called B, but the current state of the local protocol of A first has to wait for a message from
role C. The current arrived message from B is needed on a later time, which can happen
when B is faster than C. For this reason messages are stored on arrival and fetched on the
moment they are needed.

A message store provides a facility for saving the messages on arrival, and functionality
for retrieving the messages on a controlled moment. Retrieving messages is based on the
type of the message and the role that send the message.

In Listing 3.3 on line five the last import is the message database. The complete imple-
mentation of the message database can be found in Appendix A.4. The public API of the
message database is shown in Listing 3.5. With the use of the add function messages can
be added to the database. By using remove, a message is retrieved and removed from the
database.
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Listing 3.5: TypeScript Message database

1 interface MessageDB {
add(msg: Message): void;

3 remove(predicate: (msg: Message) => boolean): Promise<Message>;
}

The message database is a facility for saving the communication messages of the proto-
col, and retrieving messages with the possibility to use predicates that define the message
type or the role that has sent the message. An example of such a predicate is shown on line
nine of Listing 3.6. It is possible to add messages, which is done in the local server of each
role; see the implementation of the receive Message server in Appendix A.1. An example of
an addition af an ADD message to the message store is shown in code example 3.6 on line
five.

Listing 3.6: TypeScript Message database method examples

// import the message database, every role has its own
2 import {messageDB} from './messageDB';

4 // messages are added with following call
messageDB.add(new BYE());

6

// a message can be retrieved with following code
8 const msg = await messageDB.remove(

(m)=>m.name===RES.name && m.from === roles.bob
10 );

3.2.3. ALICE AND BOB IMPLEMENTED WITH LAYER ONE FACILITIES
The implementation of the Alice and Bob example with the facilities provided by the layer
one abstractions is shown in Listings 3.7 and 3.8. Both these code examples start with the
import of objects from five different files. The first import of the object receiveMessage-
Server is for the message server that is responsible for the continuous arrival and storage of
the messages. The code of this message server can be found in Appendix A.1. The second
import is responsible for the different custom messages. The ADD, BYE and RES messages
are imported from the Message library. The implementation of this library can be found
in Appendix A.5. The sendMessage method imported on line three is needed for sending
messages, the implementation can be found in Appendix A.2. A specification of the differ-
ent roles from the protocol and a method to initialize the protocol are imported from the
globalObjects library. The code from this globalObjects library can be found in Appendix
A.3. The initialize method triggers the system Mediator role discussed in Section 3.2.1. The
fifth and last import on line five is the message store. This message store is discussed in
Section 3.2.2. The complete code of the message store can be found in Appendix A.4.

Listing 3.7: Computation logic of Alice with layer one facilities

import { receiveMessageServer } from "./receiveMessageServer";
2 import { ADD, BYE, RES } from "./Message";
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import { sendMessage } from "./sendMessage";
4 import { roles, initialize } from "./globalObjects";
import { messageDB } from "./messageDB";

6

async function executeProtocol(role:roles,port:number,host:string) {
8 await initialize(role,port,host);

for(let i=0;i<5;i++) {
10 const add = new ADD(4,2);

await sendMessage(roles.alice, roles.bob, add);
12 const msg = <RES> await messageDB.remove(

m => (m.name === RES.name && m.from === roles.bob)
14 );

if (msg) console.log(`RES with ${msg.sum}.`);
16 }

await sendMessage(roles.alice, roles.bob, new BYE() );
18 receiveMessageServer.terminate();
}

20 executeProtocol(roles.alice,30001,'localhost');

In Listing 3.7 the implementation of the computation logic of Alice in the Alice and Bob
example is shown.

The method executeProtocol contains the computation logic and this method is started
on line twenty. In this executeProtocol method on line eight the initialize function triggers
the Mediator, and starts waiting until the Mediator resolves his Promise. Now the physical
details of all the protocol involved roles are present for Alice. On line nine the code executes
a loop five times and sends an ADD message with the values four and two to Bob. On line
eleven the sendMessage is used; the first parameter of this method is the role from whom
the message is sent. The second parameter is the role to whom the message is sent, and
the third parameter contains the message itself. On line twelve a message is fetched from
the message store. This message has to be from Bob and also have the RES type. On line
fifteen the contents of the RES message is displayed. The code ends with the sending of a
BYE message to Bob on line seventeen; after that the message server is terminated on line
eighteen.

With the facilities of layer one it is easier to specify messages to roles without knowing
the physical details of the involved roles. Also the execution order of the Alice or Bob role
is not relevant any more, since the Mediator role will have the responsibility for starting up
the protocol. Also messages will always arrive with this implementation and fetched until
they are needed, this is realized with the facilities from the message store.

But with only the facilities of layer one protocol constraints are not validated. For exam-
ple a deadlock situation is easily introduced in the code. Messages can be sent whenever
a role wants, and validating the right message flows will have to be done by the software
engineer who implements the distributed application. There are no static validated proto-
col constraints in this layer, only the facilities for easily sending messages to involved roles.
Mistakes with physical details, the startup of the protocol, incorrect messages are reduced.
But errors like sending messages that a role is not supposed to send, or for example trying
to fetch a message that will never arrive are mistakes that are easily made with only the
facilities of layer one. For sending and receiving messages based on roles, roles and mes-
sages have to be defined. These are essential elements in a distributed protocol: before the
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protocol starts the possible messages are known, as well as the involved roles.
This role based sending and receiving facility for the first abstraction layer will provide

a way to send a message to a role by only providing the name of the role with the mes-
sage. The physical low level tcp/ip details of the roles are not needed at this moment; this
information was already initialized by the mediator and present for the active role. This
layer one will help hiding the distributed communication low-level details and facilitate
the starting up of the protocol, but admissible protocol flows are not enforced. The run-
ning code can easily result in a deadlock situation, certainly when more roles join the party.
With a simple protocol like ’Alice and Bob’, this is not instantly the case, and the program-
mer is able to oversee the deadlock situations. But with more roles it is hard to oversee all
the different situations in the protocol; an example of the rapid increase in complexity is
given in Section 3.5.2.

Listing 3.8: Computation logic of Bob with layer one facilities

import { receiveMessageServer } from "./receiveMessageServer";
2 import { ADD, BYE, RES, Message } from "./Message";
import { sendMessage } from "./sendMessage";

4 import { roles, initialize } from "./globalObjects";
import { messageDB } from "./messageDB";

6

async function executeProtocol( role:roles, port:number, host:string) {
8 await initialize(role, port, host);

while ( true ){
10 const msg = await messageDB.remove(

m => (m.name === ADD.name && m.from === roles.alice)
12 || (m.name === BYE.name && m.from === roles.alice)

);
14 switch (msg.name) {

case ADD.name: {
16 const add = <ADD> msg;

console.log(`ADD with ${add.value1} and ${add.value2}.`);
18 const res = new RES( add.value1 + add.value2 );

await sendMessage(roles.bob, roles.alice, res);
20 break;

}
22 case BYE.name:{

receiveMessageServer.terminate();
24 return new Promise( resolve => resolve() );

}
26 }

}
28 }
executeProtocol(roles.bob,30002,'localhost');

Code Listing 3.8 has the implementation of Bob and only uses the facilities of layer one.
The executeProtocol method is executed on line twenty nine. This method will first trigger
and wait for the system Mediator role on line eight. Then in an infinite loop Bob starts
fetching available messages on line ten. The criteria for the messages that are fetched are,
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a BYE from Alice or an ADD from Alice. These used message criteria can be seen on line
eleven and twelve. When an ADD is received, the message is casted to an ADD message on
line sixteen, and serves as an input for the RES message on line eighteen. This RES message
is sent back to Alice on line nineteen. After the receive of a BYE message, the message server
is stopped on line twenty three and the executeProtocol method returns a fulfilled promise
ending the protocol.

3.3. LAYER TWO, STATIC PROTOCOL VALIDATION
The second abstraction layer provides an API with which the distributed application can be
programmed following the constraints of a software protocol definition. Only admissible
message passing is possible, and extra help programming the distributed application is
achieved with code navigation and automatic code completion facilities. For generating an
API, a global protocol is translated to state machines for every role present in the protocol.
The foundation for this layer is a description of the global protocol in a JSON data file,
in this file the different state machines for each roles are described. In Section 3.3.1 the
local state machines and the corresponding STD in a protocol are discussed. In Section
3.3.2 the foundation for generating an API for protocol programming is discussed. This
involves a global protocol description in JSON format. This global JSON definition exists of
a specification of the local role definitons in one file. The last section contains additional
comments about the second abstraction layer, this will be Section 3.3.4.

3.3.1. LOCAL PERSPECTIVE STATE MACHINES

In the Alice and Bob protocol from example (1) there are two roles, which means there are
also two local perspectives with their corresponding state machines. The STD diagrams,
used to visualize the state machines of the local role perspectives, are presented in Chapter
2.1.3. Figure 2.3 shows the perspective of Alice and Figure 2.4 shows the perspective of Bob.
To reduce pageturns the two STD diagrams are shown again in Figure 3.4.

The STD of Bob has three states, one initial state, one final state and a normal state.
This is also the case with the diagram of Alice. The initial state is S1 and has a thick line,
the final state is S3 and has a double line and is solid filled. The transitions represent the
sending or the receiving of the messages. Alice can send a BYE or an ADD message when
she is in state S1. When Alice sends an ADD message, she enters state S2. In S2 Alice must
wait for a receive of a RES message. When Bob is in the initial state S1, he can receive an
ADD message or a BYE message. When Bob receives an ADD message he enters the state
S2 from his local perspective, after this he sends back a RES message and comes back in
state S1.

State machines can be represented as APIs in TypeScript as follows. The states of the
state machines are translated to private TS classes and public TS interfaces. The transitions
between the states are methods in the corresponding state classes and interfaces. When a
transition is made, a method of a TS object that represents a state is called. This method
executes the transition and returns the next state object.

Alice will have two methods in the object that represents the initial state: one for send-
ing an ADD message and another for sending BYE. The object that represents Alice’s second
state will have a method to wait for a RES message. The final states will not have any meth-
ods, since no transitions can be made from the final state.
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Figure 3.4: Local perspective of Alice and Bob

The interface of Bob should have a method that waits for a BYE or an ADD message.
After receiving the ADD Bob should have a possibility to send a RES back to Alice, according
to the protocol description. This RES contains the result of the executed business logic, in
this case the summation of two numbers. The generated API should offer these methods
when they are needed and possible, according the description of the protocol.

The result is an API for the software engineer for help with implementing the busi-
ness requirements: there is no more concern about message passing, this is dealt with the
framework. The required workflow between the distributed processes is defined in a higher
level protocol description. Abstraction layer three deals with this higher level description of
the global protocol; this is explained in Section 3.4. The resulting protocol defined admis-
sible order of sending and receiving messages will be statically validated. The generator
generates an API for every role. With this interface messages can be received from other
roles and messages can be sent only on the correct times. The methods of the objects in
this interface return other objects that correspond with the successor states in the proto-
col. The protocol is internally translated to a state transition diagram STD for each role.
The transitions of the STD illustrate the sending or receiving of messages, and the states
correspond to the place where the specific role is at the moment in the protocol.

Listing 3.9: Method signature for protocol computation logic

1 f: (start: Alice_Start) => Promise<Alice_End>

Every role in a protocol is internally represented as STD, and has one initial state and
one final state. A method with the initial state as parameter and the final state as a result will
be the signature for the method containing the implementation of the custom computation
logic.

The TS datatype definition for the function to contain the computation logic is shown
in Listing 3.9. The protocol business logic is implemented in a function that has an initial
state of the local perspective as input parameter, in the example the object Alice_Start, and
the result of the function will be a final state of the internal state machine of the role, in the
example Alice_End. The Promise object is a way in JavaScript to return and wait on a future
asynchronous result. The Alice_End state is returned in a Promise, this forces the API to
complete the state machine.
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3.3.2. JSON WITH LOCAL PERSPECTIVES
The foundation for generating a protocol API for distributed communication is a descrip-
tion of the global protocol in a specific JSON data format. The FSM from the local per-
spectives of the protocol participants are shown in the state transition diagram in Figures
2.3 and 2.4 from Chapter 2.1.3. These two diagrams represent the local perspectives of the
protocol from the ’Alice and Bob’ example (1). The FSM from the roles of the protocol, are
used to generate an API for the end user, the software engineer. States will be generated to
objects, from which transitions can be done to other states by sending or receiving a mes-
sage. For generating this protocol API a textual representation of the protocol with the local
FSM of the roles in JSON data format is used.

Listing 3.10: Alice and Bob protocol description in JSON format

1 { "roles": ["Bob","Alice"],
"protocol": [

3 { "role": "Bob",
"states": [ { "name": "S1",

5 "type": "initial",
"transitions": [ {"op" : "recv"

7 ,"message" : "Add"
,"role" : "Alice"

9 ,"next" : "S2"},
{"op" : "recv"

11 ,"message" : "Bye"
,"role" : "Alice"

13 ,"next" : "S3"} ] },
{ "name": "S2",

15 "type": "normal",
"transitions": [ {"op" : "send"

17 ,"message" : "Res"
,"role" : "Alice"

19 ,"next" : "S1"} ] },
{ "name": "S3",

21 "type": "final",
"transitions": [] } ] },

23 { "role": "Alice",
"states": [ { "name": "S1",

25 "type": "initial",
"transitions": [ {"op" : "send"

27 ,"message" : "Add"
,"role" : "Bob"

29 ,"next" : "S2"},
{"op" : "send"

31 ,"message" : "Bye"
,"role" : "Bob"

33 ,"next" : "S3"} ] },
{ "name": "S2",

35 "type": "normal",
"transitions": [ {"op" : "recv"
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37 ,"message" : "Res"
,"role" : "Bob"

39 ,"next" : "S1"} ] },
{ "name": "S3",

41 "type": "final",
"transitions": [] } ] }

43 ]
}

JSON Listing 3.10 shows the local protocol descriptions based on the ’Alice and Bob’
example (1). This input JSON is used by the protocol generator and consists of a local pro-
tocol definition per role. The roles array summarizes the required participants of the pro-
tocol. The protocol array describes the local perspectives of the different roles. The objects
of the protocol array consist of the name of the role and the states that are present in the
state transition diagram of the corresponding local protocol. The states object is an array
of state objects, that have the name of the state, the state type and the transitions that can
be made from the state to other states. These transitions can be done by sending or receiv-
ing messages. There are three state types, namely initial which starts the STD, a normal
state type for the regular states and final state type, which is the state where the STD from
the role ends. A restriction on the input JSON data protocol is that there can be only one
initial state and only one final state for one local perspective of a role. The transitions data
field is an array with transitions that are made from a specific state. A message receiving or
sending will always trigger a transition. This transitions array has objects that represent a
single transition. The message field represents the message that is received or sent in the
transition. The op field in this object can be of the type send or recv, which means that a
message is send or received in this specific transition. The role is the participant where the
message will be sent to, or from which the message is received. The next field represents
the state that follows after the transition is taken.

3.3.3. ROLE IMPLEMENTATION IN TYPESCRIPT
The generation of an API based on the description of the protocol in the JSON from Listing
3.10 results in static validated protocol API for all roles involved in the protocol, in this case
Alice and Bob. In Listing 3.11 the public exported objects of the API that is generated for
the role Alice are shown. The complete generated API for Alice can be found in Appendix
A.6.

Listing 3.11: Generated API for Alice

interface IAlice { }
2 interface IAlice_S1 extends IAlice {

readonly messageFrom: roles.bob;
4 readonly messageType: messages.RES;

message?: RES;
6 send_ADD_to_Bob(add: ADD): Promise<IAlice_S2>;

send_BYE_to_Bob(bye: BYE): Promise<IAlice_S3>;
8 }
interface IAlice_S2 extends IAlice {

10 recv(): Promise<IAlice_S1>;
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}
12 interface IAlice_S3 extends IAlice { }

14 type Alice_Start = IAlice_S1;
type Alice_End = IAlice_S3;

16

async function executeProtocol(
18 f: (Alice_Start: Alice_Start) => Promise<Alice_End>

, host: string
20 , port: number ) {

await initialize(roles.alice, port, host);
22 let done = await f(new Alice_S1());

return new Promise<Alice_End>(resolve => resolve(done));
24 }

The complete generated code for Bob can be found in Appendix A.7. The interfaces
IAlice_S1, IAlice_S2, IAlice_S3 are the objects that represent the states from the STD of the
local pespectives from the role Alice. The start state gets the synonym Alice_Start and the
final state receives the synonym Alice_End. The function executeProtocol has the function
f as parameter: this is the function with the computation logic. The TS datatype definition
of this function f is shown in Listing 3.9. This method starts with an initialize on line 21 in
Listing 3.11. During this initialisation the local physical settings are sent to the mediator,
and Alice starts to wait until the mediator sends back the information of the other roles.
This is done in the method initialize. The implementation of the initialize function can
be found in Appendix A.3. After the initialisation an instance of the start state of Alice is
created and passed to the parameter f, which is a function. The f function will be supplied
by the software engineer who is responsible for implementing the computation logic of the
distributed application. The executeProtocol function then waits for a final state to return,
that is passed back as a promise, therebye promising the protocol will end.

Listing 3.12: Computation logic for Alice using the generated API for Alice

import {Alice_Start,Alice_End,executeProtocol} from './Alice';
2 import {ADD,BYE} from './Message';

4 async function protocol(s1:Alice_Start):Promise<Alice_End> {
for(let i=0;i<5;i++) {

6 const add = new ADD(21,21);
const s2 = await s1.send_ADD_to_Bob(add);

8 s1 = await s2.recv();
if (s1.message)

10 console.log(`Received ${s1.message.sum}`);
}

12 const done=s1.send_BYE_to_Bob(new BYE());
return new Promise( resolve => resolve( done ) );

14 }

16 async function start(){
await executeProtocol(protocol,'localhost',30001);
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Figure 3.5: Protocol statically checked and statement completion

18 }

20 start();

A possible implemention of the business logic for Alice is shown in code example 3.12.
The first line imports three objects from the generated interface from Alice. The intial state
object called Alice_Start and the final state object called Alice_End are imported. Also the
method executeProtocol is imported, which is used to pass the computation logic to the
coordination logic of the protocol. The function named start on line twenty starts the busi-
ness logic for Alice. In the start method the executeProtocol function from the role API
from Alice is called. The business logic function named protocol from line four is passed
as parameter to the executeProtocol function. And also the physical connection details of
Alice are passed as parameters. The method named protocol has the implementation of
the computation logic of Alice, in this case five times sending the two numbers to Bob, and
waiting for the result, and then displaying the information. After the five ADD messages
a BYE is sent, and the protocol ends. The s1 object of the type Alice_S1 has two methods,
one for sending an ADD and another for sending a BYE. After sending an ADD, the object
returned from the method send_ADD_to_Bob on line seven returns an object that has a
method for waiting on a RES. This object is saved in the s2 variable. This way admissible
flows of the protocol are enforced. It is not possibe to send two ADD messages right after
each other, since the protol specification does not allow it. This is checked at runtime, since
the type system in TypeScript does not have such a check during static compilation.

In Figure 3.5 an example is illustrated in which the result of explicitely stating the data
type of the s1 parameter from the protocol function is shown. The benefit of a statically
validated distributed software protocol is not only the protocol error checking, but with
the use of a decent IDE facilities for guiding the distributed programming process are also
available. These facilities include code completion, code navigation and even automated
code refactoring.

Figure 3.6 show an example of data type inference, which is available in the TS language.
Data type inference means the compiler is capable of determining the data type itself. In
this case the variable s2 is declared the right state data type. This is done implicitely by the
compiler. This way the STD does not have to be memorized by the programmer; instead,
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Figure 3.6: Protocol data type inference

the types returned from the transition methods are inferred. As a result the transitions that
are available in a next state will be available with statement completion.

Listing 3.13: Computation logic for Bob using the generated API for Bob

import {Bob_Start,Bob_End,executeProtocol, messages} from './Bob';
2 import {RES} from './Message';

4 async function protocol(s1:Bob_Start):Promise<Bob_End> {
let nextState = await s1.recv();

6 while ( true ){
switch (nextState.messageType) {

8 case messages.ADD: {
console.log(`Received ${nextState.message.value1} and ${nextState.message.value2}`);

10 const res = new RES( nextState.message.value1 + nextState.message.value2 );
s1 = await nextState.send_RES_to_Alice(res);

12 nextState = await s1.recv();
break;

14 }
case messages.BYE:{

16 const done = nextState;
return new Promise( resolve => resolve(done) );

18 }
}

20 }
}

22

async function start(){
24 await executeProtocol(protocol,'localhost',30002);
}

26

start();

Code example 3.13 shows the implementation of the computation logic for Bob. The
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code start with an import of the public generated role API for Bob on line one. The func-
tion protocol defined on line four has the implementation of the computation logic. This
computation logic is passed to the coordination logic on line twenty four, thereby seperat-
ing the computation and coordination concern.

3.3.4. ADDITIONAL COMMENTS

The generated API for the distributed protocol guarantees the liveness property, all the
messages that are supposed to be sent, will be send. And also the safety property is guar-
antied: messages that should not be send, cannot be sent.

Also this layer separates computation from coordination; separating these concerns
will increase code maintainability. In Chapter 1.3 was already mentioned the relevance
of serarating concerns in programming code. In the implementation of the compution
code of Alice, in Listing 3.12, the computation logic from Alice is passed to the coordina-
tion logic from the protocol. The method protocol is passed as a parameter to the imported
function executeProtocol. This is the intended way to work using these abstraction layers
to implement the distributed application. The implementation of Bob, in Listing 3.13, also
illustrates this principle.

The problem with this layer is that writing this data JSON source, which is the basis for
generating the protocol API, can be very tedious. A mistake is easily made especially when
more roles join the party. This will increase the complexity of the involved statemachines
rapidly. This makes this layer not sufficient enough to offer to a software engineer who is
responsible for the implementation of a distributed application.

3.4. LAYER THREE, GLOBAL PROTOCOL DEFINITION
A global description of a protocol, preferable in a intuitive language like Scribble, is the
ideal syntax format for describing distributed interactions between processes. Describing
the global protocol instead of describing each role perspective separately provides a higher
abstraction layer to the software engineer. The local perspectives can and should be be
generated from the global perspective. This global protocol description is less work for the
software engineer and provides a higher abstraction view of the software communication
protocol. After all, instead of looking at different local protocol descriptions separately it is
easier to look at and focus on one global description that describes the complete software
communication protocol.

To be able to use the static validation facilities of layer two a JSON in the right format,
that describes the global protocol, is used to generate the protocol API. Therefor a parser is
needed for the parsing of a global protocol description to the JSON data format. This parser
is beyond the scope of this project. But with help from unpublished research in the field of
parallel programming, an evolved Scribble parser is used for this research. This parser is
capable of parsing an evolved Scribble syntax and generate the needed JSON data file for
abstraction layer two.

Therefore, for this project a Scribble look al like syntax is used for globally describing
example protocols. The syntax of this language looks like Scribble language and provides
higher level language constructions that are easy and sufficient for describing distributed
protocols on a global level.

In Listing 3.14 an example of a global protocol description of the Alice and Bob example
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(1) is shown.

Listing 3.14: Global protocol definition of Alice and Bob

1 module AliceBob;
global protocol AliceBob(role Alice , role Bob) {

3 choice {
ADD from Alice to Bob;

5 RES from Bob to Alice;
do AliceBob(Alice , Bob);

7 } or {
BYE from Alice to Bob;

9 }
}

The Scribble syntax used in the Alice and Bob example (1) from Chapter 2.1.3 in Listing
2.1 is different from the syntax used in Listing 3.14. The code in Listing 3.14 starts with a
declaration of the module. The syntax from Listing 3.14 is more compact than the listing
from Chapter 2.1.3 and eliminates the need for the message details, in this case the integer
payloads. Also the choice keyword can be used without the role specification, since the
master during the choice is the role that has the first action after the choice. The specific
contents of a message is also not needed; these details can be filled in by software engineer
implementing the business logic. This higher lever syntax closely illustrates the sequence
diagram from Figure 2.2 from the Alice and Bob example (1).

3.5. CONCLUSION
With a simple example the three proposed abstraction layers for simplifying protocol pro-
gramming were illustrated in this chapter. The end goal for this master thesis is to simplify
role-based communications programming in JavaScript/TypeScript. This will substantiate
the idea that role-based communications programming is a good alternative solution for
programming constrained distributed applications. Role-based programming can make
programming distributed software applications more easy and comprehensive. The lower
level protocols like tcp/ip, http, or a rest architecture are no longer relevant for the software
engineer who implements the distributed application. A complete focus on implementing
the real business logic is the logical result.

This offered framework will generate the code that is responsible for the coordination
of the distributed program and also separate the coordination programming code from the
code that is responsible for the custom business logic computation. This will result in more
maintainable programming code as described in Section 1.3.

Programming abstractions for implementing distributed software communication will
probably result in the faster development of distributed applications. The programmers
of the future will ’stand on the shoulders of giants’ [Tur59]. But now with an eye on new
software abstraction layers, on top of others.

Some extra attention for the complete process for generating a protocol API based on
the three proposed abstraction layers is recalled in Section 3.5.1. To illustrate the increase
in complexity when more roles join the multi-party protocol, the protocol from Alice and
Bob is extended with another role. This is described in Section 3.5.2.
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Figure 3.7: Local perspective of Fred

3.5.1. API GENERATING PROCESS
This Section gives a summarized description in a chronological order of the steps that are
needed to build a distributed constrained application, based on a description of a global
protocol. Several actions are needed for the implementation of a distributed software ap-
plication using the described method in this chapter.

First a protocol is described on a global level in a Scribble evolved syntax, this code
will be parsed and the syntax is validated. This high level format describes the flow of the
messages between the roles. After a successful validation of the global protocol descrip-
tion a transformation is executed to a JSON data format protocol definition. With the help
of this data, the protocol framework generator constructs an API for every role involved.
These interfaces are generated for each role and are based on the statemachines of the
corresponding roles. States are objects, and transitions are methods of these objects. A
transition represents a situation where a role waits or sends a message to another role.

The custom computation logic can be implemented by the software engineer. The code
of the computation logic starts with the initial state of the involved role of the protocol, and
ends with the final state of the local protocol of the involved role. The computation code
can be implemented separated from the coordination code and passed as an argument to
the protocol coordination framework.

Such an API for implementing the details of the software protocol could be applicable
and beneficial a for any statically compiled language. There will be an API for every role
involved in the described global protocol, and applicable for distributed application devel-
opment.

3.5.2. COMPLEXITY
The Alice and Bob example is very easy and has only three states per role. To illustrate the
high increase in states and therefore complexity another role is added to the Alice and Bob
example (1), namely Fred. Fred does the same as Alice: he sends an ADD or a BYE to Bob.
After sending an ADD he waits for a result in the shape of a RES message. After sending the
BYE message he ends the protocol.

The STD of Fred is the same as the one of Alice and is illustrated in Figure 3.7, but the di-
agram of Bob changes after adding the Fred role. Bob now has to deal with two participants,
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Figure 3.8: State diagram for Bob when dealing with an extra role

for example when Alice or Fred sends a BYE, the protocol does not end for Bob. There still
is one role active. The STD of Bob is illustrated in Figure 3.8 and shows eight states instead
of three, just after adding one role.

The global description of the protocol also changes, a description is shown in Listing
3.15. The global protocol has four choice options now, and after Alice or Fred stops the
protocol becomes the same as the ’Alice and Bob’ example.

Listing 3.15: Scribble implementation of Alice and Bob

module AliceBobFred;
2

global protocol AliceBobFred(role Alice , role Bob , role Fred) {
4 choice {

ADD from Alice to Bob;
6 RES from Bob to Alice;

do AliceBobFred(Alice , Bob , Fred);
8 } or {

ADD from Fred to Bob;
10 RES from Bob to Fred;

do AliceBobFred(Alice , Bob , Fred);
12 } or {

BYE from Alice to Bob;
14 do Two(Fred , Bob);

} or {
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16 BYE from Fred to Bob;
do Two(Alice , Bob);

18 }
}

20

aux global protocol Two(role Client , role Server) {
22 choice {

ADD from Client to Server;
24 RES from Server to Client;

do Two(Client , Server );
26 } or {

BYE from Client to Server;
28 }

}

The corresponding sequence diagram of this Alice, Bob and Fred example is shown in
Figure 3.9.
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Figure 3.9: Sequence diagram of Alice, Bob and Fred example
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CONCLUSION

Research for finding the answers to the research questions has been conducted. During this
research concrete protocol abstractions have been developed. Several example protocols
have been formulated and tested, this way validating the proposed solution from Chapter
3. As a result the research questions can now be answered.

The main research question of this master project is: How can protocol abstractions be
added to TypeScript?

And this research question is narrowed down in the following five subquestions.

• RQ1: What abstractions do we need?
• RQ2: Do we need a protocol engine for validating and execution of protocol instances?
• RQ3: How is message passing implemented?
• RQ4: Is it possible to add these abstractions as GPL or will it better to add them as

DSL.
• RQ5: What is the performance penalty of these abstractions?

More details about the research questions can be found in Chapter 1.5.
The answer to the main research question is: protocol abstractions can be added by

providing several concrete abstractions with which protocol programming in TypeScript
will be possible. These concrete abstractions will also supply an API for programming the
distributed application. This API is based on a global protocol definition and delivers static
validation of protocol constraints. These concrete abstractions are divided among three
conceptual layers that are on top of tpc/ip and http, Figure 3.1.

In this Chapter 4 the first Section 4.1 discusses the first narrowed down research ques-
tion. Section 4.2 answers the second research question. Next Section 4.3 discusses the
third research question. Section 4.4 answers the fourth research question and Section 4.5
discusses the last research question. In Section 4.6 the validation of the project is discussed
and more details about the scope of the project can be found in Section 4.7. The last section
of this chapter, Section 4.8 will have a final evaluation on the research project.

4.1. RQ1:WHAT ABSTRACTIONS
What are the concrete abstractions that are needed for defining distributed software com-
munication protocols in TypeScript?

52
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To realize statically validate protocol programming in TypeScript several concrete ab-
stractions are needed. With formulating the conceptual layered architecture from Chapter
3 the different concrete abstractions are categorized among the layers.

The first abstraction layer on top of the base tcp/ip layer is also called ’Role based com-
munication’. This first layer has the mediator abstraction for starting up the protocol and
supplying all roles with physical details. The mediator role guarantees all roles involved in
the protocol are present when the protocol starts. This system mediator role is discussed
in Section 3.2.1. Another concrete abstraction in the first layer is the message store, this ab-
straction provides a controllable way for fetching messages. The message store is discussed
in Section 3.2.2. Role based sending of messages, without the need for physical address de-
tails, is also a concrete abstraction of layer one. The ability to save messages immediately
on arrival in the message store, is another concrete abstraction that layer one provides.
More details about layer one are found in Section 3.2.

The second conceptual layer is the ’static protocol validation’ layer. This layer provides
statically validated protocol constraints at compile time. The details of this layer are dis-
cussed in Section 3.3. In short an API for each role is supplied for statically validated proto-
col programming. This generated API is the concrete abstraction from this second abstrac-
tion layer. The second architectural abstraction layer uses the first conceptual layer.

The third conceptual layer is also called ’Global protocol definition’. This layer facili-
tates in a user friendly way of defining a global protocol. The software engineer responsible
for programming the distributed application will formulate the global protocol in higher
level syntax. This mainly means defining the message interactions between the different
roles, in other words, implementing the coordination between the distributed processes
with an appropriate syntax. From this global definition the framework for programming
the distributed application is generated. The coordination concern from the software pro-
tocol is generated, and the computation concern can be built next. This global protocol
definition with its specific syntax is the concrete abstraction of this layer three.

4.2. RQ2:PROTOCOL ENGINE
The second narrowed down research question is: Do we need a protocol engine for vali-
dating and execution of protocol instances? Are runtime facilities needed for distributed
software communication protocol abstractions in TypeScript? And if a runtime engine is
needed, how is this runtime engine implemented?

When the first conceptual layer is present, the role based communication layer, the
runtime facility to guarantee the startup of all wanted involved roles is present too. This
facility is the system mediator role from abstraction layer one, also explained in Section
3.2.1. Since all roles are distributed, this role is needed to guarantee the presence of all the
roles. This is an engine for the execution of the protocol that is started first. As soon as
the protocol is started up completely and all distributed roles involved in the protocol are
present, this system mediator role stops and ends its processing.

When the second conceptual layer is also present, the static protocol validation layer,
the protocol API for the software engineer is available. Static protocol validation is imple-
mented based on state machine simulation, as described in Section 3.3. When a transition
between states in a STD is made more than once, the protocol is incorrect. This means
when a method of a state object is called more than once, the protocol is incorrect. This
cannot be validated at compile time and is therefore implemented as a runtime validation
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check.
These two runtime facilities are needed for protocol validation and the execution.

4.3. RQ3:MESSAGE PASSING
How is message passing implemented? When protocol abstractions for distributed soft-
ware communication are added, how will the technology for passing messages between
distributed software processes be implemented?

Messages are fundamental for distributed software communication. The interactions
between the roles with corresponding message for each interaction, are described in con-
ceptual layer three. This is done by defining the message that is passed from role to role.
This is illustrated in code Listing 4.1, in this code example an ADD message is send from
Alice to Bob.

Listing 4.1: Message from role to role

1 ADD from Alice to Bob;

The details of the ADD message are specified separately. Specifying message details is
the responsibility of the software engineer who implements the distributed application. In
Listing 4.2 the ADD message is specified with more details. The ADD message contains two
number values, namely value1 and value2.

Listing 4.2: Message definitions

1 abstract class Message {
constructor(public name:string){};

3 }

5 export class ADD extends Message {
constructor(public value1: number, public value2: number) {

7 super(ADD.name);
}

9 }

A complete example of an implementation of a detailed message specification can be
found in Appendix A.5. Besides the specification of the messages, there are also other ab-
stractions needed to implement message passing for protocol programming. Facilities for
the uncontrolled arrival of messages, the controlled processing of messages and message
sending are also needed.

For the continuously arrival of messages a message server is created that saves mes-
sages on arrival in a message store. The message store is explained in more detail in Sec-
tion 3.2.2 and the implementation can be found in Appendix A.4. The implementation of
the message server can be found in Appendix A.1.

The processing of messages can be done when a role is ready for the specific message.
This depends on the global protocol specification, which led to a state machine based API
for each role. When a state object of an API expects a specific type message from a specific
role, it can be fetched from the message store. A role will wait for a message when the
message has not arrived yet.
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Messages can be sent and received with the generated methods from the API from the
role. These methods are the transitions of the state machines that are involved. This API is
the conceptual layer two abstraction. Conceptual layer one provides a method for sending
messages based on a role name, without the need to specify the physical details. These
were already initialized by the mediator; the implementation of this method can be found
in Appendix A.2.

4.4. RQ4:GPL OR DSL
Is it possible to add protocol abstractions as GPL or will it be better to add them as DSL.
What is the most convenient way for adding software communication protocol abstrac-
tions to TypeScript?

Since TypeScript is an open source language with its source code on GitHub, it is pos-
sible to add the third conceptual layer protocol abstractions directly as keywords to the
TypeScript language. The TypeScript compiler could generate the protocol framework to
JavaScript.

This Master research project implemented the protocol abstractions as an external DSL
that is modeled in the third conceptual layer. The main reason for implementation as a
DSL was to guarantee the feasibility of this Master research project.

But also the number and different kind of abstractions that are needed to implement
protocol abstractions, could justify a separate DSL for protocol abstractions. Generat-
ing code for a distributed application produces a framework of code, which cannot be
translated one to one. The TypeScript compiler transpiles TS to functionally equivalent
JavaScript. Protocol abstractions involve facilities like a message store and message server.
The complexity of these abstractions and total number of minimal needed abstractions
justify a separate external DSL. This external DSL for specifying the coordination will be
the basis for the framework that will be generated.

When using coordination abstractions created for TypeScript specific, then generating a
complete framework for coordination from TypeScript to JavaScript breaks the main reason
of TypeScript. This main reason is, adding static typing to JavaScript.

Also for a higher maintainability a good separation of computation code from coordi-
nation code is recommended; with a separate external DSL this is guaranteed.

4.5. RQ5:PERFORMANCE PENALTY
The fifth narrowed down research question is: what is the performance penalty of these
abstractions? Is there a significant amount of time extra spent on this generated code layer
in TypeScript?

For answering this research question an example protocol, called perfect number has
been designed. First this example is implemented in a regular way without the use of a gen-
erated protocol API. And then a version generated with static protocol validation, using the
facilities of all the conceptual layers from Chapter 3. The perfect number example protocol
has a map reduce pattern: first one main process divides work to five other processes. Then
the executed work is collected and processed by the main process.

The goal is to calculate perfect numbers. A perfect number is positive number that
is equal to the sum of its proper divisors. An example is the number six, which has the
divisors one, two and three. The summation of these divisors is six, which makes six a
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perfect number. Other perfect numbers are 28, 496 and 8128.
The protocol has six roles, one role called p and the roles s1, s2, s3, s4 and s5. The

role called p divides numbers among the five other different processes. These processes
calculate the sum of divisors from every received number. When the sum of the divisors
of the received number is equal to the received number, the number is a perfect number
and is send back to role p. P collects the perfect numbers from the different calculating s
roles. When all the numbers are sent by role p, p starts waiting for the calculated perfect
numbers.

A short impression of the global description of the protocol is given in example 4.3, the
complete global protocol can be found in A.8.

Listing 4.3: Global protocol definition of perfect number example

1 module perfectNumber;

3 global protocol perfectNumber( role p, role s1
, role s2 , role s3 , role s4 , role s5 ) {

5 choice {
CALC from p to s1;

7 do perfectNumber(p,s1 ,s2 ,s3 ,s4 ,s5);
} or {

9 CALC from p to s2;
do perfectNumber(p,s1 ,s2 ,s3 ,s4 ,s5);

11 } or ...
} or {

13 BYE from p to s1;
BYE from p to s2;

15 ...
do dealWithResult5(p,s1 ,s2 ,s3 ,s4 ,s5);

17 }
}

19

aux global protocol dealWithResult5( role p, role s1
21 , role s2 , role s3 , role s4 , role s5 ) {

choice {
23 RESULT from s1 to p;

do dealWithResult5(p,s1 ,s2 ,s3 ,s4 ,s5);
25 } or {

RESULT from s2 to p;
27 do dealWithResult5(p,s1 ,s2 ,s3 ,s4 ,s5);

} or ...

The role p has the choice to send numbers to the other roles; these are the numbers
that have to be calculated. The implemented computation logic for role p implements the
equal distribution of the numbers that have to be calculated and also the collecting of the
perfect numbers. In this example the numbers are equally divided among roles s1 to s5.
In this protocol there are three messages, the messages CALC, BYE and RESULT. The CALC
message contains a range of numbers that have to be calculated; this is called the group
size. The BYE message indicates the sending has stopped, and the RESULT message is sent
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Figure 4.1: Performance graph with amount of numbers divided in groups of 100

back to p with the involved number when this number is perfect.
For the performance testing the group sizes 100, 1000 and 10000 were executed. First

100000 numbers were calculated, then 200000 and this amount increases with steps of one
hundred thousand until it reaches one million numbers. Figure 4.1 shows the result of a
group size of one hundred. The horizontal axis shows the amount of numbers, for example
the number two means two hundred thousand calculated numbers. The vertical axis shows
the time in seconds it took to calculate for a given amount of numbers. The red line is the
code of the proposed framework and the blue line shows an implementation without the
use of generated coordination code. The differences are very small, but with a group size
of one hundred the generated code becomes slower when the total amount of numbers
increases: about five seconds difference with a total amount of numbers of one million.
The tests were taken four times and the average was taken to draw the graph and formulate
this result.

The main difference between the different group sizes is the communication between
the roles. With a group size of one hundred with a total amount of numbers of one hundred
thousand, there will be one thousand CALC messages. With a group size of one thousand
there will be one hundred CALC messages.

Figure 4.2 shows the results of the perfectnumber example with a group size of one
thousand numbers. Also in this example the times do not differ much, but when the total
amount of numbers increase to one million, the generated code seems to become slower
relative to the implementation without the generated coordination logic.

Figure 4.3 shows the results of the perfect number example with a group size of 10000.
With this group size of 10000 it takes ten CALC messages to calculate one hundred thou-
sand numbers. Also in this example can be seen that the performance of the generated
code becomes slower relative to the regular code when more numbers are calculated. But
this behavior can only be noticed after ninety message interactions or an amount of 900000
numbers; in other words after the processing of 90 CALC messages. But Figure 4.3 also
shows that the generated code performs faster than the regular code for the first ninety
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Figure 4.2: Performance graph with amount of numbers divided in groups of 1000
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CALC messages. This behavior can only be seen when the total amount of message inter-
actions are below ninety and this situation does not take place with the other group sizes.
The message interactions in the 10000 group size are relatively low compared to the other
two examples. I have not found an explanation for why the generated code performs a little
slower for the first ninety message interactions. This behavior should be more investigated
and is future work.

A general conclusion is; when there are more than ninety message interactions the over-
head of the generated APIs increases. This can be seen in the Figures 4.1, 4.2 and 4.3. The
larger the group size means fewer communications, so the lower the overhead of the gen-
erated APIs. The bigger the amount of numbers, the more messages are sent, so the higher
the overhead of the generated APIs.

All the measures took place on my laptop that has a one processor with six physical
cores and twelve logical cores. As more messages are sent, the code with the generated
coordination logic seem to become slower compared to the regular code.

4.6. VALIDATION AND CONCLUSION
Experimental research has been conducted to find the answers to the research questions
of this Master thesis. Six concrete example protocols have been tested to validate the pro-
posed solution.

The first example of this project is the Alice and Bob example (1) from Chapter 2.1.3.
This example is used in this thesis to illustrate the proposed solution. After this example
was implemented with generated coordination logic, other examples followed.

Since the first example was very easy and had only two roles, a role was added to the
example. This increased complexity immediately as can be seen in Chapter 3.5.2. The role
Fred was added to the example.

The third example used to validate the proposed solution comes from the paper [Yos+13].
In this paper an example based on an online travel agency is discussed. This example has
been validated with the proposed solution for TypeScript.

The fourth validated example comes from [Hu17]. This example is called HTTP and
is based on the http protocol. There are two roles, client and server and these roles send
messages to each other. The messages are based on the HTTP message grammar defined
in RFC 7230 [FNR14].

The fifth example comes also from [Hu17] and is called Math Service. This example is
implemented with the proposed solution and validated.

The sixth and last example is used to validate the performance of the proposed solution.
This example is called perfect number; it is a map reduce pattern. The perfect number
example is also discussed in Section 4.5.

These six examples are used to validate the framework for distributed programming in
TypeScript based on a global protocol definition.

The conclusion of these validated examples is that the proposed solution works for all
of them. For every validated example the framework for programming distributed proto-
cols was generated. The protocol constraints that were defined on the global level were
enforced. And facilities for helping the software engineer during the implementation of the
computation logic were present. The coordination logic is separated, and the custom com-
putation logic can be passed as parameter to the generated coordination framework, also
explained in Chapter 3.
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These examples prove that role based distributed programming can be simplified by
using a global protocol description. The complete coordination concern of a distributed
application can be generated, this way giving a head start during the implementation. Also
global level described constraints are enforced and help with implementing the distributed
application is achieved with facilities like statement completion.

4.7. PROJECT SCOPE
Some additional remarks regarding the scope of this project should be explicitly made.

The software protocols discussed in this Master thesis are all relatively easy. Protocols
with statically known roles can be generated and implemented with the proposed solution.
Protocols with dynamically instantiated roles are out of scope. Only global protocols in
which message interaction between roles are defined, are within the scope of this master
project.

The result of the experimental research conducted for this Master graduation project
is discussed in Chapter 3. For this project all implementations were done during this re-
search, except the implementation of a parser for parsing a global protocol definition file.
This global protocol definition is layer three which is discussed in Section 3.4. Layer three
parses a global protocol definition file and produces a data file with a textual representa-
tion of all the involved state machines. This state machine definition file is used by layer
two to generate an API for protocol programming. This is discussed in Section 3.3.

4.8. EVALUATION, DISCUSSION AND FUTURE WORK
This project for adding protocol abstractions to TypeScript resulted in a framework that is
conceptually modeled in a layered architecture, this is described in Chapter 3. Starting with
the simple example called Alice and Bob (1) from Section 2.1.3, other examples followed to
validate the framework.

The solution presented in this thesis is based on a DSL from which a statically compiled
protocol interface is generated. This protocol API can be used by a software engineer who
is responsible for implementing the distributed application.

Coordination code is separated from computation code, which results in higher qual-
ity code, as argued for in Section 1.3. Another result is the static validation of protocol
constraints in TypeScript and therefore also JavaScript, as explained in Section 2.2. This
helps the software engineer who is responsible for implementing the distributed applica-
tion. And also a headstart is made with building the distributed application. The effort for
implementing the coordination logic is reduced to writing a global protocol definition.

The proposed solution could be a powerful technique for developing distributed appli-
cations. All the examples that are validated were all server side applications. Applications
on mobile devices or Internet browsers were never tried. In theory this should work too,
but future work could help confirming this theory.

Also the parsing of the abstraction level three syntax of the global protocol definition to
state machines is future work.

Future work could also involve research for directly adding protocol abstractions to the
language TypeScript. But also research for adding more complex distributed protocols to
current proposed solution for TypeScript is recommended future work.



GLOSSARY

AIOCJ Adaptive Interaction Oriented Choreographies in Jolie.

AOP Aspect Oriented Programming.

API Application programming interface.

BPEL Business Process Execution Language.

DHTML Dynamic HyperText Markup Language.

DOM Document Object Model.

DSL Domain Specific Language.

ECMA European Computer Manufacturers Association.

FSM Finite State Machine.

FTP File Transfer Protocol.

GPL General Purpose Language.

IDE Integrated Development Environment.

IOT Internet Of Things.

JS JavaScript.

JSON JavaScript Object Notation.

MSA Micro Services Architecture.

NPM Node Package Manager.

SOA Service Oriented Architecture.

SoC Separation of Concerns.

STD State-Transition Diagram.

TS TypeScript.

UML Unified Modeling Language.
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A
CODE EXAMPLES

A.1. MESSAGE SERVER

Listing A.1: Local server for receiving messages(receiveMessageServer.ts).

1 import * as http from 'http';
import {Message} from './Message';

3 import {messageDB} from './messageDB';

5 function httpRestServer(req:http.IncomingMessage,res:http.ServerResponse):void {
const httpHeaders = {'cache-control':'no-cache','Content-Type':'application/json','charset':'utf-8'};

7 if ( req.method === 'POST' ) {
let postData:string;

9 req.on('data', (data) => { postData = (postData===undefined)?data: postData+data; });
req.on('end', () => { try { //console.log(`bericht ontvangen ${postData}`);

11 messageDB.add(<Message>(JSON.parse(postData)));
res.writeHead(200, "OK", httpHeaders);

13 res.end();
}

15 catch (err) {
res.writeHead(400, "wrong message", httpHeaders);

17 } } );
return;

19 }
res.writeHead(404, "page not found", httpHeaders);

21 }

23 var httpServer:http.Server = http.createServer(httpRestServer);

25 function start(port:number){
httpServer.listen(port);

27 }

29 function terminate(){
setTimeout(

31 () => { httpServer.close();

65
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console.log('server is afgebroken, het protocol wordt nu geeindigd');
33 }, 5000 );
}

35

const receiveMessageServer = {
37 start: start
, terminate:terminate

39 }

41 export {receiveMessageServer};

A.2. MESSAGE CLIENT

Listing A.2: Function for sending messages(sendMessage.ts).

1 import * as request from 'request';
import {Message} from './Message';

3 import {connectedRoles,roles} from './globalObjects';

5 export async function sendMessage (roleFrom:roles,roleName:roles,msg:Message):Promise<void> {
//console.log(`send ${msg.name} Message to ${roleName}`);

7 const host = connectedRoles.getInfo(roleName).host;
const port = connectedRoles.getInfo(roleName).port;

9 //console.log(`host ${host} port ${port}`);
msg.from = roleFrom;

11 const options = { url: `http://${host}:${port}`,
headers: {'cache-control':'no-cache','Content-Type':'application/json','charset':'utf-8'},

13 body: msg,
json: true };

15 return new Promise(
(resolve,reject) => {

17 request.post( options,
(err) => {

19 if (err) {
console.log(`error sendMessage ${roleName} : ${err}`);

21 reject(err);
}

23 else {
resolve();

25 }
}

27 )
}

29 );
}

A.3. GLOBAL OBJECTS



A.3. GLOBAL OBJECTS 67

Listing A.3: Global needed objects(globalObjects.ts).

import {ROLEMESSAGE,Message} from './Message';
2 import {receiveMessageServer} from './receiveMessageServer';
import {sendMessage} from './sendMessage';

4 import {messageDB} from './messageDB';

6 //
//

8 // verschillende mogelijke rollen
enum roles {

10 mediator='Mediator'
}

12

export {roles}
14

//
16 // connected roles
//

18 type connectedRoleInfo = {
host: string;

20 port: number;
}

22

const connectedRolesMap:Map<roles,connectedRoleInfo> = new Map();
24

function showConnectedRoles(){
26 connectedRolesMap.forEach(

(val,key)=>{
28 console.log(`${key} ${val.host} ${val.port}`);

}
30 );
}

32

function getInfo(roleName:roles):connectedRoleInfo{
34 let roleInfo=connectedRolesMap.get(roleName);

if (roleInfo) {
36 return roleInfo;

}
38 throw new SyntaxError(`${roleName} does not exist`)
}

40

function missing(nm:roles):boolean{
42 return !connectedRolesMap.has(nm);
}

44

function save(msgOrRoleName:Message|roles,host?:string,port?:number):void{
46 switch(typeof msgOrRoleName){

case 'string':
48 if(host&&port) {
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connectedRolesMap.set(msgOrRoleName, {port:port, host:host});
50 }

break;
52 case 'object':

let roleMsg:ROLEMESSAGE=<ROLEMESSAGE>msgOrRoleName;
54 connectedRolesMap.set(roleMsg.roleName, {port:roleMsg.port, host:roleMsg.host});

break;
56 }
}

58

function del(role:roles){
60 connectedRolesMap.delete(role);
}

62

const connectedRoles = {
64 missing: missing
, getInfo:getInfo

66 , save: save
, delete: del

68 , showConnectedRoles: showConnectedRoles
}

70

connectedRolesMap.set(roles.mediator, {port:30000, host:'localhost'});
72

export {connectedRoles};
74

async function sleep(ms:number) {
76 return new Promise((resolve) => setTimeout(resolve, ms));
}

78

// generic start function
80 export async function initialize(roleName:roles, port:number, host:string){

receiveMessageServer.start(port);
82 connectedRoles.save(roleName,host,port);

await sendMessage( roleName, roles.mediator, new ROLEMESSAGE(roleName) );
84 while ( true ) {

const msg = await messageDB.remove((m)=>m.name===ROLEMESSAGE.name);
86 if ( msg.name === ROLEMESSAGE.name) {

connectedRoles.save(msg);
88 };

const missingRoles = Object.values(roles).filter( (role) => connectedRoles.missing(role) );
90 if ( missingRoles.length === 0){

break;
92 }

}
94 }

96 //
// custom exception for a runtime check
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98 export class OneTransitionPossibleException extends Error {
constructor(public message: string) {

100 super(message);
this.name = 'Exception';

102 this.message = message;
this.stack = (<any>new Error()).stack;

104 }
toString() {

106 return this.name + ': ' + this.message;
}

108 }

110 enum roles {
bob = "Bob",

112 alice = "Alice"
}

A.4. MESSAGE STORE

Listing A.4: The message database(messageDB.ts).

1 import {Message} from './Message';

3 interface MessageDB {
add(msg: Message): void;

5 remove(predicate: (msg: Message) => boolean): Promise<Message>;
}

7

class MessageCoreDB implements MessageDB {
9 private items: Message[] = [];

private predicate: ((item: Message) => boolean) | null = null;
11 private resolve: ((item: Message) => void) | null = null;

13 add(item: Message): void {
this.items.push(item);

15 this.tryResolve();
}

17

async remove(predicate: (item: Message) => boolean): Promise<Message> {
19 let promise = new Promise<Message>((resolve, reject) => {

this.predicate = predicate;
21 this.resolve = resolve;

});
23 this.tryResolve();

return promise;
25 }

27 private tryResolve(): void {
if ( this.predicate && this.resolve ) {
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29 let item: Message|null = null;
let index = 0;

31 for (let msg of this.items) {
if (this.predicate(msg)) {

33 item = msg;
break;

35 }
index++;

37 }
if (item) {

39 this.resolve(item);
this.items.splice(index, 1);

41 this.predicate = null;
this.resolve = null;

43 }
}

45 }
}

47

const messageDB:MessageDB = new MessageCoreDB();
49

export {messageDB}

A.5. MESSAGE DEFINITIONS

Listing A.5: Messages from Alice and Bob example(Message.ts).

import {connectedRoles,roles} from './globalObjects';
2

export abstract class Message {
4 public from:roles=roles.mediator;

constructor(public name:string){};
6 }

8 export class ROLEMESSAGE extends Message {
public host:string;

10 public port:number;
constructor(public roleName:roles){

12 super(ROLEMESSAGE.name);
this.host = connectedRoles.getInfo(roleName).host;

14 this.port = connectedRoles.getInfo(roleName).port;
}

16 }

18 export class ADD extends Message {
constructor(public value1: number, public value2: number) {

20 super(ADD.name);
}

22 }
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export class RES extends Message {
24 constructor(public sum: number) {

super(RES.name);
26 }
}

28 export class BYE extends Message {
constructor() {

30 super(BYE.name);
}

32 }

A.6. GENERATED API FOR ALICE

Listing A.6: generated API for the role Alice(Alice.ts).

import { receiveMessageServer } from "./receiveMessageServer";
2 import { ADD, BYE, RES, Message } from "./Message";
import { sendMessage } from "./sendMessage";

4 import { roles, initialize, connectedRoles, OneTransitionPossibleException } from "./globalObjects";
import { messageDB } from "./messageDB";

6

enum messages {
8 ADD = "ADD",

BYE = "BYE",
10 RES = "RES"
}

12

interface IAlice {
14 }

16 interface IAlice_S1 extends IAlice {
readonly messageFrom: roles.bob;

18 readonly messageType: messages.RES;
message?: RES;

20 send_ADD_to_Bob(add: ADD): Promise<IAlice_S2>;
send_BYE_to_Bob(bye: BYE): Promise<IAlice_S3>;

22 }

24 interface IAlice_S2 extends IAlice {
recv(): Promise<IAlice_S1>;

26 }

28 interface IAlice_S3 extends IAlice {
}

30

abstract class Alice implements IAlice {
32 constructor(protected transitionPossible: boolean = true) { }

;
34 protected checkOneTransitionPossible() {
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if (!this.transitionPossible)
36 throw new OneTransitionPossibleException("Only one transition possible from a state");

this.transitionPossible = false;
38 }
}

40

class Alice_S1 extends Alice implements IAlice_S1 {
42 readonly messageFrom = roles.bob;

readonly messageType = messages.RES;
44 constructor(public message?: RES) {

super();
46 }

async send_ADD_to_Bob(add: ADD): Promise<IAlice_S2> {
48 super.checkOneTransitionPossible();

await sendMessage(roles.alice, roles.bob, add);
50 return new Promise(resolve => resolve(new Alice_S2));

}
52 async send_BYE_to_Bob(bye: BYE): Promise<IAlice_S3> {

super.checkOneTransitionPossible();
54 await sendMessage(roles.alice, roles.bob, bye);

return new Promise(resolve => resolve(new Alice_S3));
56 }
}

58

class Alice_S2 extends Alice implements IAlice_S2 {
60 constructor() {

super();
62 }

async recv(): Promise<IAlice_S1> {
64 try {

super.checkOneTransitionPossible();
66 }

catch (exc) {
68 return new Promise((resolve, reject) => reject(exc));

}
70 const msgPredicate: (message: Message) => boolean = m => (m.name === RES.name && m.from === roles.bob);

const msg = await messageDB.remove(msgPredicate);
72 return new Promise(resolve => {

switch (msg.name + msg.from) {
74 case RES.name + roles.bob: {

resolve(new Alice_S1((<RES>msg)));
76 break;

}
78 }

});
80 }
}

82

class Alice_S3 extends Alice implements IAlice_S3 {
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84 constructor() {
super();

86 receiveMessageServer.terminate();
}

88 }

90 type Alice_Start = IAlice_S1;
type Alice_End = IAlice_S3;

92

async function executeProtocol(f: (Alice_Start: Alice_Start) => Promise<Alice_End>, host: string, port: number) {
94 console.log(`Alice started ${new Date()}`);

await initialize(roles.alice, port, host);
96 let done = await f(new Alice_S1());

return new Promise<Alice_End>(resolve => resolve(done));
98 }

100 export { IAlice, IAlice_S2, messages, Alice_Start, Alice_End, executeProtocol, roles };

A.7. GENERATED API FOR BOB

Listing A.7: generated API for the role Bob(Bob.ts).

1 import { receiveMessageServer } from "./receiveMessageServer";
import { ADD, BYE, RES, Message } from "./Message";

3 import { sendMessage } from "./sendMessage";
import { roles, initialize, connectedRoles, OneTransitionPossibleException } from "./globalObjects";

5 import { messageDB } from "./messageDB";

7 enum messages {
ADD = "ADD",

9 BYE = "BYE",
RES = "RES"

11 }

13 interface IBob {
}

15

interface IBob_S1 extends IBob {
17 recv(): Promise<IBob_S2 | IBob_S3>;
}

19

interface IBob_S2 extends IBob {
21 readonly messageFrom: roles.alice;

readonly messageType: messages.ADD;
23 message: ADD;

send_RES_to_Alice(res: RES): Promise<IBob_S1>;
25 }
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27 interface IBob_S3 extends IBob {
readonly messageFrom: roles.alice;

29 readonly messageType: messages.BYE;
message: BYE;

31 }

33 abstract class Bob implements IBob {
constructor(protected transitionPossible: boolean = true) { }

35 ;
protected checkOneTransitionPossible() {

37 if (!this.transitionPossible)
throw new OneTransitionPossibleException("Only one transition possible from a state");

39 this.transitionPossible = false;
}

41 }

43 class Bob_S1 extends Bob implements IBob_S1 {
constructor() {

45 super();
}

47 async recv(): Promise<IBob_S2 | IBob_S3> {
try {

49 super.checkOneTransitionPossible();
}

51 catch (exc) {
return new Promise((resolve, reject) => reject(exc));

53 }
const msgPredicate: (message: Message) => boolean = m => (m.name === ADD.name && m.from === roles.alice) || (m.name === BYE.name && m.from === roles.alice);

55 const msg = await messageDB.remove(msgPredicate);
return new Promise(resolve => {

57 switch (msg.name + msg.from) {
case ADD.name + roles.alice: {

59 resolve(new Bob_S2((<ADD>msg)));
break;

61 }
case BYE.name + roles.alice: {

63 resolve(new Bob_S3((<BYE>msg)));
break;

65 }
}

67 });
}

69 }

71 class Bob_S2 extends Bob implements IBob_S2 {
readonly messageFrom = roles.alice;

73 readonly messageType = messages.ADD;
constructor(public message: ADD) {

75 super();
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}
77 async send_RES_to_Alice(res: RES): Promise<IBob_S1> {

super.checkOneTransitionPossible();
79 await sendMessage(roles.bob, roles.alice, res);

return new Promise(resolve => resolve(new Bob_S1));
81 }
}

83

class Bob_S3 extends Bob implements IBob_S3 {
85 readonly messageFrom = roles.alice;

readonly messageType = messages.BYE;
87 constructor(public message: BYE) {

super();
89 receiveMessageServer.terminate();

}
91 }

93 type Bob_Start = IBob_S1;
type Bob_End = IBob_S3;

95

async function executeProtocol(f: (Bob_Start: Bob_Start) => Promise<Bob_End>, host: string, port: number) {
97 console.log(`Bob started ${new Date()}`);

await initialize(roles.bob, port, host);
99 let done = await f(new Bob_S1());

return new Promise<Bob_End>(resolve => resolve(done));
101 }

103 export { IBob, IBob_S2, messages, Bob_Start, Bob_End, executeProtocol, roles };

A.8. PERFECT NUMBER GLOBAL PROTOCOL DEFINITION

Listing A.8: Global protocol description of perfect number example(perfectNumberGlobalProto1.scr).

module perfectNumber;
2

global protocol perfectNumber( role p, role s1 , role s2 , role s3 , role s4, role s5 ) {
4 choice {

CALC from p to s1;
6 do perfectNumber(p,s1 ,s2 ,s3 ,s4 ,s5);

} or {
8 CALC from p to s2;

do perfectNumber(p,s1 ,s2 ,s3 ,s4 ,s5);
10 } or {

CALC from p to s3;
12 do perfectNumber(p,s1 ,s2 ,s3 ,s4 ,s5);

} or {
14 CALC from p to s4;

do perfectNumber(p,s1 ,s2 ,s3 ,s4 ,s5);
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16 } or {
CALC from p to s5;

18 do perfectNumber(p,s1 ,s2 ,s3 ,s4 ,s5);
} or {

20 BYE from p to s1;
BYE from p to s2;

22 BYE from p to s3;
BYE from p to s4;

24 BYE from p to s5;
do dealWithResult5(p,s1 ,s2 ,s3 ,s4 ,s5);

26 }
}

28

aux global protocol dealWithResult5( role p, role s1, role s2, role s3, role s4, role s5 ) {
30 choice {

RESULT from s1 to p;
32 do dealWithResult5(p,s1 ,s2 ,s3 ,s4 ,s5);

} or {
34 RESULT from s2 to p;

do dealWithResult5(p,s1 ,s2 ,s3 ,s4 ,s5);
36 } or {

RESULT from s3 to p;
38 do dealWithResult5(p,s1 ,s2 ,s3 ,s4 ,s5);

} or {
40 RESULT from s4 to p;

do dealWithResult5(p,s1 ,s2 ,s3 ,s4 ,s5);
42 } or {

RESULT from s5 to p;
44 do dealWithResult5(p,s1 ,s2 ,s3 ,s4 ,s5);

} or {
46 BYE from s1 to p;

do dealWithResult4(p,s2 ,s3 ,s4 ,s5);
48 } or {

BYE from s2 to p;
50 do dealWithResult4(p,s1 ,s3 ,s4 ,s5);

} or {
52 BYE from s3 to p;

do dealWithResult4(p,s1 ,s2 ,s4 ,s5);
54 } or {

BYE from s4 to p;
56 do dealWithResult4(p,s1 ,s2 ,s3 ,s5);

} or {
58 BYE from s5 to p;

do dealWithResult4(p,s1 ,s2 ,s3 ,s4);
60 }
}

62

aux global protocol dealWithResult4( role p, role s1, role s2, role s3, role s4 ) {
64 choice {
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RESULT from s1 to p;
66 do dealWithResult4(p,s1 ,s2 ,s3 ,s4);

} or {
68 RESULT from s2 to p;

do dealWithResult4(p,s1 ,s2 ,s3 ,s4);
70 } or {

RESULT from s3 to p;
72 do dealWithResult4(p,s1 ,s2 ,s3 ,s4);

} or {
74 RESULT from s4 to p;

do dealWithResult4(p,s1 ,s2 ,s3 ,s4);
76 } or {

BYE from s1 to p;
78 do dealWithResult3(p,s2 ,s3 ,s4);

} or {
80 BYE from s2 to p;

do dealWithResult3(p,s1 ,s3 ,s4);
82 } or {

BYE from s3 to p;
84 do dealWithResult3(p,s1 ,s2 ,s4);

} or {
86 BYE from s4 to p;

do dealWithResult3(p,s1 ,s2 ,s3);
88 }
}

90

aux global protocol dealWithResult3( role p, role s1, role s2, role s3 ) {
92 choice {

RESULT from s1 to p;
94 do dealWithResult3(p,s1 ,s2 ,s3);

} or {
96 RESULT from s2 to p;

do dealWithResult3(p,s1 ,s2 ,s3);
98 } or {

RESULT from s3 to p;
100 do dealWithResult3(p,s1 ,s2 ,s3);

} or {
102 BYE from s1 to p;

do dealWithResult2(p,s2 ,s3);
104 } or {

BYE from s2 to p;
106 do dealWithResult2(p,s1 ,s3);

} or {
108 BYE from s3 to p;

do dealWithResult2(p,s1 ,s2);
110 }

}
112

aux global protocol dealWithResult2( role p, role s1, role s2 ) {
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114 choice {
RESULT from s1 to p;

116 do dealWithResult2(p,s1 ,s2);
} or {

118 RESULT from s2 to p;
do dealWithResult2(p,s1 ,s2);

120 } or {
BYE from s1 to p;

122 do dealWithResult1(p,s2);
} or {

124 BYE from s2 to p;
do dealWithResult1(p,s1);

126 }
}

128

aux global protocol dealWithResult1( role p, role s1 ) {
130 choice {

RESULT from s1 to p;
132 do dealWithResult1(p,s1);

} or {
134 BYE from s1 to p;

}
136 }
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