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1 Summary

The prediction of student success probabilities early on in the schoolyear is
valuable for different departments in institutions for Secondary Education in
the Netherlands. Based on historical data, using the course marks of the stu-
dents, the success chances may be evaluated with a supervised learning algo-
rithm for classification. However, the straightforward use of such algorithms for
group-wise predictive models introduces an issue which we will term the Group
Performance Problem.

This problem states that if the probability distribution of the features in the
new group significantly differs from that distribution in the training groups, and
it is known that this difference will lead to different interventions with respect
to the individuals in the new group, a traditional predictive model may fail to
provide a reliable prediction. The strength of this effect may be quantified in
the Group Performance Factor (GPF).

Multiple strategies for dealing with this problem are proposed and compared:
incorporating additional or transformed features in traditional models, and cre-
ating Bayesian models using Monte Carlo Markov Chain (MCMC) sampling.
In the Group Difference model, continuous features relative to the own group
mean are used. In the Bayesian Group model, in addition to the student course
marks, the historical group success ratios are incorporated as evidence, while
the Bayesian Lambda model determines a multiplying factor for increasing in-
dividual success probabilities in the case of a strong group effect.

These models are tested using synthetic data simulations with varying strengths
of the GPF. Furthermore, a case study with data of a secondary school in the
Netherlands is used to test the models. As individual success probabilities are
more important than the predicted class labels, the strictly proper Brier score
is used to determine the performance of all models.

We were able to successfully improve the prediction using the different strategies
in the synthetic dataset simulations. In the case of very strong group effects, the
Group Difference model or the Bayesian Lambda model turned out to be the
most successful strategy. When no significant group effect is expected, standard
models like Logistic Regression are the best choice. In all other cases, including
the scenario when estimating the group effect by domain experts is not avail-
able, the Bayesian Group model may provide robust results. The case study
using data from our example school appeared to support these conclusions, but
the results were not statistically significant.

Future work may be focused on the definition of the GPF, possibly examining
the group effect (covariate shift) and the intervention effect separately. Fur-
thermore, the strategies and corresponding models should be tested in other
scenarios, and additional strategies may be formulated and examined. Finally,
future work with respect to the runtime of predictions is recommended as this
may be important in other domains, e.g. online learning.
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2 Introduction

Educational Institutions generally have a need for accurate predictions of the
student success probabilities. In Secondary Education in the Netherlands, upper
and middle management are interested in these predictions for multiple reasons.

In this type of education, provided at Secondary Schools, pupils are placed at
a certain grade and educational level based on age, intelligence and previous
achievements. At the end of every schoolyear, a decision is made for the place-
ment of students in the next schoolyear. With satisfactory marks for the courses
followed, the student will pass, and generally continue in the next grade at the
same level after the summer. If marks do not meet the passing standard set by
the school, the student may repeat the class, continue at the next grade at a
lower level, leave the school or be placed in the next grade despite not meeting
this standard. The decision is reserved for members of the passing meeting,
usually consisting of the teachers and the department leadership.

2.1 Goals of Student Success Prediction

The prediction of success probabilities, the chance for a pupil to pass at the end
of the schoolyear, is valuable for different departments. There are roughly two
concerns.

• Individual Success Prediction
Middle management and counsellors are concerned with the success chances
of the students belonging to their department. These predictions may give
rise to certain interventions, aimed at improving the marks (and therefore
the chance of passing) of a pupil. Examples of these interventions are
parent meetings, composing a personal plan of action, tutoring, provide
training for performance anxiety, and other measures aimed at improving
the social-emotional or pedagogic circumstances.
As the schoolyear is divided in terms (usually 2-4, typically 3), the stu-
dents’ results at the end of a term trigger these interventions. However,
because resources are limited, interventions are obviously best targeted at
students with high chances of failing the schoolyear. Later on, resources
may better be used for students that turn out to be on the edge of fail-
ing/passing (like a success chance of 50 percent) for the best return on
investment with respect to these interventions. Individual success predic-
tions may therefore be used for monitoring and decision making processes
at these departments.

• Success Ratio Prediction
Upper management and the planning department are concerned with the
predicted success ratios for each student department (combination of level
and grade). Early on, the staff occupation for the next schoolyear should
be established. The composition of the teaching team is highly dependent
on the expected student department size in the next schoolyear. As the
student success ratios determine future student department sizes, they are
of great value for the management and planning teams. In this case, the
cumulative probability of all students being placed in a certain department
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is more important than the actual expected placement of an individual
pupil.

The first goal, predicting the success chances of individual students, requires
a high accuracy. The actual chance of passing becomes particularly important
after the first term, as available resources are not necessarily best targeted at
the set of students with the highest risk of failing, but may instead be used for
students that are at the edge of failing/passing. Because these students only
need a small boost to pass at the end of the schoolyear, the return on investment
with respect to interventions is high. Therefore, an adequate estimate of the
individual chances of each student is desirable.
Accuracy is also highly important for the second goal: success ratio prediction.
A proper estimate of the expected success ratio for each department is of great
value for the organizational and financial planning of the next (and subsequent)
schoolyears. Early on in the schoolyear, there is typically need for a forecast
with respect to the number of students for each department, both for the next
year and a multi-annual prediction.

2.2 Management Tools

Schools may use tools to monitor student progress and provide success pre-
dictions. These software solutions, using data from the School Administra-
tion System (SAS), are part of a group of tools called Learning Analytics
[Claas L., 2017]. The success predictions of students of these tools are tradi-
tionally performed in one of two ways:

• Manual evaluation
In this case, employees of the schools (e.g. counsellors, team leaders),
manually evaluate the chances of each pupil. By entering their expec-
tation, the management tool is able to demonstrate aggregated data to
the management team. Obviously, this method is highly dependent on
the skill, experience and engagement of the employees concerned with the
task of evaluating the success chances of the students. In practice, the
quality of these expectations is not satisfactory and varies considerably.

• Evaluation of meeting the passing standard
Another option is to check the course marks of the student, and evaluate
whether or not the passing standard is met. The passing standard typ-
ically prescribes the minimum average and maximum insufficient course
marks needed by the end of the schoolyear to pass. Because this standard
is established in advance and is published by the school, the evaluation is
easily automated. However, there is an important caveat when using eval-
uation of the passing standard as a prediction for student success, which
will be described in the next subsection.

Results of these success predictions may be presented in a dashboard of the
application. Stakeholders, like management and counsellors, are able to use the
data for their monitoring and planning goals..
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2.3 Using the passing standard

Student grades obviously fluctuate during the schoolyear. We will demonstrate
that estimating student success chances by evaluation of the grades with the
passing standard early on in the schoolyear will significantly underestimate their
chances.
To illustrate this last observation, we will introduce some data of an existing
secondary school in the Netherlands. The passing standard is well-defined at
this institution, though may be different for each department (combination of
level and grade). The schoolyear is divided in three terms, each one consisting
of about 12 school weeks. Management tools should sufficiently predict student
success ratio even after the first term, as the organizational planning of the next
schoolyear is already started by that time. Furthermore, individual success pre-
diction after this first term should be accurate as most interventions are started
in the second term.

Evaluating the passing standard for each student after the first term, as is
traditionally used for student success ratio prediction at this school, significantly
underestimates student success chances (table 2.1).

Transition year Term 1 Term 2 Term 3 Actual

2015 0.74 0.79 0.81 0.89
2016 0.75 0.82 0.86 0.89
2017 0.69 0.79 0.84 0.87
2018 0.67 0.78 0.85 0.89

Table 2.1: Success ratio after each term based on evaluation of the passing
standard, and actual end-of-year success ratio (all departments).

Two conclusions may be derived from the data in this table. First, the ratio
of students meeting the passing standard increases over the schoolyear. For-
tunately, results tend to improve (which may partly be due to student inter-
ventions). However, the other conclusion with respect to using the passing
standards for student success prediction at this institution is more important:

The actual ratio of students passing is considerably higher than the
ratio of students meeting the passing standard

This conclusion is valid even in the last term (end of the schoolyear). Apparently,
part of the students are placed in the next grade despite not meeting the passing
standard. Based on this observation, we may conclude that using the passing
standard directly to predict student success prediction is not accurate enough
to meet the goals described in section 2.1.

2.4 The potential of Machine Learning

Using evaluation of the passing standard for student success prediction under-
estimates their chances. However, there is an obvious correlation between the
grades of students and the chance of passing at the end of the schoolyear. For
our example school, the scatterplot of figure 2.1 demonstrates the correlation
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between grades of the first and the last term, and the actual student success.

Figure 2.1: Average grades of the first and last term, indicating success at the
end of the schoolyear (orange:successful, blue:not successful)

Obviously, student grades early on in the schoolyear contain some predictive
value for student success. Certain characteristics of these grades (like the mean,
number of inadequate grades etc.) may be used in a model to predict individual
success and student success ratio.

This potential motivates the option of using Machine Learning for the prediction
of student success. A machine learning model may not only use grades, but also
intelligence tests and other data possibly containing predictive value. As a lot of
this data is captured in the School Administration System (SAS), it may easily
be used in machine learning models for student success prediction.

10
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3 The Group Performance Problem

In this section, we will show that using a traditional Machine Learning model
for student success based only on course marks reveals some issues that should
be addressed in the research assignment. First, a certain dataset is established
to use in the model. Subsequently, a logistic regression (LR) model is created to
predict both individual student success and success ratio for each department.
In the last subsection, an observation is identified which will be introduced as
the Group Performance Problem.

3.1 Dataset

We are able to use data from Student Administration System (SAS) of the
Dutch secondary school introduced in chapter 2, grouped by different student
departments. The data of four schoolyears (the calendar year of transition
ranging from 2014 to 2017) is used to create the models. Data of the last year
(transition year 2018) is used to verify the model. This closely resembles the
actual process of student success prediction at this institution: historical data
is used to predict the outcome of the new schoolyear. The number of students
in the dataset is shown in table 3.1.

Level Grade Department 2014 2015 2016 2017 2018

Mavo 2 M2 214 221 225 163 181
Mavo 3 M3 232 243 237 213 194
Havo 2 H2 172 189 154 164 163
Havo 3 H3 224 177 203 169 151
Havo 4 H4 229 270 202 268 277
Vwo 2 V2 129 128 116 127 100
Vwo 3 V3 125 129 127 114 122
Vwo 4 V4 126 105 108 117 108
Vwo 5 V5 120 125 107 112 116

Total 1571 1587 1479 1447 1412

Table 3.1: Number of students in the dataset, for each department and transition
year

The dataset contains aggregates of the student marks for all the courses fol-
lowed in term 1, about three months into the schoolyear. Furthermore, end-
of-schoolyear student success (promotion to the next grade at the same level)
is included, which was extracted from the School Administration System. The
success ratios of the different departments in this dataset is shown in table 3.2.

3.1.1 Imbalanced data

From the actual success ratios, it is clear that this is an imbalanced dataset.
Fortunately, most of the students are promoted at the end of the schoolyear
with the success ratios ranging from 0.80 to 0.97.
Model corrections for dealing with this imbalance (like under- or oversampling)
were considered but not used. As explained in section 2, the actual class label
for a student is not as important: the corresponding probabilities are of greater

11
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Department 2014 2015 2016 2017 2018

M2 0.97 0.92 0.92 0.90 0.92
M3 0.88 0.87 0.95 0.88 0.95
H2 0.88 0.92 0.93 0.87 0.90
H3 0.87 0.80 0.87 0.92 0.91
H4 0.90 0.90 0.82 0.81 0.88
V2 0.95 0.92 0.92 0.97 0.91
V3 0.91 0.87 0.89 0.85 0.90
V4 0.92 0.90 0.87 0.88 0.81
V5 0.92 0.90 0.92 0.93 0.87

Table 3.2: Actual success ratios of students in the dataset, for each department
and transition year

value. The goal is not to improve classification accuracy, but to provide reli-
able probabilities for student success. Note that the full set of students in the
departments is used for training the models, not a sample. Correcting for the
imbalance would violate the actual success chances.

3.2 Logistic Regression model using student grades

A logistic regression model is created for each department and fitted with the
department-specific dataset, including the training target (student success at
the end of the schoolyear).
A Logistic Regression model provides probabilities, in this case success chances,
that are well calibrated [Niculescu-Mizil and Caruana, 2005]. The probabilities
are easily aggregated to establish success ratios for a department.

3.2.1 Features

Some characteristics of the student grades are used as features. Note that stu-
dents receive marks for courses, while in most departments the courses followed
are different for each student, so we have to use some characteristics of the set
of course marks. For this model, the following aggregates are used as features.

• Average mark
Average of the course marks in the term. At this school, course marks are
expressed as decimal numbers on a rating out of 10.

• Number of shortage points
Total number of shortage points for all course marks in the term. The
(rounded) rating of 6 out of 10 is considered satisfactory. A rounded
rating of 5 out of 10 corresponds to one shortage point, a rounded rating
of 4 out of 10 to two shortage points etc.

• Minimum mark
The minimum course mark in the term.

• Number of shortage points in core sections
Total number of shortage points within the core sections. Core sections
are English, Dutch and mathematics.

12
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These features are chosen as all of these characteristics are an important part
of the passing standard at this school. Most of them are based on the passing
standard of national exams for secondary education in the Netherlands. Some
other characteristics included in the dataset are not used in the model, as they
are either irrelevant for passing or correlate highly with the features above.

3.2.2 Results

The model for each department and term is fitted to the training set of students
in the transition years 2014 to 2017. Subsequently, the model is tested using the
data of the transition year 2018. In table 3.3, the predicted and actual success
ratios are shown.

Dept. Predicted Actually

H2 0.79 0.90
H3 0.82 0.91
H4 0.88 0.88
M2 0.90 0.92
M3 0.90 0.95
V2 0.88 0.91
V3 0.87 0.90
V4 0.81 0.81
V5 0.88 0.87

Table 3.3: Predicted (term 1) and actual student success ratios (Logistic Re-
gression model, training set 2014-2017, test set 2018)

The performance of this model based on student grades varies. Apparently
after term 1, success prediction early on in the schoolyear, the success ratios of
the departments H2 and H3 are severely underestimated. Surely, there must
be something wrong here. Note that the fact of students improving over the
schoolyear (section 2) is already captured in this model, as term 1 grades and
actual end-of-year success are used for both training and test set of the model.
However, the model still underestimates student success probabilities. We will
introduce this issue as the Group Performance Problem.

3.3 The Group Performance Problem

Why is the success ratio prediction in term 1 of departments H2 and H3 that
low? Considering the historical success ratios for these departments (table 3.2),
the prediction of 0.79 for department H2 in particular seems off. However, note
that the model is based only on the course marks of students in the term.
If the performance (course marks) of the new generation (current schoolyear)
is significantly lower than the performance of the students in the training set
(historical schoolyears), a machine learning model obviously predicts a lower
success ratio. The student results in term 1 within these departments in 2018
must generally be lower than the historical results (2014-2017). To verify this ob-
servation, the corresponding probability density functions of the average grades
in both groups are shown in figure 3.1.

13
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Clearly, the marks of the population in 2018 have become worse compared to
the training population (2014-2017). From domain knowledge, we know there
may be several reasons for this kind of shift. It is unlikely that a student
cohort performs poor compared to earlier cohorts by chance. Usually, these
shifts have to do with changing department visions and examination systems.
Indeed, a change in the examination system was introduced at this school in
the schoolyear 2017-2018, and students in departments H2 and H3 turned out
to be significantly affected by this change.

Figure 3.1: Probability Density Functions of average course marks in term 1,
department H2 and H3 (orange:2018, blue:2014-2017)

Student marks being significantly lower than usual, one should expect a larger
number of students failing at the end of the schoolyear. However, this is not the
case: the actual success ratio of these departments in 2018 was 0.90 and 0.91,
respectively (table 3.3). From domain knowledge, there are three important
reasons for this difference.

• The number and intensity of student interventions is increased
Disappointing results for a department after the first term are noticed
by the department and school leadership. Consequently, the number of
student interventions and the intensity of these interventions is increased.
As secondary schools in the Netherlands should meet certain standards
set by the government for promoting students [Onderwijsinspectie, 2018],
resources for student interventions are increased.

• Teachers are triggered to produce better results
Teachers of the affected department are triggered to improve results of
their students. Consequently, they may increase the preparation of stu-
dents for future examinations, or even (controversially) decide to decrease

14
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the difficulty of tests.

• The passing meeting promotes more students not meeting the
passing standard
At the end-of-schoolyear passing meeting, consisting of the department
teachers and leadership, there is a trigger to promote more students that
do not actually meet the passing standards. There may even be overcom-
pensation, explaining the high success ratio of the departments concerned
in 2018 despite worsened student performance.

Clearly, these kind of shifts, and the corresponding corrections, are to be ex-
pected again in the future. Apparently, raw student mark aggregates do not
provide enough information for a reliable prediction model. To improve student
success predictions, the Group Performance Problem described in this subsec-
tion should be addressed accordingly.
As this problem is not exclusive to the domain of student success prediction, we
will formulate a more general definition.

Definition The Group Performance Problem (GPP) in Machine Learning may arise if
predictive models are constructed for a new group of data, based on training
data of one or more other groups, where both data sets are generated from
the same data generating mechanism. If the probability distribution of the
features in the new group significantly differs from the probability distribution
of the features in the training groups, and it is known that this difference will
lead to a different number and/or intensity of interventions with respect to the
individuals in the new group, a traditional predictive model using these features
may fail to provide a reliable prediction.

Dealing with the GPP will be the main focus of our research. The example
of student success prediction will be used as a real-life case study to test the
developed strategies.
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4 Scientific Context

In section 2, the potential of using Machine Learning for the task of student
success prediction was shown. In this section, some aspects of this topic relevant
to the research project are recapitulated. Furthermore, the research question is
established, related work is analysed and the scientific contribution is discussed.

4.1 Machine Learning Classification

Classification is a subset of Machine Learning where a certain record (a vector
of properties, an image etc.) is assigned to one of two or more classes based on
assigned patterns belonging to these classes [Theodoridis, 2015]. These patterns
are created by using models that are trained using characteristics of observed
data called features. If the class of the observed records is known, the classi-
fication task is a Supervised Learning algorithm. Classification problems may
be binary (e.g. there are only two possible classes, usually true and false), or
multiclass (three or more classes).

The task of student success prediction is an example of a supervised classification
problem: historical records, in this case students, contain features (like student
marks) as well as the class label (successful/not successful). The goal of this
problem is to predict this class label for students of the current schoolyear, given
certain features belonging to these students at a certain stage of the running
schoolyear. This is a binary classification problem, because there are only two
classes. However, as non-successful student are placed at different departments
or leave the school, a multiclass classification problem might also be formulated.

4.1.1 Probabilistic models

As shown in section 2, the actual class label for an individual student is not
very useful for the goals of success (ratio) prediction. The corresponding class
probabilities are of greater value. For example, in predicting individual suc-
cess, the probabilities turned out to be useful for efficiently targeting student
interventions.

4.1.2 Probabilistic classification

In the case of success ratio prediction, it is perfectly fine for an individual stu-
dent prediction to be, for example, 72% successful. The expected number of
successful students in a certain department, and with that the success ratio,
may be easily derived from these individual predictions. Since the sum of in-
dependent Bernoulli random variables with different expectations results in a
Poisson Binomial Distribution [Daskalakis et al., 2015], the expected number
of successful students is the sum of the individual probabilities. By averaging
these individual chances for all students in the department, a prediction can be
made for the departments’ success ratio. It might be argued that these indi-
vidual probabilities are not independent, which is why there is a GPP in the
first place. However, the mean of these (possibly corrected) individual success
chances will still determine the success ratio for the department if the probabil-
ities are correct.
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The approach of using probabilities for the classes in Machine Learning is called
Probabilistic Classification: we are not (only) interested in the predicted label,
but mainly in the corresponding class probabilities. This goal has implications
for the choice of Machine Learning methods for our research: we should be
careful in the selection of algorithms used for predictions of student success.
For example, a certain algorithm may be quite accurate on predicting actual
classes, but fail to provide reliable probabilities for all possibilities.

4.1.3 Generative and discriminative models

In generative models, a joint distribution over the feature vector x and class
label y is derived. At first, a parametric distribution for P (X,Y ) is assumed,
and using the training data the corresponding parameters are learned. Once
these parameters are known, the joint distribution allows the ’generation’ of
new data: the reason these kind of models are called generative. An example of
a generative model in the context of probabilistic classification is Naive Bayes
[Theodoridis, 2015].

Instead of deriving a joint distribution, the conditional distribution P (Y |X) may
also be learned directly. In discriminative models, a parametric distribution for
this conditional probability is assumed. Again, the corresponding parameters
are learned using the training data. With such models, we can ’discriminate’ be-
tween the classes (possibly including class probabilities) for any given new data
point: the reason these kind of models are called discriminative. An example in
the case of probabilistic classification is Logistic Regression [Theodoridis, 2015].

4.1.4 Frequentist and Bayesian methods

Corresponding to a certain view on probability, two types of methods for provid-
ing inference in Machine Learning are distinguished: frequentist and Bayesian
statistics [Xue and Titterington, 2008]. In the frequentist view, probabilities
are generally related to frequencies of certain events (explaining the name). In
the case of Bayesian statistics, probabilities are related to certain beliefs. To
provide inference this way, there is an initial (prior) belief, which is updated as
new data is observed, resulting in a posterior belief. With new evidence, the
posterior becomes the new prior and a new posterior is calculated.

The main difference between the two methods is the use of a prior belief in
Bayesian statistics, whereas in frequentist methods only the observed data is
used to provide inference.

4.2 Dataset shift

The phenomenon of training and test data having different distributions, though
the terminology is not completely consistent in scientific literature, is known as
dataset shift. Different types of dataset shift were documented by Moreno et al.
in an attempt to standardize terminology in this field [Moreno-Torres et al., 2012].
The authors also provided an overview of the existing strategies for machine
learning under the situation of dataset shift.
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4.2.1 Types of shift

The following types are mentioned by Moreno:

• Covariate shift
In this situation the input parameters (features) differ from training to test
set, but the conditional probability of the target variable Y with respect
to features X is not changed, so:

Ptrain(X) 6= Ptest(X) and

Ptrain(Y |X) = Ptest(Y |X)
(1)

• Prior probability shift
This type of shift appears in generative models if only the distribution of
Y (the class variable) is changed, effectively covariate shift in reverse. In
this case:

Ptrain(X|Y ) = Ptest(X|Y ) and

Ptrain(Y ) 6= Ptest(Y )
(2)

• Concept shift
In this type of shift the relation between features X and class variable y
changes from training to test, but the probability distribution of X does
not differ, I.E. in classification:

Ptrain(X) = Ptest(X) and

Ptrain(Y |X) 6= Ptest(Y |X)
(3)

The Group Performance Problem, as defined in section 3, is a combination of
covariate shift and concept shift. Both the distribution of features X and the
conditional probability of the class variable y given the feature variables X differ
from training to test. I.E.:

Ptrain(X) 6= Ptest(X) and

Ptrain(y|X) 6= Ptest(y|X)
(4)

This situation is recognized by Moreno, with the authors stating:

”There are two main reasons these shifts are usually not considered in the lit-
erature: they appear more rarely than the others and, most importantly, they
are so hard that we currently consider them impossible to solve.” (p525).

The Group Performance Problem, however, is a subset of this type of dataset
shift. In this case the distribution of X changes from training to test data,
but the conditional probability of class variable Y given features X changes
accordingly to neutralize the effect on Y to some extend (the strength of the
intervention effect). This property might result in the ability to create models
that are capable of dealing with the Group Performance Problem, which will be
addressed in our research.
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4.2.2 Concept drift

It should be noted that terminology has somewhat changed over time. In a re-
view of Lu et al., focusing on changes in the probability distribution of stream-
ing data, the term concept drift is used by the authors as an umbrella term
[Lu et al., 2019], defined as:

∃t : Pt(X,Y ) 6= Pt+1(X,Y ) (5)

Like dataset shift, concept drift is defined as the change of the joint probability
of features X and target variable Y over time. The different types are presented
by the authors as three sources:

• Source I

Pt(X) 6= Pt+1(X) while

Pt(Y |X) = Pt+1(Y |X)
(6)

corresponding to covariate shift

• Source II

Pt(Y |X) 6= Pt+1(Y |X) while

Pt(X) = Pt+1(X)
(7)

corresponding to concept shift

• Source III

Pt(X) 6= Pt+1(X) and

Pt(Y |X) 6= Pt+1(Y |X)
(8)

corresponding to a combination of covariate shift and concept shift.

Though not exactly falling within streaming data, the Group Performance Prob-
lem is a special case of source III: both the distribution of the feature variables
(lower student marks) and the conditional probability of class variable Y given
these features (chance of passing based on student marks) change from historical
schoolyears (training set) to the current schoolyear (test set), which is obviously
a change over time.
To conclude the terminology in scientific literature, the phenomenon of covariate
shift (source I) is also known as virtual drift, and concept shift (source II) may
be addressed as real drift [Gama et al., 2014].

4.3 Research Question

Multiple strategies for dealing with the group effect will be examined. As early
student marks by themselves clearly do not provide sufficient predictive value
for end-of-schoolyear success, more information should be incorporated in the
models. We may be able to adjust the features in traditional models, or create
probabilistic models using information about student success ratios, i.e. using
Bayesian methods.
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Consequently, we will use both frequentist and Bayesian methods in the mod-
elling part of the project. Therefore, the research question for this project is as
follows:

RQ Research Question
How can we successfully improve Student Success Prediction by dealing
with the Group Performance Problem using (Bayesian) Machine Learning?

To be able to answer the research question, different aspects should be exam-
ined. First, we should know the performance of models based only on student
course marks (part of which is already presented in section 3 using a traditional
Logistic Regression model). To improve this performance, different strategies
to deal with the Group Performance Problem are distinguished: incorporating
more and/or adjusted features in the models, and using group performance in-
formation in a Bayesian model. The corresponding sub questions are as follows.

SQ1 Sub Question 1
How does traditional Student Success Prediction using Machine Learning
based on early student course marks perform?

SQ2 Sub Question 2
How can we improve this prediction using additional features?

SQ3 Sub Question 3
How can we improve this prediction by adjusting the features?

SQ4 Sub Question 4
How can we improve this prediction with probabilistic models using Bayesian
methods?

SQ1 is partly answered by the analysis in section 3. We will expand this analysis
with other classification algorithms, like the Support Vector Machine and Tree
Based Models. The GPP is expected to appear in all these models, if absolute
student mark aggregates are used as features.

In SQ2 and SQ3 respectively, these classification models are expanded with more
or adjusted features. Additional information like student intelligence test scores
is incorporated in training and test data to provide learning possibilities that go
beyond student grades alone. Furthermore, features may be adjusted to create
models that are less sensitive to the group effect. For example, deviations from
the mean group mark features may be used instead of actual values.

SQ4 presents the opportunity to create a different kind of model for evaluating
student success probabilities. Using Bayesian methods, more information may
be incorporated in the model, decreasing the impact of student course marks
on the class probabilities. Note that not only historical student marks in term
1 and whether the students were successful at the end of the schoolyear are
known, but also the historical group success ratios as shown in table 3.2. Using
this information in a probabilistic model may be a successful strategy in dealing
with the GPP.
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4.4 Related work

Extensive research has been performed on concept drift, dataset shift with re-
spect to streaming data as mentioned in subsection 4.2.2. In a recent review
by Lu et al., three groups of methods adapting to concept drift are identified
[Lu et al., 2019]:

• Retraining
In this case, a new model is trained to be used instead of the model
based on training data with a different distribution. The new model is
generally trained with only the more recent data, incorporating the shift
in distribution. An example of this method was used by Bach et al. using
both a stable learner using all historical data and a reactive learner with
only recent data for training, followed by detecting and adapting to a
possible shift in the distribution [Bach and Maloof, 2008].

• Ensemble training
Ensemble training combines a set of different classifiers, and uses some
sort of voting system for the actual classification of new data. To ad-
dress concept drift, extended ensemble methods have been developed. For
example, Bifet et al. created Leveraging Bagging where the worst perform-
ing classifier in the ensemble based on recent data is replaced by a new
classifier based on this new distribution [Bifet et al., 2010].

• Model adjusting
If the change in data distribution is mostly local, existing models may ad-
just to this change. As only part of the model needs to be retrained, this
method is mostly used in decision tree models. Hulten et al. developed the
algorithm CVFDT, an extension of the fast decision tree learner VFDT
[Hulten et al., 2001]. In the model, the most recent data is captured in
a moving window, on which alternative sub-trees are trained. Both the
performance of the original and alternative sub-trees is monitored, and
older sub-trees are removed and replaced by alternatives if they are out-
performed.

It appears that, with the enormous growth of big data analysis, most research
on dataset shift is now focused on streaming data. The task of student success
prediction is not totally different from a streaming scenario: a prediction is
made every schoolyear, and the amount of training and test data keeps growing
in the future. However, the Group Performance Problem introduces some unique
characteristics that should be addressed by our research.

4.5 Scientific Contribution

All currently available strategies for dealing with dataset shift, as shown in the
preceding subsection, are based on some sort of detection of a change in the
distribution of the data, and subsequently adapt to this change by retraining or
adjusting models. To detect the shift however, there is an important limiting
factor as noted by Lu et al. in the concluding remarks [Lu et al., 2019]:
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”Most existing drift detection and adaptation algorithms assume the ground
true label is available after classification/prediction, or extreme verification la-
tency” (p2359).

Note that in student success prediction, the prediction needs to be adapted
before the actual class labels of the new group are known. The distribution
change of only the predicting features, and the domain knowledge of increased
interventions as a reaction on this change, is enough for requiring a change in
the model. Furthermore, successful models dealing with the group effect should
not only address the problem if a comparable shift has appeared earlier in the
training data. The occurrence of the problem within a department is too low
to assume such a historical shift, which might hold for other domains dealing
with a comparable problem.

So obviously, there is room for a solid scientific contribution of our research.
In the Group Performance Problem, models should adapt even before the true
class label of new data is known, and a distribution change is detected. The
problem is also unique because of the group-wise streaming data: intervention
effects depending on the group performance, the aggregate of the individual
predictions within the group (predicted success ratio). Fortunately, this domain
knowledge makes it possible to detect and predict a dataset shift before the
actual class labels are known. Strategies for dealing with this specific situation
will be a clear contribution to the scientific literature in the field of dataset shift
and adaptive learning.
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5 Methods

Different strategies for dealing with the GPP will be developed and tested, cor-
responding to the research sub questions. In this section, we will describe the
methods used for this empirical part of the research project.

The models will be compared using a synthetic dataset, containing a certain
degree of the group effect, which will be quantified in this section. Furthermore,
the simulation process of generating synthetic data will be discussed. Finally,
the developed models are presented, and we will establish an objective way of
judging the performance of the different models, both in the synthetic data
scenario and the student success prediction case study introduced in section 3.

5.1 Synthetic data

A set of synthetic data is generated with a varying strength of the group ef-
fect. This corresponds to reality, as the number and intensity of interventions
in response to an observed feature distribution change may vary in different
scenarios. The models are tested with all these variances to analyse their per-
formance in all situations.

5.1.1 The Group Performance Factor

To quantify the strength of the group effect, we need to realize that this phe-
nomenon actually consists of two parts:

• A change in the distribution of covariates (features)
The distribution change is noticed by comparing it to the historical feature
distributions. The change may be reviewed depending on the variance of
these historical distributions.
If there is a low variance in the feature aggregates of these historical
groups, the change will be reviewed differently from scenarios where changes
in the distribution are frequently observed. For example, if student course
mark distributions in term 1 vary substantially from year to year, the
distribution for the new group may not be evaluated as problematic.
However, if the historical course mark distribution is rather constant, the
change may well be noticed and reviewed by the department leadership.

• An increased number and/or intensity of interventions
Interventions may or may not be increased with the observed feature dis-
tribution change. If the interventions do not differ from those in historical
groups, traditional models will probably provide an acceptable prediction
(though the predictive model may be adjusted to account for a covariate
shift).
Only in the case of increased intervention effects, the conditional proba-
bility of class variable Y given features X changes. Furthermore, the effect
of interventions may obviously vary in strength.

These two parts should be reflected in a factor quantifying the strength of the
GPE. The first part (change in distribution) is easily evaluated at the time of
prediction, as all historical and current feature information is available.
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However, the second part (intervention effect) is not known at that point, and
should be evaluated by domain experts. After the true class labels of the individ-
uals in the new group are available, this effect may be determined by comparing
the true success ratio to the predicted ratio of a base model without correction
for group effects, like the standard Logistic Regression model. The difference
between these ratios is a measure for the strength of the intervention effect (both
the number and/or intensity of interventions and their effect on the true class
labels).

In view of these considerations, we propose the following factor to determine
the strength of the Group Performance Effect:

Definition In a Machine Learning scenario where the Group Performance Problem is ap-
plicable, the Group Performance Factor (GPF) for the binary classification
of a new group of individuals, is defined as:

|
µytg

− ybase
σytg

| (ytest − ybase) (9)

Where:

• ytg is the ratio of positive class labels in each training group (the group
success ratio)

• µytg
is the mean of this ratio for all training groups in the dataset

• σytg
is the standard deviation of the group success ratio for all training

groups in the dataset

• ybase is the success ratio prediction for the new group by a base model
(like an unmodified Logistic Regression model)

• ytest is the actual success ratio for the new group

The first term of equation 9, which we will call the group shift, indicates
the shift of the base prediction compared to the historical group success ratios,
i.e., how many standard deviations the base prediction differs from the mean
of historical group success ratios (this is similar to the Z-score known in statis-
tics). Note that the feature distribution change is modelled implicitly by using
a (naive) base model to create a prediction for the new group. This method
prevents a cumbersome comparison between the feature distributions typically
consisting of a large number of variables of different types.
Dividing by the standard deviation of the group success ratios in the training
data makes sure that the GPF is higher if the historical group success ratios are
rather constant, and the GPF is lower if there is already a history of fluctuating
success ratios.

The second term indicates the intervention effect, the difference between
the actual success ratio and the one predicted by the (naive) base model. If
interventions were not different in number or intensity compared to those in
historical groups, the actual success ratio will not be significantly different from
the predicted ratio and this term will be close to zero. However, in the case
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of intensified interventions, the difference may be quite substantial, resulting in
a higher GPF. Note that this term may take negative values, as success ratios
may also be restrained by interventions in certain scenarios or other domains.

From both terms, we may conclude that a high GPF will result if both the
prediction of a base model differs from historical groups (group shift) and the
number or intensity of interventions is increased as a reaction on this change
(intervention effect). If one of these terms is close to zero, we either have a dis-
tribution change without a significant change in interventions (pure covariate
shift), or a changing relation between the features and actual class label (pure
concept shift), for which other solutions may apply.

Note that the intervention effect is not known by the time of prediction. Only
after the actual class labels for the new group are established, the second term
of equation 9 may be determined. In a real life scenario, the intervention effect
would have to be evaluated by domain experts by determining the increase of
interventions and estimating their effects on the actual class labels in the new
group.

5.1.2 Data simulations

To compare the models that will be developed, synthetic data is generated
with an increasing GPF. This enables us to evaluate the models with varying
strengths of the group effect, and possibly suggest the use of certain models in
different situations.
The case of student success is simulated in a simplified scenario. Only one
predicting covariate (feature) is generated, the mean course mark. Groups of
200 students are simulated, with five training groups and a test group (the new
group for which a prediction should be made). The steps in this simulation
process are as follows.

• Mean course marks for the individuals in the five training groups are
drawn from a normal distribution with mean 6.2 and standard deviation
of 0.7 (these values actually correspond to those in the full dataset of our
example school).

• Mean course marks for the test group are drawn from a normal distribution
with mean 5.8 and the same standard deviation of 0.7

• For the training groups, an improvement of this feature is randomly drawn
from a normal distribution with mean 0.1 and standard deviation of 0.4
(again, these values correspond to actual course mark improvements over
the schoolyear in our case study data)

• For the test group, this improvement is randomly drawn from a normal
distribution with varying mean (ranging from 0.1 to 0.55) and the same
standard deviation as the improvement in the training groups

• The actual class label is determined with success boundary 6.3: if the mean
course mark with the improvement exceeds this boundary, the individual
is assigned a positive class label (success), otherwise a negative one (not
successful)
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• For each varying improvement of the test group (intervention effect), the
simulation is repeated 200 times with results averaged to reduce variance

The success boundary (cut-off point) was iteratively determined to result in
more or less balanced datasets in the training groups. Note that in reality, the
success boundary is closer to a mean course mark of 5.5, resulting in the im-
balanced case study dataset as shown in section 3.1. In this simulation process
however, we should avoid introducing certain unknown effects that may result
from an imbalance in the generated data.

The models should provide a prediction for all the cases generated (all variations
of test group improvements, repeated 200 times). For each iteration, the Group
Performance Factor is calculated and the model performance is noted. This
results in a dataset of model results for an increasing group effect, which even-
tually enables us to provide recommendations about the use of certain models
in varying strengths of the GPF.

5.2 Case Study: School dataset

All models will also be tested with the real dataset from our example school re-
garding student success prediction. The occurrence of the GPP in this dataset
was already shown in section 3, particularly in department H2. Now that we
have defined the Group Performance Factor, we may calculate this value for the
different departments in the dataset.

With training groups for transition years 2014, 2015, 2016 and 2017, the GPF
for the new groups (transition year 2018), is shown in table 5.1.

Level Grade Department GPF

Mavo 2 M2 0.01
Mavo 3 M3 0.01
Havo 2 H2 0.38
Havo 3 H3 0.08
Havo 4 H4 0.00
Vwo 2 V2 0.05
Vwo 3 V3 0.00
Vwo 4 V4 -0.02
Vwo 5 V5 -0.05

Table 5.1: Group Performance Factor for different departments (training set
2014-1017, test set 2018)

The high GPF of 0.38 for department H2 clearly stands out, as expected. For
this department in 2018, both the group shift and the intervention effect, the
left and right terms of equation 9 respectively, are considerable. The GPF for
department H3 is also high compared to other departments, but does not come
close to that of department H2.

In the model analysis with respect to the case study, we will evaluate two results:
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• Model performance for department H2 (2018)
The models are evaluated for this department in transition year 2018, with
the data from schoolyears 2014-2017 as training set. As this department
clearly shows a considerable GPF, the performance with respect to this
department of each model that will be developed is of high interest.

• Model performance for all departments (2018)
Models that are able to deal well with a high GPF, should preferably not
perform less when the group effect is relatively weak. Therefore, we will
analyse the models for the whole set of departments in transition year
2018. As the majority of departments show a GPF close to zero (table
5.1), this analysis will be interesting to evaluate the general performance
of models, not only in the case of a high GPF.

5.3 Model performance: Brier score

As shown in section 2, the actual predicted class labels for a new group of
students within a department is of little interest. The individual success prob-
abilities, the predicted probability of a positive class label in the classification
problem, is of greater value. Consequently, traditional classification metrics like
accuracy or precision/recall are not suitable for this particular problem.

To score a probabilistic forecast with respect to the actual outcome, different
metrics may be used. These scoring rules may be formally defined as proper or
even strictly proper [Merkle and Steyvers, 2013]. A scoring rule is proper if the
score function is minimized in the case of the forecast approaching the actual
probability. This is the case for a lot of scoring metrics, so a subset may be
defined: strictly proper scoring rules. In this case, the metric is minimized if
and only if the forecast equals the actual probability (or outcome for an infinite
number of experiments).

As we would like our models to predict probabilities that correspond to the ac-
tual probability as much as possible, the strictly proper Brier score [Brier, 1950]
is used to evaluate the prediction of the individuals in the new group. The Brier
score is a quadratic score metric indicating the squared error between predicted
probability and actual outcome. Obviously, the goal of developing our models
is to realize a Brier score as low as possible, even when the Group Performance
Factor is high.

Note that we already created a (base) model in section 3. We may now expand
the results of table 3.3 with the Brier scores of this model for the different
departments. These scores, or mean squared errors, are shown in table 5.2.
The Brier score of this model for the department with a notably high GPF
(department H2 ) is the second-highest in the set. Department H3 also shows
a considerable error with this unmodified Logistic Regression model compared
to other departments. This is expected, as the presence of a GPE results in an
inferior forecast with a traditional model by definition.
Note, however, that a high Brier score (lower performance) may not result from
a group effect exclusively. In department H4 and V4 the GPF is small (table
5.1), but the Brier scores are high compared to other departments. It may be
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Dept. Predicted Actual Brier score

H2 0.79 0.90 0.076
H3 0.82 0.91 0.073
H4 0.88 0.88 0.067
M2 0.90 0.92 0.042
M3 0.90 0.95 0.038
V2 0.88 0.91 0.053
V3 0.87 0.90 0.037
V4 0.81 0.81 0.080
V5 0.88 0.87 0.045

Table 5.2: Predicted (term 1) and actual student success ratios, including Brier
score (Logistic Regression model, training set 2014-2017, test set 2018)

concluded that though the success ratio is predicted well for these departments,
predicted individual probabilities are off. This is not the result of a group ef-
fect affecting all individuals, but simply due to the fact of part of the students
developing unexpectedly during the schoolyear (e.g. students with low course
marks early on actually being promoted at the end of the schoolyear, and the
other way around).

The Brier score will be used as the single metric for assessing the different mod-
els, both in the simulations with synthetic data and in the case study of student
success prediction. We aim to develop models that are able to perform well
(lower Brier score) in classification problems with different Group Performance
Factors, or at least provide some recommendations for when to use which model
depending on the strength of the group effect.
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6 Models and implementation

Different strategies for dealing with the Group Performance Problem (GPF) are
developed, corresponding to the research sub questions (4.3). In this section,
the corresponding models are discussed.

6.1 Traditional Machine Learning models (SQ1)

In the first sub question, the performance of student success prediction using
traditional Machine Learning (ML) models is examined. Obviously, to deter-
mine improvement using the strategies from the other sub questions, we should
know the prediction quality of unmodified models. Different types of ML models
are examined to have a broad perspective of the performance of a traditional
approach dealing with the GPP.

An example of a traditional model was already shown in section 3, where a
Logistic Regression model was developed to illustrate the Group Performance
Problem. We will expand that analysis with some other regularly used ML mod-
els. For implementing the frequentist models and using them in the analysis,
the Python library sklearn is used [Pedregosa et al., 2011]. Since we are mainly
interested in predicting individual student success probabilities (see section 2),
the models should provide true posterior probabilities. For most models, sklearn
provides the predict proba method, resulting in a probability of the target class
instead of a binary classification.

Not all learning algorithms result in well calibrated probabilities naturally, and
predictions may be distorted [Niculescu-Mizil and Caruana, 2005]. If this is the
case, a correction called Platt Scaling may be used [Platt, 1999]. In this method,
outputs are projected to a sigmoid function resulting in posterior probabilities.
This property makes sure that all models are able to provide a calibrated suc-
cess probability, which may be used to determine the performance of our models.
Fortunately, Platt Scaling is integrated in the predict proba method of sklearn
if applicable.

The following ML models were created without significant modifications:

• Logistic Regression
In a Logistic Regression (LR) model, the logistic function is fitted to pro-
vide the probability of a certain input vector (features) belonging to the
positive class. In our case, we are mainly interested in this predicted
probability, but LR may obviously be turned into a binary classifier by
selecting a cut-off value for the probability (usually 0.5).

• Support Vector Machine
A Support Vector Machine (SVM) creates a hyperplane that separates the
two classes by the maximum margin. Consequently, training data points
closer to the decision boundary have more influence on the separating
hyperplane. The classifier is not probabilistic by nature, so Platt Scaling
is used to output (calibrated) probabilities.
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• Random Forest
The Random Forest (RF) classifier is an ensemble method that creates
multiple decision trees (hence the name ’forest’). The ensemble generally
prevents overfitting, which is a serious risk when using single decision trees.
As decision trees only provide a binary outcome, to return a probability
sklearn computes the fraction of the trees in the forest predicting the
positive class label.

It should be noted that, in all models, the input feature vector is transformed
by using sklearns’ StandardScaler, which essentially removes the mean of the
features and scales them to unit variance. Some models (like the SVM with a
non-linear kernel) assume this property, and in other cases it is assumed that
the transformation will not significantly affect model performance.

6.2 Adding more features (SQ2)

A straightforward approach to improve Machine Learning classification tasks
is to include more information in the model in the form of additional features.
Consequently, the features with respect to the student course marks will be less
important for the prediction of the positive class probability (success chance).
For the case study, our example school, the following additional features will be
introduced to include additional information:

• Recommendation PE
In the Netherlands, schools for Primary Education (PE) provide a level
recommendation for each pupil after eight years of education. This level
recommendation is known in the administration system of secondary schools,
and may be used to determine the best individual placement of students
during the early grades. The recommendation may be expressed as a num-
ber between 1 and 6 (corresponding to the different levels in secondary
education).

• Intelligence and skill score (Mathematics)
The CITO skill score with respect to Mathematics. During the first three
grades, students in our example school are independently tested by Dutch
institution CITO. These tests do not influence the course marks of the
pupils, but may be used to identify flaws in the cognitive development of
the students.

• Intelligence and skill score (Dutch)
The CITO skill score with respect to Dutch language and receptive read-
ing.

• Intelligence and skill score (English)
The CITO skill score in the field of English language, one of the core
sections as discussed in section 3.

These features are relatively independent on the course marks of the students,
they provide more or less a priori information for the success chances of the
individual students within a department as these scores are known before the
schoolyear is even started. Consequently, by including these features in addition
to course mark aggregates, we expect models to suffer less from the group effect
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as course marks play a smaller role in the predictive model.

This strategy is only tested in the case study. Adding one or more features
in the synthetic data simulations containing strong correlation with the actual
class label will obviously improve model performance. However, in this case we
are interested in this specific domain: do other features not specifically linked to
student course marks significantly improve the prediction, or do they turn out
to be redundant? If adding these features actually improve model performance,
we would clearly add them to any predictive model as they appear to contain
additional predictive information in that case.

6.3 Using relative course mark features (SQ3)

In Machine Learning classification, feature vectors are usually standardized by
removing the mean and scaling to unit variance, the process we implemented
in the models using the Standardscaler object provided by sklearn. This trans-
formation generally improves model performance and prevents some modelling
issues that may arise if the covariates are highly varying in range. In these cases,
the same transformation that was established with the training data is applied
to the test set.

In the strategy corresponding to SQ3, however, we deliberately use a different
transformation for the new group of students (test set). A new transformation
is applied to the covariates in this group, using the mean of the new group
instead of the training set mean for continuous features. With this adjustment,
we effectively use course mark aggregates relative to the own group instead of
actual values. The idea behind this strategy is the assumption that, as vari-
ance in department success ratio is not too high (table 2.1), it is apparently
more important how a student performs compared to the other individuals in
the group than the absolute performance according to the course marks. If the
course marks for all students in the new group are generally worse compared to
those in historical schoolyears, success chances of students with marginal results
are actually increased.

The implementation of this model is pretty straightforward, as shown in the
following code block for removing the mean of the covariates.

def b u i l d s o l u t i o n ( s e l f , X train , y t r a i n ) :
#s t a n d a r d i z e f e a t u r e s

X tra in t rans fo rmed = X train−X tra in . mean ( )
. . .

def e v a l u a t e t e s t s e t ( s e l f , X tes t ) :
. . .

#s t a n d a r d i z e f e a t u r e s wi th r e s p e c t to the new group
X tes t t rans fo rmed = X test−X test . mean ( )
. . .

We expect this model to perform well when there is a significant shift in the mean
of the features of the test set compared to the training set, as the standardizing
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process essentially means this shift has no effect on the model. However, if this
difference is present but the intervention effect is close to zero (i.e. the results of
the new group are disappointing but interventions are not increased), this model
may incorrectly increase student success chances resulting in higher Brier scores
and therefore lower model performance compared to a base model.

6.4 Bayesian models (SQ4)

In the Bayesian models, we will approach the problem probabilistically. A
representation of the student success domain is represented in the Bayesian
network of figure 6.1. Bayesian networks are directed graphical models, where
the nodes are variables and the arcs represent the connections (usually causal
relations) between these variables [Korb, 2011].

Figure 6.1: Bayesian network of the student success domain

In the last node, the student success is determined by the passing meeting. Note
that the group success ratio based on the final grades at that point affect the de-
cisions: if the interventions did not improve results satisfactorily, more students
that do not meet the final passing standard may be promoted nonetheless.

6.4.1 MCMC and Pymc3

In our Bayesian models, we will establish prior probability distributions for the
variables and coefficients involved. With the evidence provided by the train-
ing data, the goal is to provide the posterior probability distribution of this
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set of random variables, a method called Bayesian inference. For non-trivial
models, this process is intractable as it involves computing complex integrals
[Lee and Wagenmakers, 2014].

Fortunately, there are several ways to approximate the posterior distribution.
We will use sampling algorithms using Monte Carlo Markov Chain (MCMC)
techniques. In this process, samples are generated from the posterior. If there
are enough samples available, any statistic of the posterior distribution may be
calculated (like the mean of a variable). Estimating the distribution with ran-
dom samples is the Monte Carlo aspect of MCMC. The Markov Chain part of
the sequential process of drawing samples means that samples do depend on the
previous sample, but not on the samples before that one (the Markov property)
[Lee and Wagenmakers, 2014].

Formally, Bayes rule states that the probability of hypothesis h, given evidence
e, is equal to the likelihood P(e|h) times its prior probability P(h), normalized
over the global probability of the evidence e [Korb, 2011]:

P (h|e) =
P (e|h)P (h)

P (e)
(10)

If the likelihood is available in analytical form, the posterior may be calculated
using the prior and this analytical expression. In practice, however, this expres-
sion is not available and sampling from the posterior is an acceptable alternative
by approximating the posterior distribution.

For our models, we will use the Python library Pymc3 [Salvatier et al., 2016].
This library provides a framework for defining models without a domain-specific
language and offers multiple MCMC samplers. The No-U-Turn Sampler (NUTS )
is used in all our Bayesian models for the sampling process. NUTS is a Hamilto-
nian Monte Carlo (HMC) algorithm that converges faster than unmodified ran-
dom walk samplers like Metropolis or Gibbs sampling [Homan and Gelman, 2014].
The major advantage of this sampler is the auto-tuning aspect, enabling us to
avoid an intensive manual tuning process. In practice, we found that tuning
only the step size of the NUTS algorithm (using the target accept parameter) is
sufficient to establish a converging sampling process in all models.

Since we are mainly interested in the mean of certain variables to create a
predictive model, 2000 samples for each model and simulation are used for
approximating these values (after dismissing 500 samples used for tuning the
model). This number of samples turned out to be satisfactory in predicting the
mean values of unknown random variables used for the predictive models.

6.4.2 Bayesian Logistic Regression

For our first predictive Bayesian model, we would like to establish the condi-
tional probability P (Y |X) directly, without including the group performance.
In this case, a Bayesian Logistic Regression model is created. Like the frequen-
tist approach of the base LR model developed for SQ1, parameters are learned
to fit the logistic function:
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θ(z) =
1

1 + e−z

with

z = β0 + x1β1 + ..+ xnβn

and n is the number of covariates (features) in the dataset. In this problem,
the coefficients in parameter vector β are learned. The result of the function
θ(z) represents the probability of a positive class label, in our case the student
success probability.

The model is created using Pymc3, with weak (uninformative) prior distribu-
tions for parameters β. The likelihood is modelled using a Bernoulli distribution
with p = θ and observed values for the class labels (1 or 0 for student success)
in the training data. The outline of this model, with i students in the training
data containing n features, is shown in figure 6.2.

Figure 6.2: Implementation of the Bayesian Logistic Regression model

In this model, the following parameters are incorporated:
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• β
Coefficient vector for the logistic function. Weak prior values are assumed:
the prior for each βn is modelled as a normally distributed variable with
mean 0 and standard deviation 10.

• θ
Deterministic vector of the sigmoid function applied to

z = β0 + β1x1 + ..+ βnxn

for each feature vector xi (student) in de training dataset. These values
represent the success probability of each student (0 ≤ θi ≤ 1).

• y
Bernoulli distribution with p = θ and observed values for the training
dataset: the actual class label for the student (1 for success, else 0).

In the NUTS sampling process, the mean values of coefficients β are established,
resulting in our predictive model for the new group of students. To calculate
the success probability of a student in the new group, we may simply calculate
θ(j) = logistic(β0 + β1x1 + .. + βnxn) for each student feature vector xj in
the new group using the mean value for each coefficient βn determined by the
sampling process.
Note that, as we are using weak priors, this model is basically equal to the
deterministic LR approach of SQ1. Therefore, we expect this model to perform
about the same as that model. At least, by comparing the results of the equiva-
lent models we are able to confirm the correctness of the design of our Bayesian
models.

6.4.3 Bayesian Group model

The first real strategy for dealing with the group effect in a Bayesian model is
incorporating the historical success ratios of former groups of students in the
prediction. In this case, not only the course grades are used in the predictive
model, but also the results of the group as a whole (predicted success ratio).
For this group result, fortunately, we have some evidence for the distribution of
this success ratio from year to year.

Like in the former model, a Bayesian Logistic Regression model is created. The
class labels for the training data are still observed, but additional evidence is
added for the success ratio of groups of students (departments in a certain
schoolyear). The success ratio distribution is modelled based on the β param-
eter values and input features, while the historical success ratios are used as
evidence for this distribution (observed variable in Pymc3).

An outline of the model is shown in figure 6.3. In this model, there are i students
in the training dataset, divided in k groups (historical schoolyears). For each
student, n predicting features are available. There are j students in the new
group (test set), for which a prediction should be made.
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Figure 6.3: Implementation of the Bayesian Group Model

In this model, the following parameters are incorporated:

• β
Coefficient vector for the logistic function. Weak prior values are assumed:
the prior for each βn is modelled as a normally distributed variable with
mean 0 and standard deviation 10.

• θtrain
Deterministic vector of the sigmoid function applied to

z = β0 + β1x1 + ..+ βnxn

for each feature vector xi (student) in de training dataset. These values
represent the success probability of each student (0 ≤ θi ≤ 1).

• y
Bernoulli distribution with p = θ and observed values for the training
dataset: the actual class label for the student (1 for success, else 0).
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• θtest
Deterministic vector of the sigmoid function applied to

z = β0 + β1x1 + ..+ βnxn

for each feature vector xj (student) in de test dataset, e.g. the students
in the new group. These values represent the success probability of each
student in this group (0 ≤ θj ≤ 1).

• H
Deterministic variable representing the mean success probability of the
new group of students (success ratio of this group) based on θtest.

• sp
Probability distribution of the success ratio. This distribution is modelled
as a normal distribution with mean H and the historical group success
ratios as observed values. The standard deviation is set equal to that of
the historical group success ratios.

Like in the Bayesian Logistic Regression model, the mean values for coefficients
βn are determined from the sampling process, resulting in the predictive model
for the new group of students (the test group).
We expect this model to have a restraining effect on the success ratio. If the
initial success ratio for the new group of students based on the logistic fit for
the training data is significantly lower than the historical success ratios, the β
coefficients values will adjust accordingly depending on the observed historical
success ratios. Note that this effect is stronger if the observed historical success
ratios have low variance: the model will provide a stronger correction if the
group shift as defined in the left part of equation 9 is higher.

6.4.4 Bayesian Lambda model

The second probabilistic strategy is different. In this model, the success prob-
abilities of the students in the new group are predicted using an unmodified
Logistic Regression model fitted with the training dataset. We will use the fre-
quentist model of RQ1 (implemented with sklearn), but this could also be the
Bayesian variant previously discussed.

In this model, however, we expect this probability to increase (or decrease in
certain scenarios), based on the predicted success probability by this unmodified
model and the observed historical success ratios. The increase is defined by the
following equation:

δj = λyj(1− yj) (11)

Where:

• δj is the success probability increase for student j in the new group

• yj is the initial success probability prediction for this student by the un-
modified model (0 ≤ yj ≤ 1)
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• λ is the multiplying factor for this increase (for the whole set of students
in the new group)

This definition makes sure that success probabilities around 0.5 will increase
most (note that yn(1− yn) maximizes at yn = 0.5) , and probabilities near 0 or
1 will get no increase at all. The rationale behind this definition is the hypothe-
sis that interventions will likely increase success probabilities of students on the
verse of success/failing (probabilities around 0.5) the most as exactly this group
will benefit from a possible intervention effect. The parameter λ will determine
the strength of this effect for the whole group: if lambda is close to zero, there
is no significant increase in the success probabilities for all students.

The parameter λ is determined in the sampling process using the historical
success ratios. A representation of the model is shown in figure 6.4.

Figure 6.4: Implementation of the Bayesian Lambda Model
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In this model, the following parameters are incorporated:

• λ
The multiplying factor for the variational increase in success probability.
Normally distributed with mean 0 and standard deviation of σ.

• σ
Standard deviation of λ, the prior is set as a halfnormal distribution with
standard deviation 1.

• H
Deterministic variable indicating the success ratio of the new group of
students. This variable is calculated as the mean value of the sum of the
initial predicted probabilities and the probability increase determined by
λ and equation 11.

• spobs
Probability distribution of the success ratio. This distribution is modelled
as a normal distribution with mean H and the historical group success
ratios as observed values. The standard deviation is set equal to that of
the historical group success ratios.

For our predictive model, the individual success probability of students in the
new group are simply calculated by using the initial probability yj for student
j in the new group, increased with δj (equation 11) using the mean of λ deter-
mined in the sampling process.

Multiplying factor λ will be close to zero if the initially predicted success ratio
is close to the historical group success ratios. The correction is increased most
when this initial prediction is significantly different compared to the historical
success ratios, and the variance of these ratios is low. We expect the perfor-
mance of this model to be comparable to the Bayesian Group model previously
discussed.
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7 Results

In the preceding section, different models were established containing strategies
for dealing with the group effect. All models are tested using the synthetic
data simulations discussed in section 5, and the Brier score is calculated to rank
model performance. Furthermore, the case study data of our example school is
applied to the models to examine model performance in a real life scenario.

7.1 Synthetic data simulations

The simulations with increasing GPF are performed for the basic ML models
(SQ1), the Group Difference model (SQ3) and the Bayesian models (SQ4). The
results are plotted in a diagram indicating the Brier score at different strengths
of the group effect. Each datapoint represents the resulting mean Brier scores
for 200 simulations. For all models, a polynomial with order 2 is fitted through
the points to better illustrate the relation.

7.1.1 Basic ML models (SQ1)

The results of the models created for SQ1, discussed in section 6.1, are shown
in figure 7.1.

Figure 7.1: Brier scores for the different base models with increasing group effect

The Group Difference model (SQ3) and the Bayesian models (SQ4) will be com-
pared to the best performing model in this set. As the Logistic Regression (LR)
model presents the lowest Brier scores for all variations of the GPF, the results
of this base model will be plotted in the other diagrams. Obviously, if a model
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strategy results in a better performance compared to the LR base model, it will
perform better than all the other base models.

We should note that if the results of the same model are plotted again in this
section to compare with a new strategy, the simulations for that model were
usually repeated. As there is some randomness involved in the generation of
data within the simulations, the exact position of datapoints may slightly differ
for the same model. However, these differences are minor and the polynomial
that is fitted through the datapoints will be similar.

7.1.2 Group Difference model (SQ3)

In this strategy, features relative to the own group are used, as discussed in
section 6.3. The results of this model for the synthetic dataset simulations,
plotted along the base LR model, are shown in figure 7.2.

Figure 7.2: Brier scores for the group difference model (relative features) com-
pared to the base LR model

7.1.3 Bayesian models (SQ4)

We created three types of Bayesian models, as discussed in section 6.4. The first
one is the Bayesian variant of the Logistic Regression model. This model was
included not as a strategy, but to verify the design of our Bayesian modelling
techniques. The results of this model, compared to the frequentist LR model,
are shown in figure 7.3.
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Figure 7.3: Brier scores for the Bayesian Logistic Regression model compared
to the frequentist LR model

The first real Bayesian strategy is the Bayesian Group model including a prob-
ability distribution for the success ratio of groups. The results of this model,
plotted along the base LR model and the strategy of using relative features
(group difference model), are shown in figure 7.4.
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Figure 7.4: Brier scores for the Bayesian Group model compared to the base
LR model and the group difference model

The last strategy is the Bayesian Lambda model, creating an improvement in
success probability based on success ratios of historical groups. The results of
this model, plotted along the base LR model and the Group Difference model,
are shown in figure 7.5.
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Figure 7.5: Brier scores for the Bayesian Lambda model compared to the base
LR model and the group difference model

7.2 Case Study

After running the set of extensive simulations to test the models, they are ap-
plied to the case study dataset regarding student success for our example school.
As discussed in section 5.2, model performance (Brier score) for the department
H2 will be evaluated, as well as the total Brier score for all departments in
transition year 2018. In addition to the models tested using the synthetic data,
in this case study the strategy of including more features (SQ2) will also be
tested.

7.2.1 Basic ML models (SQ1)

First, the results for the basic Machine Learning models are applied to the case
study dataset with the transition year 2018 to be predicted. For reference, two
trivial models are included. In the first, all students are promoted. Note that
the accuracy of such a model is not too bad, as most of the students are pro-
moted in each department anyway (table 3.2). In the second trivial model, all
students will be assigned the mean success probability for that department in
the training data.

The results for these trivial models and the basic ML models are shown (sorted
best-to-worst) in table 7.1 (department H2 ) and table 7.2 (all departments).
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Model Brier score

Logistic Regression 0.077
Support Vector Machine 0.085

Random Forest 0.092
All students mean probability 0.093

Every student promoted 0.104

Table 7.1: Case Study results for the basic ML models (department H2, transi-
tion year 2018, best-to-worst)

Model Brier score

Logistic Regression 0.057
Support Vector Machine 0.064

Random Forest 0.067
All students mean probability 0.091

Every student promoted 0.101

Table 7.2: Case Study results for the basic ML models (all departments, tran-
sition year 2018, best-to-worst)

7.2.2 Adding more features (SQ2)

The strategy we did not analyse in the synthetic dataset simulation is including
more features in the models. As discussed in section 6.2, some information
relatively independent on the course marks is included in the fitting process
of the model. The best performing basic models are included, both using only
course mark aggregates and the variant with more features. The results of these
models are shown (sorted best-to-worst) in table 7.3 (department H2 ) and table
7.4 (all departments).

Model Brier score

Logistic Regression 0.077
Random Forest (additional features) 0.079

Logistic Regression (additional features) 0.083
Support Vector Machine 0.085

Support Vector Machine (additional features) 0.086
Random Forest 0.092

Table 7.3: Case Study results for the basic models, and the same models with
additional features (department H2, transition year 2018, best-to-worst)

7.2.3 Group Difference model (SQ3)

In this strategy, course mark aggregates relative to those of the own group
were used. The results for the Logistic Regression and Support Vector Machine
models using this group difference, compared to the basic variants of these
models, are shown in table 7.5 (department H2 ) and table 7.6 (all departments).
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Model Brier score

Logistic Regression 0.057
Logistic Regression (additional features) 0.057

Random Forest (additional features) 0.060
Support Vector Machine (additional features) 0.062

Support Vector Machine 0.064
Random Forest 0.067

Table 7.4: Case Study results for the basic models, and the same models with
additional features (all departments, transition year 2018, best-to-worst)

Model Brier score

Logistic Regression (Group difference) 0.053
Logistic Regression 0.077

Support Vector Machine (group difference) 0.079
Support Vector Machine 0.085

Table 7.5: Case Study results for the Group Difference models, and the corre-
sponding basic models (department H2, transition year 2018, best-to-worst)

Model Brier score

Logistic Regression (Group difference) 0.054
Logistic Regression 0.057

Support Vector Machine 0.064
Support Vector Machine (Group Difference) 0.065

Table 7.6: Case Study results for the Group Difference models, and the corre-
sponding basic models (all departments, transition year 2018, best-to-worst)

7.2.4 Bayesian models (SQ4)

Three Bayesian models were tested: the Bayesian variant of the Logistic Regres-
sion model and the two strategies (the Bayesian Group model and the Bayesian
Lambda model).
The results of these Bayesian models, compared to the frequentist Group Dif-
ference model and the base LR model, are shown in table 7.7 (department H2 )
and table 7.8 (all departments).

Model Brier score

Bayesian Group Model 0.051
Logistic Regression (Group Difference) 0.053

Bayesian Lambda Model 0.055
Logistic Regression 0.077

Bayesian Logistic Regression 0.080

Table 7.7: Case Study results for the Bayesian models, compared to the other
models (department H2, transition year 2018, best-to-worst)
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Model Brier score

Logistic Regression (Group difference) 0.054
Bayesian Group Model 0.055

Bayesian Lambda Model 0.056
Logistic Regression 0.057

Bayesian Logistic Regression 0.058

Table 7.8: Case Study results for the Bayesian models, compared to the other
models (all departments, transition year 2018, best-to-worst)

All results will be analysed in the next section, including a discussion of the
statistical significance.

47



Open Universiteit MSc Software Engineering Thesis

8 Discussion

In the previous section, the results of our models were presented without com-
ments. In this section, we will discuss both the results of the synthetic dataset
simulations, and the model performance with respect to the case study of stu-
dent success prediction. Furthermore, the significance of the case study results
are discussed.

8.1 Synthetic dataset simulations

In the analysis of the basic machine learning models, the (exponential) increase
in Brier score with an increasing group effect (GPF) is expected (figure 7.1).
The performance of the Random Forest model seems off compared to the other
models. However, note that the Brier score is used for comparing the models.
The decision tree ensemble provides a probability as the fraction of individual
trees predicting a positive class label compared to the total number of decision
trees. It is not too surprising that this method produces uncalibrated proba-
bilities and inferior Brier scores. The number of decision trees in the ensemble
may be increased (we used 100 trees), but with the number of datapoints and
features involved this will probably only result in redundant trees and might
not increase the Brier score.

The first strategy dealing with the group effect is the Group Difference model
(figure 7.2). This model clearly outperforms the base LR model if the GPF is
significant, but the performance is significantly worse in the absence of a group
effect, or when this effect is small. The turning point is a GPF of about 0.7.
Note that this is substantial: if the group effect is 2 (the naive prediction of the
new group is two standard deviations lower compared to the training groups)
the intervention effect is 0.35. This essentially means that more than a third
of the students in the new group would have to be promoted despite a negative
prediction of the base model. In the case of smaller group effects, the LR base
model performs better than the Group Difference model.

The first Bayesian model presented is the Bayesian Logistic Regression model
(figure 7.3). As expected, the performance is similar to that of the frequentist
LR model. Since we used weak priors for the β parameters, these values are
fitted only on the training dataset, which is exactly the case for the frequentist
model. The similar relation, however, provides confidence in the Bayesian mod-
elling techniques and the chosen sampling algorithm, tuning parameters and
sample size. This is useful as the more complex Bayesian models don’t have
frequentist counterparts.

The strategy used in the Bayesian Group Model (figure 7.4) turns out to be a ro-
bust one: the Brier score is quite stable for all variations of the GPF. One might
expect this model to perform in between the unmodified (LR) model and the
Group Difference model, but the Brier score constantly approaches the best of
the two for all group effect variations. In a substantial part (0.35 < GPF < 0.9)
the Bayesian Group model even outperforms both other models. Only in the
case of a small group effect or a very strong GPF, the model is outperformed
by the base LR model and the Group Difference model, respectively. We should
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keep in mind however that in practice, the intervention effect is not known be-
forehand, and should be estimated by domain experts. In these uncertain cases,
it is less risky to use a robust model, and the Bayesian Group model might be
a proper candidate in these scenarios.

The second Bayesian strategy, used in the Bayesian Lambda model, seems com-
parable to the Group Difference model. This is somewhat unexpected, as we
assumed this model to perform more like the Bayesian Group model (noted in
section 6.4). In retrospect, however, this behaviour is not too surprising. In the
Group Difference model, the features are expressed as difference from the group
mean (relative features). Let us now simplify the scenario to one feature: the
mean course mark. If the new group performs less than the training groups,
the transformation essentially means a shift of the ’S-curve’ fitted in a Logis-
tic Regression model as shown in figure 8.1. This shift results in an increased
success probability for all students. However, as the slope of the logistic func-
tion is highest in the middle, students on the edge of failing/passing (an initial
success probability around 0.5) ”profit” more of this shift, e.g. their success
probability is increased most. This is exactly the assumption we used for the
Bayesian Lambda model. Apparently, both models use a similar mechanism,
which is confirmed by their comparable Brier scores in our synthetic dataset
simulations.

Figure 8.1: Illustration of the shift of the S-curve in a Logistic Regression model.
The shift of the green line to the dashed grey line increases θ (success probabil-
ity) for all students, with the largest increase in the middle (for the slope of the
logistic function maximizes there)

8.2 Case Study

For the most part, the case study results correspond to the results of the syn-
thetic data simulations. In the results of the basic models (table 7.1 and 7.2),
the Machine Learning models fortunately perform better than the trivial mod-
els (the models where all students get the mean training probability or every
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student is promoted). The trivial models may appear to do quite well. However,
note that because of the imbalance in the data (most students get promoted),
predicting all students as successful results in a better than random prediction.

The considerably higher Brier scores in the H2 department compared to the
scores for all departments may indicate the strong group effect at this depart-
ment in the transition year 2018. All Machine Learning models suffer from this
effect. As expected, this is not the case for the trivial models. Since the inter-
vention effect makes sure that the success ratio of the new group approaches
the historical success ratios despite degrading course marks, the trivial models
perform comparable in both situations.

When adding more features (table 7.3 and 7.4), only the Random Forest model
evidently improves. This is probably due to the mechanism of the decision tree
ensemble. In the process of creating individual decision trees, both features
and datapoints are split: different decision trees use different features. When
adding more features, this model may improve as there are now less redundant
trees and the ensemble will be stronger. The model approaches but does not
outperform the basic Logistic Regression model.

In general, it appears that adding these features does not improve the mod-
els (the performance may even decline). Apparently, the predictive value of
the added features is minor compared to the features based on student course
marks, which may be explained my domain knowledge. In the student course
marks in the beginning of the schoolyear, all underlying causes are already in-
corporated. Course marks result from intelligence, dedication, social-emotional
circumstances, class absence, teacher quality and many other factors. Including
quantified features with respect to these underlying causes does not add predic-
tive value, apparently.

The Group Difference model, using continuous features relative to the group
mean (SQ3), outperformed the base models only in the case of substantial group
effects, e.g. a high GPF. This behaviour appears to be confirmed by the results
of the case study. The difference between the relative model (Group difference)
and the unmodified model is clear when department H2 is analysed (table 7.7).
The effect is still visible when all departments are concerned (table 7.8). How-
ever, this somewhat minor difference could solely be due to the problematic
department H2, as that is part of the whole set of departments too. In this
case, the performance of the model is less for other departments, where there is
no or only a small group effect.

These results appear to be in line with the simulations. However, this is not
completely true. Note that the GPF calculated for department H2 in the case
study was 0.38 (table 5.1). While this is a considerable group effect, we do not
expect the Group Difference model to outperform the base model at this GPF
based on the simulations (figure 7.2). Here, we noticed the turning point at
a GPF of about 0.7, which is almost two times higher than the group effect
concerned. There may be two reasons for this contradiction. The Group Per-
formance Factor we defined in equation 9, may not be universal. In this case,
it would be incorrect to compare group factors in different situations. Another
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reason may simply be the fact that in the case study only one ”simulation” is
concerned, which may contain too much variance to confirm the behaviour as
shown in the synthetic dataset results.

Regarding the results of the Bayesian models (table 7.7 and 7.8) we may first
note that the Bayesian variant of the Logistic Regression model is indeed similar
to that of the frequentist model, the Brier scores are not that different corre-
sponding to the simulation results.
The first Bayesian strategy incorporated in the Bayesian Group model shows the
best Brier score in the case study with respect to department H2. This corre-
sponds to our findings in the synthetic dataset simulations, where the Bayesian
Group model outperformed the other models in small to medium group effects
(including the GPF of 0.38). However, it is not evident that the difference in
Brier scores between the three strategies are statistically significant.
This observation holds even more for the analysis of the models with respect
to all departments (table 7.8): the Brier scores seem very close. Though these
are mean scores for a larger group of individuals and a smaller difference is
expected, we should be careful to draw conclusions based on these results.

8.3 Statistical Significance

To provide further insight in the reliability of the case study results, the con-
fidence intervals of the Brier scores presented in tables 7.7 and 7.8 are deter-
mined. Since we cannot assume that Brier scores for individual students within
a model are normally distributed, the Bootstrap Method was used to establish
these intervals. In this method, sampling with replacement is used to estimate
a parameter from a distribution [Efron, 1981], in this case the Brier score of the
different models.

The results of the Bootstrap sampling (1E5 samples for each model) to de-
termine the confidence intervals for the Brier scores of the different models in
the case study are shown in tables 8.1 (department H2 only) and 8.2 (all de-
partments). The 2.5% and 97.5% percentiles constitute the range of the 95%
confidence interval.

Model Mean 2.5% perc. 97.5% perc.

Bayesian Group Model 0.051 0.034 0.070
Group Difference Model 0.053 0.033 0.076
Bayesian Lambda Model 0.055 0.032 0.081

Logistic Regression 0.077 0.052 0.104
Bayesian Logistic Regression 0.080 0.054 0.109

Table 8.1: 95% confidence intervals for the Brier score of the different models
resulting from Bootstrap sampling (department H2, transition year 2018)

From these intervals, the uncertainty of model performance in this case study
is clear. After all, this is the reason we used the mean of 200 simulations to
determine the Brier score at different group effects in the synthetic dataset
simulations.
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Model Mean 2.5% perc. 97.5% perc.

Group difference model 0.054 0.046 0.063
Bayesian Group Model 0.055 0.047 0.063

Bayesian Lambda Model 0.056 0.047 0.064
Logistic Regression 0.057 0.049 0.065

Bayesian Logistic Regression 0.058 0.049 0.066

Table 8.2: 95% confidence intervals for the Brier score of the different models
resulting from Bootstrap sampling (all departments, transition year 2018)

For this case study, though results appear to be in line with the synthetic dataset
results, we are unable to determine a significant ’winning’ model.
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9 Conclusion

Using the results and discussion of the previous sections, we may draw some con-
clusions with respect to the research topic. Furthermore, the recommendations
for the use of models are provided, and possible future work is discussed.

9.1 Conclusions and recommendations

Considering the research question, the corresponding sub questions and the
results of our simulations and the case study, the following conclusions may
be derived with respect to the domain of using Machine Learning for student
success prediction at secondary schools in the Netherlands:

1. Using unmodified Machine Learning models based on early student course
marks may fail to provide a reliable prediction because of the Group Per-
formance Effect.

2. In this particular case, using additional features in these models does not
improve results, which may be explained by the fact that course marks
already result from a wide range of causes.

3. If there is a very strong group effect, e.g. a high Group Performance
Factor, using features relative to the own group (the Group Difference
Model) is a successful strategy in dealing with this effect.

4. Two Bayesian strategies appear to improve results. The robust Bayesian
Group model improves results at moderate group effect strengths, while
the Bayesian Lambda model may be used with strong group effects, com-
parable to the Group Difference Model.

Not all strategies are effective in all scenarios, and a thorough consideration
should be made for the selection of a certain model. We recommend the following
procedure for creating predictive models in this domain:

• When no significant Group Performance Effect is expected, use a standard
ML model like Logistic Regression.

• If a very strong group effect is expected, use the frequentist Group Differ-
ence model or the Bayesian Lambda model

• In all other cases, including the scenario when estimating the group effect
by domain experts is not available, use the robust Bayesian Group Model

In conclusion, we were able to successfully improve student success prediction
by dealing with the Group Performance Problem using Machine Learning, with
different strategies. These strategies may be used before the actual class labels
of the new group of students are known, which is a useful contribution to the
field of dataset shift and adapting algorithms. Using extensive simulations, the
effect of the different strategies on model performance was clear. The case study
using data from our example school appears to support these conclusions, but
the results were not significant.
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9.2 Future work

Future work may focus on the definition of the GPF, the variable quantifying
the strength of a group effect in a certain scenario. From our results, it is not
evident that this factor is universal. It may we worth investigating if there is
a non-dimensional constant describing the strength of a group effect in all sce-
narios. Using this factor, the strategies developed and future strategies may
be thoroughly tested and compared to each other. As the effect consists of
two parts: the group effect and the intervention effect, it may be necessary to
separate these effects in multiple constants. Furthermore, note that in our sim-
ulations only the intervention effect was varied. It may be helpful to examine
the effect of varying both parts of the GPF separately.

The strategies and corresponding models developed in this domain should be
tested in other scenarios. In all problems dealing with a group effect, e.g. if the
GPE definition of section 3 holds, these strategies may improve the results of
predictive models. More strategies for dealing with the group effect may also
be formulated and examined. For example, one Bayesian variant we did not
analyse was using the uncertainty of the individual prediction by a Bayesian LR
model to determine the individual increase in success probability, instead of the
quadratic function used in the Bayesian Lambda model.

Finally, in some scenarios the runtime of predictions may be important. In our
case of student success prediction, this was no issue, but it may be useful to
evaluate different models with respect to the time needed to provide a proper
prediction. After all, the sampling process used in our Bayesian models was con-
verging fast and was able to provide mean parameter values with an acceptable
accuracy in less than a minute, but this may be too long for certain scenarios,
i.e. online learning. Furthermore, in problems with a higher number of covari-
ates (features) or larger datasets, the running time of predictive models may be
more relevant. Future work with respect to this attribute is recommended.
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11 List of abbreviations

i.i.d. independent and identically distributed

GPF Group Performance Factor

GPP Group Performance Problem

LR Logistic Regression

MCMC Monte Carlo Markov Chain

ML Machine Learning

NUTS No-U-Turn Sampler

PE Primary Education

RF Random Forest

RQ Research Question

SAS School Administration System

SVM Support Vector Machine

SQ Sub Question
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