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SUMMARY

Machine Learning (ML) has gained significant traction over the last decades and affects
ever more aspects of our everyday lives. ML algorithms often perform well, but why is not
always fully understood due to their increasing complexity. This lack of explainability lim-
its the further adoption of these techniques, especially in sensitive applications, such as
health care. Explainability of modern machine learning algorithms has therefore become
an active research area. Recently, there have been interesting developments in the explana-
tion of Recurrent Neural Networks (RNN) which are widely used for textual inference and
speech recognition.

In this research we have explored the practical applicability of two most recent peda-
gogical (black-box) variants of a specific approach called, Recurrent Neural Network Rule
Extraction (RNN-RE), which aims to explain the operation of RNNs in the form of automata.
To this end we have applied these techniques to a RNN not specifically trained for this
purpose. We explored what the practical challenges are of applying these methods to this
network, looked into how each method performs and determined how well the methods
contribute to gaining insight into the RNN’s operation.

We have found that, although some practical aspects had to be addressed, the meth-
ods are capable of extracting automata with good fidelity. These automata, however, are
too complex, either in size or in their semantics, to easily provide a global explanation of
the RNN’s behaviour. Therefore we conclude that, although the techniques are interesting
and can certainly be useful, they are unlikely, in their current form, to provide a complete
answer to the RNN explainability problem.

The main contribution of this research is to provide insight into the practical applica-
bility of two most recent pedagogical recurrent neural network rule extraction techniques.
Also we have compared these methods side-by-side under similar circumstances, which,
to the best of our knowledge, has not been done before.

vii



1
INTRODUCTION

The application of Machine Learning (ML) techniques, which are a form of Artificial Intel-
ligence (AI), has gained significant traction over the last two decades [Mit06; JM15]. The
sophistication and practical applicability of machine learning algorithms has increased
significantly as both research and available computing resources have advanced [LBH15;
JM15]. Nowadays machine learning algorithms are applied to many different domains and
have become ubiquitous in our every day lives [LBH15; JM15]. Their application is mani-
fold and ranges from analyzing trends and making predictions to image and speech recog-
nition [Mit06] or supporting medical diagnostics [Kon01]. As a result more and more as-
pects of our every day lives are somehow influenced by machine learning algorithms.

A problem with applying machine learning techniques is that, though they perform im-
pressively well at certain tasks, the exact reason for this is not always fully understood
[SWM17]. This is especially true for Deep Learning (DL) techniques like Deep Neural Net-
works (DNNs). Because of their complex nested non-linear structure these networks are
usually applied without knowing exactly what makes them arrive at their predictions [SWM17].
As these techniques become more and more sophisticated it becomes more and more chal-
lenging to understand and explain their operation.

This lack of explainability or transparency has hindered an even broader application of
deep learning techniques, for example in areas like health care [SWM17]. As a result the ex-
plainability of modern machine learning algorithms has gained a lot of attention from the
research community. Over the years many different approaches have been proposed, but
particularly in recent years there have been some interesting advances on the explainability
of a particular class of deep learning algorithms called Recurrent Neural Networks (RNN)
[Wan+18c; Jac05]. RNNs can be used to model temporal behavior as they can capture long
term dependencies in sequential data [MJ01]. This makes them particularly well suited for
tasks such as language modeling [Mik12] and speech recognition [GMH13].

1.1. PROBLEM STATEMENT

Recurrent neural networks are complicated non-linear models and are usually applied in
a black-box manner, meaning that there is no information provided on how they arrive

1



2 1. INTRODUCTION

at their predictions [SWM17]. This lack of transparency hinders their application. Over
the years many methods have been developed that try to extract the knowledge that is
stored in these networks in a human readable form, in an attempt to achieve explainable
AI [Wan+18c; Jac05]. The fast majority of these methods, however, have been studied in the
context of language induction or on small artificial networks. Little or no experiments on
real-life networks have been performed. It is therefore unclear if these techniques can be
applied in practice and if they can indeed contribute to gain insight into the operation of
recurrent neural networks.

In this research we will explore the different methods described in the literature and fo-
cus on a particular one, called Rule Extraction (RE), which attempts to extract symbolic
knowledge from the RNN in the form of automata. We will use the latest techniques from a
particular form of RE, called the pedagogical approach [Wan+18c; Jac05], and explore their
practical feasibility by applying them to a RNN used for binary classification of a botnet,
which was the result of a master’s thesis by Poon [Poo18]. We will evaluate how the peda-
gogical rule extraction techniques perform and whether they contribute to the explainabil-
ity of the RNN.

We will focus on the pedagogical approach as it treats the RNN as a black-box and makes
no assumptions on its inner structure or operation [ADT95], which makes it potentially the
most widely applicable RE approach.

1.2. RESEARCH CONTRIBUTION

The majority of existing rule extraction techniques are based on what is known as the de-
compositional approach [Wan+18c; Jac05]. This means that they use knowledge on the
network’s structure and require access to the inner parts of the network, hence, these are
white-box approaches [ADT95]. Other techniques consider the network as a black-box.
These so called pedagogical techniques use the network as an oracle to test predicted re-
sponses on input in order to build an equivalent automaton of the network [ADT95]. The
number of available techniques in the latter category, however, is rather limited and most
approaches are exponential in their complexity [EL06; Wan+18c; Jac05].

Despite these limitations a black-box approach is preferable, as access to the network’s
internal parts may not always be possible or convenient. Also, by its nature, a black-box ap-
proach makes no assumptions on the networks inner structure. As such the potential appli-
cation of a black-box approach may be much broader than that of white-box approaches.
In this research we will therefore primarily focus on these black-box techniques and explore
their practical feasibility by applying them on a real-life RNN.

Besides exploring the practical feasibility of using pedagogical rule extraction techniques
on a real-life RNN in an attempt to explain its operation, the contributions of this research
are as follows:

We will perform a direct comparison of the applicability and performance of different
pedagogical rule extraction techniques under similar circumstances. Such a comparative
evaluation can be very informative and has not received much attention before [Jac05].
Especially aspects such as explainability and fidelity have, to the best of our knowledge,
not been directly compared before.
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Also extracting automaton from more complex neural networks may still be an open
problem [Wan+18c; Jac05]. Therefore it is interesting to see if the studied RNN can be trans-
lated into an sufficiently equivalent automaton and which rule extraction techniques can
be used to achieve this.

1.3. DOCUMENT STRUCTURE

The remainder of this document will describe our research and is structured as follows:
Chapter 2 explains the research context and introduces the relevant topics. Chapter 3
presents the research design and research questions. Chapter 4 describes the evaluation
metrics that will be used in our research to evaluate the performance of the rule extraction
techniques and the automata they extract. Chapter 5 through 8 form the main part of our
research and describe the experiments we have conducted and analyse their results. Fi-
nally, in chapter 9 we conclude on our findings and provide recommendations for further
research.



2
BACKGROUND

This chapter describes the relevant concepts used in this research. The first section intro-
duces neural networks and in particular recurrent neural networks. The second section
gives a brief overview of the types of automaton used in rule extraction and explains the
link between RNNs and these automaton. The third section describes rule extraction it-
self, the type of approaches possible and the particular techniques that will be used in this
research.

2.1. ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANN) are a family of machine learning models that are loosely
inspired by the workings of biological brains and the way humans learn [JMM96]. In neu-
ral networks information is processed by computational units that mimic the behavior of
real neurons, hence there name. These computational units consist of a set of synapes
or weighted inputs, an adder which sums the input signals, and an activation function
which limits the amplitude of the output [Hay+09]. Like its biological counterpart an ar-
tificial neuron will fire (activate) when the weighted sum of its input signal exceeds a cer-
tain threshold. The type of response is governed by the activation function. The activation
function introduces a non-linearity in the response of the neuron. There are many different
types of activation functions, such as sigmoid, Relu or even binary functions, but the first
two are the most commonly used [Hay+09]. The output signal of a neuron is determined
by the input signals, the input weights and the activation function.

Artificial neural networks combine these neurons in particular network structures to per-
form complex computational tasks such as image recognition. Neural networks are capa-
ble of finding patterns in data which are too complex or numerous to extract and program
specifically [JMM96].

The research on these networks has a long history and started in 1943 with the work of
McCulloch and Pitts [MP43]. In 1958 Frank Rosenblatt created the perceptron, an algo-
rithm for pattern recognition [Ros58]. Combining multiple perceptrons in a layered struc-
ture led to the Multi-layer Perceptron or feed-forward ANN, which formed the foundation
of modern machine learning [JMM96].

4
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In these networks neurons are arranged in layers and they consist of an input and an
output layer and one or more hidden layers [Hay+09]. The output of each layer serves as
input to the next layer so that information is propagated in a forward direction through the
network. Figure 2.1 presents an example of such a network with one hidden layer. Neural
networks with more than two hidden layers are referred to as deep neural networks (DNN)
[LBH15].

hidden

input

output

Figure 2.1: Neural network with one hidden layer

An ANN with a single hidden layer can be defined as follows:

ht = fh(Wi n xt ) (2.1)

yt = fo(Wout ht ), (2.2)

where fh and fo are the hidden layer activation function and an output function, xt and
ht are the input vector and hidden layer output vector at time t, and Wi n and Wout are the
weight matrices in the input and output layer.

In neural networks the hidden layers transform the input into usable features for the out-
put layer. For example in image recognition, the hidden layers may analyse the brightness
of pixels, identify edges based on brightness, recognize shapes based on lines, etc., making
it possible for such network to finally determine that the image presents a cat for example.

Neural networks need to be trained and validated before they can be used. The theoreti-
cal aspects and finer details on how this is done is beyond the scope of this research as we
will focus on extracting rules from existing, pre-trained, networks. Interested readers may
refer to [Hay+09] or [JMM96] for more detail.

2.1.1. RECURRENT NEURAL NETWORKS

Another class of neural networks are recurrent neural networks (RNN). These networks also
contain feedback connections, allowing information to travel backwards throughout the
network as conceptually displayed in Figure 2.2. The neurons in these networks can not
only use information from the previous layer in a feed-forward direction, but also use out-
put of other neurons or itself in a feed-back direction [Hay+09; MJ01]. These feedback
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connections effectively create a memory function which gives the network the ability of
retaining information to be used at a later time. This allows the network to model tempo-
ral behaviour, making this type of ANN particularly well suited for processing sequential
data [MJ01]. RNNs have been successfully used in tasks such as speech and handwriting
recognition [MJ01; GMH13].

hidden

input

output

Figure 2.2: Recurrent neural network with one hidden layer

A RNN is a dynamic system as it can model behaviour over time. It can generate di-
verse output in response to the same input, as the response may also depend on its internal
state, i.e., the state of the existing memories which represent information about previous
behaviour [MJ01]. The dynamics modelled by a RNN can be continuous or discrete in time.
However, the simulation of a continuous-time RNN on a digital device requires a discrete-
time equivalent model. In this research we will focus on discrete-time neural networks.

With the introduction of feedback connections some practical problems arise around
controlling the feedback signals. As input cycles around the network its influence on the
hidden layers may blow up exponentially or decay all together [BSF+94]. Especially the
later, which is know as the the vanishing gradient problem, is a typical problem of RNNs as
it limits their ability to handle long sequences. In a way typical RNNs suffer from short-term
memory.

Several different types of RNN architectures have been devised to overcome such prob-
lems. How the feedback connections are exactly implemented differs per specific RNN
architecture. Also the number of hidden layers and feedback connections differ depending
on the RNN’s intended purpose. Commonly used RNN architectures are the Long Short-
Term Memory (LSTM) and Gated Recurrent Units (GRU) architectures [Sal+18].

In this research we will focus on rule extraction techniques that treat the RNN as a black-
box, therefore, we do not go into detail on these particular RNN architectures here. For
more details on these networks see, for example, [MJ01; Sal+18].

More formally a RNN is a neural network that models the behaviour of a discrete-time
nonlinear dynamic system. A RNN has an input xt , an output yt and an internal state ht
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where the subscript t represents the discrete instant of time. The dynamics are defined by:

ht = fh(xt ,ht−1) (2.3)

yt = fo(ht ), (2.4)

where fh is the state transition function and and fo an output function [Pas+14; MJ01]. Or
slightly reformulated to explicitly include the applied weights for each neuron:

ht = f (Wi n xt ,Whht−1) (2.5)

yt = g (Wout ht ), (2.6)

where f is a non-linear activation function and g an output function. Wi n is the weight
matrix in the input layer, Wh is the state to state recurrent weight matrix and Wout is the
weight matrix in the output layer [SJ16]

The depth of the memory modelled within a RNN differs per RNN architecture. A simple
RNN for example, may only take into account the previous values of the hidden neurons
when computing its new state. It cannot ’look back’ into time beyond its last state. More
sophisticated models have deeper memory and can take multiple previous states into ac-
count making them better suited to handle long sequences [SJ16].

The temporal processing of RNNs is often visualized by ’unfolding’ the network in time.
In this view the RNN is seen as a series of ’normal’ ANNs, one per time step, that all share
the same weights [SJ16; SP97]. Figure 2.3 shows such a conceptual representation of a RNN
using the above notation.

yt−2

ht−2

xt−2

Wi n

Wout

yt−1

ht−1

xt−1

Wout

Wh1

Wi n

yt

ht

xt

Wout

Wh1

Wi n

Wh2

Figure 2.3: Visual representation of a RNN unfolded it in time with a depth of two time steps.

BIDIRECTIONAL RNNS

A bidirectional RNN is a combination of two separate RNNs. One RNN that moves forward
through time, beginning from the start of the sequence and another RNN that moves back-
ward through time, beginning from the end of the sequence. This makes it possible for
the bidirectional RNN to compute a representation that depends on both the past and the
future input [GCB16; SP97].



8 2. BACKGROUND

During this research we will evaluate the practical feasibility of black-box extraction of
symbolic knowledge using a RNN trained for botnet detection. This network was the result
of a master’s thesis by Tho Poon [Poo18] and uses the LSTM architecture. Poon created
both a uni- and bidirectional version of this RNN in his research.

2.2. AUTOMATON

The rule extraction techniques used in this research learn or extract finite-state automata
(FSAs) or finite-state transducers (FSTs) from recurrent neural networks. The exact type of
automaton that results from applying these techniques differs per approach. Some gen-
erate relatively simple automata, such as Deterministic Finite Automata (DFAs) [WGY18a;
VO04] whilst others use richer representations, such as Weighted Finite-state Automaton
(WFA) [AEG18]. In this section we will briefly discuss these different automata and explain
how they relate to recurrent neural networks.

A FSA or finite-state acceptor is a finite-state machine that accepts or rejects strings of
symbols from an input alphabet. A finite-state transducer (FST) is a finite-state machine
that maps strings of input symbols to strings of output symbols [Hop08]. Where a finite-
state automaton (FSA) defines a formal language by accepting a set of input strings a FST
defines a map between sets of input and output strings, i.e., it computes a relation between
the input and output language. This makes a FST a more general automaton than a FSA
[Hop08; DKV09].

Both FSAs and FSTs can be deterministic or non-deterministic in their behavior. This
means they will either only produce a unique sequence of state transitions (run) for each
input string, or they can produce different runs for the same input string [Hop08].

2.2.1. DETERMINISTIC FINITE AUTOMATON

A Deterministic Finite-state Automata (DFAs) only produces a unique sequence of state
transitions for each input string. A DFA M is formally defined by the 5-tuple [Hop08]:

M = 〈Q,Σ,δ, q0,F 〉 (2.7)

where Q is a finite set of states, Σ the input alphabet, δ : Q ×Σ−→Q a state transition func-
tion, q0 ∈Q an initial state and F ⊆Q a set of accept states.

DFA M will accept a string w = a1a2...an over the alphabet Σ when a sequence of states
exist in Q that starts with q0 and ends with a state in F , otherwise the automaton is said to
reject the string.

The set of accepted strings form a formal language defined by DFA M . DFAs define ex-
actly the set of regular languages which are, for example, used in lexical analysis and pattern
matching. [Hop08]. Figure 2.4 depicts a DFA M = 〈{S1,S2}, {a,b},δ,S1, {S1}〉 that accepts the
simple regular language b∗+ (b∗a b∗a)∗.

2.2.2. WEIGHTED AUTOMATON

A Weighted Automaton (WA) or Weighted Finite State Transducer (WFST) is an automa-
ton in which the states and transitions have weights associated to them. The weights can
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S1 S2

a

a

b

b

Figure 2.4: State diagram of DFA M accepting the regular language b∗+ (b∗a : b∗a)∗

be used to model, for example, the cost of a particular path through the automaton or the
probability or reliability of its successful execution. For each completed sequence of tran-
sitions the individual weights are aggregated in an appropriate manner. The behaviour of
weighted automata can thus be seen as associating to each input string the total weight of
its execution as defined by this aggregation function [DKV09].

As an example we can take an automaton in which the transitions have as weights the
amount of energy needed for their execution. The total amount of energy required for a
given path in this weighted automaton is then simply the sum of the weights of the indi-
vidual transitions. The automaton could be used to find the minimal amount of energy
required to execute a certain input string, i.e. the optimum path out of the successful paths
realizing the input string. If, in another case, the weights would represent probabilities, the
likelihood or reliability of a path could be defined as the product of the probabilities of its
transitions.

A weighted automaton M over a set of weights S is formally defined by the 5-tuple [DG07]:

M = 〈Q,Σ,λ,µ,γ〉 (2.8)

where Q is a finite set of states, Σ the input alphabet, µ : Q×Σ×Q −→ S the transition-weight
function, and λ,γ : Q −→ S the initial-weight and final-weight functions which are weight
functions for entering and leaving a state, respectively [DG07].

To make operations on the weighted automaton well-defined the set of weights S is often
required to form a semiring, which is an algebraic structure that specifies the binary op-
erations of addition and multiplication on a set and defines certain constraints over their
operation. More detailed information on weighted automata and the related algebra may
be found in [DG07; DKV09].

Figure 2.5 depicts a WA that accepts the same simple regular language b∗+ (b∗a b∗a)∗,
but now also models, for example, the likelihood of individual strings in that language.
Each transition carries the probability of encountering a certain input character and the
product of all consecutive transitions in a run represents the likelihood of an input string.
This particular WA would deem short input strings more likely than longer strings as the
recursive transitions have a low probability.

LINEAR REPRESENTATION

A WA can also be represented in a linear fashion using vectors and matrices [Bal+14]:

A = 〈α0, (Mσ)σ∈Σ,α∞〉 (2.9)
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S1 S2

a / 0.9

a / 0.2

b / 0.1

b / 0.5

Figure 2.5: State diagram of WA M accepting the regular language b∗+ (b∗a b∗a)∗ and modelling the likeli-
hood of strings in this language.

where the vectors α0 and α∞ provide the initial and final weights (i.e. the values of func-
tions λ and γ for each state) and each matrix Mσ corresponds to the σ-labeled transitions
weights (i.e. Mσ(q1, q2) = p ⇐⇒µ(q1,σ, q2) = p)

This linear representation is used in one of the rule extraction methods that we will ex-
plore in our research.

2.2.3. CONNECTION BETWEEN RNN AND AUTOMATA

The relationship between RNN and finite-state automata has been studied in length over
the last decades and many studies have looked at how RNNs can be used to represent cer-
tain finite state machines [Gil+92; HH94; CSM89]. In a way this is the exact opposite of
what we try to achieve in this study, however, the described relationship between the two
domains is still relevant.

As described earlier, a recurrent neural network is a dynamic system and as such it is
composed of two parts, its state and its dynamics [MJ01]. In a discrete-time RNN the out-
put values of the recurrent neurons are stored in the "memory" of the RNN. How these val-
ues are stored and for which neurons, depends on the particular RNN architecture. These
stored values form the state of the RNN and summarize all the information about past
behaviour necessary to determine its future behaviour [MJ01]. The RNN’s state space is
formed by all its possible states. The dynamic of the RNN, which we will assume to be de-
terministic [MJ01], describes how the states evolve over time. Each recurrent neuron com-
putes its next output value based on the current state and input of the RNN. These new
values form the new state of the RNN. From this it is clear to see that a discrete-time RNN
models a state machine or automaton: The RNN resides in a certain state and depending
on its current input it transitions to a new state.

The type of application of the observed RNN determines the appropriate type of automa-
ton that might be used to represent it. A RNN used for binary classification might be rep-
resented by a FSA as it is basically a form of acceptor, i.e., it either classifies some input as
positive (accepts it) or as negative (rejects it). A RNN used for a prediction problem, outputs
a real or continuous value and could potentially be represented by FST.

Whether a particular RNN can be sufficiently represented by a finite-state automaton is
not a given in general. However, it has been proven that DFAs can be successfully extracted
from RNNs that have been trained to recognize regular languages [Wan+18c]. If this is also
possible for RNNs outside this domain is an open question and part of this research as we
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will investigate if we can successfully extract sufficiently equivalent automata from a RNN
trained for botnet detection.

2.3. RULE EXTRACTION

As mentioned in the introduction, it is, in most cases, difficult or near impossible to in-
spect, analyze and verify the knowledge captured in trained artificial neural networks, and
in our case recurrent neural networks [Wan+18c; Jac05]. Over the last decades many at-
tempts have been made to address this issue resulting in many different approaches. These
approaches include techniques such as Taylor decomposition, relevance propagation, sen-
sitivity analysis and information based techniques that try to ’visualize’ the learned knowl-
edge in the neural network as a result to input stimuli [MSM18; Mon+17; Arr+17]. These
methods provide local explainability, since they focus on explaining how the network comes
to a decision on a given datum [Gui+18].

Another approach, which has seen a recent revival for RNNs, is to investigate how sym-
bolic knowledge might be extracted from trained neural networks, since this type of infor-
mation is usually regarded as easier to understand [Wan+18c]. This technique, called Rule
Extraction (RE), tries to provide a general explanation of the network [Gui+18] by extract-
ing a set of symbolic rules that describe the overall behavior of the network. Depending
on the extraction technique and type of neural network, these rules may take the form of a
decision tree, a set of propositional logic formulae or some other form of symbolic repre-
sentation [ADT95; EL06; KM09].

In the case of RNNs the symbolic knowledge captured by a trained RNN is extracted in
the form of a finite-state automaton [Jac05; Wan+18c]. It is this technique, often referred to
as RNN-RE [Jac05], that is the subject of the this research. In the case of RNN-RE the term
rule should be interpreted quite loosely and be seen more as a synonym for the information
expressed in such an automaton.

The motivation behind RNN rule extraction is that the information processing of an RNN
can be treated as "a mechanism for representing knowledge in symbolic form where a set of
rules that govern transitions between symbolic representations are learned" [Wan+18c]. If
viewed this way we can think of a RNN as an automated reasoning process with production
rules, which should make it easier to understand [Wan+18c]. Rule extraction for recurrent
neural networks is then essentially the process of finding rules that sufficiently approximate
the behaviour of the RNN [Jac05].

The most commonly used RNN rule extraction approach is to extract DFAs from recur-
rent networks, mostly on networks that are trained for grammatical induction. Although
there are techniques that can successfully extract DFAs from these relatively simple recur-
rent neural networks it is still unclear how these techniques perform on more sophisticated
networks, such as LSTMs and GRUs. Also the type of activation function used in the net-
works and the data used to train them might influence the extraction process and quality of
the resulting automata [Jac05; Wan+18c]. It is one of our research objectives to investigate
the practical applicability of rule extraction techniques on a RNN with the LSTM architec-
ture.



12 2. BACKGROUND

2.3.1. RULE EXTRACTION APPROACHES

Individual rule extraction methods for recurrent neural networks can be placed into the
following taxonomy [Wan+18c; CBP19; Jac05; Wan+18a]:

1. Compositional Approaches
Techniques in which rules are constructed based on ensembles of hidden neurons,
i.e., the hidden layers. These techniques directly access the internal state of the RNN.

2. Decompositional Approaches
Techniques in which rules are constructed based on individual hidden neurons. These
techniques also require access to the internal state of the RNN.

3. Pedagogical Approaches
Techniques that construct rules whilst regarding the RNN as a black-box and that do
not access the inner state of the RNN.

4. Eclectic Approaches
Techniques that combine decompositional and pedagogical approaches.

The majority of existing rule extraction techniques are decompositional white-box ap-
proaches [Wan+18c; Jac05] which means they employ knowledge on how the network is
constructed, i.e., its architecture, and require access to the internal parts of the network
[ADT95]. Other techniques treat the network as a black-box and do not use the network’s
internals. These pedagogical approaches use the network as an oracle to test predicted re-
sponses to input and use this information to construct an equivalent automaton [ADT95].

The number of pedagogical techniques is limited and most are exponential in their com-
plexity [EL06]. Despite these limitations pedagogical approaches are preferable since ac-
cess to the internal parts of a network may not always be possible or desirable. In this
research we will therefore primarily focus on these black-box pedagogical techniques.

2.3.2. PEDAGOGICAL RULE EXTRACTION

As mentioned, the number of pedagogical RNN rule extraction techniques described in
the literature is rather limited. During an extensive literature study on the subject we have
been able to find only three such methods of which one could be considered to be only
partially pedagogical. Two of the methods have been published only in the last two years,
showing that this is still a very active area of research. To the best of our knowledge these
three methods are the only pedagogical techniques available to date.

The pedagogical rule extraction techniques for recurrent neural networks that we have
found are:

• Explaining Black Boxes on Sequential Data using Weighted Automata by Ayache et
al. [AEG18].
Uses a spectral learning algorithm to extract WAs from real valued RNNs.

• Extracting Automata from Recurrent Neural Networks Using Queries and Coun-
terexamples by Weis et al. [WGY18a].
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Uses an exact learning approach based on the L*-algorithm [Ang87] for learning DFAs
from black-boxes.

• A Machine Learning Method for Extracting Symbolic Knowledge from Recurrent
Neural Networks by Vahed et al. [VO04].
Uses a symbolic learning algorithm to extract DFAs by observing the output of trained
RNNs for all strings up to a given string length.

Two of the three techniques extract DFAs and one extracts Weighted Automata (WA),
which are a richer, more expressive type of automata [DG07]. For our research we will use
one technique from both varieties to increase the change of finding a sufficiently equiva-
lent representation for our case study RNN and to broaden our comparative evaluation of
the different available pedagogical rule extraction techniques.

Additionally we will focus on the first two techniques as they are the latest additions to
the field and thus could be considered the state-of-the-art in pedagogical RNN rule ex-
traction. In the remainder of this section we will discuss these pedagogical rule extraction
techniques in more detail.

EXPLAINING BLACK BOXES ON SEQUENTIAL DATA USING WEIGHTED AUTOMATA

One of the most recent methods for extracting symbolic knowledge from a RNN in a black-
box manner is the work of Ayache et al. [AEG18]. This method extracts Weighted Automata
(WA) from recurrent neural networks trained for prediction tasks, i.e., networks that assign
numerical values to symbolic data. In this sense the method is unique, as it is, to the best of
our knowledge, the only method that does not specifically target RNNs trained for binary
classification.

The method treats the RNN as a pure black-box and does not require access to its internal
state. The symbolic model, i.e., the weighted automaton, is obtained solely by using the
trained RNN as an oracle, feeding it inputs and observing its output. The method is not
restricted purely to RNNs, but aims at "extracting a finite state model from any black-box
that computes a real valued function on sequential symbolic data" [AEG18].

The method proposed by Ayache et al. aims at providing global interpretability of such
black-box models. This means that it attempts to provide a general explanation of the be-
haviour of these black-box models and not just attempts to explain how a decision is taken
on a particular datum [Gui+18].

The core of the method is based on a spectral learning algorithm that allows to extract a
WA from such black-boxes. This algorithm was used in previous research [BDR09; HKZ12;
BM18] where the WAs where extracted using estimations based on counting the occur-
rences of strings in a learning sample. In contrast to these methods the method proposed
by Ayache et al. uses the trained black-box model itself to achieve this goal.

The spectral learning algorithm is based on the fact that functions that assign real val-
ues to strings: f : Σ∗ −→ R, which are known as rational series [Sak09], can be defined by
a WA under certain conditions of finitude. Rational series can be associated with a bi-
infinite matrix: H ∈ RΣ∗×Σ∗

called a Hankel matrix [Bal+14] whose entries are defined as
H(u, v) = f (uv),∀u, v ∈ Σ∗. The Hankel matrix is thus a matrix representation of the ra-
tional series in which the rows are string prefixes and the columns string suffixes. The di-
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mension of the vector space of a matrix is defined by its rank. It is the maximum number
of linearly independent column (or row) vectors in the matrix and a measure for the ’true’
informational value of the matrix [Bou98]. A rational series can be defined by a WA iff the
rank of its Hankel matrix is finite [CP71]. The intuition here is that when the number of
unique strings defining the rational series (i.e. the rank of its Hankel matrix) is finite, it can
be represented by an automaton with a finite number of states.

The above theorem can be used to generate a WA from its Hankel matrix H . Particularly,
the WA can be constructed using special finite sub-blocks of this matrix. If the sub-block
HB of H has the same rank as H and is prefix-close, which means that for each row value,
all prefixes of that value are also rows of HB, it can be used to construct the WA. The intu-
ition here is that when the sub-block contains the same informational value as the Hankel
matrix, it can be used in its place for the construction of the WA.

The algorithm proposed by by Ayache et al. attempts to compute a WA from such fi-
nite sub-blocks of the Hankel Matrix that have been established by querying the black-
box model. It starts by building the sub-block HB based on random sampling, either using
a dataset or the uniform distribution on symbols and a maximum length parameter. If
a string is selected using this sampling approach it is added to the rows of HB, together
with all its prefixes, to be prefix-close. The same applies to its suffixes, which are added
as columns to HB. This is repeated until the row and column vectors of the matrix reach a
predefined size. Next, the sub-block is filled with values obtained from querying the black-
box model. Finally the algorithm extracts a linear representation of a minimal WA from the
Hankel matrix sub-block using a particular linear algebra called rank factorization.

The authors evaluate their approach on a RNN architecture based on two GRU layers
which has been trained on several datasets. The authors compare the similarity between
the probability distribution of samples taken from the RNN and the extracted WA. They
additionally compare the proximity of the RNN and WA models on the task of predicting
the next symbol in a sequence. They perform these experiments using different settings
of the hyper-parameters: size p and s of the algorithm, which are the size of the row and
column vectors of HB.

Based on these experiments they conclude that their method allows good approximation
of black-boxes and achieves a great approximation of the black-box model even for low
values of the hyper-parameters. The authors do, however, note that they did not chose
the most favorable method for generating HB. Using other methods than sampling based
on the assumption of uniform distribution on symbols may lead to better approximation.
Also choosing a larger basis could allow better results. These are areas that we will explore
further in this research. We will, for example, evaluate if using sampling from the training
dataset of the RNN is favorable over assuming the uniform distribution on symbols. Also
we will vary the applied length parameter and size of HB.

Finally, the authors discuss the interpretability of WAs. They note that WAs can be hard to
read due to their non-deterministic nature, especially when the number of states increases.
As an answer the authors mention their method depends on the rank parameter, which can
be tweaked, and that their method already produces approximations of acceptable quality
for small rank values. This allows users to prefer readability over performance and chose
a small rank value to obtain a small WA. This is an interesting point that we will further
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investigate in this research. We will apply the algorithm using different rank values and
evaluate the quality and interpretability of the produced WAs.

On important point to note is that the method proposed by Ayache et al., as mentioned,
works on real valued black-box models. In our research we will, however, evaluate rule
extraction on a RNN trained for binary classification. How the method of Ayache et al. can
be applied to such a network and what effect this has on the performance of the extraction
algorithm is not immediately apparent and will be part of our research.

EXTRACTING AUTOMATA FROM RECURRENT NEURAL NETWORKS USING QUERIES AND COUN-
TEREXAMPLES

Another recent method for black-box rule extracting from trained RNNs is the work of Weiss
et al. [WGY18a]. This method extracts Deterministic Finite Automata (DFA) from recurrent
neural networks trained for binary classification tasks. The method uses an exact learning
approach and abstraction method in which the RNN is used as an oracle to obtain a DFA
that sufficiently describes the state dynamics of the trained RNN. The method proposed by
Weiss et al. aims at providing global interpretability of the black-box model.

Exact learning states that a concept can be precisely learned from what is known as a
minimally adequate teacher [GK95]. This is an oracle that is capable of answering two types
of queries: membership queries and equivalence queries [GK95]. Membership queries, as
their name implies, state if a given string is part of the model, i.e., if it is accepted or rejected.
Equivalence queries state if a given hypothesis (model) is equal to the concept held by the
teacher. If not, an example is returned on which the concepts disagree (a counterexample).

In their method Weiss et al. use the L* exact learning algorithm [Ang87] which is based on
this principle. The L* algorithm allows to extract DFAs from a minimally adequate teacher.
Weiss et al. use the RNN is as the teacher for this algorithm. Membership queries can be
directly answered by the RRN, but the main challenge is answering the equivalence queries.

The core of the method of Weiss et al. is how the equivalence queries are answered during
the exact learning procedure. To this end they use a finite abstraction of the RNN R as a
hypothesis of the ground truth of R. This abstraction is refined during learning. The DFA A
being learned by the L* algorithm forms another hypothesis of R. The key idea is that the
two hypotheses must at least be equal to each other to be equal to R. Whenever the two
hypotheses disagree on a sample during learning, its true classification can be found in R.
This will either lead to a counterexample to A, when the finite abstraction and R agree, or
to a refinement to the abstraction in the other case.

The finite abstraction of the RNN R is created using a state partitioning technique from
Omlin and Giles [OG96]. This methods partitions the RNN’s internal states (the microstates)
into equally sized hypercubes (the macrostates) and conducts a breadth-first search (BFS)
by feeding the network input patterns until no new partitions are visited [Jac05]. The search
begins in the network’s initial state and continues according to the network’s transition
function. The transitions among the macrostates (induced by input patterns) form the
basis for the extracted DFA [Jac05]. The method extracts a DFA for which every state is a
partition, and the state transitions and classifications are defined by a single sample from
each partition.

The abstraction of the RNN R is refined during learning by finding a new state space
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partitioning that increases the partitioning with exactly one state, in such a way that the
abstraction and R now agree on all states seen so far. Weiss et al. use a state clustering
technique based on a support vector machine (SVM) with a non-linear radial basis function
(RBF) kernel to separate the conflicting state from the RNN’s state space in order to find the
new state space partitioning.

The key intuition to the efficiency of the approach of Weiss et al. is that, as the L* algo-
rithm always proposes a minimal DFA in equivalence queries, each state in the abstraction
and learned DFA must be equal with respect to classification and transitions if both DFAs
are found the be equal. As the extraction of the finite abstraction is effectively a BFS traver-
sal of itself this allows the states of both DFAs to be associated during this extraction. This
makes it possible to perform a parallel exploration of both DFAs, significantly speeding up
the algorithm.

The authors evaluate their approach on a RNN architecture based on two GRU layers
which has been trained on the Tomita grammars [Tom82], which have been widely used
in the rule extraction literature, and on some substantially more complicated languages.
They additionally also evaluate their approach on some LSTM networks. The authors asses
the accuracy of the extracted DFAs by comparing them against their networks on their train
sets and on a set of 1000 random samples of different word-lengths. Additionally they also
compare their method against a direct application of the method from Omlin and Giles
[OG96] and against using random sampling for counter example generation.

Based on these experiments they conclude that their method is able to find small and ac-
curate DFAs representing a given RNN, when such DFAs are available. They also conclude
that their method does this in a fraction of the time required by other methods to complete
their extractions. Also their method, unlike other extraction approaches, works with little
to no parameter tuning, and requires very little prior information to get started.

In their evaluation the authors also mention a limitation of their method in returning
DFAs for networks with more complicated behavior. Due to L*’s polynomial complexity
and intolerance to noise, the extraction becomes extremely slow and returns large DFAs for
such networks. The authors have found that their method builds a large DFA, and times
out during refinement when applied to an RNN that has failed to generalize properly to its
target language. This last point indicates a potential problem with applying this method to
practical networks. We will further investigate this point as part of our research.

One important point to note is that the method proposed by Weiss et al. uses a state
space clustering approach to generate and refine the abstraction of the RNN. This method
uses information on the state space of the RNN and thus requires access to the network’s
internal state space representation. This means that this part of the their method is in fact
a white-box approach, rather than a black-box approach [Jac05]. So ultimately the method
proposed by Weiss et al. could indeed be seen as being only partially pedagogical.

The authors state in their conclusion: "As our method makes no assumptions as to the
internal configuration of the network, it is easily applicable to any RNN architecture, in-
cluding the popular LSTM and GRU models." [WGY18a]. However, as their method em-
ploys white-box techniques, as mentioned, this may prove not be entirely accurate and its
practical applicability on such networks remains uncertain. How the method of Weiss et
al. can be applied to such a network will be further explored as part of our research.



3
RESEARCH DESIGN

3.1. RESEARCH OBJECTIVE

In order to gain insight into the complex operation of trained recurrent neural networks,
several techniques have been developed over the years that attempt to extract symbolic
knowledge from these networks in the form of finite state automata [Jac05; Wan+18c].

Many of these techniques, however, assume a certain network architecture or require ac-
cess to the network’s internal components, rather limiting their application [Jac05; Wan+18c].
More recently, however, techniques have emerged that treat the trained RNN as a black-box
and make no assumptions on its internal operation [Wan+18c; AEG18; WGY18a]. These so
called, pedagogical or black-box techniques, may therefore have great potential to be used
on a wider range of networks and may thus help to push the field of explainable AI forward.

The fast majority of rule extraction techniques, however, have only been evaluated on
RNNs trained to recognize regular languages or on toy examples. Very few, if any, rule ex-
traction techniques have been applied to practical RNNs. Also there has been, to the best of
our knowledge, no direct comparison between black-box rule extraction techniques under
similar circumstances so it is unclear how the different techniques compare.

It is the objective of the this research to gain insight into the practical feasibility of the dif-
ferent black-box rule extraction techniques and achieve a comparative evaluation of their
performance, both in quantitative terms based on quality aspects, such as extraction time
and truthfulness, as well as in qualitative terms based on the interpretability and explana-
tory qualities of the extracted rules.

To this purpose we will explore how the state-of-the-art in black-box rule extraction tech-
niques can be applied to a practical RNN that has not been specifically trained for this pur-
pose, how well they perform and if they can ultimately contribute to gain insight into the
RNNs operation.

3.2. RESEARCH QUESTIONS

During the course of this research we want to answer two main questions:

17
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RQ1 Can the black-box rule extraction techniques be applied to a practical RNN not
specifically trained for this purpose?

RQ2 Do the extracted rules provide insight into the RNN’s operation?

To do this we will break down the main question into the following sub-questions:

RQ1.1 What is the best way to evaluate the overall extraction performance and the quality
of approximation of the extracted automata?

RQ1.2 How can the case study RNN, with its continuous input, be used by the black-box
rule extraction techniques that expect symbolic data?

RQ1.3 Can the WA rule extraction method, aimed at models that compute a real valued
function on sequential symbolic data, be used for binary classification?

RQ1.4 Can the techniques be successfully applied to the case study RNN, what are the
best extraction settings for each technique and how well can each technique approx-
imate the RNN’s behavior?

RQ2.1 How should the numerical semantics of the extracted WAs be interpreted, partic-
ularly in a binary classification scheme?

RQ2.2 How interpretable are the extracted automata and how well does each technique
help to explain the RNN’s operation?

3.3. RESEARCH METHOD

This research will use the exploratory and empirical research methods. The overall research
uses an exploratory approach to gain insight into how the the different black-box rule ex-
traction techniques can be applied in practice and for determining how the quality and
explainability aspects of rule extraction may be best evaluated. Individual steps in this re-
search will use an empirical approach to compare (aspects of) the different techniques and
find the best settings for each technique. This means that the research will be both quali-
tative and quantitative in nature.

The objective of RNN rule extraction is to extract an automaton that gives insight into the
RNN’s operation. Clearly, the extracted automaton must be of sufficient quality to achieve
this. What this quality is, however, and how we can measure it, first needs to be established.
Also, we want to evaluate the practical applicability of the different RNN rule extraction
techniques. To do this we must define what aspects of their operation and performance
determine this. In chapter 4 we will establish criteria and metrics for these topics based on
a study of the rule extraction literate and our extensions of these subjects.

We will evaluate the practical applicability of the different RNN rule extraction tech-
niques by evaluating their performance on a case study RNN. This RNN is trained to detect
botnet traffic and is the result of the master’s thesis from Tho Poon [Poo18]. The case study
RNN and related datasets are described further in chapter 5.
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To answer the research questions in more detail we address the practical challenges of
applying the rule extraction techniques to the case study RNN, such as converting its con-
tinuous input into symbolic data. We will explore different possible approaches and per-
form experiments to establish to most applicable solutions. As our case study RNN is a
binary classification model and the WA rule extraction method is primarily aimed at re-
gression type problems, we need to pay special attention to this aspect of applying this
technique to our case study RNN. We will explore how we can use the WA rule extraction
method on binary models and how to interpret the resulting WAs in a binary classification
scheme. Chapter 6 and 7 describe these topics in more detail.

In chapter 8 we will use the results from these previous explorations to apply the rule
extraction techniques to the case study RNN. We will evaluate their performance using the
criteria we established and subjectively evaluate the interpretability of the extracted au-
tomata in order to answer our research questions.

Finally, we will present our conclusions and provide recommendations for future work in
chapter 9.



4
EXTRACTION EVALUATION METRICS

As we want to evaluate the extraction performance of the different pedagogical rule extrac-
tion techniques, we need to establish measures to perform such an evaluation. To this end
we will look into the criteria often applied in the rule extraction literature, such as rule qual-
ity and algorithmic complexity [ADT95; Jac05; Wan+18c; FM15] as well as those mentioned
in recommendations for future work. Particularly we will use aspects from the approach
taken in [Wan+18a], where the extracted automata are compared to the original RNN in
terms of accuracy and fidelity or truthfulness.

In this chapter we will describe the different metrics that we have derived and will apply
during our research.

4.1. QUALITY OF APPROXIMATION

One of the aspects we want to evaluate is the quality of approximation of the extracted
automata. With this we mean the fidelity or truthfulness of the extracted automata with
regards to the trained RNN from which they where extracted, or, in other words, how closely
the extracted automata model the RNN’s behavior. This, we feel, is an important aspect of
rule extraction as we want to gain insight into the true behavior of the RNN. In the rule
extraction literature this aspect is captured as part of a larger concept called rule quality
[ADT95; Jac05].

In this research we are evaluating the extraction performance on RNNs trained for bi-
nary classification. Binary classification is the task of labeling certain input as belonging
to either the positive or negative case. For our case study RNN this translates into classi-
fying network traffic as either botnet related or not. Since we are using a binary classifica-
tion RNN, the extracted automata should also model a binary classifier. Essentially then
the evaluation of how closely an extracted automaton models the trained RNN’s behavior
can be seen as comparing two different binary classifiers. Therefore, we will first look into
metrics and techniques that measure different aspects of binary classification performance
and that we will need throughout our research. Subsequently we will use these metrics to
define a fidelity metric which we will use to determine how closely the extracted automata
model the RNN’s behavior.
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4.1.1. BINARY CLASSIFICATION METRICS

In the field of machine learning it is standard practice to evaluate the classification perfor-
mance of a binary classifier against a given dataset and is often used to compare different
classification models or to asses parameter settings [Pow11].

To measure the performance of a binary classifier several metrics can be used [Pow11].
They are all based on comparing the classifier under study against a known ground truth
on a given dataset and revolve around four key concepts: True Positive (TP), True Negative
(TN), False Positive (FP) and False Negative (FN). TP and TN are the number of samples the
classifier correctly identified as positive and negative cases respectively. FP and FN are the
number of negative samples that where incorrectly classified as positive and vice versa.

The most well-known and straightforward metric is accuracy which is defined as:

Accur ac y = T P +T N

T P +T N +F P +F N
(4.1)

Accuracy takes all samples into account and calculates the percentage of correct classi-
fication. By its definition accuracy gives equal weight to both the positive and negative
classes. This makes this metric sensitive to uneven class distribution [Pow11]. This means
that the metric can be affected by how evenly balanced the positive and negative samples
are throughout the data. Accuracy can hide poor classifier performance when the classes
are highly skewed. Take, for example, a dataset where only 2% of all samples belong to the
positive class and a binary classifier that always returns the negative class label. Clearly the
classifier does constitute a sensible model, but its accuracy would still be reported as 98%.

In a lot of practical situations unbalanced data may be the case. Quite often the positive
class is the minority class, as is likely the case for our botnet detection RNN, which could
render the accuracy metric unreliable. To address the issue of class imbalance two other
metrics precision and recall are often used to measure the performance of a classifier.

Pr eci si on = T P

T P +F P
(4.2)

Recal l = T P

T P +F N
(4.3)

Precision measures the percentage of correctly identified positive samples and expresses
the classifier’s ability to avoid false positives. Recall or sensitivity measures the percentage
of positive samples that was identified by the classifier and expresses the classifiers ability
to detect all positive cases. Both precision and recall focus on the positive samples and are
thus less affected when the positive class is the minority. Both metrics would report a score
of 0% for the aforementioned classifier, clearly indicating its poor performance.

To express a classifier’s performance in a single value, the F1-score is often used, which is
the harmonic mean of precision and recall.

F 1− scor e = 2× pr eci si on × r ecal l

pr eci si on + r ecal l
(4.4)
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As mentioned, by default precision and recall, and thus the F1-score, have a bias towards
the positive class. This may distract from poor performance on the negative class. For this
reason precision, recall and F1-score are often reported separately for both the positive
and negative class [Pow11]. We will also do this when we report performance figures in our
experiments.

4.1.2. ROC ANALYSIS

As mentioned, the case study RNN is a binary classifier and therefore the extracted au-
tomata should also model a binary classifier. The WA extraction method we will evaluate,
however, extracts automata that output a continuous value rather than a binary value. We
thus have to convert their output to a binary classification by applying a threshold value.

To evaluate the impact of this WA valuation threshold and to determine its optimal value
we will use a technique called receiver operating characteristic (ROC) analysis. In a ROC
analysis the continuous output value of the classifier is binarized using different threshold
values and compared to the actual classification labels. The ROC-curve plots the true pos-
itive rate (TPR) of a binary classifier against its false positive rate (FPR) at various thresh-
old settings. It gives insight into the binary classifier’s performance as its discrimination
threshold is varied [Pow11]. For the optimal binary classifier we want a high TPR and a low
FPR. This means that the best performing threshold will be found in the top left corner of
the ROC-curve [Pow11].

4.1.3. FIDELITY METRIC

Although there seems to be no real consensus on the exact definition of a fidelity or truth-
fulness measure in the rule extraction literature, we will use aspects from the approach
taken in [Wan+18a] to measure how closely the extracted automaton models the RNN’s
behaviour. In this study the authors investigate the verification of RNN’s using DFA extrac-
tion to asses their vulnerability against adversarial input. To evaluate the performance of
the DFA extraction they define, amongst others, a fidelity metric for measuring the quality
of the extracted DFA’s. However, their metric is based on accuracy which is, as mentioned
in the previous section, sensitive to class imbalance. Building on [Wan+18a] and the pre-
vious definitions we define our own extraction fidelity metric, which is based on precision,
recall and F1-score.

Normally, these precision, recall and F1-score are determined on a particular dataset. As
we would like to asses the extracted automata against the RNN, but also against another
ground truth model, such as the RNN’s training or test dataset, we redefine these metrics
with a variable ground truth.

Given a model m and a dataset B = {X ,Y } consisting of samples x and labels yx . Let X m
i

denote the set of samples classified by m as having the label i , i.e., X m
i = {x ∈ X |m(x) = i }.

Then X m can be decomposed into disjoint subsets X m
i . Let i = 0 be the negative label and

i = 1 the positive label. Given a ground truth model g with the same semantics as m we
have the following metrics for evaluating the performance of RNN rule extraction.

Precision and recall. The precision Pr eci (m, g , X ) and recall Reci (m, g , X ) for class i of
model m on data set X against ground truth g are defined as:
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Pr eci (m, g , X ) = X m
i ∩X g

i

X m
i ∩X g

i +X m
i ∩X g

1−i

(4.5)

Reci (m, g , X ) = X m
i ∩X g

i

X m
i ∩X g

i +X m
1−i ∩X g

i

(4.6)

Fidelity. The fidelity F i di (m, g , X ) for class i of model m on data set X against ground
truth g is the F1-score of that class against the ground truth and defined as:

F i di (m, g , X ) = 2× Pr eci (m, g , X )×Reci (m, g , X )

Pr eci (m, g , X )+Reci (m, g , X )
(4.7)

To asses the fidelity for both classes in one metric we combine the individual class fideli-
ties in two ways. The first metric we will use is the weighted average of the individual class
fidelities, which we will refer to as the average fildelity (4.8). This metric gives a good overall
impression of the model’s fidelity with respect to the ground truth. The second, more strict,
metric we will use, is the minimum of the individual class fidelities, which we will refer to
as the minimum fildelity (4.9). This last metric will highlight any problems the model may
have with a particular class.

F i dav g (m, g , X ) = F i d0(m, g , X )+F i d1(m, g , X )

2
(4.8)

F i dmi n(m, g , X ) = mi n(F i d0(m, g , X ),F i d1(m, g , X )) (4.9)

4.2. COMPREHENSIBILITY OR INTERPRETABILITY

Another important aspect of rule extraction performance we want to evaluate, is how well
the extracted automata convey the trained RNN’s semantics, i.e., how well they give insight
into the RNN’s behavior. This aspect is of a more subjective nature and has bearing on other
research topics such as data visualization and ergonomics. In the rule extraction literature
this aspect is another important element of the larger rule quality concept [ADT95; Jac05].

In order to contribute to understanding the operation of the RNN, the extracted au-
tomata themselves need to be understandable. Clearly this entails many aspects and re-
lates to other research topics such as cognitive sciences, psychology, ergonomics and oth-
ers. However, as our research scope is limited we restrict this aspect of our research to a
basic subjective evaluation only.

In order to gain understanding of an unknown phenomena or domain, one needs to be
able to build a mental or conceptual model of it [Joh80]. Clearly the amount of (visual) in-
formation that needs to be processed plays an important role in this process. We feel that
the size of the extracted automata plays an important role in this respect as it directly influ-
ences their overall interpretability. The size of an automaton is determined by the number
of states as well as the number of transitions and can thus be quantified. Furthermore, the
number of symbols in the alphabet used by the automata will also be a factor as transitions



24 4. EXTRACTION EVALUATION METRICS

may be harder to interpret when they contain multiple symbols. This number can also be
quantified.

We will compare the pedagogical rule extraction methods based on these quantities,
however, we feel the semantics of the automaton will also greatly influence interpretability.
The more complicated the semantics of the presented information, the more difficult it will
be to interpret its meaning. A DFA has very simple, straightforward semantics whereas a
WA has more complicated semantics, which may negatively affect its interpretability. Ob-
viously this is a difficult aspect to quantify. We will again, limit ourselves to a subjective
evaluation.

4.3. TRANSLUCENCY OR GENERALITY

In [Jac05] translucency, or the degree to which the rule-extraction algorithm ’looks’ inside
the RNN, is mentioned as a distinguishing feature. In [FM15] a similar aspect is captured
under generality, or the extent to which a method requires special training regimes or re-
strictions on the model architecture. Both express how generally applicable the extraction
method is to different models and training setups.

The less assumptions an extraction method places on the model under study, the more
generally applicable it is. A pedagogical approach, in principle, requires no internal knowl-
edge or structure and can therefore be applied to other black-box models as well. The WA
method is purely pedagogical or black-box, so it seems to score well in this category. The
DFA method on the other hand, requires access to the internal state of the RNN to form the
hypothesis on which the L* algorithm works, making it, as mentioned, not a purely black-
box approach. How this aspect impact the practical application of each method will be
further investigated in our research.

Another associated quality aspect is mentioned in [Jac05] called portability. This de-
scribes how well an RE technique covers the set of available RNN architectures. As we
will investigate only one type of RNN architecture, the LSTM architecture used by our case
study RNN, we will not cover this aspect in our research.

4.4. ALGORITHMIC COMPLEXITY

The algorithmic complexity of a method is also mentioned in the rule extraction litera-
ture as a possible measure for comparing different extraction methods [FM15]. This aspect
refers to the overall efficiency of the algorithm. Some methods are so complex that they are
only applicable to very small toy examples, while other methods perform well even on large
’real life’ problems. However, as mentioned in [Jac05], the algorithmic complexity of RE al-
gorithms is unfortunately often an open question as authors seldom analyse this explicitly.
Especially for RNN-RE the complexity issue has not received much attention [Jac05]. It is
in itself quite complex to measure the expected time and space requirements as they are
influenced by many factors, such as number of input symbols, the number of states, RNN
dynamics, and so on. For these reasons we will not attempt to capture this aspect of rule
extraction performance in great detail and will evaluate the algorithmic complexity of the
different methods by measuring overall extraction time only.
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EXPERIMENTAL SETUP

As mentioned in chapter 3 we will explore the practical feasibility of the RNN rule extraction
methods by applying them to a RNN that is not specifically trained for this purpose. With
these experiments we want to answer the question if the methods can be applied to the
case study RNN, and if so, how well the resulting automata can approximate the RNN’s
behaviour in terms of fildelity. Also we hope to gain insight into how each method’s hyper-
parameters can be selected and how the methods compare in terms of the quality aspects
mentioned in the previous chapter. Furthermore, we want to asses how well the automata
extracted by each method can help to gain insight into the RNN’s operation. This aspect is,
as mentioned before, more subjective, but ultimately determines the practical usefulness
of each method. We will asses this aspect of the extraction methods by looking at the size of
the extracted automata and by giving a subjective judgment on their interpretability. Again,
this evaluation is highly subjective, but our research goal is to explore the practical use of
the RNN rule extraction methods, not necessarily to produce only ’hard’ figures, so we feel
this is justified.

To answer our research questions we have broken down the research in three main sec-
tions, as described in chapter 3. The first part deals with the practical issue of how the con-
tinuous input domain of our case study RNN can be discretized and is described in chapter
6. The second part, covered in chapter 7, looks into how the WA method can be applied to
a binary classification model, which is not its intended use case. Finally, the third part of
our research, applying the methods to our case study RNN, is handled in chapter 8.

All these experiments use the same general experimentation setup, RNN models and
datasets. For this reason they are covered in the following sections and not repeated in
the subsequent chapters.

5.1. GENERAL SETUP

For our experiments we used a cloud based computing environment as we suspected that
the extraction techniques and RNN implementations might have a high demand on mem-
ory and computing resources. After evaluating several options we decided to use Google
Colaboratory, which is a free Jupyter notebook environment that requires no setup and
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runs entirely in the cloud [Goo20]. A Jupyter Notebook is an open-source web application
that allows to create and share documents that contain live code, equations, visualizations
and narrative text [jup20]. A Google Colaboratory Notebook gives access to powerful com-
puting resources and combines code blocks with narrative text making it a great option for
our research. A Google Colaboratory Notebook has also been used by Weiss et al. [WGY18b]
to allow easy access to their DFA rule extraction method [WGY18a].

5.2. CASE STUDY RNN AND DATASET

During the course of our research we will be evaluating the pedagogical rule extraction
techniques on a recurrent neural network trained to detect botnet related network traf-
fic. This network was the result of a master’s thesis by Tho Poon [Poo18]. In his master’s
thesis Poon [Poo18] investigated the use of the LSTM and bidirectional LSTM (BLSTM) ar-
chitectures for the task of botnet detection based on sequences of low-level network traffic
features. A selection of 12 fields from the IP, TCP and UDP headers of the individual net-
work packets where used as input features. The studied RNN networks had an input layer
with 12 input neurons, to accommodate the input features. The output layer consisted of a
single neuron with a logistic sigmoid activation function. The sigmoid activation function
gives a real valued output between 0 and 1. A classification threshold of 0.5 was applied
to perform the binary classification. Poon experimented with networks with one and two
hidden layers of varying sizes and evaluated their performance on different datasets with
botnet and non-botnet traffic. The overall best performing network was a RNN with one
BLSTM layer consisting of 384 neurons. It is this network that we intended to use as our
case study RNN throughout our research.

It is worth noticing that the best performing network still only had an average accuracy of
around 80.5% over the evaluated datasets. Also the network had quite a high false positive
rate of around 27.3%. This means, as Poon concludes, that the used RNN architecture and
sequences of low-level network features may not be well suited to perform reliable botnet
detection. Despite these limitations it is still interesting to use this network in our research
as we are not looking to accurately replicate or generate the original domain, but rather
want to sufficiently approximate the complex behavior of the trained RNN with a represen-
tation that is more humanly comprehensible. As Poon himself notes in his conclusions "It
is difficult to determine what really happens inside the RNN". Using rule extraction may
give us these insights and provide us with a way to explain the behavior of the network and
may even shed light on why its performance is subpar.

5.2.1. CASE STUDY RNN RE-IMPLEMENTATION

We originally intended to use the RNN implementation of Poon as-is, however, it proved
necessary to re-implement the network in a different technology to make it compatible
with our experimentation environment and the rule extraction methods. We used a Python
machine learning library called Keras 1 to re-implement the case study RNN. The details on
this re-implementation are described in appendix A. We will only repeat the final network
architecture and summarized training results here.

1https://keras.io/

https://keras.io/
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The architecture of our final Keras based case study RNN is shown in table 5.1.

Layer Type Size Description
1 Input 12 Input layer with 1 node per feature

2 Masking
Masks padded input so network is only trained
on real data

3 LSTM 12 LSTM RNN layer with 12 nodes

4 Batch normalization
Aids training convergence and allows larger
learning rates to be employed [IS15]

5 Dense (Sigmoid activation) 1
Outputs a continuous value between 0 and 1
representing the positive class probability.

Table 5.1: Case study RNN network architecture

Using the converted datasets, described in the next section, we successfully trained this
RNN to 99% accuracy on the training set and 94% on the test set. Surprisingly our RNN far
exceeds the performance reported by Poon [Poo18] for his version of the botnet detection
RNN. His implementation had a accuracy of just 80.5% and a F1-score of 75.2%. The reason
for this quite substantial difference is not entirely clear, but even after reevaluating our RNN
implementation and training code and repeating the RNN training several times, we came
to the same performance figures for our implementation of the botnet detection RNN. A
more detailed analysis of the performance difference can be found in appendix A.

5.3. DATASET

Some of the rule extraction techniques require access to a labeled dataset during the ex-
traction process. For this purpose we will use the original datasets used by Poon [Poo18] to
train the studied botnet detection RNN. For our experiments we will use one of the datasets
used by Poon [Poo18] in his research on botnet detection. We selected the ISOT dataset as
this was the dataset on which Poon obtained the highest accuracy and Poon places some
remarks against the validity of the other ISCX dataset.

The ISOT dataset contains flows of botnet and non-botnet network traffic data. In his
research Poon uses 12 different fields from the IP, TCP and UDP headers as input features
and interprets each packet as a time step in the complete flow sequence. The original ISOT
dataset has been split by Poon into a training, validation and test set consisting of labeled
sequences of vectors formed by these 12 low-level network traffic features. Figure 5.1 shows
the structure of the flows used by Poon. The first two columns are not used as input features
and are omited from the final netCDF files Poon created.

Because we had to re-implement the case study RNN we could not use the original netCDF
datasets of Poon directly and converted them into a compatible format. All the data was
padded to the length of the longest sequence as the Keras training routine expects all the
training samples to be of equal length. The datasets contained some very long sequences
that would require a large amount of padded data. We set the maximum sequence length to
100 and filtered out all samples that contained longer sequences. This resulted in a loss of
samples of less than 1% on the training and validation sets and less than 2% on the training
set, which we deemed acceptable. More details on this dataset conversion can be found in
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Figure 5.1: Feature file structure

appendix A.

5.4. TOMITA GRAMMARS

In the rule extraction literature it is quite common to evaluate different rule extraction
approaches using a set of seven regular grammars originally suggested by [Tom82] and
referred to as the Tomita grammars. These grammars have been widely studied [OG96;
Wan+18b] and consist of well defined regular grammars with varying levels of complexity.
The grammars also have know ground truth DFAs which makes them well suited for rule
extraction research. We will use these grammar models in part of our research and will
therefore describe them in more detail in this section.

The Tomita grammars all have the alphabet Σ = {0,1}, and generate an infinite regular
language over its Kleene closureΣ∗. Table 5.2 describes the strings accepted by each Tomita
grammar. Figure 5.2 shows the minimal DFA associated with each grammar.

G description
1 1∗

2 (10)∗

3
an odd number of consecutive 1’s is always followed by
an even number of consecutive 0’s

4 any string not containing “000” as a substring
5 even number of 0’s and even number of 1’s

6
the difference between the number of 0’s
and the number of 1’s is a multiple of 3

7 0∗1∗0∗1∗

Table 5.2: Description of the seven Tomita grammars
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Figure 5.2: The minimal DFA for Tomita grammar 1 to 7, from left to right.



6
INPUT DOMAIN DISCRETIZATION

The RNN rule extraction techniques require the RNN to accept symbolic data as input.
Clearly this is not the case for our case study RNN, and may well not be the case in other
practical applications. Also the rule extraction techniques need access to a ’symbolized’
dataset to some extend. Either to generate initial examples for the negative and positive
classes, as is the case for the DFA method, or in the case of the WA method for the genera-
tion of the Hankel basis. Furthermore, we also need a ’symbolized’ version of the test set to
evaluate the fidelity of the extracted automata. So one of the practical challenges that we
need to be overcome in applying these rule extraction techniques to our case study RNN is
to transform its input domain into a symbolic alphabet. Additionally, we also need to find
a way to then use this alphabet as input to the RNN to perform predictions.

The original input domain of the botnet detection RNN consists of vectors of 12 contin-
uous features. To transform this input into symbols and use these symbols as input to the
RNN we have experimented with different discretization approaches. The next sections
will describe the highlights of these experiments, more detail on these experiments can be
found in appendix B.

6.1. ALPHABET SIZE VERSUS INPUT FIDELITY

As with any discretization problem we need to make a trade-off between the size of the
resulting alphabet and the amount of information that is lost in the transformation. The
size of the input alphabet is a factor in the comprehensibility of the extracted automata,
as mentioned previously. The larger the alphabet the more difficult it may be to interpret
the semantics encoded by the extracted automata. As it is not clear upfront what the op-
timal alphabet size will be, in terms of comprehensibility and RNN performance, we quite
arbitrarily took 100 as a starting point as this seemed like a reasonable value.

6.2. MAPPING INPUT DOMAINS

As we want the most widely applicable approach we ideally would like to use the RNN on
which we perform the extractions as-is, meaning, without any modifications or retraining.

30
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This means that once we have transformed the original input domain into a symbolic al-
phabet, we need a way to transform the symbols back into usable features for the RNN do it
can perform its predictions. To achieve this objective we have to define a symmetrical func-
tion or bijection between the original input domain, consisting of 12 real valued features,
and a set of symbols. This allows samples from the original input domain to be mapped
into symbols and inversely mapped back into vectors in the original input domain. This
process effectively discretizes the original samples using the alphabet size as discretization
level.

So given an n dimensional input domain I consisting of real valued vectors and an al-
phabet Σ consisting of m symbols we are looking for the mappings:

f : I →Σ= f :Rn →Σ (6.1)

g :Σ→ I ′ (6.2)

where I ′ = {x ∈ I } and |I ′| = m

The inverse mapping, that is the mapping from symbols to input vectors, is used as an
additional input adapter to the RNN. The RNN and the input adapter together ultimately
form the model that will be exposed to the rule extraction techniques. Figure 6.1 shows this
approach.

RNNg : Σ → I ′

RNN-RE Method

Figure 6.1: Rule Extraction experiment setup

To find such a mapping that would allow us to use the setup of figure 6.1 we conducted
several experiments in which we evaluated two different methods to create a symmetrical
mapping between the original feature vectors and a set of 100 symbols.

6.2.1. EXPERIMENTS AND RESULTS

In the experiments we used the datasets described in chapter 5. We created ’symbolized’
versions of these datasets by passing the samples from the original datasets through the
input vector to symbol mapping we were evaluating.

It is difficult to asses the overall affect of the input discretization just by looking at the
input data itself, as the RNN has learned a highly complex function between input and
output and it is unclear how a certain reduction of input fidelity will affect the classification
performance. Therefore, we assessed the affect of the input discretization on the RNN’s
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classification performance by evaluating the performance of the combined model on the
’symbolized’ training set against that of the RNN on the original training set.

The first method we evaluated employed a simple hashing approach with even weight
across all input features to discretize the input domain. For the inverse mapping we used
the mean values of the individual feature values over all the vectors that where mapped to
each symbol. This hashing based input adapter achieved an accuracy of just 72% on the
RNN’s training set. This is much lower than the 99% of the RNN when applied directly to
the training set. A drop in performance was to be expected, but the F1-score on the negative
class was also extremely poor.

The second approach employed a clustering algorithm called k-means. K -means is an
unsupervised learning algorithm that can divide input data into a number of distinct clus-
ters. The algorithm will cluster input vectors around the nearest mean values in such a way
as to minimize the within cluster variance. This algorithm is used in many scenario’s where
data needs to be separated into distinct bins or clusters and is widely applied in the liter-
ature [Jai10]. For the inverse symbol to feature mapping we used the vector values of the
established cluster centres.

For this clustering based approach we fitted the k-means model on the original train-
ing set and applied it to all datasets. This way our adapter is usable in a setting where we
do not know the data upfront, other than the original training data. This is a necessary
requirement as the rule extraction approaches can generate input samples during extrac-
tion that may represent previously unseen data. Also, if we would fit the k-means model on
each dataset separately we cannot guarantee consistency in the feature to symbol mapping
across the datasets. This could lead to reduced classification performance as well as inter-
pretation issues when we need to map symbols back to input features when we analyze the
extracted automata.

We evaluated the performance of this approach on the RNN’s training set and found ex-
cellent performance. The RNN with k-means input adapter achieved an accuracy of 98%.
and a F1-score of 95% for the negative class and 99% for the positive class. When we eval-
uated the k-means input adapter on the test set, however, we did see a significant drop in
performance. The accuracy was down to 70% and also the F1-scores for the negative and
positive classes were significantly lower.

6.2.2. ANALYSIS

The hashing based approach had very poor performance. Clearly the discretization was
removing to much relevant information from the input, causing the RNN to misclassify
samples. As we felt that an alphabet of 100 symbols was already quite large with respect the
comprehensibility of the resulting automata, we did not want to increase the alphabet size.
We therefore decided this setup would not be usable for our research.

The k-means approach performed better on the training set, however, it had very very
poor performance on the test set. The difference in performance on the training and test
set can probably be explained by the fact that the k-means clustering model was fitted on
the training set and than applied to the validation and test sets. If the data is distributed
differently between the datasets this may cause a poor fit of the validation and test sets to
the cluster centers inferred on the training set. To see if this may be the case we looked into
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the sum of the distances of the samples in each dataset to their closest cluster center as in-
ferred on the training set. This measure is known as the k-means score and is in affect the
error measure which the k-means algorithm attempts to minimise during fitting. Looking
at these k-means scores we did indeed see that the validation and test set have much larger
values than the training set. This makes the k-means input adapter unsuitable for our ex-
periments as the rule extraction algorithms could generate samples during extraction that
may not yet have been encountered, which may lead to poor translation into the RNN’s
input domain. This distortion may influence the performance of the extraction process it-
self and the reliability of the results. For this reason we decided not to proceed with this
approach.

In turns out that data discretization is a challenging task, however, it is also an important
task that has great impact on all subsequent steps. There are many different discretization
algorithms and approaches described in the literature [Liu+02; Jai10] which might perform
better, but time did not permit us to further investigate this aspect as it is not the main
focus of our research.

6.3. RNN (RE-)TRAINING ON SYMBOLS

As the attempts to create a separate input adapter did not produce acceptable results we
re-implemented the case study RNN and changed the input layer to accept the symbols
inferred by the k-means approach directly. The idea behind changing the RNN to accept
the symbols directly and re-training it on the ’symbolized’ training set is that this way the
RNN is trained on the discretized data directly which may lead to better classification per-
formance as the network can adjust itself to the different input domain.

Of course we would like an extraction approach where we can use a RNN as-is, but it
seems that applying a separate input adapter is not a viable option, at least not for our
botnet RNN. We experimented with three different configurations for the input layer of the
modified case study RNN to see which setup performed best.

6.3.1. EXPERIMENTS AND RESULTS

The first approach used the symbol indexes directly as a single input feature, but this setup
was unsuccessful as the RNN failed to train properly.

The second approach used a one-hot encoding on the symbol indexes, which is a com-
monly used approach in machine learning when dealing with categorical input features
[GB16]. This encoding translates a symbol index i into an array with a length equal to the
number of symbols, in which the i th cell has a value of one and the remaining cells are zero.
This encoded data transforms the single input feature into, in our case, 100 orthogonal in-
put features. This allows the RNN to adjust all 100 input weights individually to best fit the
input data. We successfully trained this RNN setup on the ’symbolized’ training set to an
accuracy of 99%. We then evaluated the trained RNN on the ’symbolized’ test set and found
the RNN did not perform well on the test set. Especially the recall on the negative class and
the precision on the positive class were quite poor. From these results we concluded that
this setup could not be used for our experiments.

The third approach used an embedding layer which turns the symbol indexes into dense
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vectors of fixed size. An embedding layer will find similarities between indexes by looking
at their context, i.e., the other indexes in a input sequence. The vectors of each embed-
ding get updated during training to express the relationships between indexes. The idea
of using this layer is that this additional information on symbol relationship may help the
RNN to generalize better and improve its classification performance on unseen data. Al-
though an interesting theory the addition of an embedding layer did not significantly im-
prove the training and classification performance of the RNN compared to the one-hot
encoding setup.

6.3.2. ANALYSIS

From these experiments it became apparent that training the RNN on the converted ver-
sions of the dataset used by Poon proved difficult. Of course our ’symbolizing’ of the data
using the k-means approach describe in the previous paragraph will be a contributing
factor. However, another cause may be the different class distributions in the datasets.
The training and validation set have around 82% positives samples, while the test set has
around 45% positive samples. This difference may cause the RNN to generalize poorly on
the negative class. Also the fact that the k-means model was fit on the training set and then
applied as-is to the other datasets may have caused differences between the datasets which
the RNN model failed to generalize on.

To test this hypothesis we redistributed the samples in the datasets to form three new
datasets. We combined the original datasets and randomly re-sampled them to form the
new training, validation and test set. This way we have a more even distribution of negative
samples in the training set and the affect of our k-means discretization approach is ’spread’
across all datasets, which may help the RNN to generalize better on the new input domain.

When we trained both versions of the RNN using this new training set and evaluated
them on the new test set we did indeed noticed a significant increase in performance. The
one-hot encoding version and embedding version of the RNN both trained to an accuracy
and F1-scores of around 97% on the test set. We can clearly see that the performance of
both approaches significantly improved and that both approaches perform almost identi-
cal. We ultimately decided to use the one-hot encoding method for the remainder of our
research as it felt simpler, but we could have used either method.



7
APPLYING THE WA METHOD TO A BINARY

CLASSIFIER

As mentioned in their paper [AEG18], the WA rule extraction method from Ayache et al. is
primarily aimed at extracting WAs from regression type RNN models. Our objective is to
evaluate the method’s applicability to our case study RNN, which is a binary classifier.
This means that we need to explore how we can use the WA rule extraction method on bi-
nary classification models and how to interpret the resulting WAs in a binary classification
scheme.

To help answer these questions we will evaluate the WA rule extraction method on the
seven Tomita grammars first, before we apply it to our case study RNN. The grammar mod-
els are small and have known ground truth DFAs which enables us to better evaluate the
application of the extraction method itself, without any added uncertainty from the RNN
model under study.

In these experiments we aim to answer the following questions:

1. How can the WA extraction method be applied to a binary classifier?

2. Can the WA extraction method achieve successful extraction on the Tomita gram-
mars?

3. How should the extracted WAs be interpreted, i.e., what are their semantics?

7.1. PRACTICAL CONSIDERATIONS

Before we describe the extraction experiments we will first address the practical issues of
applying the WA extraction method to a binary classification model.

7.1.1. EXTRACTION ON NON-GENERATIVE MODEL

The code for the WA extraction method, as provided by the researchers, could only be ap-
plied to a particular kind of RNN. The code assumed a generative RNN model, meaning it

35
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required a model that can be used to generate strings based on next symbol probabilities.
Clearly this does not match our botnet detection RNN or the Tomita grammar models. In
their paper the authors mention their method can also be applied to non-generative mod-
els by using either the uniform distribution on symbols and a maximum length parameter
or by sampling a dataset[AEG18]. We implemented both approaches and added them to
the code provided.

7.1.2. SELECTING RNN OUTPUT

Another point that needs to be addressed is the RNN’s prediction output values. As men-
tioned, the WA extraction method is aimed at real valued prediction models. The algorithm
builds the Hankel matrices using the output values of the RNN for all combinations of the
pre- and suffixes in the basis. For our binary classification model we have two options for
these values: We can either take the numeric interpretation of the networks classification
output (0 or 1) directly or use the continuous values from the networks output layer before
a threshold is applied. As we want to perform the most black-box extraction as possible we
will use the first approach in our research.

7.1.3. WA VALUATION THRESHOLD

The WAs extracted by the method of Ayache et al. have continuous weight values for their
states and transitions. The automata apply the probability semiring to these values to map
input words to real numbers, i.e., to valuate words. As described in section 2.2.2, a semiring
is an algebraic structure that defines a set of values and the possible operations on them.
The probability semiring uses the usual addition and multiplication operations for the ab-
stract operations. This means applying this semiring gives the product over the summed
weights of a run on a word. The automata will thus assign a continuous value to each input
word.

As described in 2.3.2 the WA extraction method constructs the weighted automaton using
a rank factorization on the Hankel matrices. These matrices are filled with the RNN ouput
values for all possible combinations of prefixes and suffixes obtained from the generated
basis. This means that the weights in the extracted WA indirectly resemble the different
RNN ouputs. As the applied lineair algebraic transformation will have an effect on the orig-
inal RNN ouput values it is unlikely that the valuations of the automaton will exactly match
these values. Therefore, we will have to apply some sort of threshold to their string valu-
ations to mimic the networks binary classification behaviour. What this threshold value
should be is not directly clear upfront. However, as the WA is build using the values ob-
tained from the RNN it seems logical to initially use the same threshold as is applied to the
RNN output to obtain its binary classification, which was set to 0.5.

7.2. SETUP

For these experiments we performed the WA extraction directly on the Tomita grammar
models instead of training a RNN first. By not using RNN models we avoid RNN training,
speeding up the experimentation and rule out any influence the RNN models may have.
We created a wrapper class that mimics a RNN by exposing a pr edi ct method which uses
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the Tomita grammar as an oracle. This way the WA extraction method can be used directly
on these adapted Tomita grammar models.

We applied the WA extraction algorithm to the adapted Tomita grammar models using
the uniform distribution on symbols and a maximum length parameter to generate the
Hankel basis. For each extracted WA we additionally performed an ROC analysis to obtain
the optimal WA valuation threshold value. We used this threshold value to determine the
extracted WAs fidelity against the test dataset using definition 4.8. This way we can guaran-
tee we report the best achievable fidelity for each extraction. We repeated the experiments
using the method that samples a dataset to generate the Hankel basis. We used the RNN’s
training set for this purpose. For each Tomita grammar we performed several WA extrac-
tions, using different settings for the WA extraction method’s hyper-parameters.

7.2.1. DESCRIPTION OF DATA

To apply the WA extraction method and evaluate the extracted WAs we require training and
test datasets. We followed the approach of Weiss et al. [WGY18a] and generated strings of
varying length on the Tomita grammars. For each length a large number of strings of that
length are are randomly generated and subsampled in such a way as to balance the posi-
tive and negative class. This results in a dataset that contains a certain number of random
strings for each length specified, as evenly balanced over the positive and negative class as
the grammar permits. In their experiments Weiss et al. used string lengths of 0-15, 20, 25,
and 30. However, as we also want to compare the different methods to generate the Hankel
basis we will use string lengths of 0-20 for the dataset generation and a maximum length
of 10, 15 and 20 for the experiments that use the uniform distribution on symbols. This
way we can make sure both methods can, in principle, generate strings of equal length. To
create a separate training and test set we ran the dataset generation twice.

For the cases where the positive and negative classes are highly imbalanced, as is the case
for Tomita grammar 1 and 2 for example, the dataset generation will not provide an evenly
split dataset. In these cases additional examples of the minority class can be provided to
the dataset generation method to balance out the generated samples. We did not use this
feature in our experiments as the WAs could be successfully extracted on the datasets as
they where.

7.2.2. AVERAGING RESULTS

During our initial experiments we noticed that the WA extraction results could vary signifi-
cantly between different runs that use the same settings. Some runs would yield a success-
ful WA, whilst others would yield a WA not even remotely resembling the grammar model.
This unpredictable behaviour made it difficult to achieve meaningful results.

To gain more useful results we repeated each experiment 50 times, much like the ap-
proach taken by [Wan+18c]. For these 50 runs we report the median performance val-
ues and their distributions. We additionally report the percentage of successful extrac-
tions, where successful means the extracted WA reached 100% fidelity against the grammar
model. In these experiments we kept the training and test set the same for all runs of all ex-
periments on a Tomita grammar. This way we can rule out the influence of any difference
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in datasets between experiments.

7.2.3. HYPER-PARAMETERS

The WA extraction method has two hyper-parameters. The first one determines the num-
ber of prefixes used to create the Hankel basis and influences that amount of samples
drawn from the RNN. It thus influences what data is ’seen’ by the algorithm and is used
to create the WA. If the basis is too small, not enough representative samples may be seen,
if it is too large, the extraction may take an unpractical amount of time and resources. The
second hyper-parameter is the rank value used in the Hankel matrix rank factorisation from
which the WA is created. It directly influences the number of states of the resulting WA. If
the rank value is too low, the WA may not represent the RNN closely enough, if it is too high,
the WA will contain a lot of states and the extraction may take longer.

During some initial extraction experiments we have observed that applying a rank value
that is too high for the amount of information contained in the RNN will result in a WA
with ’unused’ states. These states and all their inbound and outbound transitions have zero
weight values, effectively making them ’disappear’ from the WAs valuations. This indicates
that as long as the rank value is high enough the resulting WA will closely match the RNN
in terms of fidelity. Normally the appropriate rank value is not necessarily known upfront
and will have to be empirically determined. However, as the Tomita grammars have known
ground truth DFAs we do have an indication of the appropriate rank values. As weighted
automata are in principle non-deterministic, the number of required states for an extracted
WA may be smaller than that of an equivalent DFA. We will therefore use the number of
states of the DFA for each Tomita grammar as an upper bound for the rank value for its WA
extraction.

To find the optimal value for the number of prefixes we started with a relatively low value
of 10 and increased it to 25 and finally to 50. As mentioned it is not straightforward to
choose the correct basis size upfront, but we felt these values covered the most likely range.
Some initial extraction experiments supported this assumption.

7.2.4. CREATING THE HANKEL BASIS

The WA extraction method generates the Hankel basis by sampling words from either a
generative RNN model, the uniform distribution on symbols and a maximum length pa-
rameter or by sampling a dataset. For each word all its prefixes and suffixes are added to
the basis to make it prefix close and the process is repeated until the specified number of
prefixes is reached. The words obtained in this manner have a great influence on the ex-
traction results as they determine the information that is seen by the algorithm.

In our case the models are not generative and we have to use either the uniform dis-
tribution on symbols or a dataset to generate the Hankel basis. The first methods seems
the most widely applicable one, but may, especially in the case of high class imbalance,
not yield satisfactory results as it contains no knowledge of the input domain. The second
method requires access to, for example, a training set, but is more likely to yield represen-
tative words. We will experiment with both options to see which one yields the best result.
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7.3. WA TOMITA GRAMMAR EXPERIMENTS AND RESULTS

For word generation from the uniform distribution on symbols we used, as mentioned, a
maximum length of 10, 15 and 20. Again choosing the correct value is not trivial, but in
this case it is directly related with the maximum length of unique sequences that can occur
in the model under study. The Tomita grammars, however, are relatively simple and their
maximum sequence length should fall within the selected range.

Some combination of settings may not allow a successful generation of the Hankel basis.
For example, a maximum length of 10 may prove to small for a basis size of 50. Where this
was the case we indicated the extraction as unsuccessful even if the actual extraction could
not take place.

We first report the success rates of the different extraction experiments. Figure 7.1 shows
the success rate for each Tomita grammar extraction versus the selected Hankel basis size
for the different generation settings. Where an extraction is deemed successful when its
average fidelity over the classes is 100%.

Figure 7.1: Extraction success rate vs. Hankel basis size

As mentioned, the success rate is based on the average fidelity across classes. As a more
critical metric we also looked at the minimum fidelity over the classes. This metric will
report the fidelity figure of the worst performing class which will make any problems with
either the positive or negative class more apparent. For brevity we only report the results
for the worst performing extraction settings as they are the most interesting in terms of
failure behaviour. We report the results of the extractions for Hankel basis sizes 10 and 25
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when using sampling from the training set or the uniform distribution on symbols with a
maximum length of 20. Figures 7.2a and 7.2b show the box plots for the minimum class
fidelity achieved in the 50 extractions on each Tomita grammar for these settings. These
plots show how the individual extractions performed and what the variation of the fidelity
figures was over all the successive runs. This way they give an impression of the failure
modes of the WA extraction method, i.e., if the method approaches the correct WA in most
cases or if it extracts randomly performing WAs between runs.

(a) Minimum class fidelity for Hankel basis size 10

(b) Minimum class fidelity for Hankel basis size 25

We also calculated the difference in fidelity between using the default word valuation
threshold of 0.5 or the optimal threshold determined by the ROC analysis. This will tell us
if using the default threshold, which is simpler to apply and thus enhances the method’s
practical applicability, is a viable option. To show the biggest diference we used the mini-
mum class fidelities to determine the fidelity difference. Again for brevity, we only report
the result for the settings that gave the biggest difference, being a Hankel basis size of 10
when using sampling from the training set or the uniform distribution on symbols with a
maximum length of 10. Figure 7.3 shows the box plot for these differences in the minimum
class fidelity. A negative number indicates a worse performance when using the default
threshold.

Additionally we report the execution times of the Tomita extractions. We observed quite
a large fluctuation in extraction time between runs for some experiments. See figure 7.4 for
an example of these fluctuations.
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Figure 7.3: Difference in fildelity when using either the default threshold or the optimal threshold

Figure 7.4: Execution time fluctuations (Hankel basis size 50)

Because we want to get an indication of the typical time performance of the WA extrac-
tion algorithm we show the norm of the execution times, which shows the most common
value and eliminates the effect of the extreme outliers. Figure 7.5 shows the graph for the
norm of the execution times. We do have to note that these figures should be used purely
indicative as there could be a lot of external factors on the computing platform we used that
may influence the execution time. The relative differences in execution time, however, do
give a idea of the time performance of the WA extraction algorithm in relation to different
settings and model complexities.

Finally we show the extracted WAs for the different Tomita grammars. Figure 7.6 displays
representative WAs for each Tomita grammar obtained from the successful extraction runs.
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Figure 7.5: Execution time versus Hankel basis size

7.4. INTERPRETING THE EXTRACTED WAS

One of our research questions is to evaluate if the extracted automata provide insight into
the RNN’s operation. For this to be achieved, clearly, the semantics of the extracted au-
tomata must be understood. For the extracted DFAs this is quite straight forward, but for
the WAs this is not directly clear. As mentioned, the WAs can be non-deterministic and
use the probability semiring to compute their word valuations. These factors makes their
visual interpretation quite hard. Even a small WA may be difficult to interpret.

To aid in understanding how an extracted WA comes to a certain output we added a trac-
ing feature to the valuation method. This feature prints a step by step trace of the calcula-
tions performed during a word valuation. Figure 7.7 displays an example of such a trace for
the valuation of the word 0110 on a (simplified) WA extracted for Tomita grammar 5.

The valuation of a word starts with the vector formed by the initial weights for each state.
Each value in this vector is then multiplied by the associated weight value of all outgoing
transition from that state for the first symbol. In figure 7.7 this is only the transition from
state 0 to state 2 for symbol 0 . The products of all these transitions are then summed per
target state, yielding the next state weight vector (see the second line in the table). This
process is repeated for all subsequent symbols in the word until the last symbol is reached.
The last state weight vector is then multiplied by the vector formed by the final weights for
each state to calculate the automaton’s resulting word valuation.

For the successful WA extractions we see that some resulting WAs have weight values of
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Figure 7.6: Extracted WAs for the Tomita grammars
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Figure 7.7: Trace of word valuation on a WA extracted for Tomita 5

exactly 1 on the relevant states and transitions and 0 on all other. Also the WAs are deter-
ministic. See, for example, the WAs for Tomita 1 and 2 in figure 7.6. These WA thus closely
follow the reference DFA of the Tomita grammar. In such cases the interpretation of the
WAs, once the valuation logic is known, is not too hard.

In other cases, a successful WA extraction may yield a small WA that has, what at first
glance looks like, random real values for the relevant weights. However, on closer inspec-
tion it turns out that the products of these numbers in the relevant paths still results in a
value of (or very close to) 1. See, for example, the WAs for Tomita 5 and 6 in figure 7.6. Again,
once the valuation logic is understood these WAs can be interpreted relatively easy.

For the more complicated Tomita grammars, such as Tomita 3, 4 and 7, however, this is
a different story. The WAs contain many more transitions, often with small values and are
non-deterministic. Also they have multiple entry and exist states, i.e., states that have non-
zero initial or final weight values. Even for the relatively simple grammars, such as Tomita
4, their interpretation quickly becomes challenging. A similar situation occurred for the
cases where the resulting WA did not achieve 100% fidelity. These WAs often have a larger
number of weights with fractional values on their transitions and states and are also often
non-deterministic making them more difficult to interpret.

7.5. ANALYSIS

We were able to extract the correct WAs for all grammars using either sampling method
method. However, we did experience unpredictable extraction results for the first two
grammars. We investigated this phenomenon further and believe that it is caused by the
high class imbalance in the first two grammars. Because the Hankel basis is filled with
randomly selected samples, a large class imbalance may result in predominately selecting
samples of only one class. This will make the data in the Hankel matrices a poor reflection
of the actual domain, which would lead to an WA with poor fidelity.

One interesting observation can be made from the success rate figures of 7.1. It seems
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that a maximum length of 20 performs worse for a Hankel basis size of 50 than a maximum
length of 15 or 10. This feels a bit counter intuitive as a large basis size requires more pre-
and suffixes, so larger strings would seem beneficial. We believe this phenomenon is due
to the fact that for the larger string sizes, one, or two strings suffice to generate enough
pre- and suffixes. However, the combination of those pre- and suffixes may not necessarily
properly represent the input space. When a smaller string size is used, more string will
be generated before the Hankel basis size is reached. Although shorter, the larger number
of these strings allow more variation in the pre- and suffixes increasing the change they
sufficiently model the input domain.

Also it seems that for Tomita grammar 3 the minimum Hankel basis size is around 50.
All the lower values cause unpredictable extraction behaviour. A similar behaviour can be
seen for Tomita grammar 2, although, it seems that when using a maximum length of 10, a
Hankel basis size of 25 suffices. The reason for this increased performance on the shortest
string length most likely has the same explanation as mentioned before.

The effect, that a larger Hankel basis size improves the success rate, is also present for the
other grammars, but less so. For all grammars, except 2 and 3 it seems a Hankel basis size
of 25 is sufficient to achieve predictable extraction in all scenario’s.

From these figures it seems that using the uniform distribution on symbols with a short
string length gives the best extraction performance. However, when the Hankel basis size is
large enough for the model under study, using sampling from a dataset also performs well.
From this it seems that getting the Hankel basis size right is still the most important aspect
of applying the WA extraction method in practice.

We have also seen in these experiments that the WA extraction method not always suc-
cessfully extracts the right WA, even when using the same settings. This unpredictability
between extraction runs has practical implications. As it is difficult to know upfront if the
extraction will be successful there is really no other way than to perform repeated extrac-
tions and use a cross-folding approach to retrieve the appropriate settings. This means
that, although the method seems to be quick, at least on the simple Tomita grammar mod-
els, the overall extraction time to achieve a successful WA may be quite long.

In these experiments we have explored how the WA rule extraction method can be ap-
plied to a binary classifier. From the results of the experiments we can see that it is in-
deed possible to use the method on a binary classifier. However, the experiments have
also shown that successful extraction depends highly on using the appropriate extraction
settings. Especially the size of the Hankel basis has proven to be an important parame-
ter, which was to be expected as it directly determines the information seen by the ex-
traction algorithm. Finally, we have evaluated the interpretability of the extracted WAs.
It seems, that at least for simple models, the WAs can convey the information contained
in the model. However, we have also seen that interpretation can be challenging for larger
models and that human interpretation quickly becomes impractical when the extraction is
not 100% successful. The fact that interpretation can be challenging, even for these small
models, does not bode well for the application of the WA extraction method on our case
study RNN.
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CASE STUDY EXTRACTION EXPERIMENTS

As mentioned in chapters 3 and 5 we will explore the practical feasibility of the RNN rule
extraction methods by applying them to our case study botnet detection RNN, which was
the result of a master’s thesis by Tho poon [Poo18].

In the previous chapters we have explored how the case study RNN’s input domain can
be discretized into a symbolic alphabet and how the WA extraction method can be applied
to a binary classifier. We will use these insights when we will try to apply both rule extrac-
tion methods to our case study RNN. Additionally the DFA extraction method of Weiss et
al. [WGY18a] places some requirements on the RNN it will extract the automata from. So
before we can perform the actual extractions we need to address these practical require-
ments first. Section 8.1.3 describes this in more detail.

With these case study experiments we want to answer the remaining part of our first re-
search question, if the methods can be applied to the case study RNN, and if so, how well
the resulting automata can approximate the RNN’s behaviour in terms of fildelity. Also we
hope to gain insight into how each method’s hyper-parameters can be selected and how
the methods compare in terms of the quality aspects mentioned in chapter 4. Finally, to
fully answer our second research question, we will asses how well the automata extracted
by each method can help to gain insight into the RNN’s operation. This aspect is, as men-
tioned before, more subjective, but ultimately determines the practical usefulness of each
method. We will asses this aspect of the extraction methods by looking at the overall size of
the extracted automata and by giving a subjective judgment on their interpretability. Again,
this evaluation is highly subjective, but our research goal is to explore the practical use of
the RNN rule extraction methods, not necessarily to produce only hard figures, so we feel
this is justified.

8.1. SETUP

For these experiments we used the experimental setup described in chapter 5. Also, as with
the WA Tomita experiments, we will repeat the extractions several times and report the av-
erage values. Ideally we would have repeated the experiments 50 times as we did for the WA
Tomita experiments. However, the extractions took considerably longer on the case study
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RNN than on the Tomita grammar models, making this many repetitions infeasible. There-
fore we had to restrict the number of runs per experiment to 10. This makes the findings
we report more susceptible to outliers or other anomalies. We will therefore not only report
aggregated values, but also include their variation across the experiments where applica-
ble.

8.1.1. CASE STUDY RNN AND DATASET

As mentioned, we want to apply the rule extraction methods to our case study RNN, which
was described in chapter 5. This RNN was trained on an input domain consisting of 12
continuous network traffic features. The rule extraction methods, however, require a RNN
that can accept symbolic input, i.e., words over an alphabet. In chapter 6 we explored how
the original input domain from our case study RNN could be discretized and if it is possible
to add an input adapter to the RNN that can convert this symbolic input back into the 12
continuous features. This way the original RNN can be used on the ’symbolized’ input data.
This approach did not produce satisfactory results and a new RNN had to be trained that
could consume the symbolic data directly. We used this version of the case study RNN in
the experiments described in this chapter. The details of this RNN and its performance are
described in section 6.3.

8.1.2. DESCRIPTION OF DATA

In chapter 6 we explored how the original input domain from our case study RNN could be
discretized. The best performing approach was a k-means based discretization into an al-
phabet of 100 symbols. We will apply this method to create ’symbolized’ datasets from the
original datasets used by Poon. We also saw in chapter 6 that the RNN failed to train prop-
erly on these converted datasets and redistributed them. We will use such redistributed
dataset during the extraction experiments. The final training set we used contained 33086
samples, of which 64.67% positive. The test set contained 18663 samples, of which 64.45%
positive. The datasets are thus quite well balanced across the positive and negative classes.

8.1.3. DFA EXTRACTION METHOD API

The DFA extraction method from Weiss et al. [WGY18a] places some requirements on the
RNN it extracts the automaton from. The method needs access to the RNN’s internal state
through a specific API. The RNN’s state is used to build and refine a finite abstraction of
the RNN which is used to answer the equivalence queries during extraction. This makes
the DFA method strictly speaking not pedagogical, although the state is not used directly
to extract the automaton as in the (de)compositional approaches. This requirement means
that before we can apply the DFA extracton method we need to implement the required
API on our case study RNN. The API specifies the following three methods as taken from
the Colab notebook provided by Weiss et al. [WGY18b]:

1. CLASSIFY_WORD( WORD) returns a True or False classification for a word over the in-
put alphabet

2. GET_FIRST_RSTATE() returns a continuous vector representation of the network’s ini-
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tial state (an RState, as a list of floats)

3. GET_NEXT_RSTATE(STATE,CHAR) given an RState, returns the next RState the network
goes to on input character char

The continuous vector representation of the network’s initial state must include all hid-
den values of the network. For a LSTM network this would be the concatenation of the
hidden and cell state vectors of each of its layers. The LSTM cell state or c state represents
the LSTM cell’s memory, i.e., its representation of past input. The hidden state of h state is
the LSTM cell’s output, i.e., the LSTM cell’s ’reaction’ on its current input and cell state. The
LSTM cell state is controlled by hidden state and cell input. The LSTM cell can ’forget’ or
’remember’ new information based on previous output (hidden state) and current input.

We implemented this API on our Keras based version of the case study RNN. To asses our
API implementation we repeated the extraction experiments on the seven Tomita gram-
mars as performed by Weiss et al. in their paper [WGY18a]. The Tomita grammars have an
alphabet that consists of only two symbols, 0 and 1, so we had to adjust our RNN’s input
layer to this alphabet size. We then trained this version of our RNN to 100% accuracy on
data generated from each of the Tomita grammars. Using the extraction algorithm pro-
vided by Weiss et al. we where able to successfully extract the correct DFA’s from each of
these trained RNN’s, confirming our API implementation is working correctly.

8.2. CROSS-VALIDATION ON DIFFERENT RNN IMPLEMENTATION

Our objective is to evaluate the practical applicability of pedagogical rule extraction meth-
ods. One important aspect of pedagogical rule extraction approaches is their potential to
be widely applicable as they should place no (or little) requirements on the RNN’s archi-
tecture or internal workings. This aspect of rule extraction methods is called translucency,
as described in 4.3. To evaluate this quality aspect and determine if the extraction meth-
ods somehow depend on the provided RNN implementation, we repeated the experiments
with a different RNN implementation.

For these additional experiments we used the RNN implementation that Weiss et al. pro-
vided in their experimentation code for the DFA rule extraction method [WGY18b]. This
RNN is written in Dynet 1, a popular machine learning toolkit for Python, and has a sim-
ilar architecture than our Keras based RNN. However, instead of one-hot encoding it uses
word embeddings on the input layer . The rest of the network consists of one ore more re-
current layers, followed by an output layer consisting of two neurons, modelling the class
probabilities. The final binary predictions are calculated by taking the probability of the
positive class and applying a threshold value of 0.5. For the experiments we used a version
of this RNN with a single LSTM layer with 12 neurons, the same as for the Keras based RNN.
The word embedding dimensionality was left to its default value of 3 2. The new RNN was
trained using the training code also provided by Weiss et al. 3

1http://dynet.io/
2This follows the rule of thumb to use the 4th root of the number of input categories for the embedding

dimensionality
3More details on the RNN implementation and training algorithm used by Weiss et al. can be found in https:
//github.com/tech-srl/lstar_extraction

http://dynet.io/
https://github.com/tech-srl/lstar_extraction
https://github.com/tech-srl/lstar_extraction
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We of course used the same datasets as we used for our Keras based version, however,
due to how the training algorithm of Weiss et al. expects the training samples, the number
of actual samples used will be less. The training algorithm takes a dictionary of words and
class labels. This effectively means that all duplicate words are taken out of the training
data. As the original data was disctretized using the k-means method into an alphabet of
100 symbols, it is to be expected that there will be samples that contain duplicate sequences
(i.e. words). For the Keras based RNN these duplicates are not removed from the datasets,
but, due to the chosen implementation, they will be when we train the Weiss et al. based
RNN.

We trained this Dynet based RNN to 100% accuracy and it reached an accuracy of 96%
on the test set, which is identical to the performance of our Keras based version. A full
classification report for this RNN on the test set is given in table 8.1.

precision recall f1-score support
0 0.97 0.97 0.97 1112
1 0.95 0.95 0.95 635

accuracy 0.96 1747
macro avg 0.96 0.96 0.96 1747

weighted avg 0.96 0.96 0.96 1747

Table 8.1: Classification report on test set for alternative case study RNN implementation

We noticed considerably better training convergence for this RNN than with the Keras
based version of the case study RNN. This may be related to the previous point. If all du-
plicate samples are removed from the training data the network will not have to deal with
potentially conflicting samples, i.e., samples that have different class labels for the same
word.

8.3. HYPER-PARAMETERS

Both rule extraction methods have a few parameters that affect their extraction process.
We will experiment with different settings for these parameters to evaluate their effect and
to find the appropriate settings for our case study RNN. To get a feel for the appropriate
and feasible ranges of these hyper-parameters we performed some initial extraction exper-
iments, which will be discussed in the next sections.

8.3.1. WA EXTRACTION METHOD

We found that even with relatively small Hankel basis sizes the WA rule extraction method
already obtained quite reasonable fidelity figures. For a Hankel basis size of 10 there were
already extractions that could reach a fidelity better than 75%. Therefore we chose Han-
kel basis sizes of 10, 15, and 20 for our experiments. Furthermore, we found that a rank
value of 6 already achieved great fidelity, so we chose this as the maximum value for our
experiments.

During the initial experiments we experienced out-of-memory exceptions for some ex-
tractions. We noticed that especially when we used sampling from the training set to gener-
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ate the Hankel basis, we could only use a maximum Hankel basis size of 20 before reaching
the maximum available memory (25GB) on some extractions. When we further investi-
gated this issue we found that is was caused by how the Hankel basis was being generated.
When we use sampling from the training set there may be some runs in which samples are
drawn with very long sequences. The way the WA extraction algorithm generates the Han-
kel basis causes it to create pre- and suffixes for the whole sequence, even if this means that
their number will exceed the set Hankel basis size. This means that when we use sampling
from the training we cannot really control the maximum Hankel basis size. In the datasets
we use here, the maximum sequence length is 100 symbols. This means that potentially a
very large number of pre- and suffixes is generated, resulting in out-of-memory exceptions.
Besides leading to out-of-memory exceptions, even on low basis size settings, this also has
implications for the interpretation of the results. Because, although we want to evaluate a
certain Hankel basis size setting, the actual basis size that is generated may be much larger
than reported.

To address this issue we changed the code that generates the Hankel basis. We included
a maximum margin to which the requested number of pre- and suffixes may be exceeded.
When a word is sampled that will cause this margin to be exceeded it is rejected and an-
other word is sampled. To prevent an endless loop when all subsequent words will exceed
this margin, e.g., when we sample from a dataset with only large words, we added a maxi-
mum re-sampling criteria. With this adaptation we can better regulate the actual size of the
generated Hankel basis. Additionally, we will also record the actually generated number of
pre- and suffixes, so we know exactly what Hankel basis size the results are based on.

8.3.2. DFA EXTRACTION METHOD

The DFA method only really has one hyper-parameter, the extraction time limit. The other
parameter controls the initial split depth of the first refinement of the abstraction and can
be used to prevent the algorithm from prematurely terminating on small automaton. So,
as long as this situation does not occur, the latter parameter can be ignored and left to its
default value of 10.

During the initial experiments on the Dynet based RNN implementation from Weiss et
al. we experienced out-of-memory exceptions on the DFA extractions. We could only run
the algorithm using a relatively short time-out setting (< 100 seconds) to prevent it from
consuming all available memory.

The DFA extractions on the Keras based version of our case study RNN were much slower
than for the Dynet based version. Therefore, we had to apply different time limits than in
the experiments on the Dynet based RNN. We tried to use comparable time limits, with
respect to the size of the extracted DFA’s, as much as possible.

Also on this Keras based version we ultimately experienced out-of-memory exceptions
on some runs of the DFA extraction algorithm. We could not reliably run the extraction for
time limits beyond 1000 seconds.

As mentioned, we could only obtain a maximum extraction time of 100 seconds on the
Dynet based RNN implementation and 1000 seconds on the Keras based RNN before reach-
ing the maximum available memory (25GB). This resulted in DFA’s with between 42 and 73
states. As the ultimate goal is to extract automata that can help to explain the RNN’s be-
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haviour, we felt this number of states would already be a maximum. Therefore, we exper-
imented with extraction times in the range of 1 to 100 seconds for the Dynet based RNN
implementation and 5 to 1000 seconds for the Keras based RNN.

8.4. RESULTS

Using the setup described in the previous sections we applied the RNN rule extraction
methods to both versions our case study RNN. For brevity we will only report the most
interesting findings.

8.4.1. WA EXTRACTION METHOD

Table 8.2 and 8.3 summarize the achieved average fidelities for the Dynet and Keras based
RNN versions respectively. They show the minimum, median and maximum average fi-
delity values over all runs, together with the applied settings for the hyper-parameters.
These tables give a quick insight into the overall performance of the WA extraction method
and the best settings for the hyper-parameters.

Dynet based RNN
Rank Min Median Max
value avg. fidelity setting avg. fidelity setting avg. fidelity setting
2 77% (100, 15) 84% (100, 15) 91% (50, 20)
3 85% (100, 0) 88% (100, 0) 91% (100, 20)
4 83% (50, 15) 90% (100, 20) 92% (30, 0)
5 85% (100, 20) 90% (100, 20) 93% (30, 20)
6 86% (100, 15) 90% (100, 20) 94% (100, 15)

Table 8.2: WA extraction average fidelity per rank value with applied settings. (Hankel basis size, max length),
max length 0 means sampling from training set

Keras based RNN
Rank Min Median Max
value avg. fidelity setting avg. fidelity setting avg. fidelity setting
2 71% (100, 0) 81% (50, 0) 94% (30, 0)
3 77% (100, 0) 92% (100, 20) 97% (10, 0)
4 68% (100, 10) 89% (50, 15) 97% (50, 20)
5 82% (50, 10) 94% (30, 0) 99% (30, 0)
6 80% (50, 15) 94% (20, 0) 98% (50, 0)

Table 8.3: WA extraction average fidelity per rank value with applied settings. (Hankel basis size, max length),
max length 0 means sampling from training set

Figures 8.1 to 8.3 give the maximum average fidelities achieved by the WA extraction
method for the different settings. The first figure shows the maximum average fidelity
achieved for each rank value versus the applied Hankel basis size. The values are calculated
by taking the maximum values over all runs for all other settings. This we they represent
the maximum fidelity values achieved in the experiments. The next three figures display
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(a) Dynet based RNN (b) Keras based RNN

Figure 8.1: Maximum achieved average fidelities for WA method.

(a) Dynet based RNN (b) Keras based RNN

Figure 8.2: Maximum achieved average fidelities for WA method per hankel basis size.

box plots of how the maximum average fidelity varied over all runs, broken down for the
different hyper-parameters. The values are calculated by taking the maximum of the runs
for all other settings. This we they represent the maximum fidelity values achieved during
the runs of the experiments.

Figure 8.5 shows the median of the overall execution time for the WA extraction method
per applied Hankel basis size and its variation over the individual runs. Again, the val-
ues are calculated by taking the maximum of the runs for all other settings, yielding the
maximum values observed during the runs of the experiments. As mentioned in previous
chapters, these values should be taken as indicative and not necessarily as representative
values for the method in general, as there can be many factors that have influenced the
overall execution time.

Finally, in figure 8.6 we show the smallest best performing automata that where extracted
in the experiments for both RNN implementations. The images had to be cropped to
fit. These automata each have two states and a large amount of transitions between their
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(a) Dynet based RNN (b) Keras based RNN

Figure 8.3: Maximum achieved average fidelitiesfor WA method per rank value .

(a) Dynet based RNN (b) Keras based RNN

Figure 8.4: Maximum achieved average fidelities for WA method per sampling method.

(a) Dynet based RNN (b) Keras based RNN

Figure 8.5: WA extraction times.
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(a) Dynet based RNN (b) Keras based RNN

Figure 8.6: Best preforming, smallest automata extracted.

states. It appears there is a transition for each symbol in the alphabet between every pair
of states, each with a slightly different weight value. The overall best performing automata
that where extracted are too large to display here and can be found in appendix C. These
automata had 5 to 6 states and an extremely large amount of transitions between the states,
again it appears there is a transition for each symbol in the alphabet between every possible
pair of states.

8.4.2. DFA EXTRACTION METHOD

The DFA extraction method has less hyper-parameters and no data sampling options. There
is really only one parameter that effects the extraction process and influences the resulting
DFA and that is the extraction time limit. This means that there are only two dimensions
left for which we can report the results, the applied time limits and the runs per experiment.
For this reason we report the main results of the experiments in the form of table 8.4 and
8.5.

Dynet based RNN
Time Min Median Max
limit avg. fidelity DFA size avg. fidelity DFA size avg. fidelity DFA size
1 77% 3 77% 3 77% 3
2 77% 3 77% 3 77% 3
5 84% 10 84% 10 84% 10
10 84% 10 84% 10 84% 10
20 81% 18 81% 18 81% 18
50 84% 36 84% 36 84% 36
75 86% 42 86% 42 86% 42
100 86% 42 86% 42 86% 42

Table 8.4: Achieved average fidelity and extracted DFA size per extraction time limit
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Keras based RNN
Time Min Median Max
limit avg. fidelity DFA size avg. fidelity DFA size avg. fidelity DFA size
5 27% 2 27% 2 27% 2
15 87% 4 87% 4 87% 4
150 87% 16 87% 16 87% 16
300 87% 39 87% 39 87% 39
500 76% 73 76% 73 76% 73
1000 76% 73 76% 73 76% 73

Table 8.5: Achieved average fidelity and extracted DFA size per extraction time limit

Additionally, we graphically show the achieved average fidelities and DFA sizes for the
different time limits in figure 8.7 and 8.8. Figure 8.9 shows the median of the overall execu-
tion time for the DFA extraction method per time limit and its variation over the individual
runs.

(a) Dynet based RNN (b) Keras based RNN

Figure 8.7: Achieved average fidelities for DFA method per time limit.

Finally, we show examples of the extracted automata for both methods. Figure 8.10 shows
the smallest, best performing automaton that where extracted in the experiments for both
RNN implementations. Again, the overall best performing automata that where extracted
are too large to display here and can be found in appendix C. These automata had between
42 to 73 states and an extremely large amount of transitions between the states.
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(a) Dynet based RNN (b) Keras based RNN

Figure 8.8: Size of automaton extracted by DFA method per time limit.

(a) Dynet based RNN (b) Keras based RNN

Figure 8.9: DFA extractions times.

(a) Dynet based RNN

(b) Keras based RNN

Figure 8.10: Best preforming, smallest automata extracted.
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8.5. ANALYSIS

In general it seems that both methods can successfully extract automata from the RNN
implementations. The WA extraction method achieved an impressive maximum average
fidelity of 93% on the Dynet based RNN and 99% on the Keras based RNN. The DFA ex-
traction method achieved a maximum average fidelity of 86% on the Dynet based RNN and
87% on the Keras based RNN, which is still quite good. These fidelity figures are surprisingly
high and we did not anticipate such high fidelities upfront.

When we look at the extracted automata themselves, however, the situation is not so pre-
fect. The best performing automata, especially the weighted automata, are very complex.
They contain a (very) large number of transitions and states, which makes their interpre-
tation nearly impossible. Combined with a large alphabet of 100 symbols and the complex
semantics of the weighted automata it is highly unlikely that the extracted automata will
provide any real contribution to gaining insight into the RNN’s behaviour.

The overall extraction behaviour of the two method is quite different. The DFA extrac-
tion method is quite predictable between runs. As we can see from tables 8.4 and 8.5 it
will consistently produce the same DFA between runs for a particular extraction time limit
setting. The WA extraction method on the other hand, behaves quite erratic between runs.
For some runs the method produced a WA that is a good approximation of the RNN, but on
other runs it would completely fail to do so. The difference between runs was very large,
especially for the lower Hankel basis size settings. Even when we look at figures 8.2, 8.3
and 8.4 which show the best achieved average fidelity we can see there is a large variation
between runs.

For the WA extractions on the Dynet based RNN the general trend seems to be that the
larger Hankel basis sizes yield a better fidelity. There is a drop in fidelity, however, when
using larger Hankel basis sizes for some rank values. For the extractions on the Keras based
RNN we see a different trend. Here the larger Hankel basis sizes lead to poorer fidelity val-
ues. Especially there is a drop in fidelity for all rank values for a Hankel basis size of 100.
This drop in performance for larger Hankel basis sizes may be caused by how the WA ex-
traction method builds the Hankel basis and how the RNNs were trained. The Hankel basis
is generated by drawing words from either the uniform distribution on symbols with a max-
imum lengths or from the training set. The WA algorithm will add all the pre- and suffixes
of these words to the list of unique pre- and suffixes. This process will continue until ei-
ther list’s length exceeds the selected Hankel basis size. It then generates words from all
possible combinations of the prefixes, single letters from the alphabet and the suffixes. As
the generated words are combinations of pre- and suffixes they can be (much) larger than
the words from the training set or the maximum length used for sampling from the uni-
form distribution on symbols. The drop in performance for larger Hankel basis sizes may
be partially explained by the fact that the RNN was trained on sequences with a maximum
length of 100 symbols. As the WA method can generate longer words for large Hankel basis
sizes the RNN may have misclassified these longer sequences which may negatively impact
the extraction process.

The WA extraction time on the Dynet based RNN was almost twice as long as for the
Keras based RNN. This most likely has to do with the fact that the Dynet based RNN per-
formed single predictions because of how it was implements, whereas the Keras based ver-
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sion could use batch prediction. For the DFA extraction time this situation was reversed
and DFA extraction on the Keras based RNN took nearly ten times as long as on the Dynet
based RNN. This may be explained by the fact that the DFA extraction method preforms
single word queries on the RNN and does not group words into batches. This means the
RNN have to perform a large number of single word predictions, for which we have found
the Keras based implementation took much longer than the Dynet based version. A more
detailed analysis on the prediction performance of the RNN’s can be found in appendix C.

When we look in more detail at each method individually we see other differences that
impact their practical application. The WA extraction method has quite a number of hyper-
parameters to get right, especially when applying it on a non-generative model. The appro-
priate values for these parameters are quite hard to estimate upfront. Also the parameters
interact with each other making this even harder, for example, the used sampling method
for the Hankel basis generation impacts the Hankel basis size that is actually generated by
the algorithm. The DFA method really only has one hyper-parameter, the extraction time
limit. This makes it easy to apply in practice. However, we were unable to use large timeout
settings as this would lead to out-of-memory exceptions on our environment. One down-
side of the DFA extraction method may be that the size of the extracted automata cannot
easily be controlled by the time limit setting. Ideally each method would provide a means
to select the desired granularity of the RNN approximation.

Of course our experiments are not necessarily representative of either method’s perfor-
mance in all scenario’s, but we do believe they give a good impression of their practical
applicability and the challenges that come with applying them in practice.



9
CONCLUSIONS AND RECOMMENDATIONS

Although recently there have been interesting advances in the explainability of recurrent
neural networks in the form of RNN rule extraction (RNN-RE) methods, these methods
have been mainly evaluated on small RNN or toy examples and have not really been ap-
plied to practical networks. Also, their actual contribution to gaining insight into the RNN’s
behaviour in a practical setting has largely remained an open question. This means that
the real practical use of these methods has been fairly unclear.

This thesis has investigated the practical use of two of the most recent pedagogical, or
black-box RNN-RE methods, a WA extraction method [AEG18] and a DFA extraction method
[WGY18a]. In chapter 3 we have formulated our main research questions and have broken
them down in a number of sub questions. To answer these questions we have explored
how the methods can be applied to a botnet detection RNN that has not been specifically
trained for the purpose of rule extraction. We have looked into the practical implications
of their application and if the extracted automata can ultimately provide an explanation
for the RNN’s dynamics. The detailed answers to our sub questions are summarized below
and are followed by an overall conclusion answering our main research questions.

RQ1.1 What is the best way to evaluate the overall extraction performance and the quality
of approximation of the extracted automata?

We have answered this question in chapter 4 where we covered several quality aspects
and formulated our version of a fidelity metric. We defined an average fidelity metric
which gives a good overall impression of the quality of approximation of the extracted
automata and additionally we described a more strict minimal fidelity metric, which
highlights any problem with individual class performance the automaton may have.

RQ1.2 How can the case study RNN, with its continuous input, be used by the black-box rule
extraction techniques that expect symbolic data?

We have answered this question in chapter 6 where we explored how the original con-
tinues input domain of the case study RNN could be best discretized into a manage-
able alphabet so it could be used by the RNN-RE methods. A k-means based method
performed the best and we managed to infer an alphabet of 100 symbols whilst still
maintaining good classification performance.

59



60 9. CONCLUSIONS AND RECOMMENDATIONS

RQ1.3 Can the WA rule extraction method, aimed at models that compute a real valued
function on sequential symbolic data, be used for binary classification?

In chapter 7 we investigated how the WA extraction method could be applied to a
binary classification model for which it was not originally intended. We tested the
method on the seven Tomita grammars [Tom82] and used a ROC analysis to deter-
mine the appropriate valuation threshold values. We were able to successfully ex-
tract WA’s for all grammars and all the automata achieved a fidelity of 100% against
the grammar models, proving it is possible to apply the WA extraction method to bi-
nary classifiers.

RQ1.4 Can the techniques be successfully applied to the case study RNN, what are the best
extraction settings for each technique and how well can each technique approximate
the RNN’s behavior?

We have answered this question in chapter 8 where we applied the methods to two
version of the case study RNN and evaluated many different settings for each rule
extraction method.

For the WA method we have found that using sampling from a dataset provides the
most reliable results. For sampling from the uniform distribution on symbols a max-
imum length that is just long enough for the selected basis size works best. The WA
methods becomes more reliable and produces better performing automata for larger
basis sizes. For our case study RNN a basis size of 100 performed best. With respect
to the rank values we found that even low settings of 3 already produced good results.
The best performance was achieved for a rank value of around 5 to 6.

For the DFA method we have found that really only the extraction time limit needs to
be set to achieve working extractions. The method will produce larger automata for
longer time limits. For the most parts these larger automata will have an improved
fidelity, so to achieve the best fidelity a large time limit would be set. Unfortunately,
resource constraints limited us in how large we could set this time limit. However,
we do not feel this has limited our findings as we found that even within these con-
straints the method produced fairly large automata that achieved adequate fidelity.

For the WA extraction method the best average fidelity values we found were 94% for
the Dynet based version of the case study RNN and 99% for the Keras based version.
The best minimum fidelity values were not too far behind with 91% and 98%, respec-
tively.

For the DFA method the best average fidelity values we found were 86% for the Dynet
based version of the case study RNN and 87% for the Keras based version. The best
minimum fidelity values were 80% and 84%, respectively.

These figures show that both methods can approximate the case study RNN’s be-
haviour quite well, but that, at least in our experiments, the WA extraction method is
superior in this respect.

RQ2.1 How should the numerical semantics of the extracted WAs be interpreted, particularly
in a binary classification scheme

Arjen Hommersom
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We have answered this question in chapter 7 where we performed WA extractions on
the seven Tomita grammars. We investigated the semantics of the extracted weighted
automata and analysed how they should be interpreted.

RQ2.2 How well does each technique help to explain the RNN’s operation?

In chapter 8 we applied the extraction methods to our case study RNN and looked at
the smallest, best performing and overall best performing automata. We found that
even the smaller automata were far too complex, either in size or in their semantics,
to offer any global insight into the RNN’s operation.

We can now answer our main research questions:

Can the black-box rule extraction techniques be applied to a practical RNN not specif-
ically trained for this purpose?

and

Do the extracted rules provide insight into the RNN’s operation?

We have found that, although some practical aspects had to be addressed, the meth-
ods could be successfully applied to the case study RNN and that they obtained good to
excellent fidelity figures. The extracted automata, however, are so complicated, either in
size or in their semantics, that they do not readily enable human interpretation. There-
fore, we feel that the extracted DFAs and WAs do not easily provide a global explanation of
the RNN’s operation. They might, however, be useful to analyse the RNN’s prediction on
a specific datum, i.e., provide a local explanation. Overall we conclude that, although the
techniques are interesting and can certainly be useful, they are unlikely, in their current
form, to provide a complete answer to the RNN explainability problem.

9.1. LIMITATIONS

The results presented in this work demonstrate the practical application of the two most
recent black-box RNN-RE methods. This work, explorative in nature and intended to be a
practical evaluation of the extraction methods, has several limitations, either inherent or
practical in nature.

9.1.1. GENERALITY

We have evaluated the practical feasibility of the rule extraction methods on one partic-
ular model, the botnet detection network. Although we have used two different imple-
mentations for this network, the results are still based on the application of the extraction
methods on one problem domain. This makes it difficult to draw general conclusions from
these experiments. However, the trends that we have found and the insights into the inter-
pretability of the extracted automata seem more general.

Also we evaluated the extraction methods on the 7 Tomita grammars, which have been
widely used in other RNN-RE studies. This side-by-side comparison of the different meth-
ods under similar conditions does offer some general insights into the practical applicabil-
ity of the two methods.
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Furthermore, the main objectives of this research were to explore the practical applica-
bility of the rule extraction methods and to gain insight into the interpretability of the ex-
tracted automata and to asses if they can help to gain insight into the behaviour of the
RNN. We feel we have achieved these goals, even if the results themselves may not be fully
generalizable.

9.1.2. RESEARCH CODE

Although we have been as thorough as possible, there is always a change that the research
code we wrote contains errors that may have influenced our results. The same applies to
the code we received from the researchers of the evaluated rule extraction methods. How-
ever, we have repeated the extraction experiments on different datasets and cross-validated
on different RNN implementations and still achieved similar results. Also the achieved re-
sults seem logical and the trends in the data can be explained, so we feel quite confident
that this is not the case.

Also, the Keras based RNN implementation and the associated data prepossessing we
wrote may quite possibly not be optimal in terms of performance. This may have had an
effect on the rule extraction performance of each method, resulting in worse reported ex-
traction times than would otherwise be possible. Although this may have increased extrac-
tion times it does not, at least in our opinion, invalidate or compromise our other findings.

9.1.3. CONSTRAINTS ON HYPER-PARAMETERS

We experienced large memory consumption of both RNN implementations when perform-
ing repeated single predictions. This seems to be related to the computation graphs of the
underlying technology. Since this problem caused out-of-memory exceptions we had to
restrict the maximum Hankel basis size for the WA extraction method and the maximum
extraction time for the DFA extraction method. These restrictions limit the potential of each
method to extract automaton with (very) high fidelity. Although, a limitation, we feel that,
given the recorded fidelity scores of the extracted automata, this has not led to a significant
degradation in the experiments we performed.

9.1.4. HANKEL BASIS SIZE

In the case study extraction experiments we uncovered an issue with the Hankel basis gen-
eration which could lead to a basis that is much larger than the size requested. To address
this issue we changed the Hankel basis generation code and recorded the actual number of
pre- and postfixes generated in each experiment. For the WA Tomita experiments, however,
we did not do this, since at the time these experiments were conducted we did not know
about this issue yet. Most likely this was less of an issue for these experiments because
we limited the word sizes in the data sets to a maximum length that was similar to the
evaluated maximum string lengths for generation from the uniform distribution on sym-
bols. However, there is still a change that the generated Hankel basis was larger than the
evaluated setting. Worst case its size can be almost twice as large. For example, when the
previous samples grew the number of pre- and postfixes to just under the Hankel basis size
setting and the next sample is a word of the maximum length. As mentioned, we did not
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record the actually generated number of pre- and postfixes in the WA Tomita experiments,
so we do not exactly know how often this situation has occurred during the experiments.
This may have impacted the validity of the results for these experiments.

9.2. RESEARCH CONTRIBUTIONS

The main contribution of this research is to provide insight into the practical applicability
of the two most recent pedagogical recurrent neural network rule extraction techniques.
We have identified and addressed some practical implications of their application, demon-
strated how the methods can be used on a case study RNN and assessed how the extracted
automata contribute to explaining the RNN’s operation. Also we have performed a com-
parative evaluation of both rule extraction methods under similar circumstances. This, to
the best of our knowledge, has not been done before in this manner.

Additionally, we have made further contributions throughout this research, either prac-
tical in the form of changes or additions to the code of the extraction methods, or in the
form of insights into their application. We briefly summarize these additional contribu-
tions here.

1. We have found and corrected several issues with the WA extraction method’s code as
provided to us by the researchers. We have added implementations for generating
the Hankel matrices based on sampling from a dataset or the uniform distribution
on symbols using a maximum length parameter. We have informed the researchers
and provided our version of the code to them.

2. We have explored if the WA extraction method could be applied to a binary classifier
and proven this is possible. With this insight we may have broadened the method’s
application.

9.3. FUTURE WORK

We sincerely hope that the work presented in this thesis may spark further research on the
explanation of recurrent neural networks or the area of explainable machine learning in
general. Based on the work presented, we believe the following directions could be inter-
esting for further research.

Firstly, for the generality of this research, additional experimentation could be done on
other RNN models from different domains and for a larger range of settings for each method
to see if the results found in this thesis apply to other areas as well. Also, the way we dis-
cretized the original continuous input domain of the case study RNN can be improved. We
ultimately had to re-implement the case study RNN and directly train it on the ’symbolized’
input domain, as we were not able to simply use a separate adapter in front of the original
RNN. This, of course, severely limits the practical application of this approach. Perhaps a
separate ANN could be used as input adapter and trained to learn the mapping between
the symbolized’ input domain and the original domain so the original RNN can be used on
’symbolized’ data.

Secondly, we have seen, especially when the target class distribution is highly imbal-
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anced in the input domain, that the WA extraction algorithm performs poorly with respect
to extraction success rate. The main reason for this, we found, is the way the Hankel basis
is generated. Because the generation relies, for the case of a non-generative model, on ran-
dom sampling, there is no way to guarantee that the selected samples are representative for
the input domain, i.e., capture all the relevant variations. So any improvements in this area
would be highly beneficial. Especially methods that would increase the chance of selecting
representative samples, i.e, samples that lead to combinations of pre- and postfixes that
form relevant data points in the input domain. Alternatively or related, it would be good
to have an upfront indication, i.e, some sort of metric, of how well the selected data-points
in the Hankel matrices capture the information of the input domain, meaning before the
expensive step of querying the RNN is started. This way the basis generation could be re-
tried, which is relatively inexpensive, without having to perform all the time consuming
predictions before finding out the resulting WA has poor fidelity.

Thirdly, for the rule extraction methods we have evaluated in this work we believe the
interpretation of the extracted automata could be enhanced. To improve the readability
of the automata in general and to enhance the link to the original input domain, the sym-
bols in the automata could be mapped back to the input domain values or value ranges
they represent. Also visual highlighting or tracing of paths in the automata may help with
local explanations. Furthermore, the non-deterministic nature of the weighted automata
makes them exceptionally difficult to interpret. Perhaps incorporating techniques such as
determinization [BGW00] could contribute to alleviate this.

Finally, however, from what we have seen in this research we do not believe that either
weighted automata or deterministic automata will ultimately be the way to provide insight
into the complex operation of recurrent neural networks. Therefore the main direction of
further research, we believe, should be towards finding other form of automata that can
better capture and convey the behaviour of a trained RNN.



10
REFLECTION

We chose to use an online computing platform to conduct our experiments. Although a
well considered choice at the time it has been a mixed experience. It did enable us to work
easily from different locations, which was a great help whilst balancing between our work
obligations and performing this graduation assignment. On the other hand we also had
some problems with fluctuating performance and unexpected terminations of execution
sessions. Despite these drawbacks we still feel it was a good decision to use a cloud based
computing platform.

Initially we did not anticipate that we would have to develop and train RNNs ourselves.
However, quite soon in our research it became apparent that this would be required to be
able to achieve the research objectives. At the beginning of this assignment we had very
limited knowledge of machine learning, let alone recurrent neural networks. Also we had
little to no experience with the required tooling or languages such as Python or Keras. We
had to cover a lot of topics in a very short time and we are quite proud of the results we
achieved.

Overall the process of performing this graduation assignment had its ups and downs. It
has been one of the hardest things we ever had to do, but has been very educative and
rewarding in the end.
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A
CASE STUDY RNN

Originally we did not intend to re-implement or re-train the case study RNN. The main
focus of our research is on RNN rule extraction and not on RNN architectures or RNN
training. However, quite early in our research it became apparent that we could not use
the botnet RNN from Poon [Poo18] directly. Poon used a RNN toolkit called, CURRENNT,
which is an open-source implementation of deep recurrent neural networks written in C++.
The pedagogical rule extraction methods that we want to evaluate, however, are written in
Python.

In principal it is possible to call C++ code from Python. However, we also wanted to allow
our research code to be executed on a cloud platform as we suspected we might need com-
putational resources that would exceed those locally available to us. Besides this platform
requirement, we also had no real prior experience with either C++ or Python. We felt it
would be to much of a project risk to try and bridge both language systems. Also there was
a good possibility that we would need to change or adjust the RNN later in our research.
As we felt slightly more comfortable in Python, and this also seemed to be the language of
choice of the researches and the machine learning community in general, we decided we
would not use the original RNN of Poon, but rather re-implement it in Python.

We first looked into reusing the network files of Poon containing the trained RNN weights
so we would not have to re-train our RNN. Unfortunately we were not able to use these
weight values to initialize our Python RNN implementation as the exact structure of these
weights and how they would correlate to those in our RNN was not clear. Rather than
spending a lot of time in understanding the intricate details of the different RNN imple-
mentations we decided to re-train the Python RNN using the original training set used by
Poon.

After some investigation into the different machine learning libraries and toolkits avail-
able in Python we decided to use Keras [ker20]. as this seemed like to most user friendly and
flexible one. On its website Keras is typified as: "Keras is a high-level neural networks API,
written in Python... It was developed with a focus on enabling fast experimentation. Being
able to go from idea to result with the least possible delay is key to doing good research.".

Using the Keras documentation we constructed a simple RNN model with an input layer
for the 12 input features, a hidden LSTM layer with 12 nodes, and a dense output layer with
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one output. This RNN model is different from that of Poon’s best performing RNN that was
a BLSTM network with one hidden layer of 384 neurons. We felt, however, that it would be a
better strategy to start with a simpler model and increase its complexity when required. Be-
sides being a good engineering practice, keeping things simple is also the preferred practice
in machine learning to avoid overfitting [Haw04]. Overfitting occurs when the model has
to many degrees of freedom and in a way overcomplicates the problem, such a model may
fail to generalize correctly on the training data resulting in poor classification performance
on unseen data.

The original netCDF dataset of Poon could not be used directly to train our Keras RNN so
we needed to convert it into a compatible format. Also the Keras training routine expects
all the training samples to be of equal length. To achieve this all samples should be padded
to the length of the longest sequence in the dataset using a special padding value. The
datasets contained some very long sequences that would require a large amount of padded
data. We set the maximum sequence length to 100 and filtered out all samples that con-
tained longer sequences. This resulted in a loss of samples of less than 1% on the training
and validation sets and less than 2% on the training set, which we deemed acceptable.

Because we padded the input sequences we also need to add a masking layer to our net-
work. A masking layer annotates the input data so the following layers can distinguish
between real and masked data. This prevents the network from training on masked data as
well.

We have also experimented with two output neurons, one for each class. In this case
the binary classification of the model is achieved by applying an argmax function to the
output, which gives the index of the output with the highest value, i.e., the predicted class.
Although both configurations could ultimately be trained to reach similar performance we
did experience slightly better training convergence using the version with separate output
neurons per class. The architecture of our final Keras based network is shown in table A.1.

Layer Type Size Description
1 Input 12 Input layer with 1 node per feature

2 Masking
Masks padded input so network is only trained
on real data

3 LSTM 12 LSTM RNN layer with 12 nodes

4 Batch normalization
Aids training convergence and allows larger
learning rates to be employed [IS15]

5 Dense (Sigmoid activation) 1
Outputs a continuous value between 0 and 1
representing the positive class probability.

Table A.1: Case study RNN network architecture

Using the converted training set we successfully trained this RNN to 99% accuracy on the
training set and 94% on the test set. See table A.2 for a full classification report on the test
set showing the precision, recall and F1-score for both the negative and positive class, their
averages and the overall accuracy.
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precision recall f1-score support
0 1.00 0.89 0.94 10225
1 0.88 1.00 0.94 8438

accuracy 0.94 18663
macro avg 0.94 0.94 0.94 18663

weighted avg 0.94 0.94 0.94 18663

Table A.2: RNN classification report on test set

MASKING

When we added a masking layer we ran into problems with running the model on the GPU
in Tensorflow 2.1. It turned out to be a known bug in the Keras/Tensorflow 2.1 implementa-
tion that has to do with fully padded sequences. The problem is that some input sequences
only contain padding and after masking will produce an empty sequence, which causes
the Tensorflow 2.1 engine to report an error when running on the GPU. At the time of writ-
ing this problem has not yet been resolved in Keras/Tensorflow 2.1. To work around this
problem we had to resort to running the RNN on the CPU only.

RNN PERFORMANCE ANALYSIS

Surprisingly our RNN far exceeds the performance reported by Poon [Poo18] for his ver-
sion of the botnet detection RNN. His implementation had a accuracy of just 80.05% and
a F1-score of 75.10%. The reason for this quite substantial difference is not entirely clear,
but even after reevaluating our dataset conversion code, RNN implementation and train-
ing code and repeating the RNN training several times we came to the same performance
figures for our implementation of the botnet detection RNN.

A possible explanation might be that our RNN is a LSTM with one hidden layer of only 12
neurons where as Poons best performing RNN was a BLSTM network with one hidden layer
of 384 neurons. This significantly larger number of hidden neurons might have caused his
network to overfit the training data which may lead to lower performance on the test set
[Haw04]. Poon does not provide enough detail in his thesis to further substantiate this
notion, however, the large validation errors reported in his work might also point in this
direction.

Another potential explanation could be the fact that we normalized the input features
using a min/max scaler to be between 0.01 and 0.99 so we could use 0.0 as padding and
masking value. The original features were normalized to have zero mean and unit vari-
ance, but their actual value ranges differed quite a lot between them. Some features were
between -1.0 and 1.0 whilst others where between -0.6 and 5.2 see also B.1.3. We did expe-
rience a drop in training convergence and classification performance when we omitted the
min/max scaling, which further points in this direction.



B
INPUT DOMAIN DISCRETIZATION

The original input domain of the botnet detection RNN consists of vectors of 12 continuous
features. To transform these vectors into symbols and use them as input for the RNN we
have experimented with different discretization approaches. In this appendix the results
of these experiments can be found that were too large or detailed to include in the main
content.

B.1. DISCRETIZATION EXPERIMENTS

Our first approach was to define a symmetrical function or bijection between the original
input domain, consisting of 12 real valued features, and a set of symbols. Samples from the
original input domain can be mapped into symbols and inversely mapped back into vec-
tors in the original input domain. This process effectively discretizes the original samples
using the alphabet size as discretization level.

So given an n dimensional input domain I consisting of real valued vectors X and an
alphabet Σ consisting of m symbols we are looking for the mappings:

f : I →Σ= f :Rn →Σ (B.1)

g :Σ→ I ′ (B.2)

where I ′ = {x ∈ I } and |I ′| = m

The inverse mapping, that is the mapping from symbols to input vectors, is then used
as an additional input adapter to the RNN. This way the original trained RNN can be used
as-is, which, in our opinion, would lead to the most widely applicable approach. The RNN
and the input adapter together form the model that will be exposed to the rule extraction
techniques. Figure B.1 shows this approach.

B.1.1. DATASET CONVERSION

In the experiments we conducted, we wanted to use datasets that contain sequences of
symbols, i.e, words, and the associated classification labels. This way we could perform
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RNNg : Σ → I ′

RNN-RE Method

Figure B.1: Rule Extraction experiment setup

extractions on these dataset directly, where possible, and exclude any influence the RNN
may have. Also, one of the methods used by the WA extraction method to generate the
basis on which the Hankel matrices will be build, requires access to such a dataset. We
created these datasets by passing the samples from the original datasets through the input
vector to symbol mapping. This gives us a ’symbolized’ version of the original datasets.
Figure B.2 depicts this process.

f : I →Σ

’Symbolized’ Dataset

Original Dataset

Figure B.2: Dataset conversion using input vector to symbol mapping

B.1.2. DISCRETIZATION IMPACT ANALYSIS

It is difficult to asses the overall affect of the input discretization just by looking at the in-
put data itself as the RNN has learned a highly complex function between input and out-
put and it is unclear how a certain reduction of input fidelity will affect the classification
performance. Therefore we will assess the affect of the input discretization on the RNN’s
classification performance by evaluating the performance of the combined model on the
’symbolized’ training set against that of the RNN on the original training set.

B.1.3. INPUT FEATURE DISTRIBUTION

Before attempting to map the input we inspected the input features themselves in more
detail on the training set. We looked into the value range and distribution of each feature



B.1. DISCRETIZATION EXPERIMENTS 71

to get a feel for the sort of information each feature carries. The idea was that perhaps some
input features only had a very small contribution to the actual input and could be omitted
completely without loosing to much information.

To investigate this hypothesis we computed value histograms for each input feature on
the training set, see B.3. From these histograms is appears that feature 4 always has a con-
stant value and does not carry any real information, features 1 and 7 to 12 only take on two
values and features 2, 3, 5 and 6 have many different values. The histograms also show that
the feature values are not normalized to a common value range. Some features range from
-1.0 to 1.0 whilst others range from -1.0 to 6.0.

Figure B.3: Input feature histograms

We also conducted a Principal Component Analysis (PCA) on the input features. PCA
transforms the original input feature vectors into vectors of new features that are linearly
independent. If the original input features have any mutual correlation then the number
of features can be reduced without loosing significant information. This would give a quick
way to reduce the input space. The downside of this approach is that the new features are
not directly linked to the input domain, i.e., their meaning or role in the input domain is not
directly apparent. Loosing semantic information is not desirable as we will ultimately use
the symbols from the constructed alphabet to try and explain the RNN’s operation when in-
terpreting the extracted automota. Although insightful, we decided not to use PCA further
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in our input discretization for the aforementioned reasons.

B.1.4. HASHING

As a first experiment we made a mapping to a set of 100 symbols using a simple hashing
approach with even weight across all input features. The advantage of this approach is that
we do not need to infer the alphabet upfront from the input domain which would require
access to, for example, the RNN’s training set. We can simply add symbols to the alphabet
when we encounter input values that have not yet been mapped. This means the approach
could be used in an online setting in which the alphabet would be inferred on the fly.

A first naive attempt was simply reducing the precision of each feature by rounding them
to a certain number of decimals. For each input vector the string representation of these
rounded values were then combined into a string representation of the vector. This string
representation of the vector was then used a hash key in a symbol set to convert it into a
symbol. Clearly such a mapping cannot be easily inverted, but it would give us a feeling of
what alphabet size could roughly be achieved in this way. It quickly became apparent that
even when reducing the precision of the individual feature values to 1 decimal the resulting
alphabet size was still very large at 1177 symbols.

The downside of using a string hash as the set key was that we could not control the
alphabet size directly, but only by reducing the feature precision. We experimented further
with a variation of this idea in which we calculated the hash value of a vector of scaled down
feature values directly. Using modulo arithmetic on the absolute value of this hash allowed
us to directly control the number of unique symbols that was generated. Using this method
we were able to produce an alphabet of 100 symbols.

To create the inverse mapping for this hashing approach we can use the mean values of
the individual feature values over all the vectors that where mapped to each symbol. Its
obvious that we need a fair amount of observations before we can calculate steady mean
values. In an online setting these mean values could shift over time as more an more dif-
ferent input vectors are mapped to their corresponding symbols. To evaluate our hashing
approach we have chosen to use the training set to calculate the mean values upfront so we
have a consistent mapping during our experiments.

Clearly the downside of this approach is that we cannot control how the different input
vectors will collide and thus how well the original information will be retained. The chosen
feature precision will influence the hashing values and thus how many different input sam-
ples will be mapped to the same symbol. Without knowing upfront how the feature values
are distributed it may be very difficult to find the appropriate settings. Also this method
treats all features equally and the hashing process does not take value ’nearness’ into ac-
count, but rather treats each sample as an independent value. Other more sophisticated
methods could perhaps group vectors that are close to each other together and perform a
non linear separation of the input domain, preserving more of the original information.

Using the input vector to symbol mapping and the inverse mapping from symbol to vec-
tor mean values in conjunction allowed us to evaluate the impact of these mappings on the
RNN’s classification performance. When we applied this mapping to the setup of figure 6.1
and evaluated the performance of the combination on the RNN’s training set we found very
poor performance. The RNN with input adapter achieved an accuracy of just 72%. This is
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much lower than the 99% of the RNN when applied directly to the training set. A drop in
performance was to be expected, but when we look into the classification report details of
table B.1 we see the F1-score on the negative class is extremely poor. It is clear this setup
will not be usable for our experiments.

precision recall f1-score support
0 0.18 0.04 0.07 3981
1 0.75 0.94 0.83 12317

accuracy 0.72 16298
macro avg 0.46 0.49 0.45 16298

weighted avg 0.61 0.72 0.65 16298

Table B.1: RNN classification report on training set using hashing based input discretization

Clearly our discretization is removing to much relevant information from the input, caus-
ing the RNN to misclassify samples. As we felt that an alphabet of 100 symbols was already
quite large with respect the comprehensibility of the resulting automata we did not want to
increase the alphabet size.

B.1.5. CLUSTERING

After the unsuccessful hashing approach to the discretization problem we looked into other
solutions. We ultimately decided to employ a clustering algorithm called k-means. K -
means is an unsupervised learning algorithm that can divide input data into a number of
distinct clusters. The algorithm will cluster input vectors around the nearest mean values
in such a way as to minimize the within cluster variance. This algorithm is used in many
scenario’s where data needs to be separated into distinct bins or clusters and is widely ap-
plied in the literature [Jai10].

We used the k-means class from the Scikit learn Python library [sci20] to perform the
k-means clustering on the datasets. The benefit of using this implementation is that it
also provides an inverse transform which is precisely what we need. After converting the
datasets using the k-means clustering and its inverse transform we evaluated the effect of
the discritization.

We fit the k-means model on the training set and apply it to the other datasets. This way
our adapter is usable in a setting where we do not know the data upfront, other than the
original training data. This is a necessary requirement as the rule extraction approaches
can generate input samples during extraction that may represent previously unseen data.
Also if we would fit the k-means model on each dataset separately we cannot guarantee
consistency in the feature to symbol mapping across the datasets. This could lead to re-
duced classification performance as well as interpretation issues when we need to map
symbols back to input features when we analyze the extracted automata.

When we applied this mapping to the setup of figure 6.1 and evaluated the performance
of the combination on the RNN’s training set we found excellent performance. The RNN
with k-means input adapter achieved an accuracy of 98%. This only marginally lower than
the 99% of the RNN when applied directly to the training set. We expected a larger drop in
performance, but even when we look into the classification report details of table B.2 we
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see an excellent F1-score of 95% for the negative class and 99% for the positive class.

precision recall f1-score support
0 0.98 0.92 0.95 5513
1 0.99 1.00 0.99 27573

accuracy 0.98 33086
macro avg 0.98 0.96 0.97 33086

weighted avg 0.98 0.98 0.98 33086

Table B.2: RNN classification report on training set using K-means based input discretization

precision recall f1-score support
0 0.99 0.45 0.62 10225
1 0.60 1.00 0.75 8438

accuracy 0.70 18663
macro avg 0.80 0.72 0.68 18663

weighted avg 0.81 0.70 0.68 18663

Table B.3: RNN classification report on test set using K-means based input discretization

When we evaluated the k-means input adapter on the test set, however, we did see a
significant drop in performance. Now the accuracy is down to 70%. When we look into
the classification report details of table B.3 we also see significantly lower F1-scores for the
negative and positive classes.

We initially applied the k-means transformation on the original input features and per-
formed min/max scaling only afterwards on the inversely transformed data. To see what
the effect of upfront scaling would be on the k-means transformation we also performed
an experimented with this setup. Table B.4 shows the result of this experiment. Although
the performance on the test set has improved, we still see a significant decrease in the com-
bined model’s ability to detect the negative class as expressed by the low recall on the neg-
ative class and low precision on the positive class.

precision recall f1-score support
0 0.99 0.63 0.77 10225
1 0.69 1.00 0.82 8438

accuracy 0.80 18663
macro avg 0.84 0.81 0.79 18663

weighted avg 0.86 0.80 0.79 18663

Table B.4: RNN classification report on test set using K-means based input discretization with min/max scal-
ing.

The difference in performance on the training and test set can probably be explained by
the fact that the k-means clustering model was fitted on the training set and than applied
to the validation and test sets. If the data is distributed differently between the datasets
this may cause a poor fit of the validation and test sets to the cluster centers inferred on
the training set. To see if this may be the case we looked into the sum of distances of the
samples in each dataset to their closest cluster center as inferred on the training set. This
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measure is known as the k-means score and is in affect the error measure which the k-
means algorithm attempts to minimise during fitting. Table B.5 shows this score value for
the different datasets. We can clearly see that indeed the validation and test set have much
larger values than the training set.

k-means score
training set -22602.86

validation set -51963.46
test set -119839.58

Table B.5: k-means score on the different datasets

This makes the k-means input adapter unsuitable for our experiments as the rule ex-
traction algorithms could generate samples during extraction that may not yet have been
encountered which may lead to poor translation into the RNN’s input domain. This distor-
tion may influence the performance of the extraction process itself and the reliability of the
results. For this reason we have decided not to proceed with this approach.

In turns out that data discretization is a challenging task, however, it is also an important
task that has great impact on all subsequent steps. There are many different discretization
algorithms and approaches described in the literature [Liu+02; Jai10] which might perform
better, but time does not permit us to further investigate this aspect as it is not the main
focus of our research.

B.2. RNN (RE-)TRAINING ON SYMBOLS

After these experiments we concluded that the approach with a separate input adapter
would not lead to usable results. We then tried another approach in which we re-implemented
the RNN and changed the input layer to accept the symbols inferred by the k-means ap-
proach directly. Of course we would like an extraction approach where we can use an RNN
as-is, but it seems that applying a separate adapter is not a viable option, at least not for
our botnet RNN.

The idea behind changing the RNN to accept the symbols directly and re-training it on
the ’symbolized’ training set is that this way the RNN is trained on the discretized data
directly which may lead to better classification performance as the network can adjust itself
to the different input domain.

Initially we attempted to use the symbol indexes directly as a single input feature, but
this was unsuccessful as the RNN failed to train properly. We then used a one-hot encoding
on the symbol indexes, which is a commonly used approach in machine learning when
dealing with categorical input features [GB16]. This encoding translates a symbol index i
into an array with a length equal to the number of symbols, in which the i th cell has a value
of one and the remaining cells are zero. This encoded data transforms the single input
feature into, in our case, 100 orthogonal input features. This allows the RNN to adjust all
100 input weights individually to best fit the input data.

We successfully trained this RNN setup on the ’symbolized’ training set to an accuracy of
99%. We then evaluated the trained RNN on the ’symbolized’ test set. Table B.6 shows the
classification report for this evaluation.
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precision recall f1-score support
0 0.77 0.37 0.50 10225
1 0.53 0.87 0.66 8438

accuracy 0.60 18663
macro avg 0.65 0.62 0.58 18663

weighted avg 0.66 0.60 0.57 18663

Table B.6: RNN classification report on ’symbolized’ test set using one-hot encoding.

As we can see, the RNN does not perform well on the test set. Especially the recall on the
negative class and the precision on the positive class are quite poor. From these results we
concluded that this setup could not be used for our experiments.

We then experimented with using an embedding layer which turns the symbol indexes
into dense vectors of fixed size. An embedding layer will find similarities between indexes
by looking at their context, i.e., the other indexes in a input sequence. The vectors of each
embedding get updated during training to express the relationships between indexes. The
idea of using this layer is that this additional information on symbol relationship may help
the RNN to generalize better and improve its classification performance on unseen data.
Although an interesting theory the addition of an embedding layer did not significantly
improve the training and classification performance of the RNN compared to the one-hot
encoding setup.

B.2.1. REDISTRIBUTION OF DATASETS

From these experiments it became apparent that training the RNN on the converted ver-
sions of the dataset used by Poon proved difficult. Of course our ’symbolizing’ of the data
using the k-means approach describe in the previous paragraph will be a contributing
factor. However, another cause may be the different class distributions in the datasets.
The training and validation set have around 82% positives samples, while the test set has
around 45% positive samples. This difference may cause the RNN to generalize poorly on
the negative class. Also the fact that the k-means model was fit on the training set and then
applied as-is to the other datasets may have caused differences between the datasets which
the RNN model failed to generalize on.

To test this hypothesis we redistributed the samples in the datasets to form three new
datasets. We combined the original datasets and randomly re-sampled them to form the
new training, validation and test set. This way we have a more even distribution of negative
samples in the training set and the affect of our k-means discretization approach is ’spread’
across all datasets, which may help the RNN to generalize better on the new input domain.
When we trained both versions of the RNN using this new training set and evaluated them
on the new test set we did indeed noticed a significant increase in performance. The one-
hot encoding version and embedding version of the RNN both trained to an accuracy of
around 97%. Table B.7 and B.8 show the classification report on the test set for the one-hot
encoding and embedding approach respectively.

We can clearly see that the performance of both approaches significantly improved and
that both approaches perform almost identical. After these results we felt confident we
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precision recall f1-score support
0 0.96 0.96 0.96 6633
1 0.98 0.98 0.98 12030

accuracy 0.97 18663
macro avg 0.97 0.97 0.97 18663

weighted avg 0.97 0.97 0.97 18663

Table B.7: RNN classification report on redistributed ’symbolized’ test set using on-hot encoding

precision recall f1-score support
0 0.96 0.94 0.95 6633
1 0.97 0.98 0.97 12030

accuracy 0.96 18663
macro avg 0.96 0.96 0.96 18663

weighted avg 0.96 0.96 0.96 18663

Table B.8: RNN classification report on redistributed ’symbolized’ test set using embedding

could use this RNN in the rest of our research. We ultimately decided to use the one-hot
encoding method for the remainder of our research as it felt simpler, but we could have
used either method.



C
RULE EXTRACTION EXPERIMENTS

In this appendix information can be found on the case study rule extraction experiments
that was too large or detailed to include in the main content.

C.1. SLOW PREDICTION AND HIGH MEMORY CONSUMPTION FOR

CASE STUDY RNN
The rule extractions proved extremely slow on our Keras based RNN. The extraction steps
took around 50-100 times slower than with the Dynet based RNN implementation from
Weis et al. , making a direct comparison between the RNN implementations impossible.

When we looked at the single prediction time of our Keras based RNN this seemed to be
very poor. A single prediction took in the region of 0.6 seconds. It has to be noted that, for
the reason mentioned in A, we could not use GPU acceleration for our RNN model. This
may have negatively impacted the prediction time performance of the Keras based RNN,
however, it does not fully explain the extremely poor performance. We did have several
issues with the version of Tensorflow (version 2.1) we used and there seems to be a general
sense in the machine learning community that there is a degradation in performance with
respect to previous versions 1.

As our Keras based RNN had slow single word prediction, we changed the part of the WA
extraction method code that builds the Hankel matrices to retrieve the RNN prediction val-
ues in batch for all pre- and suffixes, rather than per individual pre- and suffix. This greatly
improved the speed in which the Hankel matrices were constructed. However, during the
extractions we experienced out-of-memory exceptions with the Keras based RNN which
we could trace back to this change. All the combinations of pre- and suffixes were now
passed to the prediction code at the same time. Before the data could be used by the RNN
it had to be padded to length and one-hot encoded, which resulted in a large amount of
data that had to be put in memory. We improved the situation by using a data generator for
the predictions which processes the data in smaller batches.

For larger basis sizes the Dynet based RNN version based from Weis et al. performed

1see for example https://github.com/keras-team/keras/issues/13118
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worse than the Keras based version in terms om prediction time. The implementation from
Weis et al. can only perform single predictions and this may explain the slow performance
on large batches as it effectively processes them one by one.

The DFA extraction algorithm will query the RNN frequently during the exact learning
process. Either to answer the membership queries or to refine the abstraction of the RNN
that is used to answer the equivalence queries. Especially the refinement process may use
a large number of samples to determine the RNN’s state clustering (the macrostates) from
which the abstraction is build, depending on the state space of the RNN. This means that
poor prediction time performance of the RNN will potentially be magnified by orders of
magnitude, leading to very slow extraction. Because of the relative complexity of the DFA
extraction code we did not feel comfortable to try and change the code to also use batches,
rather than repeated single predictions.
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C.2. OVERALL BEST PERFORMING AUTOMATA

Figure C.1 and C.2 show cropped versions of the overall best performing automata that
were extracted in the case study extraction experiments. The actual automata were too
large to include in this document.

(a) Dynet based RNN

(b) Keras based RNN

Figure C.1: Overall best performing WA extracted.

(a) Dynet based RNN

(b) Keras based RNN

Figure C.2: Overall best performing DFA extracted.



D
RULE EXTRACTION ON ’NOISY ’ MODELS

During our research we performed several experiments to try and answer our original re-
search questions. Over the course of these experiments it became clear that the DFA ex-
traction method is affected by noise or ’non-DFA’ behavior, a fact that is also pointed out
by its researchers in [WGY18a].

To further investigate this issue we performed additional experiments. With these ex-
periments we hope to gain further insight into each method’s robustness with respect to
’noisy’ data. We want to explore how each method can be applied to ’noisy’ models and to
what extend this affects their performance. Also, it will be interesting to see if the methods
can be tuned to approximate the ’noisy’ models to a certain degree even if they cannot ex-
actly match them. In other words, we want to explore if the methods allow to control the
granularity of the extracted automata through their hyper-parameters or execution time.

We feel these aspects play an important role in the practical applicability of each rule
extraction method as real life RNN models will seldom exhibit pure DFA behaviour.

D.1. SETUP

For these experiments we compared both rule extraction methods on datasets generated
from selected Tomita grammars in which we randomly changed the classification label for
a particular percentage of samples. These datasets no longer represent the Tomita gram-
mar exactly, but have added ’noisy’ or ’non-DFA’ behaviour. We selected Tomita grammars
1 and 7 for these experiments as a RNN can easily be learned for these grammars and they
form a good range of complexities and DFA sizes. Furthermore, as we have seen in the ex-
periments of chapter 7 that these grammars represent a wide range of extraction behaviour,
at least for the WA extraction method. To also asses extraction on ’real’ non-DFA models we
added a non-regular grammar to the original seven Tomita grammars. Table D.1 describes
this non-regular grammar.

We used the RNN implementation from Weiss et al. for these experiments. During initial
experiments we noticed that it was easier to train RNNs based on the implementation from
Weiss et al. than it was to train RNNs based on our Keras implementation. This most likely
has to do with how the training code from Weiss et al. actually trains the RNN. It performs
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G description
-1 L0 = {w ∈ {0,1}∗ : w = 0i 1i }, for some i ≥ 0

Table D.1: Description of the additional non-regular grammar model.

several training steps using batches of equal word length, random batches and one large
single batch to train the RNN. This approach is most likely better equipped to efficiently
learn Tomita grammar like models than simply splitting the dataset in multiple batches
like we did for the Keras based model. We used a RNN configuration with a single LSTM
layer with 12 neurons.

We trained a RNN to 100% on the non-DFA grammar using a training set generated on
that grammar with words lengths up to a 100 characters. This way we can make sure the
RNN is properly trained on the grammar model and that it can correctly recognise all words
that are presented to it during extraction, even if they become large. This is important as es-
pecially the WA method may generate quite large words when larger Hankel basis sizes are
used. The test set for these experiments contained words lengths of up to a 50 characters.
The trained RNN also reached an accuracy of 100% on the test set.

For the experiments in which we added Gaussian noise to the datasets, however, we could
not train a RNN on the ’noisy’ Tomita grammars in a timely fashion when we used a train-
ing set with words lengths up to a 100 characters. We had to reduce the string lengths to
a maximum of 50 characters in order to train the RNN in a reasonable time frame. We
trained the RNN’s to 100% accuracy on the modified training sets. In these experiments we
also used the training set as test set. As the changes to the class labels in each dataset are
completely random it is highly unlikely that a model trained on the training set will achieve
good classification performance on the separately modified test set.

We experimented with 0, 2 and 5% added noise. For the WA extraction method we used
the minimal DFA’s sizes of the Tomita grammars as rank value, similar to what we did in
chapter 7. For the non-DFA model we used rank values between 2 and 6, as we felt this
would be sufficient. Furthermore we used sampling from the uniform distribution on sym-
bols with a maximum length between 15 and 25 and Hankel basis sizes between 50 and
400. We felt these values would be sufficient and would most likely lead to word lengths in
the Hankel basis generation that fall inside the range on the RNN’s training data. For the
DFA extraction method we used extraction timeout increments of 10 seconds starting with
1 second up to 100 seconds. We feel these settings for the rule extraction method hyper-
parameters cover the most appropriate range of settings and should allow the methods to
perform sufficiently well.

Because some of the grammar models we evaluated are highly imbalanced, like Tomita
1 for which the positive class only accounts for 3% of all data, we measured the minimum
fidelity figures so any problem with the minority class is highlighted.

D.2. EXPERIMENT AND RESULTS

For the non-regular grammar the DFA extraction initially terminated prematurely on a au-
tomaton that was too small to properly represent the trained RNN. We therefore had to
increase the initial split depth parameter to prevent this. This value cannot be set too large
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because this makes the required extraction time infeasible. We found, however, that in
the experiments on the non-regular grammar the DFA extraction method would consis-
tently exit prematurely on a DFA with 26 states, regardless of how high we set the initial
split depth. For the experiments on the ’noisy’ Tomita grammar models we settled for a
initial split depth value of 20, since this was large enough to extract DFA’s with around 30
states or more.

For the experiments on the non-regular grammar model the minimum fidelity of the best
performing automata extracted by the WA extraction method was 96% for a rank value of
6 and a Hankel basis size of 400. As mentioned, the DFA method extracted a DFA with a
maximum of 26 states for time limits of 27 seconds or more, which reached a minimum
fidelity of 100%.

We found that for the experiments on the ’noisy’ version of the Tomita grammars the WA
method would not extract WAs with a minimum fidelity of more than 53% on the modified
train set. When we evaluated the minimum fidelity on the unmodified test set we found
that some WAs achieved near perfect fidelity values of 98% or better. It seems that the
WA method failed to ’learn’ the added ’noisy’ behaviour in these cases and extracted an
automaton that models the original Tomita grammar.

For the DFA method we found that it would extract very large automata on the ’noisy’ ver-
sion of the Tomita grammars, even for small extraction time limits. The automata quickly
reached a sizes of 95 states or more, but still had quit poor fidelity figures. For a time limit
of just 15 seconds, the extraction on the ’noisy’ version of the Tomita 1 produced a DFA of
481 states that had a minimum fidelity of 43%.

In all the experiments we found that the WA extraction method produced automata with
widely varying fidelities between runs, similar to what we have seen in our other experi-
ments.

D.3. ANALYSIS

As was to be expected the DFA method cannot handle the ’noisy’ models very well. For
the ’noisy’ Tomita models it generated extremely large automata that failed to approximate
the target model. For the non-regular grammar it was able to extract an automaton that
reached 100% fidelity on the test set. However, when we further investigated this we found
that, for longer sequences than the maximum of 50 symbols in the test set, this quickly
dropped. This indicates that the DFA approximated the model up to words of 50 characters,
but not for longer sequences.

The WA method seems less affected by ’noisy’ or non-DFA models. Although the fidelity
figures obtained in the experiments were not very good, we feel this has more to do with
the evaluated range of Hankel basis sizes than the method itself.

The reason for this difference in behaviour, we believe, is that the WA method can take
a purely numerical approach to approximate the target model in the form of the produced
weighted automata. The DFA method, however, can only try to add more states and transi-
tions to enhance the automaton’s fidelity. It has to uniquely encode a path in the automa-
ton for each non-regular pattern in the target model. This means that the DFA method will
struggle when the target model contains large amount of non-DFA behaviour.
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We have also seen that when using the DFA extraction method on these non-regular
models the initial split depth parameter needs to be taken into account as well to prevent
the algorithm to prematurely terminate on small DFA’s. All in all it is clear that the DFA
method cannot really be used on pure non-DFA models, especially on longer sequences, as
this would require extremely large DFA’s.
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