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Abstract 

Despite emerging possibilities to gain value from Knowledge Discovery, organizations are starting 
Data Science project that have a little chance of success, as current failure rates show us. Facing 
several impactful developments, such as the proliferation of Big Data, significant adjustments on 
traditional methodologies would make sense. Agile has the potential to inspire new artefacts to 
better connect Data Science activities with nowadays requirements.  

The purpose of this study is to seek for contribution to the shift towards effective Data Science 
activities by testing the potential of an Agile-inspired design. A design science research was chosen as 
research method. For evaluating the proposed design, two case studies were conducted.  

This research introduces the DataOps methodology, an agile inspired way of working that helps 
teams working within the field of Knowledge Discovery improve their results. It can be concluded that 
the proposed methodology has potential to move current methodologies towards, as is title of this 
research is called, effective Agile Data Science.  

Key terms 
Data Science, Agile, Methodology, Knowledge Discovery, DevOps, DataOps, Design Science Research 



  
  3 | P a g e  
 

Summary 
 

Data availability and ways to convert data into value is growing, just as the need for timely and 

effective information. Although attention for data analytics and modelling methods, called Data 

Science, is growing as well, the shift towards knowledge discovery from (big) data comes with 

opportunities and challenges. Waterfall-oriented methodologies will not provide guidance towards 

effective Data Science. In the field of Knowledge Discovery, KDD (1996) can be seen as the initial 

approach and CRISP-DM (2000) as the most commonly used Data Science methodologies. Just as data 

itself, possibilities to convert data into information and the need for information have been changed 

enormously. Despite this, survey results show Knowledge Discovery teams (still) either use 

methodologies founded before these shifts or they use self-invented methodologies. A proper 

solution is not available yet, based on the fact that nowadays 85% of big data projects fail.  

 

In the early 2000’s, a flexible, adaptive, face-to-face and knowledge sharing way of working became 

known, being agile. Although first orientations has been done to incorporate the advantages of agile 

methodologies into the KD Process, building on results from the field of Software Development, 

research in the field of Information Systems is mostly explanatory and not often applicable to the 

solution of encountered problems. Additional exploratory research is needed in order to cope with 

the combination of more and different data, the need for new team roles, team dynamics both within 

and between phases in the process, changing requirements, and a growing wish to iterate based on 

first results. Found literature only provide a solution on (a set of) these aspects, but fail to cover them 

all.  

 

DevOps, as a concept under the “agile umbrella”, show potential to deal with said developments. 

Many agile teams have comparable skills, rather than comparable goals, products or services that they 

are working on. DevOps stresses more on the communication, collaboration and knowledge sharing 

between developers and operators rather than tools and processes.  

 

The DataOps methodology combines lessons learned from other research fields in order to cope 

with requirements for effective Knowledge Discovery. The methodology started with a presentation 

to a group of researchers. After some adjustments, the methodology is presented to experts, 

currently working within the field of Knowledge Discovery. During these interviews, a wide spectrum 

of evaluation criteria is reviewed. Their feedback has led to further optimization of the methodology. 

As a last step, interviewees were ask to provide their responses on the research findings. All 

interviewees confirmed their satisfaction with the methodology.  

 

We can conclude that DataOps has added value in order to move towards effective agile data 

science. This research separates two groups based on their current way of working, being agile or 

not agile. The interviewees that are not working agile show bigger improvements than the other 

interviewees do, but both groups show improvements in satisfaction. This indicates that the added 

value not only comes from the agile aspects, but from the combination of fundamentals, process 

steps and model as presented as the DataOps methodology. Next to that, interviewees responded 

positive on a wide spectrum of evaluation criteria. This indicates that is not only covers said (set of) 

aspects, but has potential of being a general solution for doing effective Knowledge Discovery.  
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1. Introduction 

1.1 Background 
The availability of (diversified and unstructured) data is growing exponentially. Technical 

developments to store and process data (Chen & Zhang, 2014; Dragland, 2013) bring further 

possibilities to convert data into information and information into value, being the data value chain 

(Miller & Mork, 2013). Strategic data analysis and modelling methods, called Data Science, 

introduced a “new economy, as evidenced by large private enterprises such as Facebook, Google 

and Alibaba” (Cao, 2017). 

 

Big data has great potential value. It is regarded as “the new Intel Inside, or new oil and strategic 

asset, and drives or even determines the future of science, technology, the economy, and possibly 

everything in our world today and tomorrow” (Cao, 2017). It is hypothesized that ‘Big data’ might 

lead to a form of science that is completely data driven, potentially offering a fourth scientific 

paradigm (Shen, 2018).  

 

Data Science (DS) helps organizations to work smarter and make better decisions from (Big) Data 

(Larson & Chang, 2016; Popovič, Hackney, Coelho, & Jaklič, 2012). Several researchers presented 

that timely and effective knowledge availability is of great essence for organizations in their purpose 

to succeed and meet their business goals (Brynjolfsson, Hitt, & Kim, 2011; Larson & Chang, 2016; 

Pirttimäki, Lönnqvist, & Karjaluoto, 2005; Vidgen, Shaw, & Grant, 2017). Search term analysis 

(Google, 2018a), growing shortage of specialists (Bowley, 2017; Davenport, 2012; Piatetsky, 2018) 

and growing spend on big data analytical solutions (Goepfert & Shirer, 2018) confirms the 

continuous growing attention from businesses towards knowledge discovery. KD methodologies 

guide the process of gaining knowledge out of data (Alnoukari, Alzoabi, & Hanna, 2008; Larson & 

Chang, 2016; Li, Thomas, & Osei-Bryson, 2016; Lim et al., 2018).   

 

The shift towards knowledge discovery from (big) data comes with both opportunities and 

challenges (Zhou, Pan, Wang, & Vasilakos, 2017). The success of a KD project is highly depending on 

(the cooperation between) people, processes and technology (Gao, Koronios, & Selle, 2015). The 

changing characteristics of data (Larson & Chang, 2016) have created separated, specialized roles 

within different phases (J. Saltz, Hotz, Wild, & Stirling, 2018; Thomopoulos, 2018). Results and 

human assumptions influence following phases (Sumana Sharma & Osei-Bryson, 2009) potentially 

leading to a product that does not match end-user expectations (Larson & Chang, 2016). An extra 

challenge comes from changing requirements during the process, originated from rapidly evolving 

environments (Givanildo Santana do Nascimento & de Oliveira, 2012; Wilkes, 2012). Having clear 

requirements is difficult in the first place, due to their “exploratory and often ad-hoc nature” (Das, 

Cui, Campbell, Agrawal, & Ramnath, 2015). Traditional waterfall-oriented methodologies are not an 

adequate answer to these challenges (Das et al., 2015; Gil & Song, 2016; J. Saltz, 2015). However, 

they are still frequently used (KDNuggets, 2014).  

 

Currently, 85% of the big data projects fail (Walker, 2017), with 60% fails to even go beyond the pilot 

and experimentation phase (Gartner, 2015). Within Software development (SD), changing 

requirements, high costs, long lead-times and high failure rates resulted in the development of agile 

working methods (G.S. do Nascimento & de Oliveira, 2012). The Manifesto for Agile Software 

Development (Beck et al., 2001) has fundamentals that can potentially deal better with increasing 

nature, scale and dynamics of knowledge discovery from big data (Vidgen et al., 2017).  
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During the years of impressive developments and practical solutions in the big data environment, 

current KD methodologies have not evolved significantly from the step-by-step KDD process, which 

were already founded in 1993 (Mariscal, Marbán, & Fernández, 2010; J. S. Saltz, Shamshurin, & 

Crowston, 2017). Survey results, referred by Schmidt (2018), Alnoukari (2012) and others, show a 

wide use of CRISP-DM (43%), SEMMA (17% and the KDD Process (7,5%) methodologies (KDNuggets, 

2014) for knowledge discovery. Noteworthy is the increase in people using their own methodology, 

rather than using the KDD methodologies (J. S. Saltz et al., 2017). This can be seen as an indicator 

that existing methodologies don’t suit contemporary requirements, resulting in high failure rates. 

Objective of this research is to further understand how elements of agility can contribute to 

improvement of the knowledge discovery process (KDP). 

1.2 Problem statement 

1.3 Research objective and questions 
One can recognize various process methodologies used for data mining and knowledge discovery 

(Alnoukari & El Sheikh, 2012). Not having a central methodology, nor a handful of methodologies 

with defined use-areas, indicates the search for a methodology capable of working with 

contemporary requirements in order to solve said high failure rate.  

 

This research will provide an overview of the main existing KD methodologies. Since their value shifts 

over time (Shen, 2018), this research will set emerging trends in the field of KD against the 

methodology characteristics and will search for valuable lessons from other research fields. For 

example, within SD, The Manifesto for Agile Software Development (Beck et al., 2001), shifted 

methodologies from a waterfall oriented process towards a more flexible and adaptive process. The 

knowledge discovery process (KDP) can potentially leverage from both the fundamentals of agile and 

lessons learned within SD, and hence, bring failure rates down.  

 

In order to get an overview of the value of agile principles in KD Processes, this research seeks for 

answers to the following main- and sub questions: 

 

How can agile methodologies contribute to the knowledge discovery process within 

organizations?  

 

To get a clear answer to the research question, the sub-questions to answer are:  

 

1 Which knowledge discovery methodologies are used within the knowledge discovery 

process, what are their characteristics and to what extent do these methodologies suit 

current requirements?   

 

2 What are the different characteristics of agility? 

 

3 Which agile knowledge discovery methodologies have embodied agile characteristics?   

An exceedingly high rate of KD projects fail. Several developments have drifted traditional 

methodologies away from current requirements. There is need for a methodology that can adapt 

these developments in order to achieve an effective knowledge discovery process.  
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4. In order to determine the value of the purposed KD methodology, what can be considered as 

strengths of the models and what aspects leave room for further improvements?  

1.4 Motivation/relevance  
Over the last decade, many scholars have highlighted the need for empirical investigations on KD 

(Côrte-Real, Oliveira, & Ruivo, 2017; Dingsøyr, Nerur, Balijepally, & Moe, 2012; Zeng & Glaister, 

2018). A gap exists between the growing attention to, and potential of, KD and the lack of a proper 

methodology guiding towards effective KD (J. S. Saltz et al., 2017). Traditional methodologies will not 

fill this gap (Das et al., 2015; Gil & Song, 2016; J. Saltz, 2015). Based on lessons learned from other 

fields, first scientific orientations have been done on the advantages to incorporate agile in the KD 

Process (Jeffrey Saltz, Heckman, & Shamshurin, 2017). Since research in Information Systems is 

mostly explanatory and not often applicable to the solution of encountered problems (Peffers, 

Tuunanen, Rothenberger, & Chatterjee, 2008), this research seeks for a proper reaction on said 

problem statement. Building further on existing knowledge and current requirements, this research 

contributes to science by testing an agile-inspired methodology within the field of data science. 

As a result, this research will provide observations that can be useful for businesses to improve their 

KD activities and extends base for further research. 

1.5 Main lines of approach 
After the formulation of a problem statement and research questions, the next step towards 

establishing a successful research was building a theoretical framework on which further work can 

be constructed. This can be found in chapter 2. Actions are undertaken to build said agile-inspired 

methodology and test it empirically.  

 

Based on the four main purposes for scientific research, being exploratory, descriptive, explanatory 

and evaluative purposes (Saunders, Lewis, & Thornhill, 2016) this study has mainly an exploratory 

purpose. Chapter 3 describes the empirical part in detail, which is guided by the Design Science 

Research approach (DSR). DSR focuses on the development and performance of methodologies. 

2. Literature review 
The next step is to do a systematic literature review. A pre-planned strategy will be used to find 

existing literature to analyse how this literature provides answers to the research questions and, in a 

wider perspective, how they can already help filling the gap of a methodology suiting contemporary 

requirements, as defined above. During this research, the eight-step guide of Okoli (2010) is used 

since it is built to meet the unique needs of information systems (IS) research. The following steps 

have been taken:  

1. Purpose of the literature review (2.1); 
2. Protocol and training (2.2);  
3. Searching the literature (2.3);  
4. Practical screening (2.4); 

5. Quality appraisal (2.5);  
6. Data extraction (2.5);  
7. Analysis of findings (2.6) and  
8. Writing the review (2.6).  

Research approach 

2.1 Purpose of the Literature Review 
The literature review forms a “systematic, explicit, comprehensive and reproducible method for 

identifying, evaluating and synthesizing the existing body of completed and recorded work produced 
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by researchers, scholars and practitioners” (Okoli & Schabram, 2010). It helps in formulating 

conclusions about the knowledge available from previous work, brought together based on their 

contribution on the sub-questions 1a to 2b of this research. The literature review indicates, as a 

main purpose, direction to the empirical research and brings provisional answers to the research 

questions. Based on that foundation, an agile-inspired appliance is outlined to test empirically, 

following the methodology of Peffers et al. (2007). 

2.2 Protocol and training 
Considering protocol and training, step 2 of Okoli’s structure in literature reviews (2010), there is no 

relevance to implement any team-techniques since the research is done by a single researcher.  

Implementation 

2.3 Search for the Literature 
The research question “How can agile methodologies contribute to the knowledge discovery 

process within organizations?” is used to select main nouns, which are connected using Boolean 

logic. Where possible, synonyms where added to the query.  

By putting the nouns between quotation marks, articles that had subject words (e.g. knowledge and 

discovery) somewhere in the article were excluded, resulting in more relevant articles. A further 

match with the research goals was met by setting the rule of “methodologies”, “knowledge 

discovery” and synonyms being part of the abstract. The choice is made not to do this for agile, since 

the results reduced too far and agile as a concept can be introduced later in the articles, i.e. after 

introduction in the abstract.The final query is:  

((Abstract: ("Knowledge Discovery")) OR (Abstract:("Big Data")) OR (Abstract:("data 

mining")) OR (Abstract:("data science")) OR (Abstract: ("KDD")))  

AND ((Abstract:(Methodolog*)) OR (Abstract:(Framework*)) OR (Abstract:(Procedure*)) OR 

(Abstract:(Process*)) OR (Abstract:(Model*)))  

AND (Agile)  

With the search string defined, the search criteria help to guarantee a comprehensive, explicit and 

reproducible research (Okoli & Schabram, 2010). The search criteria are as follows:  

a. The Open University’s Library is selected to find peer-reviewed articles; 

b. The disciplines of focus are “Business” and “Computer Science”;  

c. The article is relevant and useful for the research, based on the abstract;  

d. The search terms used are obtained from the research questions;  

Table 1: definition of the search string used for the literature review 
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e. Only articles published after 01-jan-2010 to 01-nov-2018 will be in the scope;  

Aspects of the protocol are selected based on (a) quality and availability, (b) relevance of the 

discipline, (c) contribution to the research (d) link with the research question, (e) actuality.  

The robustness of the research will grow by both backward and forward snowballing via Google 

Scholar. It helps to find additional papers as well as it provides a view of articles building on the key 

articles found in previous steps (Watson & Webster, 2002).  

 

Table 2: search results by different approaches 

2.4 Practical screen 
For the practical screen, only articles that match the discipline, contribute to the research and that 

have a link with the research question. Excluding these articles resulted in a focus research, which 

can build on the information needed in order to lay a good foundation.   

A total of 133 articles were found by using the query, 128 where available and 118 seemed relevant 

based on their title. For 61 articles, the article was considered relevant to the subject, based on the 

abstract.  

Next to the articles found by using the search query (Attachment 1a), eleven articles (Attachment 

1b) are provided by the University, bringing the total to 71 selected and unique articles. Within said 

articles, 10 references, not found via the query, are considered contributing to this research. They 

can be found in Attachment 1c.  

2.5 Quality appraisal and data extraction 
All articles are screened for their claims, the evidence supporting them, if the evidence is warranted 

and how it is backed. This can be theory or a case study. Reading the research approach was done, 

including the limitations of the research. Articles matching the quality criteria are considered 

relevant and useful for this research. All articles are considered of good quality.  

Information is extracted from the scientific articles left from previous steps. They are reviewed for 

touch points with main subjects of this research, like agile, KD methodologies and the knowledge 

discovery process. Found information, by reading the full article, is clustered. This is done based on 

their connection to the defined questions. Articles can contribute to more than one research 

question. The combinations can be found in Attachment 1a, 1b and 1c.  

Several articles seemed relevant by reading the abstract. Reading the full body of the research 

confirmed differently, matching the research subjects just partly. A total of 15 articles is used for 

further research steps.  

Table 3: practical screen, filtering towards useful set of articles 
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Results and conclusions  

2.6 Synthesis of studies and writing the review 
Existing methodologies for Data Science  
In the field of data science, a wide variety of process models for the approach and execution of 
analysis projects emerged (Alnoukari & El Sheikh, 2012). KDD can be seen as the initial approach and 
CRISP-DM as a central approach of the evolution towards the most commonly used KD methods 
(Mariscal, Marbán, & Fernández, 2010). KDD involves the broadly seen, sequential steps of data 
selection, pre-processing, subsampling, transformation, data analysis post-processing and 
knowledge utilization (Shen, 2018). CRISP-DM introduced new steps: business understanding and 
data understanding, “two cornerstones of any successful data mining project” (Alnoukari & El 
Sheikh, 2012) and deployment (Mariscal et al., 2010). The high level guidelines and lack of attention 
for stakeholder dynamics are considered as weaknesses of the CRISP-DM methodology (Mariscal et 
al., 2010; Vishakha Sharma, Stranieri, Ugon, Vamplew, & Martin, 2017). Further improvement can be 
reached by implementing maintenance activities dealing with new data observations and software- 
and model updates (Mariscal et al., 2010). The initiative to renew the CRISP-DM towards CRISP-DM 
2.0 in order to align with the first aspects of Big Data, as mentioned by Mariscal (2010), entered a 
frozen state since early 2007 (Li, Thomas, & Osei-Bryson, 2017), confirmed by a search in the 
University library.  

Including CRISP-DM, Attachment 2 shows an overview and comparison of the most popular 
knowledge discovery methodologies and their steps. In order to get an overview and comparison of 
similarities between methodologies, comparable steps are positioned next to each other. The 
presented methodologies are KDD, SEMMA, Six Sigma, Cabena et al., Anand & Buchner, Knowledge 
Discovery Life Cycle, CRISP-DM, Cios et al., the Snail Shell Process Model and Combined dual-cycle 
methodology  (Alnoukari et al., 2008; Azevedo & Santos, 2008; Hofmann & Tierney, 2009; 
KDNuggets, 2014; Kurgan & Musilek, 2006; Li et al., 2016; Mariscal et al., 2010; J. Saltz & Heckman, 
2018; Shen, 2018).  
 
Knowledge Discovery Methodologies and their fit in the era of Big Data 
A fairly static, pure and small dataset and a certain searching direction, being small data, can be 
analysed by a single person (Shen, 2018). A methodology is not critical here. Since the amount of 
diversified data(sets) expands fast, entering the era of Big Data, a team of specialists replaced this 
single person to do the job. Such teams need a methodology for effective KD (J. Saltz, 2015). Big 
Data, characteristics of data are not only velocity, variety and volume, but also value, variability and 
veracity (Janssen, van der Voort, & Wahyudi, 2017; Sugam Sharma, 2016). Although Big Data 
attracted much attention from business and science, generally accepted definitions and key 
concepts of Big Data are lacking (Mikalef, Pappas, Krogstie, & Giannakos, 2018). Within this research, 
Big Data is defined as lots of (near) real-time, diversified data (Li et al., 2016; Oztemel & Gursev, 
2018), useful for valuable and actionable Knowledge Discovery (Cao, 2015; Shen, 2018).  
 
Not much research has been conducted on the fundamental differences between processing small 
and big data (Shen, 2018). This could be the reason why methodologies have not evolved 
significantly from the step-by-step KDD process (Mariscal et al., 2010; J. S. Saltz et al., 2017). 
Traditional methodologies are not adequate for solving challenges arising from Big Data (Gil & Song, 
2016). Chen & Zhang (2014), Kaisler, Armour, Espinosa & Money (2013) and Labrinidis & Jagadish 
(2012) define challenges within individual methodology process steps. Next to these, major 
challenge is the high dependencies between the numerous phases and tasks. Results and (human) 
decisions from previous phases influence, obviously, following phases (Matsudaira, 2015; Sumana 
Sharma & Osei-Bryson, 2009). Formulating a rock-solid objective by the end-user, as a first step of 
the KD-process, is already a major issue. The (re)formulation of a problem statement depends on 
e.g. the available data, resources, knowledge and changing (environmental) circumstances (Di Orio, 
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Cândido, & Barata, 2015; V. Sharma, Stranieri, Ugon, Vamplew, & Martin, 2017). Parameters change 
during the process based on new data and/or obtained insights. Since previous phases influence 
following phases, checklist based waterfall methodologies with only results at the very end of the 
process don’t suit well (Davenport, 2014; Grady, Payne, & Parker, 2018; Hofmann & Tierney, 2009; 
Sumana Sharma & Osei-Bryson, 2009; Wilkes, 2012).  
 
First steps from traditional methodologies towards a more iterative process are taken by connecting 
the finishing step with the first step, forming a loop. This provided the opportunity to redo the 
process with new, valuable parameters. With the need for maintenance of the KD-process (Li et al., 
2016; Mariscal et al., 2010), this research takes the position of KD rather as continuous delivery than 
as a project, having a defined end-phase. CRISP-DM (2000), methodologies like Cios (Cios & Kurgan, 
2003) and the Snail Shell process (Li et al., 2016) separate from other methodologies having several 
significant loops in the process. This not only interconnects steps, but also experts. Although this 
sounds promising, Hofmann & Tierney (2009) show that KD-experts are facing unstructured and 
inefficient communication and documentation. The survey of Ho (2017) provides five main 
challenges for data professionals, all subject to process steps where these specific professionals, 
according to Hofmann & Tierney, have no role in. 
 
Although 82% of data scientists don’t follow a process, 85% of experts expect better results with 
activities guided by a suiting methodology (J. Saltz et al., 2018). Despite this need, looking at all 296 
papers from the IEEE Big Data Conference 2014, ironically, none was focused on methodologies and 
tools for improved effectiveness (J. Saltz, 2015).  
 

Agile characteristics and agile-inspired methodologies 

Agile methodologies appeared in SD, rather having intense end-user involvement, fast delivery and 

end-user satisfaction than rigid systems and checklists (Ben Ayed, Ltifi, Kolski, & Alimi, 2010). The 

solitary task of developing software, focusing on delivering projects in some steps made room for 

attention for group dynamics and an iterative process, being main concepts of agile (Balle, Oliveira, 

Curado, & Nodari, 2018; J. S. Saltz et al., 2017). Agile as a widely accepted working method for SD 

provided improvements in delivering on time, within budget and meeting customer expectations 

(Brhel, Meth, Maedche, & Werder, 2015). By following the ideas of the Agile Manifesto (Beck et al., 

2001), SD became less formal, more dynamic and customer focused (Larson & Chang, 2016), all 

useful and promising aspects to reduce failure rates within DS. The dynamic and adaptive Speculate, 

Collaborate, Learn lifecycle replaced the static steps of Plan, Design, Build (Alnoukari et al., 2008; 

Highsmith, 2000). Continuous delivering work encourages feedback, what can be incorporated into 

any future decisions (Grady et al., 2018). One can say the concise Agile Manifesto, containing (just) 

four values and 12 principles, has introduced a new paradigm. And yet being concise, literature lacks 

clarity as to what defines agility. It seems almost every piece of research adopts a unique 

interpretation of agility (Abrahamsson, Conboy, & Wang, 2009). We have seen the introduction of 

several methods that appeared from that fundament including Scrum, XP, Kanban, Lean SD, feature-

driven development (FDD) and Crystal (Dingsøyr et al., 2012). Based on found literature, Scrum, XP 

and Kanban are regarded as most frequently called agile-inspired methodologies. They are 

compared in detail in Attachment 3. For Scrum and Kanban, evidence is found for adaptation of 

these agile methodologies in KD, as described in the next section.  

 

For DevOps, another concept found under the “agile umbrella”, characteristics showed promising 

capabilities on noticed developments in KD. DevOps’ footprint within currently available DS research 

is found small. The concept of DevOps is relatively new, launched in 2008 (Hemon, Monnier-

Senicourt, & Rowe, 2018) and peaking during this research (Google, 2018b), but having “a paucity of 

DevOps research directly related to IS” (Sharp & Babb, 2018). Generally, based on publication 
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subjects, agile methods have passed early innovation adoption phase and become mainstream, 

where DevOps obtains more attention (Mishra, Garbajosa, Wang, & Bosch, 2017). Many 

organizations make agile focus teams, according to Conway’s Law mistakenly splitting them 

functionally based on technology, rather than on product or service (Debois, 2011). DevOps extends 

agile in terms of the principles, since DevOps stresses more on the communication, collaboration 

and knowledge sharing between developers and operators rather than tools and processes. DevOps 

can achieve agile goals to reduce team working latency (Hemon et al., 2018; Jabbari & Ali, 2016). 

Humble and Molesky (2011) highlighted the core values of DevOps, being culture, automation, 

measurement and sharing. Within this study DevOps is defined, based on Jabbari & Ali (2016), as a 

methodology aimed at bridging the gap between Development (Dev) and Operations (Ops). It 

emphasizes communication and collaboration, continuous integration, quality assurance and 

delivery with automated deployment utilizing a set of practices. DevOps reduces mutual tension of 

creativity and speed (build) versus quality, stability and traceability (run) (Hemon et al., 2018; Jabbari 

& Ali, 2016). DevOps lacks a manifesto and a consistent prescriptive methodology and is still evolving 

(Babb, Nørbjerg, Yates, & Waguespack, 2017). Although the case study of Hemon et al. (2018) shows 

both promising results and attention points, more research is required to uncover DevOps’ full value 

in Data Science.  

 

Data Science embodying Agile 

Vidgen, Shaw and Grant (2017) have, based on a variety of 60 DS professionals, identified numerous 

challenges organizations face in creating value from big data and analytics. Also, they state that DS 

can learn much from agile SD like engagement with the end-user, frequent delivery, iterations, 

colocation of specialists and rotation of roles. Analytics should iterate in order to grow in fidelity, 

stopping when the results are sufficient to meet outcome requirements (Grady et al., 2018). The 

Agile Manifesto “values learning and self-empowered teams that reflect upon and improve their 

skills and practices on an ongoing basis” (Babb et al., 2017). Two main DS agile methodologies that 

embodied this principle are Agile Scrum and Agile Kanban, created in respectively SD and Lean 

Manufacturing (Lei, Ganjeizadeh, Jayachandran, & Ozcan, 2017; J. Saltz & Heckman, 2018). Scrum’s 

concepts are the user story, sprint backlog being the completed work during the sprint, product 

backlog being a wish list for next sprints, the one or two week lasting mini-project sprints and the 

update meetings, known as daily scrums (Larson & Chang, 2016). Kanban is “simple in structure”, 

build for limiting the amount of work in progress to activities primarily focused on delivering 

customer value (Brechner, 2015). Instead of completing lots of work in phase A and hand it over, the 

amount of work in phase A is aligned with the following phase(s) to get efficient delivery (Lei et al., 

2017). Scrum and Kanban are highly adaptive, but Scrum is the most prescriptive of the both. Saltz & 

Heckman (2018) did a quantitative experiment comparing Crisp-DM, Scrum and Kanban, 

unfortunately not showing significant improvements delivered from both agile methodologies.  New 

models, such as proposed by Li et al and Shen, present new, agile-inspired models, but do not zoom 

in to relations and communications between phases and professionals.  

2.7 Summary and objective of the follow-up research 
Above shows the changing requirements for dealing with data due to changing data characteristics 

as a result of Big Data and stakeholders’ dynamics. Empirical research on how to do this in the field 

of DS lags behind. Since phased waterfall-oriented processes are making room for iterations in the 

process, communication and mutual knowledge sharing becomes key. The heavy-lifting done after 

implementing the Agile Manifesto has laid the foundation for subsequent work. Although said 

improvements delivered from agile, popular agile methodologies as Scrum and Kanban have not 

broken down silos between build and run. This is based on the fact that its focus is on the methods 
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and practices of the build-area (Hemon et al., 2018). DevOps takes a higher level and larger scope 

and can be seen as an extension of agility.  

 

Objective of the follow-up research is to present and empirically test a model that extends existing 

methodologies and incorporates Agile DevOps characteristics that can be of value towards effective 

DK.   

3 Methodology 
After completing previous literature review, requirements towards successful knowledge discovery 
are formed. The empirical part of this research intents to build further on said scientific, literature 
foundation, further contributing by adding an empirically tested model. 

3.1 Research methods 
The literature review provided valuable reasons for building an artefact and requirements of how to 

build such an artefact. The evaluation assesses the value of an artefact (Venable, Pries-heje, & 

Baskerville, 2014). This research can form a step towards extended research, giving it aspects of a 

formative evaluation. 

Research purpose and approach  

Based on the four main purposes for scientific research, being exploratory, descriptive, explanatory 

and evaluative purposes (Saunders, Lewis, & Thornhill, 2016),  this study has mainly an exploratory 

purpose. Obviously, a research study may fulfil more purposes. The research includes, based on the 

exploratory nature, a search of the literature as done earlier and in-depth semi-structured 

interviews. Evaluation is done to review how well the KDP artefact matches environmental 

expectations (relevance) and gains scientific knowledge (rigor) (Venable et al., 2014).   

Instead of a cause-effect link between variables, this research explores a phenomenon by testing the 

potential of a design. Theory follows data, rather than vice versa, which points the research, 

together with the ambition to generate theory rather than verify it, towards an inductive approach 

(Saunders et al., 2016). Final deliverable of the research is a valuable methodology. In order to 

evaluate this methodology, this research intent to show the value of the methodology itself and 

agile in general.  

Design Science Research Methodology (DSRM) as paradigm for this research  

Within the field of Information Systems (IS), research output is mostly explanatory and not often 

applicable to the solution of encountered problems. Design science research, being “The act of 

creating an explicitly applicable solution to a problem” is broadly accepted in other fields. For IS, DSR 

has just a small share of publications, producing artefacts applicable to research or practice (Peffers 

et al., 2007). It separates from other paradigms (positivist, interpretivist, critical), having attention 

for designing, developing and building new artefacts, next to evaluation demonstrating the utility, 

quality and efficacy of a design artefact (Sangupamba Mwilu, Comyn-Wattiau, & Prat, 2016; Venable 

et al., 2014). Artefacts are the innovations helping to analyse, design, implement and use IS more 

effectively and efficiently via ideas, practices, technical capabilities and products (Hevner, March, 

Park, & Ram, 2004). DSR seeks to extend “the boundaries of human and organizational capabilities 

by creating new and innovative artefacts” (Hevner et al., 2004). DSR is essentially a search process to 

discover an effective solution to a problem (Hevner et al., 2004), in this case the high failure rates 

within KD. 

Empirical steps 

The demonstration, which contains all empirical steps teaken, started with a with a presentation to a 
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group of researchers. After some adjustments, the methodology is presented to experts, currently 

working within the field of Knowledge Discovery. As a last step, interviewees were asked to provide 

feedback on the result of the processing of all interviews.  

3.2 Technical design: elaboration of the method 
The DSRM (Peffers et al., 2008) consists of a six step process model. The groundwork for this 
research is laid out in the first chapter of this document. It defines the problem (step 1) and 
motivation for doing further research. The objectives (step 2) are creating and testing an agile-
inspired methodology within the field of data science in order to deliver the described contribution. 
Step 1 and 2 are discussed in previous sections.  

Table 4: DSR process steps (Peffers et al., 2007) 

3.2.3 Design  

The proposed model of DevOps stresses more on the communication, collaboration and knowledge 

sharing between developers and operators rather than tools and processes, as described in previous 

sections. Based on found literature, this research defines the principles for DataOps being 

continuous delivery, sharing knowledge, automation, shared responsibility, measurement and 

comparability. Apart from an e-book published by DataKitchen (Bergh, Benghiat, & Strod, 2019), 

again - having no scientific literature foundation or empirical tests, a formal Manifesto is available 

(Jabbari & Ali, 2016). This research provides a model of DevOps for Knowledge Discovery, the 

DataOps methodology.  

3.2.4 Demonstration  

During the demonstration, the use of the artifact to solve one or more instances of the problem are 

tested (Peffers et al., 2007). A case study provides rich, empirical observations that lead, ultimately, 

to a theory (Saunders et al., 2016). Interviews were conducted individually. This setting, rather than 

having e.g. focus group interviews, gives the opportunity to zoom in to their vision and lets 

interviewees be as open as possible about that communication.  

During the sessions, a total of 6 interviewees participated. Before the interviews, questions were 

formulated in order to guarantee uniformity. The questions are based on the intention to get to 

learn about the agile experience of the interviewees, their vision on their current way of doing KD 

and the DataOps methodology. For that vision, a general observation was asked, just as their vision 

on defined evaluation criteria. Participants are representatives of their teams, having different roles 

in the KD process. The group composition is based on an evenly distributed representation of roles.  

The expert interviews contains two or more rounds, using the Delphi method. This provides 

interviewees the opportunity to adjust answers based on answers provided by other interviewees. 

The Delphi method will be explained in detail in section 4.4 (testing the design).  

Within the interviews, several steps were involved. After a neutral introduction and a conversation 

about the interviewee’s agile experience, the current way of KD will be discussed. After that, the 

interviewees have individually filled in a ‘criteria score card’ (see section 3.2.5). Next, the alternative 

design is demonstrated by showing the design and a neutral explanation. The explanation was put 

on paper to guarantee objectivity. Next, another round of questions helped to gather information. 

Ultimately, a new ‘criteria score card’ is filled in by the interviewees. 

1. Problem identification and motivation;  4. Demonstration;  

2. Define the objectives for a solution; 5. Evaluation;  

3. Design and development;  6. Communication.  
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Setting of the interviews 

Before participating, the interviewees received a statement about what, where and why data is 

stored. A participant information sheet is provided, including an anonymity- and confidentiality 

statement. The interviews are held in a convenient room, where it’s unlikely to be disturbed, and the 

interviews were recorded including contextual data. Different types of questions, except leading 

questions, are asked and answers where summarized to test understanding. All interviewees where 

free to participate and withdraw at any moment.   

During the research, participant validation (Saunders et al., 2016) is warranted by summarizing 

answers provided. After the interviews, interviewees received a summary of the interview with a 

request for confirmation. After the study, interviewees received research findings and observations, 

giving them the opportunity to comment.  

3.2.5 Evaluation 

In the evaluation phase, the model is tested on several requirements. These were found in the 

available literature and conducted from the first round of interviews. Results will be measured via 

both qualitative interviews and verified via quantitative evaluation. The interviews are summarized 

and summaries are used to extract observations on specific criteria as presented below. A 

questionnaire is used to do a quantitative evaluation. Ultimately, after the empirical research, a 

strong statement can be made about the utility (Venable et al., 2014). 

Table 5: Evaluation criteria based on Mathiassen et al. (2000) 

3.2.6 Communication 

Based on its rigor and relevance of the research, this research provides contribution to both science 

and business. Being inductive, the research leaves room for further exploration on its observations. 

To enable sharing knowledge gained from this research, case names and interviewees are made 

anonymous.    

3.3 Rigor and relevance 
Scientific evaluation of a design concerns the artefact in the context of both its contribution to the 

environmental-based relevance cycle and the knowledge-based rigor cycle (Venable et al., 2014). 

The key purpose of evaluation is to determine how well a design achieves its expected 

environmental utility. Other important purposes are to determine the quality of knowledge 

outcomes and enable a comparison with other artefacts (Venable et al., 2014). In general, evaluation 

identifies “potential weaknesses in the theory or artefact and the need to refine and reassess” 

(Hevner et al., 2004). Rigor and relevance are not two separate concepts but basic requirements “to 

live DSR up to its label as science” (Venable et al., 2014).  

Knowledge about
Agile working methods

Interview on current KD 
procedure

Criteria Score Card
Presentation on 

proposed KD procedure
Interview on proposed 

KD procedure
Criteria Score Card

1. Usable 8. Frequent delivery 

2. Efficient 9. Guiding teamwork 

3. Reliable 10. Iterations appreciated  

4. Maintainable 11. Fast delivery  
5. Flexible 12. Respecting budget (hours/money) 

6. Reusable 13. Self-empowered teams  

7. End-user involvement 14. Stimulates a learning-curve  
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The Framework for Evaluation in Design Science (FEDS) from Venable et al. (2014) guides DSR. The 

framework has 2 axes: artificial/naturalistic and formative/summative. DSR evolves from 

artificial/formative towards naturalistic/summative. (Venable et al., 2014). Shifting towards 

naturalistic evaluation, rigor increases. Another factor influencing rigor is the correlation between 

the artefact and the observations. This research strives to exclude external ground for observations 

by asking in a uniform and neutral way. The application in the appropriate environment, next to the 

additions to the knowledge base, both part of the dual-cycle ISRF of Hevner et al. (2004) is outlined 

in chapter 1. In short, the objective of this DSR is to develop a solution to an important and relevant 

business problem, is the high failure rate of KD activities.  

4 Design 
This section provides further details of the proposed Knowledge Discovery methodology. The 

methodology contains both key elements and design steps. It contains of 14 key principles that lead 

towards successful operationalization of the methodology. Implementing best practices from several 

agile-inspired methodologies, these principles lead to a more flexible and adaptable way of 

conducting knowledge discovery. The DataOps methodology is build up from inspiration from other 

methodologies, as presented in Attachment 5, and from insights of the researcher.  

Key definitions 

The methodology is built on several key definitions. In order to provide both interviewees and 

readers of this document with a clear understanding, several definitions are defined, being:  

 Methodology: 

The methodology includes the total package of documentation (fundamentals including 

roles, process steps, model) that is provided within the demonstration. This package needs 

to provide knowledge discoverers with enough information to work with the methodology 

of DataOps.  

 Model: 

The overview or blue print of the process steps, as provided below.  

 Iteration: 

Conclusions in one process step potentially create the need to go back to a previous step. An 

iteration allow teams to do this. 

 Loop:  

After doing all the process steps, sometimes twice when an iteration was needed, the 

process is completed for the first time. When finishing a loop, first results are available. If 

these results are not satisfactory, teams can start a new loop.  

4.1 Blueprint of DataOps 
General description 

Like all Agile methodologies, DataOps is built directly on the Agile manifesto (Beck et al., 2001). 

Several existing methodologies are inspired by the Agile principles (Cao, 2017; Dingsøyr et al., 2012; 

G.S. do Nascimento & de Oliveira, 2012; Larson & Chang, 2016; Li et al., 2016), which creates the 

possibility to combine best practices, key elements and process steps, next to filling the gap as 

subject of this research. In creating the DataOps model, CRISP-DM is used as a starting point. As 

described earlier, the modification of CRISP-DM, based on a need to handle big data characteristics, 

integration with the business and closed-loop feedback and team elements (Mariscal et al., 2010), 

has not been updated since early 2007 (Li et al., 2017). This model aims to fill this gap by 

incorporating design steps of mainly DevOps, combined with other methodologies as KDD, Scrum, 

the Snail Shell and the Dual-cycle methodology.  
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The DataOps model can be explained in three layers as presented below. Model A is a basic design, 

showing the most lean-and-mean route. Model B creates the possibility to iterate, which enriches 

the DataOps design by creating the possibility to redo a specific process step without the need to 

redo all process steps, as needed in a rather linear process. Model C, presented as the DataOps 

design and presented on the next page, has that possibility to iterate and is set for welcoming new 

data observations into the process creating the opportunity to continuously take steps towards 

quality improvements of the delivered product.  

 Model A:  A basic version of the DataOps model 

                

Model B:  The DataOps model including iterations 

 

Model C:  The DataOps model including iterations and external influences 
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The methodology contains of two (Data+Ops) times four process steps. Every step takes a calendar 

week, meaning that without the need to iterate, a loop can be done within 8 weeks. Fast availability 

of first results is ensured, optimization of these results can be done by doing (a) new loop(s).  

Some steps need less than a week. Teams have temporary update moments with the possibility to 

continue working on the next step. When more time is needed, teams need to continue. First 

deliverables can help the team to learn and understand each other. When starting a new loop or 

iteration, the team can continue working on the more time-consuming task.  

Key Principles 

The methodology of DataOps has several aspects of DevOps, mainly influencing the key principles. 

These key principles are the building blocks that provide the possibility to use the methodology 

successfully. As described in detail in the literature review, DevOps stresses more on the 

communication, collaboration and knowledge sharing with the ambition to bridge the gap between 

Development (Dev) and Operations (Ops). The key principles are provided in detail in section 4.2.  

Design steps 

Inspired by CRISP-DM, the design contains of 8 process steps, visually separated in two parts. 

Process steps or activities on the left side are focused on data, where process steps or activities on 

the right are focused on operations. Opportunities to share knowledge between both sides will 

mainly be found in the activities that are visually next to each other. Process- and design steps will 

be explained in detail in section 4.3.  

Improvement on existing Knowledge Discovery methodologies 

In comparison with methodologies that are not agile inspired, the methodology adds opportunities 

to deliver on time, within budget and in line with customer expectations by making the process 

more flexible and adaptive. Agile fundamentals deal better with increasing nature, scale and 

dynamics of knowledge discovery from big data (Vidgen et al., 2017). When comparing existing agile 

methodologies, the DataOps has more focus on communication, collaboration and knowledge 

sharing between Data- and Ops oriented team members. As well, it has the necessary focus on 

automation of process steps in order to keep the process efficient.  

4.2 Key principles of DataOps 
DataOps’ key principles consist of both fundamentals and roles, all applicable during the whole 

process. Just as the Agile Manifesto, this methodology uses fundamentals as guidance for the teams. 

The process steps help to explain what to do within a specific step. They are based on the 

researched methodologies within the literature research and the comparison of the methodologies 

as presented in Attachment 2a/b and 3. Where needed, the researcher has added information based 

on insights from the literature review of previous steps as the presentation to other researchers.   

Fundamentals:  

Team elements:  

1. Hierarchy:  

DataOps has no hierarchy. Together, teams are self-organized but fully and equally 

responsible for the results of deliverables.  

2. Team size:  

Teams are between 4-12 persons, depending on the requirements and complexity. A 

minimum of 4 is required for having at least two team members with data-focused expertise 
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and two members with ops-focused expertise. Architect(s) or DataOps Mentor(s) are not 

considered as team member, but can consult the team.  

3. Members have their own expertise, and roles are flexible:  

Within teams, specializations get valued. Individuals share their knowledge, automate tasks 

and explain their reasoning to colleagues. The methodology values learning from both end 

users/operations, in order to get requirements better specified, and data scientists, by 

integrating the received (technical) feedback.  

4. Be open and transparent: 

Every choice is discussed, since they are seen as team choices. They get documented and are 

accessible inside and outside the team. Progression is traceable.  

5. Automate everything:  

To have presented models react quickly on new data observations, DataOps has a high focus 

on automation. Is all effort done, teams have to guarantee they never do the exact same 

thing again. This is not equal to forbidding reconsidering things, what can be a result of 

several new observations that have such impact that fine-tuning the model will not be a 

fitting reaction.  

Duration of process(steps):  

6. Members meet daily and deliver weekly:  

A process step needs to get completed in 7 calendar days. During the week, the team meets 

daily for maximum 15 minutes to discuss progression in order to meet deadlines. Members 

can call for help. When having the weekly meeting, lasting for 60 minutes at max, the teams 

discuss work had been done and they set next week’s planning. Work that will not be 

planned for next week, gets on the ‘backlog’ that gets ordered by phase.  

7. Discuss next week’s work, including the relevance:  

Teams discuss the to-do-list for the next loop period, lasting 7-days, including reviewing the 

relevance of planned work. Teams rather work on parts of tasks, rather than on month’s 

lasting dead ending tasks. Teams avoid overcapacity and inefficiency by e.g. not cleaning 

thousands of records, but take a part of a dataset to do first tests and extend from there.  

8. Give value to first insights as a small step rather than waiting for full optimization 

Just as using not all available data but a sample or a part of the dataset, adjusting the plan 

during the week is allowed. Extending the deadline is not. When the first results are 

delivered, a new loop can be made to improve the accuracy.   

9. Define the why before starting KD-efforts, but changing the how is always welcome 

When the strategic need is clear for all parties, how you get there can be discovered 

underway.. When new insights lead to a need to get back to choices, iterations or 

adjustments can be made to get towards optimization.  

10. One iteration during a loop 

When iterating, the team has another 7 days to work on a process step. By having maximum 

one iterating during a complete loop, the process avoids to stay stuck at one step and works 

towards first deliverables.   

Quality and process principles:  

11. Learning:   

Since the methodology is based on skilled professionals, teams quickly win in effectiveness 

by continuously learning from each other. By discussing daily and delivering weekly, 

members can continuously measure their progress in perspective of mutual expectations. 

12. Big data does enrich the model:  
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The methodology seeks for a combination of information available from both within the 

organization as from external sources. A combination between both provides the best 

answer to requirements. Since automation is part of the methodology, data from both 

sources can get processed near real-time and deliver knowledge to end-users accordingly.  

13. Try to destroy before you deploy: 

Before delivering the results teams need to do the analysis whether this model adds more 

value and potential risk. If not, improvements are obviously needed. Part of automating 

everything is bringing in rules that inform the team when delivered work goes beyond set 

boundaries. “What if…?” questions set the knowledge up for current and future success.  

14. Retrospective (process) and maintenance:  

As a continuous subject of discussion, the process gets discussed to provide room for 

improvement where needed. Since the model welcomes Big Data, it provides data to the 

model with a potential need to deployed models and so, maintenance wins in importance. 

Faster changing requirements have the same impact. Since Data and Ops are well connected 

at any time, teams work on maintenance constantly.   

Roles:  

 Data-focused members:  

These members have their expertise mainly on the data-part of the activities within the KD-

methodology.  

 Ops-focused members:  

These members have a great understanding on what information is needed and how the 

business can benefit from the knowledge discovered.  

 Architect and DataOps Mentor:  

As both are not members of the team, both have a consulting role for the teams. The 

architect mainly helps to create a connection between not only the goals of operations but 

also the strategy, processes and IT governance of the organization. The DataOps Mentor is a 

role that can get consulted to have the teams walk through the process steps effectively. 

Since the teams are fully responsible for their results, consultation in both roles is a team 

responsibility as well. Their success depends on the results of all DataOps teams together.  

4.3 Design steps  
New Business Request: A defined starting point 

In the literature review, the paradigm of knowledge discovery as a continuous activity rather than a 

process with defined finishing step is provided. Building further on this paradigm, DataOps lacks a 

finishing point as well. Obviously, the loop starts with a “business problem” or question.  

Problem understanding 

A new request can be seen as a need, in the model presented as a problem based on the fact that 

the need is not easily fulfilled. By selecting stakeholders involved with that need, gives the 

opportunity is presented to align them in order to get one defined problem and (a set of) 

objective(s) and goal(s) for the KD-efforts.  

Team members have to get a clear view about the ‘why’ of KD-efforts. Obviously, answers can vary 

from ‘we just need that figure’ to ‘this contributes enormous – today and in following years’. Seeing 

the objective(s) and goal(s) in the business perspective provides the opportunity to transfer data 

into information efficiently and effectively. 
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Business understanding 

In this phase, we review the connections of the defined problem within the organization. This 

includes the process of defining stakeholders and sources of the data. Additionally, it defines the 

analytics capability along three dimensions: the analytical environment of the organization, the 

quality of the data on an organizational level and how individuals let their decisions be guided by 

analytics.   

Iteration (1):  

By getting a better view about the business and relationship between the business and the KD-goals, 

a need to come to a sharper problem statement is a plausible scenario since in the end, all 

stakeholders have to be aligned about the definition of the problem and how to work towards a 

solution. Continuous change on how is welcome at any time, all stakeholders need to get involved 

on why before starting the “Data-part” and stay aligned afterwards.   

Data understanding 

For the proposed model, KD-workers need to get a good understanding about the playing field, the 

quality of the data, to come from data to information.  

Data selection and preparation 

Having a clear overview of the available data, one can select, transform and clean the data.  

Iteration (2):  

During the selection and preparation, lessons learned can lead to a need for better understanding of 

the data and their relationship.   

Modeling 

Having several techniques available for the same defined problem, KD-workers will have to try 

several ways to generate conversion routines from data to information. Although modeling, just one 

step of the “Data-part”, sounds technical, “Ops”-professionals can contribute to their counterparts 

by periodically providing input on relevance. 

Testing 

Obviously, the diversity of models bring different outcomes, not all of which are relevant. To 

optimize the accuracy of the model(s) selected for the next step, evaluation, a possibility to iterate is 

provided.  

Iteration (3):  

Insights lead to new insights, e.g. about the available data(set). Developing a better understanding 

about the data leads to better decisions. This iteration ensures an efficient way within the “Data”-

part of the DataOps methodology.  

Evaluation 

KD-efforts are only relevant when they support business objectives. When not having the match 

between information needs and delivered information, efforts are not effective. To prevent a forced 

deployment with depressing results, one could iterate and redo the “Data-part” once more (iteration 

4) or redo the problem understanding and move forwards from there.  

Iteration (4):  

Lessons learned from the evaluation phase help KD-workers get a better understanding of the need 

of the business. Since the needed information will likely change, data understanding needs to get 

redone in order to loop once more through the “Data”-part.  
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Iteration (5):  

First results can be delivered after having done one loop. Evaluation will lead to a conclusion about 

the risks and benefits of the model presented. Having this beta-state gives the team a possibility to 

present and deliver without a need to have a forced deployment when the model has not yet 

achieved the required quality. This iteration is the only iteration that can be taken more than once.  

Deployment 

As with all the phases in the model, this phase especially is a duo-owned phase. By deploying the 

model, the business will probably have many questions, both practical and technical. The team 

member with expertise on the data-side can both respond and fetch ideas for further improvement 

or future projects.  

New data observations 

The model can be enriched by using new data observations. These new data observations contain 

both new information collected over time or and new information sources. After a day, 24 hours of 

new data can potentially be put into the model. When the work is automated, new results are 

delivered with high efficiency. An example can be the relation between employees during said day 

and the revenue generated.  

New information sources or tables can provide new data observations as well. If a data supplier 

provides new data that has not been implemented in the model yet, the model can be enriched by 

testing the added value of this. If this adds value, this will make the model even more robust.   

4.4 Plan for testing the design 
During the empirical phase, the steps as presented in section 3.2.4 are involved. Based on the 

presentation to other scientists, the role of architect is added and the documentation (e.g. 

fundamentals, roles, process steps) that comes with the model of DataOps is redefined. After this, 

interviews were conducted by using the Delphi method. The Delphi method is conducted between 

1950 and 1960 aiming to have “the most reliable consensus of a group of experts”  (Okoli & 

Pawlowski, 2004). Since then, the Delphi method became a popular way of conducting empirical 

research in information systems to deal with specific problem types and outcome goals like 

prioritization or grading and concept- or framework development (Okoli & Pawlowski, 2004). A 

match between the objectives of the research, to create a consensus about strengths and 

weaknesses about the purposed KD methodology, is found.  

Although the Delphi method can be done very efficient by e.g. email or web, the first round of 

expert interviews is in a personal 1-to-1 conversation. This provides the opportunity to give a good 

explanation on the purposed DataOps methodology and to make sure questions and definitions are 

clear. The next round of the Delphi method will be done via email.  

Selecting the experts 

Below profession/role are selected for running the Delphi method. They are selected based on their 

current professional role and which role they would logically fulfil within the DataOps model.   

Profession/Role: Main focus in the model: Organization:  

Product Owner  Operations AAR 

Engineers- and Data Analysts Data- and Operations AAR 

Data Engineer Data-side AAR 

Data Scientist Data-side Sogeti 

Data Scientist Data-side Sogeti 

Data Scientist Data-side Sogeti 
Table 6: Overview of interviewees 



  
  24 | P a g e  
 

Provided information and documentation 

Before the first round of interviews, interviewees have received:  

 A short introduction on what to expect;  

 A letter of confidentiality stating what information will get used (and what not); 

During the interviews, interviewees have received (documentation):  

 Evaluation criteria to evaluate the current KD-methodology (to be filled in);  

 The DataOps esign description, including:  

o A general description; 

o The key principles and roles;  

o The design steps;  

 Evaluation criteria to evaluate the DataOps methodology (to be filled in).  

5 Demonstration 
The next step done within this research were the expert interviews. Feedback from the interviewees 

was gained on the fundamentals, the process steps and the model itself. The interviews gave context 

to the situation and when filling in the questionnaire, interviewees had the opportunity to further 

elucidate on specific criteria. Section 5 presents the evaluation and section 6 presents the results 

from the second (expert interviews) and third (feedback on conclusions) phase. The expert 

interviews (5.1) with experts contained 5 steps, which are:  

1. Interview questions on the interviewee’s experience with Agile KD;  

2. Interview questions on the current way of doing KD;  

3. A questionnaire (evaluation) about the current way of doing KD;  

4. Interview questions on the proposed way of doing KD;  

5. A questionnaire (evaluation) on the proposed way of doing KD.  

This round has led to conclusions. Following the Delphi method, these conclusions are shared with 

the interviewees (5.2) in order to let them add on, or change, their original answers.  

5.1 Interviews with experts  
Setting of the interviews 

Six interviews are conducted, equally distributed on two organizations. Except one Skype-interview, 

all interviews were at the case organization and in person. Interviewees were open, willing to share 

their vision and audio recording was allowed during all the conversations. The interviews took 

between 1 hour and 1.5 hours.  

Plan and reality 

The 5 steps as described above are slightly different from the originally planned steps, as described 

in section 3.2.4. Based on the presentation provided towards other researchers, an extra step was 

added in order to get to know the agile-experience of the interviewee. Since the original plan had 

two somehow similar steps, we could mere these in order to get above steps.  

The interview phase had an ambitious start by approaching several KD-experts. A list of 12 

interviewees willing to participate was made. Unfortunately, based on deadlines for this research, 

there was no possibility to have interviews with everyone. A choice has been made to do 6 in-depth 

interviews.  
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Based on the choice to focus on two case organizations, where a more random selection of experts 

was originally planned, the preferred equal distribution between data- and ops focused is not 

achieved since four interviewees are data-focused and two interviewees are ops-focused.  

Adjustments on the case organization 

The original plan was to do the research within one organization, the employer of the researcher. 

During the first part of the research, the conclusion was drawn that his colleagues are mostly 

inexperienced with agile. In order to let this research be valuable for agile experienced and 

inexperienced users, the choice is made to conduct interviews within two organizations.   

 

Differences were expected between the two case organizations, in this research a consulting 

company and the researcher’s employer. This can affect the vision of the interviewees on the 

current and proposed methodology. Although all interviewees are actively working with knowledge 

discovery, a difference is noticed between agile experienced and inexperienced interviewees. Next 

sections will zoom in on this.  

During the interviews, when going into detail on Agile-specific subjects, agile experienced 

interviewees are more able to level and respond on interview questions. Responses gained form the 

other group are valuable, but some more explanation on definitions was needed.  

5.2 Feedback on interview conclusions (Delphi method) 
After the interviews, a consolidation has been made of all the given answers. This consolidation, 

including documentation as provided during the interviews, has been provided to the interviewees 

with the request to read through all answers in order to give their opinion once more. This research 

step has been explained during the interviews.  

Despite the interviews being open and participants showing willingness to answer questions and 

provide feedback during the interviews, expectations on this part of the research are not met. Most 

interviewees replied with a confirmation of the summary, including complements on the content. 

This can mean that the interviewees recognize many touchpoints with their point of view on the 

methodology, or they took the easiest way. Some interviewees took the time to come with 

feedback, actually confirming what was already in the document.  

Although meeting the requirements as presented earlier, the researcher definitely had higher 

expectations from on the input out of this cycle of the research.  

6 Evaluation  
During the interviews, we focused on the current KD methodology and the proposed methodology 

of DataOps. As described in section 5, feedback is both gained by conducting interview questions 

and questionnaires. The questionnaire helps to get a further understanding of the 

interviewee’s opinion of the methodology. A Likert scale is used. This scale has 

ratings from very negative (- - -) to very positive (+ + +) and various options in 

between. To do an analysis on the results, the answers are reflecting scores as 

stated in Table 6. For example: if a respondent is highly satisfied (+ + +), the answer 

scores 3 points. If a second respondent is satisfied (+), the answer scores 1 point. On average, 

satisfaction scores 2 points. By doing so, averages and total scores can be distillated from the 

responses. The conclusions and observations stated below are all distillated from the expert 

interviews.  

Table 7: scores 
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6.1 Comparing of the methodologies 
Expert interviews are conducted within two case organizations, one that is agile minded and one 

that is not. A difference is recognized. Interviewees working with that last organization describe 

projects as a linear process, somehow chaotic and not focused. A lot of things are unclear, like roles 

and responsivities. The current way of working lacks structure or guiding methodology. The 

participants within a project feel the need to deliver one, somehow perfect, end product and most 

of the time projects end without even delivering a result, making the current way of working highly 

inefficient.  

Bringing useful data into a chaotic process will automatically result in discussions and confusion. Due 

to unclearness of roles and responsibilities, a huge overlap of work done is recognized and by not 

having structure or a (weekly) coordination session, results get discussed often. Like discussion on 

the results, people may have discussions about (data) definitions. Although not part of the scope of 

this research, most likely a lack of structured methodology results in confusion about the results of 

work done. Within a linear process, individuals working on a specific process step do not get insights 

on what happens in other processes, nor do they get feedback on the work they delivered.  

Interviewees working agile are more positive about their current methodology, which can be best 

described as a self-build methodology inspired by agile Scrum. They see value in iterations, periodic 

updates and a better connection between (agile) teams. Stakeholder involvement and team 

dynamics are aspects where both groups can further 

optimize. Since this is one of the values of DataOps, 

the proposed methodology shows good potential. 

Attachment 7.1 and figure 2 show an overview on the 

distribution of all given answers. The average 

satisfaction with the current methodology is +0.43. 

Agile inexperienced interviewees are on average less 

satisfied (-0.79) than agile experienced interviewees 

(+1.19) and the difference between both groups is 

rather high (1.98) (see Attachment 7.9).  

Responses on the proposed DataOps methodology were positive in general, combined with several 

useful advices and opportunities for further improvement, as presented later in this document. 

Several interviewees have requested to keep the documentation in order to use it for future 

projects. This can be seen as an indicator of satisfaction delivered by the structure from the 

methodology.  

The DataOps methodology provides structure in order to 

work towards results in an effective way while the end-

customer gets better involvement. The start and following 

steps are evaluated as logic, which also applies to the 

connections. It is mainly useful for bigger projects where 

several professionals are involved and documentation of 

work done is an important aspect. Frequent delivery is 

guaranteed, mainly by the weekly meetings.  

Attachment 7.3, 7.4 and figure 3 show the distribution of 

the provided answers on DataOps. If we follow the same analysis as we did for the starting situation, 

as shown in Attachment 7.10, the average evaluation of the criteria is +1.83 (was +0.43). 

Improvements were mainly noticed within the agile inexperienced group, as presented in 
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Attachment 7.10. Comparing the difference between average satisfaction levels for both groups in 

both situations, being the current and proposed methodology, this difference reduced from 1.98 to 

0.45. This indicates a widely supported satisfaction.  

6.2 Feedback categorized by evaluation criteria 
Above, a general conclusion about the satisfaction is provided. When we look deeper into the 

evaluation criteria, we can bring to light the strengths and weaknesses of the methodology. Answers 

are based on the responses from the interviewees. Numbers behind the different criteria indicate 

the (average) shift of satisfaction between the current methodology and the proposed methodology.  

1. Usable (from +1.17 to +2.17)  

The cycle has all roles in it, which makes it very usable for big projects. It provides structure. Since 

there is the possibility to skip the deployment step, the methodology makes sure the product really 

adds value before implementing it in the business. Fundamentals help to get everyone ‘on board’.  

2. Efficient (from -0.50 to +1.50) 

The methodology has predefined steps and rules about how to proceed during the process. The 

structure is mandatory and some process steps can be taken fast.  

3. Reliable (from 0 to +1.83) 

The biggest added value of the methodology concerning this criteria is the clearness of process steps 

and deliverables. Reliability on the output depends on the model and a human factor, which is part 

of the exploratory process of discovering new knowledge.  

4. Maintainable (from +0.33 to +2.17) 

The result of a project gets influenced in a positive way based on its maintainability, which is 

influenced by the way how a project is documented. Although this means some more work, it is 

easier to redo steps or to iterate earlier decisions.  

5. Flexible (from +1.50 to +0.67) 

This criteria requires some attention, since satisfaction drops where all other criteria win in 

satisfaction. The methodology brings teams ‘stuck in a structure’, but with some space via the 

possibility to iterate. Although it helps teams to get rid of ‘freewheeling’ situations, sometimes it 

works to have maximum flexibility.  

6. Reusable (from +0.17 to +2.00) 

Due to good documentation and automation, the methodology is very reusable. It is easy to take 

some steps backe and one can use lessons learned for other projects as well.  

7. End-user involvement (from +0.33 to +2.00) 

Some interviewees came from a waterfall-inspired situation, where communication is centered at 

the start of a project. Within the methodology, there is a continuous loop of sharing, which is 

evaluated as very positive. The assignment gets a better understanding when the end-user is 

involved. Although adjustments can be made, end-user requirements need to be as clear as possible 

when starting a project to avoid lacking an end-goal. Although the end user is a key concept of the 

methodology, the fundamentals have no bullet point giving the end user the required attention.  

8. Frequent delivery (from +1.00 to +2.33) 

Just as end-user involvement, the continuous communication during the project enforces that there 

is a continuous delivery. Several interviewees see this as a big improvement.  
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9. Guiding teamwork (from +0.50 to +2.17) 

The methodology is clear on this aspect (roles, goals, team dynamics). Having frequent meetings 

ensures teamwork. When adjustments are needed, all relevant members are aware of what this 

means for their own work and the work of others. Based on team responsibility, the methodology 

lacks a ‘manager’ to make decisions when the team is stuck somewhere in the process. Having a 

senior within the team sometimes helps to keep things going into the right direction. 

10. Iterations appreciated (from +1.17 to +1.33) 

The methodology provides room to iterate, without the possibility to ‘take to many steps back in the 

process’. The possibility to iterate just once avoids getting stuck in the process. When completing a 

loop, one can do the process again and take several process steps by just checking parameters. An 

explanation is needed about why we can iterate once per loop.  

11. Fast delivery (from +0.50 to +1.50) 

Interviewees expect a fast delivery cycle by taking out the possibility to keep working on one part of 

the process. There is a need to deliver. The fundamentals gave the impression that, when the 

product is not meeting expectations, the whole cycle has to be done again. This takes time. A further 

explanation on quickly doing process steps that have not changed a lot is needed in order to avoid 

the impression of the need to do all process steps again. 

12. Respecting budget (hours/money) (from +0.17 to +1.67) 

The methodology helps to make a good process plan, so there is an opportunity to set and monitor 

the budget. Since end-users are involved, they keep connected with the process and so with the 

budget.  

13. Self-empowered teams (from -0.50 to +1.83) 

Teams are fully responsible for the deliverables. Teams work closely together, both technical and 

operational oriented members. For several interviewees this is a big improvement.  When teams 

work closely together and a good plan is in place, then the product will improve in quality.  

The maximum number of 12 is seen a little high. By having 12 people in a team, working towards a 

consensus is hard. This is confirmed by Grady et al. (2018), where 5-9 people is defined as a good 

number for complementary skills and efficient team communication. 

Furthermore, the model provides information on the Data and Ops side. However, the fundamentals 

provide no context on how they work together and how they learn from each other. This can be 

helpful to bridge the gap between both sides. 

14. Stimulates a learning-curve (from +0.17 to +2.50) 

Bringing people together is a ‘formula for success’. Members will leave meetings with more 

understanding and knowledge compared to when they started. Having ‘awareness’ avoids having 

little islands of members doing their own part of the process. Somehow, there is a natural need to 

understand what colleagues are working on.   

6.3 Summary of feedback from the expert interviews 
By discussing the evaluation criteria during the expert interviews, several good results are 

recognized. On the methodology itself and 13 out of 14 evaluation criteria, interviewees expect the 

methodology will provide improvements. The criteria of flexibility show some attention. Because of 

the guidance and sometimes strictness of the methodology, some interviewees feel there may be a 

situation where more flexibility is required. 
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The expert interviews were conducted based on a hypothetical situation. Nevertheless, interviewees 

expect that especially the usability, reliability, maintainability, end-user involvement, frequent 

delivery, teamwork and self-empowered teams will improve both quality and satisfaction. 

Respecting budget as a criteria shows potential for improvement as well. These improvements give a 

good potential to solve the high failure rates, mainly coming from changing requirements, high 

costs, long lead-times.  

 

As well, we have found opportunities for improvements, as described in some evaluation criteria. 

Some opportunities for improvement to highlight are:  

 The end user and communication, collaboration and knowledge are currently not part of the 

fundamentals; 

 It was not clear that, when the loop is done once more, process steps with a similar input 

don’t have to be done once more;  

 Based on one interviewee, the name “deployment” is a very short description of the process 

step. Within this step, as explained in the design steps, activities are focused on both 

deployment and evaluation - which would be a better name for this process step;  

 It was not clear what was meant by describing new data observations. The explanation 

during the interviews led to a better understanding. An adjustment to the documentation is 

needed to provide that clearness in the first place;  

 There is currently no step that asks teams to agree on a budget and monitor this budget 

during the project;  

 The methodology does not explain how Data and Ops work together;  

Next to that, the DataOps methodology needs to be valuable for all users, both agile experienced 

and not agile experienced. As described in section 5, during the interviews, agile inexperienced 

interviewees needed some explanation, e.g. on definitions. This has led to a need to get the 

fundamentals and process steps more easily to read.    

6.4 Feedback on interview conclusions (Delphi method) 
As presented in section 5.2, interviewees mainly confirmed the documentation they have received. 

Unfortunately, this cycle did not give any other insights or adjustments to make the methodology 

even more robust.  

6.5 Evaluation summary 
In general, the methodology adds value in comparison with the Knowledge Discovery process the 

interviewees currently used. We separated two groups based on their way of working. The group 

that is currently not working agile show relative big improvements, which is an indicator of the 

added value of agile in general. The agile experienced group show improvements as well. Specifically 

based on their feedback and the request form 2 out of 3 interviewees having the documentation of 

DataOps show the potential of the methodology as an extension to currently used agile 

methodologies. Both aspects are confirmed by doing statistics on the evaluation criteria.  

Based on the openness of the interviewees, new opportunities for improvement became known. 

Adjustments are made to the methodology as presented in a potentially improved way in 

Attachment 8.  

Iterating is not only an aspect that is important within the model, but as well for the methodology 

itself in order to adjust on several aspects. Next to those aspects, we can conclude based on two 
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rounds of the Delphi method that interviewees have evaluated the DataOps methodology as an 

improvement with good potential.  

Improvements based on feedback 

Based on valuable feedback from the interviews, above adjustments have resulted in an improved 

version of the DataOps methodology. The new DataOps model is presented in Attachment 8, just as 

the fundamentals and design steps. 

7 Discussion, conclusions and recommendations 

7.1 Conclusions 
Although popularity of big data and analytics has attracted attention from both researchers and 

practitioners, statistics show high failure rates of Data Science projects. Based on a solid theoretical 

background, a new methodology had been collected. Information on changing requirements for 

dealing with data due to changing data characteristics and stakeholders’ dynamics resulted in the 

DataOps methodology. DataOps extends the improvements that came from agile methodologies, 

trying to break down silos between build and run, or between Data and Ops, by bringing together 

specialist from both areas. The methodology contains fundamentals, process steps and the model 

itself.  

The empirical part show promising results. To avoid bringing just a solution for a part of the 

problem, this research zoomed in on the methodology itself and a wide spectrum of 14 separate 

evaluation criteria. On both the methodology itself and 13 out of 14 evaluation criteria, interviewees 

provided great feedback (see section 6.2 and 6.3) sometimes including advice for further 

improvements of the methodology. Main adjustments are:  

 Specific focus on the end-user within the documentation; 

 More explanation is provided how Data and Ops work closely together;  

 Specific focus on communication, collaboration and knowledge sharing within the 

documentation;  

 A even sharper description of the process steps and how to handle when more or less time is 

required;  

 Further explanation on definitions is added;  

 Now, agreeing on the budget has become part of the process.  

 

During the demonstration, the methodology itself is evaluated as a great solution and a big step 

forwards. If tested in a real project, interviewees expect that especially the usability, reliability, 

maintainability, end-user involvement, frequent delivery, teamwork and self-empowered teams will 

show big improvements. These improvements give a good potential to solve the high failure rates, 

mainly coming from changing requirements, high costs, long lead-times. Respecting budget as a 

criteria shows potential for improvement as well. We expect the criteria of flexibility is a point of 

attention for further research. Adjustments on the fundamentals and process steps, which help to 

better explain the flexibility a team has. This research adds to existing literature since no research is 

found that scientifically shows the potential of a similar methodology.    

7.3 Practical implications 
As presented in the introduction, the attention towards Knowledge Discovery is growing fast. 

Organizations spend more time and effort in KD-activities. Still, 85% of all KD projects fail and 

current methodologies don’t provide a proper solution (J. Saltz et al., 2018). For this research, high 
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failure rates are seen as the main problem. The main question is how agile methodologies can 

contribute to the knowledge discovery process within organizations. This research shows the added 

value of agile in general and provides a methodology that potentially fills the need for a suitable 

solution. The proposed methodology focuses on Knowledge Discovery within teams working in 

organizations. For KD practitioners, the DataOps methodology can support all stakeholders within 

the KD-cycle to work together more closely in order to achieve goals. When executed correctly, 

Knowledge Discovery brings organizations an advantage on their competition.  

7.4 Recommendations for further research  
Although agility, as counterpart of a waterfall way of working, can be seen as accelerator for 

Software Development, Hemon et al. (2018) describes that agility has not broken down silos 

between build and run. Although DevOps is an extension of agility, prior literature provides little 

guidance on the scientific value of DevOps in bringing a structure in doing KD projects. Next to that, 

previous work on agile methodologies mainly describes process steps and activities, having little 

attention to team dynamics. DevOps introduces a focus on communication, collaboration and 

knowledge sharing between developers and operators. By researching the benefit of DevOps and 

researching existing methodologies in order to learn from best practices, this research extends 

existing literature by providing the DataOps methodology.  

The methodology serves as a starting point for further research. The methodology has been tested 

by doing an artificial evaluation. The artificial evaluation is found effective to evaluate the 

methodology’s scientific foundation and potential. The naturalistic evaluation derives strength in its 

validity by evaluating the performance of the methodology in a real environment against its original 

purpose of being a fitting solution to said problem (Venable et al., 2014). Interviews are conducted 

after presenting and discussing the methodology. A next step would be to test the methodology by 

doing a real project within an organization. An A/B test can prove the potential in comparison with 

other methodologies.     

7.5 Reflection and limitations 
The study is not without limitations. Most limitations are due to limited time, leaving room for 

future research on the subject of DevOps in Knowledge Discovery.  

Within this research, feedback gained from the demonstration is based on a hypothetical project. 

Testing the methodology can be fruitful to get detailed feedback from professionals and can bring 

additional factors to light, leading to a needs to adjust the methodology.  

Details of the empirical evaluation are available and the research approach is transparent, so other 

researchers can draw their own conclusions. When using statistics in the evaluation or when 

extracting data from interview responses, a larger number of interviews would be beneficial in order 

to predict the value of the DataOps methodology even better. The unequal distribution between 

Data- and Ops-focused interviewees is not seen as a limitation since differences between these 

interviewees’ responses marginal. They provided comparable feedback on the methodology.  

After a couple of interviews, the quality of the interviews itself grew recognizing a learning curve 

towards getting useful information. In particular, zooming in on the story behind the evaluation 

criteria adds value in that perspective. If I had the opportunity to further research this topic, I would 

use audio again, probably combined with video. Expressions can help to extract information from 

given answers, just as a detailed transcription of the interviews does.   



  
  32 | P a g e  
 

Another limitation is that this research does separate agile experienced and agile inexperienced 

professionals, but does not look at other aspects as organizational, project characteristics or others. 

Future researchers may further investigate the relationship between these characteristics and the 

effectiveness of a methodology.   

After searching for literature on the subject, we discovered new and relevant definitions for the 

search string. Although these could lead to new articles, the current literature review provided a 

good foundation for creating the methodology.   

We started the Delphi method ambitious, thinking it is good way to get consensus on the strengths 

and weaknesses of the methodology. Although the first round, being the expert interviews, gave a 

lot of input, the expected feedback on the consolidation of the expert interviews was disappointing. 

If doing the research again, I probably would bring the interviewees together for a face-to-face 

discussion.  
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S6 L1 A decade of agile methodologies: Towards e… 2012 Dingsøyr Yes Yes Yes  X X 

S7 P11 KDD, semma and CRISP-DM: a parallel over... 2008 Azevedo Yes Yes Yes X   

S8 P11 Development of an Enhanced Generic Data… 2009 Hofman Yes Yes Yes X   

S9 P2 A survey of Knowledge Discovery and Data... 2006 Kurgan Yes Yes Yes X   
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Attachment 2a – Knowledge Discovery Methodologies (1/2) 
 

Model KDD Process SEMMA Six Sigma Cabena et al. Anand & Buchner 

No of steps 9  5 5 8 

Reference Fayyad  SAS Institute Harry & Schroeder Cabena  Anand 

Year 1996 1996 1996 1998 1998 

Steps 1. Developing and 
Understanding of 
Application Domain 

1. Sample 1. Define 1. Business Objective 
Determination 

1. Human Resource 
Identification 

   2. Problem 
Specification 

 2. Creating a Target Data 
Set 

2. Explore  2. Data Preparation 3. Data Prospecting 

   4. Domain Knowledge 
Elicitation 

 3. Data Cleaning and 
Projection 

3. Modify  5. Methodology 
Identification 

 4. Data Reduction and Pre-
processing 

 2. Measure 6. Data Pre-processing 

 5. Choosing the DM Task    

 6. Choosing the DM 
Algorithm 

   

 7. DM 4. Model 3. Analyze 3. DM 7. Pattern Discovery 

 8. Interpreting Mined 
Pattern 

5. Assess 4. Improve 4. Domain Knowledge 
Elicitation  

8. Knowledge Post-
processing 

 9. Consolidating 
Discovered Knowledge 

 5. Control 5. Assimilation of 
Knowledge 

 

 

 

  



    9 | P a g e  
 

Attachment 2b – Knowledge Discovery Methodologies (2/2) 
 

Model KDLC  CRISP-DM Cios et al.  The snail shell  Combined dual-cycle methodology 

No of steps 8 6 6 7 Two cycles of 5 = 10 

Reference Lee & Kerschberg Chapman Cios  Li et al.  Shen 

Year 1998 2000 2003 2016 2018 

Steps    1.  Problem 
Formulation  

  

 1. Define the objectives 
 

1. Business 
Understanding 

1. Understanding the 
Problem Domain 

2. Business 
Understanding 

1a. Big data 
accumulation 
and acquisition 

1b. System 
abstraction and 
modelling 

 2. Select Relevant 
Business Data 
 

2. Data Understanding 2. Understanding the 
Data  

3. Data 
Understanding  

2a. Big data pre-
processing  

2b. Theoretical 
analysis and 
hypothesis 
proposition 

 3. Data Quality Analysis       

 4. Clean and Transform 
Data 
 

3. Data Pre- 
preparation  

3. Preparation of the 
Data 

4. Data Preparation 3a. Data-driven 
analytics 

3b. Simulations, 
experiments and 
data analysis 

       

       

       

 5. Data Mining  4. Modelling 4. DM 5. Modelling  4a. Universal 
Knowledge 
discovery 

4b. The 
emergence of 
universal 
phenomenon 

 6. Acquire Knowledge 5. Evaluation 5. Evaluation of the 
Discovered Knowledge 

6. Evaluation 5a. Presentation 
and post- 
processing 

5b. Putting 
forward UKN 
and further 
verification 

 7. Evaluate Results 6. Deployment 6. Using the Discovered 
Knowledge  

7. Deployment   

 8. Deploy Results or Re-
iterate 

  8. Maintenance   
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Attachment 3 – Comparison of different agile-inspired methodologies 
From (Matharu, 2015) 
 

Parameter Scrum Extreme Programming Kanban DevOps 

Design principle Complex design Simplification of code & 
accommo-dation of 
unexpected changes 

Limits the amount of work 
in progress and reduces 
waste 

Teams fully responsible of end 
result 

Nature of customer 
interaction 

Not compulsorily on-site* On-site customer interaction Not compulsorily on-site* On-site customer interaction 

Design complexity Complex design Simple design* Simple visual design*  

Project coordination Scrum Master XP Coach Team work Team work 

Roles assigned 3 pre-defined roles: 
product owner, scrum 
master & dev. team 

No prescribed roles* No prescribed roles* Assigned professionals  

Process ownership Scrum master Team ownership* Team ownership* Team ownership 

Product Ownership Product owner  Group responsibility * Group responsibility* Group responsibility 

Team collaboration Cross functional teams Self-organizing teams Team of specialized 
members 

Self-organizing team of 
specialized members 

Work flow approach Iterations (sprints) No iterations. Task flow Short iterations Iterations part of design 

Requirements management Requirements managed in 
form of artefacts through 
Sprint Backlog & product 
Backlog 

Managed in form of Story 
Cards 

Managed using Kanban 
Boards 

Wide variety of stake-holders 
is involved in the project. 
Changing requirements are 
welcome! 

Product delivery Delivery as per Time 
Boxed Sprints 

Continuous delivery* Continuous delivery* Continuous delivery, 
automated where possible 

Coding standards No coding standards* Coding standards are used No coding standards* No coding standards* 

Testing approach No formal approach used 
for testing 

Test driven development, 
including acceptance testing 

Testing done after 
implementation of each 
work product 

Continuously, for both ideas 
and directions as the end-
product. Full involvement.  

Accomodation of changes Changes not allowed in 
sprints 

Amenable to change even in 
later stages of development* 

Changes allowed at any 
time* 

Changes allowed at any time 
and welcomed by the team 
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Attachment 4 – Model Logbook 
 

Date/period Work done/Changes made 

Sept. 2018 – Feb. 2019 Laying the literature foundation for the DataOps model. 

Feb. 2019 Delivering the first three models of the model:  
- A basic version of the model; 
- The model including iterations; 
- The model including iterations and external influences. 

Feb. 2019 Introduced a logic ‘starting point’.  

Mar. 2019 First iteration/review done using a group presentation with KD-
experienced scientists. Model seems to have good potential. Based 
on feedback, the importance of maintenance is defined. The 
deployment phase has an iteration, bringing a possible “beta-state” 
to avoid the possibility to have a model with more risks then 
benefits.  
 
As well, the iterations (numbers) are put more logically and the 
explanation is enriched. 
 
Changed the order of the iterations. This is now logical.  

Apr. 2019 / Mai 2019 The demonstration is done towards experts currently working 
within the field of Knowledge Discovery. Their feedback is 
presented in section 6.2. Based on received feedback, the model is 
adjusted as presented in Attachment9.  

June 2019 The experts received a summary of the interviews and 
documentation (fundamentals and process steps) in order to give 
them the opportunity to provide feedback once again. From this 
round of the demonstration, no opportunities for improvement 
where received unfortunately.  
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Attachment 5 – Aspects of DataOps methodology and its source of 

inspiration 
 

Source of inspiration: Key principles 

Team elements:  

Hierarchy Agile manifesto, DevOps, Literature review (general) 

Team setting and size Agile manifesto, Scrum, DevOps, Literature review (general) 

Expertise and roles Agile manifesto, DevOps, Scrum 

Open and transparent Agile manifesto, DevOps 

Automate everything DevOps 

Process elements:  

Meet daily, deliver 
weekly 

Scrum, Kanban, Agile manifesto, DevOps, 

Next week’s to-do 
and relevance  

Scrum, Kanban 

Value first insights Agile manifesto, Scrum, DevOps,  

Welcome change on 
‘how’ 

Agile manifesto, 

One iteration per loop Own insight based on literature review (general) 

Quality:  

Learning DevOps,  

Enrichment via big 
data 

Dual-cycle methodology  

Destroy before you 
deploy 

KDLC, Dual-cycle methodology 

Retrospective The Snail Shell process model 

 

Source of inspiration: Roles 

Data-focused members Most methodologies, focusing just on these professionals  

Ops-focused members CRISP-DM (Missing stakeholder dynamics), Agile 
manifesto, DevOps,  

Architect and Data Mentor Scrum  

 

Source of inspiration: Design steps 

A defined starting point KDD 

Problem understanding Scrum, Snail Shell, CRISP-DM, Dual-cycle methodology 

Business understanding Scrum, Snail Shell, CRISP-DM 

Data understanding Snail Shell, CRISP-DM 

Data selection and preparation KDD, CRIPS-DM 

Modeling CRISP-DM 

Testing Agile manifesto, DevOps 

Evaluation CRISP-DM, Snail Shell 

Deployment KDD, CRISP-DM 

External influences  Literature review (Big Data) 

Maintenance Snail Shell 
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Attachment 6 – Results on the criteria (individual interviews)    

 

Interview A10 
 

 - - -  - - - + + + + + +  

1. Usable     X X  0 

2. Efficient   X X    0 

3. Reliable  X   X  +3 

4. Maintainable    X  X +2 

5. Flexible  X    X -4 

6. Reusable    X X  -1 

7. End-user involvement X    X  -4 

8. Frequent delivery      X X 0 

9. Guiding teamwork    X X  +1 

10. Iterations appreciated     X  X -2 

11. Fast delivery    X   X +3 

12. Respecting budget (hours + budget €)    X  X +2 

13. Self-empowered teams  X   X  +3 

14. Stimulates a learning-curve      X X -1 

Overall increase/decrease       +2 

 

Current KD process   Green 

Proposed KD process  Orange 
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Interview A11 
 

 - - -  - - - + + + + + +  

1. Usable     X X  0 

2. Efficient    X X  +1 

3. Reliable    X X  -1 

4. Maintainable   X X   +1 

5. Flexible    X  X -2 

6. Reusable  X    X +4 

7. End-user involvement    X X  +1 

8. Frequent delivery    X X  +1 

9. Guiding teamwork    X X   +1 

10. Iterations appreciated    X X    0 

11. Fast delivery      X X  0 

12. Respecting budget (hours + budget €)    X X  -1 

13. Self-empowered teams    X  X -2 

14. Stimulates a learning-curve     X  X +2 

Overall increase/decrease       +5 

 

Current KD process   Green 

Proposed KD process  Orange 
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Interview A12 
 

 - - -  - - - + + + + + +  

1. Usable    X X  +1 

2. Efficient  X   X  +3 

3. Reliable    X X  +1 

4. Maintainable   X  X  +2 

5. Flexible  X   X  +3 

6. Reusable  X   X  +3 

7. End-user involvement   X  X  +2 

8. Frequent delivery   X  X  +2 

9. Guiding teamwork   X   X +3 

10. Iterations appreciated     X X  +1 

11. Fast delivery     X X   0 

12. Respecting budget (hours + budget €)  X  X   +2 

13. Self-empowered teams  X    X +4 

14. Stimulates a learning-curve    X  X  +2 

Overall increase/decrease       +29 

 

Current KD process   Green 

Proposed KD process  Orange 
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Interview A13 
 

 - - -  - - - + + + + + +  

1. Usable      X X 0 

2. Efficient    X X  +1 

3. Reliable     X X  0 

4. Maintainable     X X +1 

5. Flexible    X X   0 

6. Reusable    X X   0 

7. End-user involvement     X X  0 

8. Frequent delivery     X X  0 

9. Guiding teamwork     X X  0 

10. Iterations appreciated      X X   0 

11. Fast delivery     X X   0 

12. Respecting budget (hours + budget €)     X X  0 

13. Self-empowered teams     X X +1 

14. Stimulates a learning-curve      X X  0 

Overall increase/decrease       +3 

 

Current KD process   Green 

Proposed KD process  Orange 
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Evaluation criteria: KD process     A14 
 

 - - -  - - - + + + + + +  

1. Usable    X  X  +1 

2. Efficient   X  X  +2 

3. Reliable   X X   +1 

4. Maintainable   X  X  +2 

5. Flexible    X X  -1 

6. Reusable    X  X +2 

7. End-user involvement   X   X +3 

8. Frequent delivery  X    X +4 

9. Guiding teamwork     X X  0 

10. Iterations appreciated      X X  0 

11. Fast delivery   X  X   +2 

12. Respecting budget (hours + budget €)   X  X  +2 

13. Self-empowered teams   X  X  +2 

14. Stimulates a learning-curve   X    X +4 

Overall increase/decrease       +24 

 

Current KD process   Green 

Proposed KD process  Orange 
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Evaluation criteria: KD process     A15 
 

 - - -  - - - + + + + + +  

1. Usable   X  X  +2 

2. Efficient   X   X  +2 

3. Reliable  X    X +4 

4. Maintainable     X X  0 

5. Flexible    X X  -1 

6. Reusable    X X  +1 

7. End-user involvement   X   X +3 

8. Frequent delivery     X X -1 

9. Guiding teamwork   X   X +3 

10. Iterations appreciated     X X  +1 

11. Fast delivery     X X  -1 

12. Respecting budget (hours + budget €)   X X   +1 

13. Self-empowered teams X     X +5 

14. Stimulates a learning-curve   X    X +4 

Overall increase/decrease       +23 

 

Current KD process   Green 

Proposed KD process  Orange 
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Attachment 7 – Results on the criteria (individual interviews)    
 

Attachment 7.1 - Ranking on the current KD methodology (all):  

- - - - -  -  + + + + + + 

1% 15% 24% 27% 23% 10% 

 

 

Attachment 7.2 - Ranking on the current KD methodology (agile and not agile compared):  

Current KD methodology is agile (inspired) 

- - - - -  -  + + + + + + 

0% 7% 10% 31% 36% 17% 

 

Current KD methodology is not agile (inspired)  

- - - - -  -  + + + + + + 

2% 24% 38% 24% 10% 2% 

 

 

 
 

  

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

- - - - - - + + + + + +

Distribution of satisfaction on current KD process

All Agile experienced Not agile exp.
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Attachment 7.3 - Ranking on the proposed KD methodology (all):  

- - - - -  -  + + + + + + 

1% 1% 2% 23% 49% 24% 

 

Attachment 7.4 - Ranking on the proposed KD methodology (agile and not agile compared): 

Current KD methodology is agile (inspired) 

- - - - -  -  + + + + + + 

2% 2% 5% 26% 43% 21% 

 

Current KD methodology is not agile (inspired)  

- - - - -  -  + + + + + + 

0% 0% 0% 19% 55% 26% 

 

Attachment 7.5 - Difference (all):  

- - - - -  -  + + + + + + 

0% -14% -21% -5% + 26% + 14% 

 

Attachment 7.6 – Difference in distribution the proposed KD methodology (agile and not agile 

compared): 

Current KD methodology is agile (inspired) 

- - - - -  -  + + + + + + 

2% - 5%  - 5% - 5% + 7% + 5% 

 

Current KD methodology is not agile (inspired)  

- - - - -  -  + + + + + + 

-2% -24% -38% -5% 45% 24% 
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Attachment 7.7   

Distribution of the evaluation criteria (starting situation - both agile and not agile)  

 - - - - -  -  + + + + + + 

Usable 0%  0%  17%  50%  17%  17%  

Efficient 0% 17% 50% 33% 0% 0% 

Reliable 0% 33% 17% 17% 33% 0% 

Maintainable 0% 0% 50% 17% 33% 0% 

Flexible 0% 17% 0% 17% 33% 33% 

Reusable 0% 33% 0% 50% 17% 0% 

End-user involvement 0% 0% 50% 17% 33% 0% 

Frequent delivery 0% 17% 17% 17% 17% 33% 

Guiding teamwork 0% 0% 33% 50% 17% 0% 

Iterations appreciated 0% 0% 17% 50% 17% 17% 

Fast delivery 0% 17% 17% 33% 33% 0% 

Respecting budget  0% 17% 33% 17% 33% 0% 

Self-empowered teams 17% 33% 17% 0% 17% 17% 

Stimulates a learning-curve 0% 33% 17% 17% 17% 17% 

 

Attachment 7.8  

Distribution of the evaluation criteria (proposed methodology - both agile and not agile)  

 - - - - -  -  + + + + + + 

Usable 0% 0% 0% 0% 83% 17% 

Efficient 0% 0% 17% 0% 83% 0% 

Reliable 0% 0% 0% 33% 50% 17% 

Maintainable 0% 0% 0% 17% 50% 33% 

Flexible 0% 17% 0% 67% 17% 0% 

Reusable 0% 0% 0% 33% 33% 33% 

End-user involvement 17% 0% 0% 0% 50% 33% 

Frequent delivery 0% 0% 0% 0% 67% 33% 

Guiding teamwork 0% 0% 0% 17% 50% 33% 

Iterations appreciated 0% 0% 17% 17% 67% 0% 

Fast delivery 0% 0% 0% 67% 17% 17% 

Respecting budget  0% 0% 0% 50% 33% 17% 

Self-empowered teams 0% 0% 0% 17% 33% 50% 

Stimulates a learning-curve 0% 0% 0% 0% 0% 50% 
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Attachment 7.9 – Ranking of the criteria for the current KD methodology 

All interviewees 

 

Agile inspired 

 

Not agile inspired 
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Attachment 7.10 – Ranking of the criteria for the proposed KD methodology 

All interviewees 

 

Agile inspired 

 

Not agile inspired 
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Attachment 7.11 – Differences when comparing individual evaluation criteria 
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Agile inspired 
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Not agile inspired 
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Attachment 8 – Adjusted fundamentals, design steps and model  
 

Adjusted fundamentals:  

Team elements:  

1. Hierarchy:  

DataOps has no hierarchy. Together, teams are self-organized but fully and equally 

responsible for the results of deliverables. Just in case when the team is stuck during the 

process, they can reach out to a senior in order to keep things going.  

2. Team size:  

Teams are between 4-8 persons, depending on the requirements and complexity. A 

minimum of 4 is required for having at least two team members with data-focused expertise 

and two members with ops-focused expertise. They work together by explaining the work 

they have done and share results within the team. Communication, collaboration and 

knowledge sharing are important within teams working with DataOps. Architect(s) or 

DataOps Mentor(s) are not considered as team member, but can consult the team.  

3. Members have their own expertise, and roles are flexible:  

Within teams, specializations get valued. Individuals share their knowledge, automate tasks 

and explain their reasoning to colleagues. The methodology values learning from both end 

users/operations, in order to get requirements better specified, and data scientists, by 

integrating the received (technical) feedback. 

4. Be open and transparent: 

Every choice is discussed, since they are seen as team choices. They get documented and are 

accessible inside and outside the team. Progression is traceable.  

5. Automate everything:  

To have presented models react quickly on new data observations, DataOps has a high focus 

on automation. New data observations can be both new data points and new datasets 

becoming available that can value to the model teams are building on. In all effort done, 

teams have to guarantee they never do the exact same thing again. This is not equal to 

forbidding reconsidering things, what can be a result of several new observations that have 

such impact that fine-tuning the model will not be a fitting reaction. 

Duration of process(steps):  

6. Members meet daily and deliver weekly:  

A process step needs to get completed in 7 calendar days. During the week, the team meets 

daily for maximum 15 minutes to discuss progression in order to meet deadlines. Members 

can call for help. When having the weekly meeting, lasting for 60 minutes at max, the teams 

discuss work had been done and they set next week’s planning. Work that will not be 

planned for next week, gets on the ‘backlog’ that gets ordered by phase.  

7. Discuss next week’s work with the team, including the end-user  

Teams discuss the to-do-list for the next loop period, lasting seven days, including reviewing 

the relevance of planned work. Teams work on parts of tasks, rather than on month’s lasting 

dead ending tasks. Teams avoid overcapacity and inefficiency by e.g. not cleaning thousands 

of records, but take a part of a dataset to do first tests and extend from there. The end-user 

stays involved by participating in these meetings in order to ensure the team keeps track of 

the right direction.  

8. Give value to first insights as a small step rather than waiting for full optimization 
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Just as using not all available data but a sample or a part of the dataset, adjusting the plan 

during the week is allowed. Extending the deadline is not. When the first results are 

delivered, a new loop can be made to improve the accuracy.   

The end user involvement is guaranteed not only in the beginning where teams set the 

requirements, but as well during the weekly meetings. In this way, they can track 

progression and let the teams make little adjustments to avoid delivering an end product 

that does not match expectations.  

 

9. Define the why before starting KD-efforts, but changing the how is always welcome 

When the strategic need is clear for all parties, how you get there can be discovered 

underway. When new insights lead to a need to get back to choices, iterations or 

adjustments can be made to get towards optimization.  

10. One iteration during a loop 

When iterating, the team has another seven days to work on a process step. By having 

maximum one iteration during a complete loop, the process avoids being stuck at one step 

and works towards first deliverables.  If that first deliverable is ready, the team can redo the 

loop. Some steps need full attention of the team and some steps can be taken easily. If the 

parameters stay the same and the team agrees on that, a process step can be finished 

during the weekly meetings. 

Quality and process principles:  

11. Learning:   

Since the methodology is based on skilled professionals, teams quickly win in effectiveness 

by continuously learning from each other. By discussing daily and delivering weekly, 

members can continuously measure their progress in perspective of mutual expectations. 

12. Big data does enrich the model:  

The methodology seeks for a combination of information available from both within the 

organization as from external sources. A combination between both provides the best 

answer to requirements. Since automation is part of the methodology, data from both 

sources can get processed near real-time and deliver knowledge to end-users accordingly.  

13. Try to destroy before you deploy: 

Before delivering the results teams need to do the analysis whether this model adds more 

value and potential risk. If not, improvements are obviously needed. Part of automating 

everything is bringing in rules that inform the team when delivered work goes beyond set 

boundaries. “What if…?” questions set the knowledge up for current and future success.  

14. Retrospective (process) and maintenance:  

As a continuous subject of discussion, the process gets discussed to provide room for 

improvement where needed. Since the model welcomes Big Data, it provides data to the 

model with a potential need to deployed models and so, maintenance wins in importance. 

Faster changing requirements have the same impact. Since Data and Ops are well connected 

at any time, teams work on maintenance constantly.   

Roles: 

 Data-focused members and Ops-focused members:  

Data-focused members have their expertise mainly on the data-part of the activities within 

the KD-methodology. The more Ops-focused members have a great understanding on what 

information is needed and how the business can benefit from the knowledge discovered. All 
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team members are working towards defined goals and roles are flexible. If help is needed at 

one part of the process, all members provide help where they can. This improves team-

dynamics, understanding and in the end efficiency and effectiveness.  

 Architect and DataOps Mentor:  

As both are not being a members of the team, both have a consulting role for the teams. The 

architect mainly helps to create a connection between not only the goals of operations but 

also the strategy, processes and IT governance of the organization. The DataOps Mentor is a 

role that can get consulted to have the teams walk through the process steps effectively. 

Since the teams are fully responsible for their results, consultation in both roles is a team 

responsibility as well. Their success depends on the results of all DataOps teams together.  

Adjusted design steps 

0. New Business Request: A defined starting point 

In the literature review, the paradigm of knowledge discovery as a continuous activity rather 

than a process with defined finishing step is provided. Building further on this paradigm, 

DataOps lacks a finishing point as well. Obviously, the loop starts with a “business problem” 

or question. In that phase, the team discusses and agrees on the budget.  

 

1. Problem understanding 

A new request can be seen as a need, in the model presented as a problem based on the fact 

that the need is not easily fulfilled. By selecting stakeholders involved with that need, the 

opportunity is presented to align them in order to get one defined problem and (a set of) 

objective(s) and goal(s) for the KD-efforts.  

 

Team members have to get a clear view about the ‘why’ of KD-efforts. Obviously, answers 

can vary from ‘we just need that figure’ to ‘this contributes enormous – today and in 

following years’. Seeing the objective(s) and goal(s) in the business perspective provides the 

opportunity to transfer data into information efficiently and effectively. 

 

2. Business understanding 

In this phase, we review the connections of the defined problem within the organization. 

This includes the process of defining stakeholders and sources of the data. Additionally,  it 

defines the analytics capability along three dimensions: the analytical environment of the 

organization, the quality of the data on an organizational level and how individuals let their 

decisions be guided by analytics.   

Iteration (1):  

By getting a better view about the business and relationship between the business and the 

KD-goals, a need to come to a sharper problem statement is a plausible scenario since in the 

end, all stakeholders have to be aligned about the definition of the the problem and how to 

work towards a solution. Continuous change on how is welcome at any time, all stakeholders 

need to get involved on why before starting the “Data-part” and stay aligned afterwards.   

3. Data understanding 

For the proposed model, KD-workers need to get a good understanding about the playing 

field, the quality of the data, to come from data to information. 
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4. Data selection and preparation 

Having a clear overview of the available data, one can select, transform and clean the data.  

 

Iteration (2):  

During the selection and preparation, lessons learned can lead to a need for better 

understanding of the data and their relationship.   

 

5. Modeling 

Having several techniques available for the same defined problem, KD-workers will have to 

try several ways to generate conversion routines from data to information. Although 

modeling, just one step of the of the “Data-part”, sounds technical, “Ops”-professionals can 

contribute to their counterparts by periodically providing input on relevance. 

 

6. Testing 

Obviously, the diversity of models bring different outcomes, not all of which are relevant. To 

optimize the accuracy of the model(s) selected for the next step, evaluation, a possibility to 

iterate is provided.  

Iteration (3):  

Insights lead to new insights, e.g. about the available data(set). Developing a better 

understanding about the data leads to better decisions. This iteration ensures an efficient 

way within the “Data”-part of the DataOps methodology.  

7. Evaluation 

KD-efforts are only relevant when they support business objectives. When not having the 

match between information needs and delivered information, efforts are not effective. To 

prevent a forced deployment with depressing results, one could iterate and redo the “Data-

part” once more (iteration 4) or redo the problem understanding and move forwards from 

there.   

 

Iteration (4):  

Lessons learned from the evaluation phase help KD-workers get a better understanding of 

the need of the business. Since the needed information will likely change, data 

understanding needs to get redone in order to loop once more through the “Data”-part. 

 

Iteration (5):  

First results can be delivered after having done one loop. Evaluation will lead to a conclusion 

about the risks and benefits of the model presented. Having this beta-state gives the team a 

possibility to present and deliver without a need to have a forced deployment when the 

model has not the required quality. This iteration is the only iteration that can be taken 

more than once.  

 

8. Deployment 

As with all the phases in the model, this phase especially is a duo-owned phase. By deploying 

the model, the business will probably have many questions, both practical and technical. The 

team member with expertise on the data-side can both respond and fetch ideas for further 

improvement or future projects.  
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New data observations 

The model can be enriched by using new data observations. These new data observations contain 

both new information collected over time or and new information sources. After a day, 24 hours of 

new data can potentially be put into the model. When the work is automated, new results are 

delivered with high efficiency. An example can be the relation between employees during said day 

and the revenue generated.  

New information sources or tables can provide new data observations as well. If a data supplier 

provides new data that has not been implemented in the model yet, the model can be enriched by 

testing the added value of this. If this adds value, this will make the model even more robust.  

Maintenance?  

As adopted in the fundamentals, maintenance is part of the process as well. DataOps takes the 

position of KD rather as a process of continuous delivery than as a project with a defined end-phase. 

Automation of the process delivers continuous flows of information, but the process needs to be 

robust in order to deal with new data observations and software- and model updates.  

 

Adjusted model  

 


