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EXECUTIVE SUMMARY 

Together with the intermediate deliverable D1.4 (Month 18), which was prepared for the first 
project review, this document explains how the RAGE project defines, develops, distributes and 
maintains a series of applied gaming software assets that it aims to make available. It describes 
a high-level methodology and infrastructure that are needed to support the work in the project 
as well as after the project has ended. As to avoid unnecessary duplication the contents of D1.4 
are presented as a summary. In the current deliverable (D1.1) the asset creation methodology, 
the quality assurance considerations and the asset metadata requirements are merged together 
and implemented into a single asset creation wizard, which supports and guides asset owners 
through the process of asset submission to the Ecosystem portal. It complements the metadata 
editor that was developed earlier, but which in some respects turned out to be demanding for 
asset developers. The wizard design, which was based on an analysis of the asset submission 
workflow, decomposes the submission process into 8 subsequent steps, while a limited subset 
of metadata fields are qualified as mandatory. The wizard was used and evaluated by all 
RAGE’s asset developers. Also, the metadata-viewer tool is briefly explained in this deliverable.  
Herewith the methodology and the upfront tools for creating assets are ready for wider use. In 
the period after completion of this deliverable, the asset creation part (the asset repository and 
authoring tools) described here will be part of the overall RAGE ecosystem portal. For the 
alignment of the two subsystems a coordination document was jointly created by WP1 and 
WP6, and has been included here. Already before the (soft) external launch of the ecosystem 
portal, which is scheduled in month 36 (January 2018) external parties will be involved to 
explore the asset creation system and make judgements about its usability. Additional fine-
tuning of the wizard and its instructions is anticipated.  
Overall, the asset creation part and its alignment with the RAGE ecosystem portal has now 
been fully covered. 
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1 INTRODUCTION 

 
Purpose of this document 
This document describes a high-level methodology and infrastructure that are needed to create, 
upload and maintain a set of software assets for applied gaming. This deliverable D1.1 was 
preceded by the intermediate version D1.4 (Month 18), which was prepared for the first project 
review. As to avoid any unnecessary duplication the contents of D1.4 are presented as a 
summary below. 

1.1 Main outcomes reported in intermediate deliverable D1.4 
The main results described in intermediate deliverable D1.4 (M18) are presented below in 
condensed form. For details we refer to D1.4 and its appendices.  
 
Analysis of technical landscape 
An in-depth analysis of the technical landscape of game engines, platforms and programming 
languages was presented and used to restrict asset development to a few primary code bases 
that still would allow to reach out to a maximum number of game developers and their platforms. 
RAGE will particularly focus on C# and TypeScript (typed JavaScript).  
 
Asset architecture 
An asset system architecture was designed to support both server-side assets and client-side 
assets. Platform and hardware dependencies were avoided as much as possible as to achieve 
maximum portability between game engines, programming languages and platforms. Server-
side assets will provide client-side companion assets or at least will provide REST web services. 
The client-side asset architecture was validated for multiple platforms and languages (C#, 
TypeScript as well as JavaScript, Java, C++).  

Interoperability 
Interoperability between assets is covered by RAGE’s component-based asset architecture, 
With respect to interoperability standards and specifications we have adopted a case-based 
approach, focussing on asset interoperability in the RAGE pilots. Interoperability with external 
systems focuses on the application of xAPI.  

Asset metadata schema 
An asset metadata XML schema was designed to accommodate search in the asset repository, 
and to include dependencies, software versions, ownership and licensing information. The 
schema is based on a core subset of RAS and extends it with elements from ADMS, IEEE LOM 
and metadata related to the applied games domain.  
 
Asset development methodology 
The RAGE asset development methodology was presented, while it assumes neutrality towards 
different software development environments, programming languages and methodologies. 
Starting points for asset quality assurance have been specified for further elaboration and 
implementation.  
 
Asset licensing 
After detailed analysis the Apache version 2.0 license has been proposed as the default license 
to be granted to RAGE software assets, because it offers protection and openness, and it allows 
for commercial exploitation. The proposal has been officially adopted and confirmed by the 
RAGE Strategic Board. 
 

1.2 Recent work 
Complementing the work presented in Deliverable 1.4, current deliverable (D1.1) presents: 

 The asset metadata editor pre-evaluation 
A small-scale evaluation of the metadata editor was carried out 

 The asset creation wizard  
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A workflow guidance wizard was developed to facilitate metadata entry and the 
uploading of artefacts 

 The asset creation wizard usability test and data entry 
The wizard was tested by all RAGE asset developers, who all were asked to enter their 
asset’s metadata and artefacts 

 The asset metadata viewer 

 Coordination of asset creation and asset publication 
This covers the alignment of asset repository and asset creation tools with the 
ecosystem portal, which is the publishing and community environment 
 

In accordance with the work plan, completion of these results was achieved before month 30 as 
to allow internal launch and testing of the RAGE ecosystem platform by month 32, and the soft 
external launch scheduled by the end of year 3 (month 35). 
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2 RAGE METADATA EDITOR PRE-EVALUATION 

The RAGE metadata editor is a front-end tool for the asset repository, that allows asset 
developers to enter and edit the metadata associated with an asset and any of its artefacts. The 
editor hides the internal metadata complexity and constructs a flexible dynamic interface. Figure 
1 shows a screenshot of the editor.  
 

 

Figure 1. Screenshot example of the metadata editor. 

 
The RAGE Metadata editor is actually a meta-editor. This is, it is not an editor by itself, but it 
builds a metadata editor in real time – see Figure 2. The main, central element is the RAGE 
Metadata Meta-editor. It contains a collection of building blocks and construction algorithms. 
The inputs to the editor are heterogeneous definitions of metadata. This includes a metadata 
model, additional schemas, taxonomies and styling preferences. Then the meta-editor 
constructs the façade (the graphical user interface) of an editor (as shown in Figure 4), which is 
presented to the user. The constructed metadata editor is targeted towards a very specific 
metadata set – the one defined in the input data.  
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Figure 2. Metadata meta-editor 

The technical details of the metadata editor as well as a technical pre-evaluation were reported 
in a conference paper about the RAGE infrastructure (see annex 1, 
http://dspace.ou.nl/handle/1820/7329): 
 
Georgiev, A., Grigorov, A., Bontchev, B., Boytchev, P., Stefanov, K., Westera, W., Prada, E., 
Hollins, P. and Moreno Ger, P. (2016). The RAGE Advanced Game Technologies Repository 
for Supporting Applied Game Development. In R. Bottina, J. Jeuring and M. Veltkamp (Eds.), 
Proceedings of the 5th International Conference, GALA 2016, Utrecht, The Netherlands, 
December 5-7, 2016, (pp. 235-245). Cham: Springer International Publishing. doi=10.1007/978-
3-319-50182-6_21. 
 
An extended version of this conference paper was invited for submission to the International 
Journal of Serious Games (status unknown at the time of writing). 
 
In the study, four usage scenarios were tested:  
 

1. Publishing/updating a game asset 
The asset developer signs  in,  creates/selects  an  asset,  enters/updates metadata 
and uploads artefacts or an asset package. 

2. Publishing/updating a game asset from GitHub 
The asset developer signs in, creates/selects an asset, provides the GitHub  repository  
identifier  and  credentials  (if  required).  We expect to be able to realise automated 
harvesting of respective files  (artefacts)  and metadata from GitHub in the future (using 
the GitHub API). 

3. Publishing/updating a game asset from an IDE.  
For this scenario we developed a proof of concept for the Eclipse IDE plugin. The asset 
developer opens the asset project in the Eclipse IDE; using the plugin the developer 
creates/updates the asset in RAGE Asset Repository within the IDE, providing 
credentials and needed metadata. 

4. Search for assets 
This scenario involves full text or advanced search, browsing the repository, viewing 
assets’ metadata and downloading assets or artefacts for reuse. 
 

Nine end-users, viz. asset developers from RAGE, were involved in the tests. Results showed 
that the technical operations of the editor are valid. Also, users can easily work with basic 
services such as searching, downloading or uploading assets to the repository. Nevertheless, 
for some of the metadata fields users would need more specific instructions about how to  
populate the repository with metadata. Although the overall conclusion is that RAGE end-users 
accept the editor as a usable tool for entering their metadata, provided that more detailed 
documentation would become available, we took into consideration that external technology 
developers who want to upload their components to the RAGE repository, might be deterred by 
the complexity of the metadata and its documentation, and –worst case- withdraw. In order to 
arrive at a sustainable ecosystem with a continuous influx of new technology assets from 
external parties, the metadata barrier should be as low as possible. Therefore, we have decided 
to design and develop a workflow guidance wizard on top of the editor, which facilitates a 
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stepwise process of metadata entry, without the need to read extensive documentation. This 
wizard is presented and explained in the next chapter. 

 

 



Applied gaming asset methodology                    

WP1-D1.4                                               RAGE                                    Page 11 of 26 

3 ASSET CREATION WIZARD 

Based on the outcomes of the pre-evaluation study of the metadata editor (cf. chapter 2) we 
have decided to develop asset creation wizard that guides asset developers through the 
process of metadata and artefacts entry. Before describing the wizard we first explain our 
starting points. 
 

3.1 Starting points 
 
Starting points for the asset quality assurance approach  
The following quality assurance starting points have been identified. The RAGE asset quality 
assurance methodology should (cf. Deliverable D1.4): 

 be lightweight, in order not to turn off external asset providers 

 require minimal effort from asset developers to complete 

 not duplicate existing systems and tools 

 expose a minimum set of essential requirements 

 be neutral with respect to different software development environments 

 be neutral towards different asset programming methodologies  

 be neutral with respect to different programming languages 

 be neutral with respect to different game development platforms 

 cover the workflow across the asset lifecycle  

 require minimal involvement of QA Staff to minimise exploitation costs 

 be sustainable beyond the ending of the project 
 
Starting points for the asset creation wizard 

 The wizard should guide the asset developer in a few steps through the metadata and 
artefacts entry process.  

 It should be effective and usable. 

 Progress indicators should be included to keep asset developers informed and 
motivated.  

 A limited set of mandatory metadata elements should be identified. 

 A limited set of optional metadata elements should be included. 

 The systems should allow for benefitting from external communities and versioning 
systems (e.g. Github, Bitbucket). 

 Possibly include automated checks and balances. 

 As not all data can be checked, the wizard goes with a (legal) self-declaration by the 
end-user about the quality and correctness of the metadata provided.  

 
Altogether, these requirements imply that on many occasions a trade-off will be needed 
between simplicity of quality assurance and completeness. Still, given the fact that assets are 
developed with the goal of being integrated in third-party development projects, the RAGE 
Quality Assurance approach should cover aspects beyond standard practices for source code, 
with a strong emphasis on reliable metadata, documentation, demonstrators and supporting 
materials.  
 

3.2 Software maturity 
With respect to software quality it is important to note that early software releases (e.g. alpha 
versions, beta versions) should be welcomed, as it would be in agreement with the common 
practices in open software communities. This implies that full compliance with RAGE software 
quality standards can only be demanded for version 1.0 or higher. Below, we will first explain 
the software versioning model that will be used as a maturity indicator. Subsequently, we will go 
into potential software quality indicators. 
The maturity of software is often communicated by developers through the version numbers. 
Requiring developers to indicate the maturity of their code in other ways may lead to 
unnecessary duplication of information, and to demotivating developers to provide that 
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information. Therefore we make use of software version numbers to communicate maturity 
information. In order for this to be effective, a standard system for the numbering of releases 
needs to be adopted across RAGE assets. The system adopted is the Semantic Versioning 
Specification 2.0.0 (SemVer) available at http://semver.org/.  
 
The specification summarises itself as: 
 
Given a version number MAJOR.MINOR.PATCH, increment the: 
 
 MAJOR version when you make incompatible API changes, 
 MINOR version when you add functionality in a backwards-compatible manner, and 
 PATCH version when you make backwards-compatible bug fixes. 
 
Additional labels for pre-release and build metadata are available as extensions to the 
MAJOR.MINOR.PATCH format. 

 
Two particularly relevant points for the purposes of RAGE are items 4 and 5 of the specification, 
which distinguish between initial development and a public offering: 

● 4. Major version zero (0.y.z) is for initial development. Anything may change at any 

time. The public API should not be considered stable. 

● 5. Version 1.0.0 defines the public API. The way in which the version number is 

incremented after this release is dependent on this public API and how it changes. 

 

3.3 Minimal subset of mandatory metadata 
High quality of asset metadata is paramount for findability by end-users. For lowering the 
proverbial burden of entering metadata, the smallest possible set of mandatory metadata field 
was defined. Some optional fields are also presented in the wizard. Table 1 provides the 
overview of mandatory (and optional) metadata fields covered by the wizard. 

Table 1. Prioritised RAGE metadata schema elements  

No Metadata 
 

Explanation Mandatory Optional 

1 Name Asset title X  

2 One sentence 
description 

Text describing the purpose of the 
asset 

X  

3 Short non-technical 
description 

Text describing non-technical 
details and used for short 
advertisements 

X  

4 Technical description Text describing technical details 
of the asset 

X  

5 Picture/Logo An image to represent the 
software asset 

X  

6 Date Relevant date, for instance the 
date of release  

 X 

7 Language The language of software 
messages 

 X 

8 Access URL The public address of the 
software asset. It may point to the 
asset’s home page, or its GitHub 
address. 

 X 

9 Game development 
environment 

The game environment that asset 
was (initially) created for. 

 X 

10 Target platform The target platform for which the 
asset was built, e.g. Android, 
Windows, IOS 

 X 

11 Programming The programming language used  X 

http://semver.org/
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language for creating the asset 

12 Applied computing 
concepts 

Keywords from the ACM 
computing Classification System 

X  

13 Learning goals Any specific learning goals that 
the asset might address 

 X 

14 Keywords Open field for terms and concepts 
that help to  characterise the 
asset 

 X 

15 Version SVS code assigned by the asset 
developer 

X  

16 Version notes Details about this version X  

17 Development status Can either be “under 
development”,  “completed”,  
“depricated”, or “withdrawn” 

X  

18 Commit URL Reference to an external 
versioning system 

 X 

19 License type E.g. Apache 2.0, GPL2 X  

20 License URL Link to  the online license version  X 

21 Conditions and 
restrictions 

Textual explanation of any 
constraints. 

X  

22 Owner Mandatory name and optional 
contact details (home page and 
email address) of the software 
asset owner 

X  

23 Creators References to one or more 
organisations or individuals who 
created the software (names, 
home pages, email addresses) 

X  

24 Detailed description Extended, technical description 
explaining what the asset does, 
what inputs it needs, how it 
functions, technical requirements, 
operational constraints, etc. 

 X 

25 Source code Various files or links of the 
software 

X  

26 Documentation Various files or links X  

27 Setup files Files with e.g. installation scripts, 
setup guides 

X  

28 Test Files with test suites and 
documentation 

 X 

29 Other resources E.g. design documents, data files, 
examples 

 X 

30 Coding style Characterisation of coding, e.g. 
code validation, style guides used 

X  

31 Architecture Compliance with RAGE 
architecture 

X  

32 Software testing Performed tests, such as unit 
tests, integration, performance. 

 X 

33 Self-declaration for 
correctness 

 X  

34 Self-declaration for 
responsibility 

 X  

 

3.4 Wizard description 
Based on the outcomes of the pre-evaluation study of the metadata editor (cf. chapter 2) we 
have decided to develop a wizard to guide asset developers through the entire process of 
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metadata entry. The wizard decomposes the process into 8 successive steps along the most 
relevant parts of the RAGE metadata scheme (which is kept hidden). The 8 steps of the wizard 
are: 
 

1. About (metadata fields 1 to 8 from Fout! Verwijzingsbron niet gevonden.)  
Requiring general information, e.g. title, description 

2. Classification (metadata fields 9 to 14 from Fout! Verwijzingsbron niet gevonden.) 
Requiring info about target platforms, programming language, applied computing 
keywords) 

3. Status (metadata fields 15 to 18 from Fout! Verwijzingsbron niet gevonden.)  
Info about the software version, version notes, commit reference 

4. License (metadata fields 19 to 21 from Fout! Verwijzingsbron niet gevonden.) 
Details about the license(s), conditions and potential restrictions 

5. Contacts (metadata fields 22 to 23 from Fout! Verwijzingsbron niet gevonden.) 
Information about owners and creators 

6. Resources (metadata fields 24 to 29 from Fout! Verwijzingsbron niet gevonden.) 
Files or references of the software, documentation, tests, etc. 

7. Quality (metadata fields 30 to 34 from Fout! Verwijzingsbron niet gevonden.) 
Information about the asset’s quality 

8. Submission  
 
A screenshot of step 1 of the wizard is displayed in Figure 3. 
 

 
 

Figure 3. Screenshot of the asset creation wizard (version May 21
st
). 

 
In each step various mandatory as well as optional metadata fields are displayed. The vertical 
menu on the left of the screen provides an overview of the steps and allows for easy navigation 
between steps. To inform end-users about their progression to keep them motivated, weighted 
metrics based on the mandatory fields are used to display the completion rate of the process 
(cf. “19%” in Figure 3). Also, asset quality is estimated on the basis of the data entered in step 7 
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with respect to compliance with the RAGE architecture, the declared coding style and the 
testing efforts made (fields 30-32). Going through the 8 steps of the wizard would be enough to 
capture all relevant metadata in most cases. Still, the original metadata editor remains 
accessible also.  
 
Manuals 
In addition to the on-screen guidance, the wizard also refers to detailed manuals. These 
include: 

 A manual how to comply with the client-side RAGE asset architecture in C# (Annex 2) 

 A manual how to comply with the client-side RAGE asset architecture in TypeScript 
(Annex 3) 

 A manual for doing a code-review check for client-side assets (Annex 4). 
 
Legal self-declaration  
As not all data can be automatically checked by the system, the approach relies on a self-
declaration clause that is approved by the user before submission. The user declares that all 
entered information is correct and that he or she takes sole responsibility for all content posted 
and activity that occurs under the account.  
 

3.5 The price of simplicity  
The simplicity of the wizard and its self-declaration approach may be beneficial for both asset 
developers and ecosystem managers, but the potential downside cannot remain undiscussed.  
As only limited checks and balances can be used to assess the quality and correctness of the 
submitted software, metadata and artefacts, the approach strongly relies on the integrity of the 
submitters. Claims made by asset developers may be unjust, brushed up, or subject to 
mistakes. The self-declaration required for each submission makes clear that the asset 
developer is the sole responsible and liable person. Based on common practice in existing IT 
communities we suppose that community feedback such as public comments and ratings from 
asset consumers, will generate sufficient self-cleaning power to signal, remove and prevent low 
quality assets.  
By allowing premature asset versions, the RAGE portal may expose more diverse, advanced 
and experimental solutions, be it at the expense of software completeness and robustness. By 
conforming to the Semantic Versioning Specification, RAGE assures that early version software 
is clearly earmarked and distinguishable from mature versions.  
Asset developers are free to decide whether their software files are stored in the RAGE 
repository or on an external platform. This is because RAGE does not want to duplicate external 
software versioning and software management systems, such as Github. Also, this allows 
software developers to join RAGE without giving up their preferred software management 
platforms. At the downside RAGE becomes dependent on external platforms: if the external 
service closes down, cf. Google Code and Microsoft´s CodePlex, relevant software may be lost. 
The same holds for other externally stored artefacts, such as videos, slides, and documents. 
Nevertheless, RAGE assumes that software owners will then be able to preserve their software 
in time. 
Finally, quality problems may occur in the asset’s installation guides and user manuals as well 
as in instructional videos, slides and other media artefacts, without being checked by RAGE: the 
RAGE platform just accepts these artefacts as files, without any quality procedures. By 
exposing good quality manual and materials for its own assets, RAGE aims to implicitly set the 
quality standards for these. We are considering the option of presenting "Featured Assets", 
which are guaranteed to have been thoroughly reviewed through a special application 
procedure that involves further analysis. In the end, the community members will decide what to 
appreciate and what to reject.  
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4 USABILITY STUDY OF THE ASSET CREATION WIZARD 

4.1 Measurement instruments 
We have used three validated measurement instruments for evaluating the usability of the Asset 
Creation Wizard, namely, System Usability Scale (SUS) [1], Form Usability Scale (FUS) [2,3], 
and the Usability Metric for User Experience (UMUX) [4]. 
SUS is a well-validated and reliable questionnaire applicable to a wide range of software 
systems. However, the questions in the SUS questionnaire are too generic to evaluate usability 
issues specific to online forms. For this reason, we have also used the FUS questionnaire, 
which was specifically designed for evaluating the usability of online forms. While the SUS and 
the FUS questionnaires provide overall scores of usability, the UMUX questionnaire was 
developed to explicitly reflect the four separate components of usability as defined by ISO 9241-
11: efficiency, effectiveness, satisfaction, and overall usability. 
An optional open input field to comment the answer followed each question in the measurement 
instrument. 
 
System Usability Scale. The SUS questionnaire consists of 10 questions. Responses are 
measured on a Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). The score 
of each odd question is the scale position minus one, while the score of each even question is 
five minus the scale position. The sum of all the scores is multiplied by 2.5 to obtain the overall 
score per participant ranging from 0 to 100 with 50 as being neutral.  
 
Form Usability Scale. The FUS questionnaire consists of 10 questions. Validation of the 
questionnaire showed that question 7 provides little discriminatory value and information gain 
[2,3]. Therefore, the question is excluded from our analysis. 
Responses are measured on a Likert scale ranging from 1 (strongly disagree) to 6 (strongly 
agree). Additionally, there is an option to skip each question. The overall score per participant is 
obtained by computing the mean of all questions. 
In our study, we used a 5-point Likert scale and removed the option for skipping. We normalized 
the FUS score to make it comparable with the SUS score. For each question, the score was 
calculated as the scale position minus one. The sum of all scores is divided by 36 and multiplied 
by 100 to obtain the overall score ranging from 0 to 100. 
 
Usability Metric for User Experience. The UMUX questionnaire consists of four questions. 
The two questions regarding the satisfaction and overall usability overlap with two questions 
from the SUS questionnaire. Therefore, we have reused responses for the SUS questionnaire 
for evaluating these two usability components. 
Originally, all questions are measured on a Likert scale between 1 (strongly disagree) to 7 
(strongly agree). However, we used a 5-point Likert scale for the purpose of consistency across 
questionnaires. Consecutively, odd questions are scored as the scale position minus one and 
even questions are scored as five minus the scale position. The overall score is obtained by 
dividing the sum of four scores by 16 and then multiplying by 100. 
 

4.2 Results 
The user data was gathered between May 5th, 2017 and May 29th, 2017, over the internet. In 
total, 15 asset developers participated in the study. The asset developers were members of the 
RAGE project from eight different institutes. They were instructed to use the wizard for 
submitting the metadata and artefacts of their game assets to the RAGE repository. All 
participants managed to successfully complete their submissions. Participants were asked to 
address and complete the questionnaire(s) after usage of the wizard. 
This sections summarises the main outcomes of the usability study. For more details the reader 
is referred to Annex 5.  
 
SUS results. The mean overall SUS score is 72.8 (SD=16.3, SE=4.2) where SD and SE are the 
standard deviation and the standard error, respectively. This overall usability evaluation is 
positive. All the participants except one positively evaluated the overall usability of the Wizard. 
The mean scores for all questions except one are positive. The question with the negative mean 
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score (M=1.7, SE=.3) is concerned with the frequency of using the Wizard. The negative score 
is expected because the Wizard is supposed not to be frequently used. 
 
FUS results. The mean overall FUS score is 65.7 (SD=16.0, SE=4.1). Overall usability 
evaluation of the Wizard is positive with some rooms for improvement. Two participants 
negatively evaluated the overall usability of the Wizard. The correlation between the SUS and 
the FUS overall scores is significantly high (r(13) = .67, p = .006), which indicates that the FUS 
score is consistent with the benchmark score of the SUS. 
The overall FUS score is lower than the overall SUS score. The lower score might indicate that 
the FUS questionnaire is able to identify issues specific to online forms. To further investigate 
this matter, we look at the scores of the individual FUS questions. The mean scores for nine 
questions are positive. One question has a negative mean score (Mean=1.9, SE=.3). The 
responses to this question indicate that the Wizard did not have sufficient feedback to users for 
resolving unexpected problems. Another question with the lowest mean positive score (M=2.3, 
SE=.3) is close to the neutral score of 2. The responses to this question indicate that the 
participants had some difficulties understanding what information was expected to enter into the 
Wizard. 
 
Participants provided 34 (M=3.4, SE=.6) and 42 (M=4.2, SE=.7) comments to their responses in 
the SUS and the FUS questionnaires, respectively. While overall usability scores are positive, 
the number of comments indicates that there may be some specific issues in the Wizard that 
should be further resolved. Finally, more comments in the FUS questionnaire indicate - as 
expected - that the FUS questionnaire was able to capture the issues that are specific to online 
forms. 
 
UMUX results. The mean overall UMUX score is positive (M=72.5, SD=16.7, SE=4.3). The 
distribution of the overall scores also indicates positive evaluation with only one overall score 
being negative. The correlation of the UMUX scores with the SUS scores is significantly high 
(r(13) = .88, p < .001). The correlation of the UMUX scores with the FUS scores is significantly 
high as well (r(13) = .74, p = .002). The results indicate that the evaluations of all three usability 
components (effectiveness, satisfaction, efficiency) are (moderately) positive. The Wizard is fit 
for its purpose for managing metadata and artefacts. The participants reported positive 
efficiency indicating that asset and metadata management was fast and did not require 
substantial effort. Finally, the participants reported positive satisfaction towards using the 
Wizard. 

Table 2. UMUX usability scores. 

Usability component 
 

Effectiveness 
 

Satisfaction 
 

Efficiency 

 
Overall 

 

Mean score 
Standard error 

M=2.8 
SE=.2 

M=3.1 
SE=.2 

M=2.9 
SE=.2 

M=2.8 
SE=.2 

 
Questionnaire answers 
Participants’ comments collected from the open input fields in the questionnaires provided some 
more detailed qualitative feedback. Some of the issues that were identified:  

 Data storage 
o Users may lose their data after going to a next step, as the data are not saved 

in each step. 
o Users will lose their data when mandatory data are not filled. 

 Support 
o Some fields require more explanations and suggestions to become more 

understandable.  
o Some fields seem to overlap, or would need better explanation. 

 Progress indicator  
o It is not clear why after completing an asset’s data, the progress indicator 

shows a completion percentage by less than 100%. 
o If the progress score has become close to 100%, it is difficult to understand, 

which part still requires attention for completion. 
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Overall result 
Given the usability scores on the diverse tests it can be concluded that the participants were 
moderately positive towards using the wizard. The wizard smoothly guides the user through the 
process of asset declaration and submission. Some improvements can be made by covering 
intermediate data storage, enhanced instructions and the significance of the progress indicator 
(cf. Annex 5).  
Additional fine-tuning of the wizard and its instructions will be addressed in the next version of 
the wizard software. 
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5 ASSET METADATA VIEWER 

When users access the metadata of software assets there are two situations – either the users 
are allowed to modify these data, or they are allowed to view them only. The RAGE Metadata 
Editor uses the same interface for both situations. The only difference is the lack of [Save] 
button for users without write permissions. The advantage of this approach is the reuse of the 
same tool for two different purposes – editing and viewing. The disadvantage is that users face 
the complexity of the metadata model even if they need just to view the metadata. 
 
The purpose of the RAGE Wizard is to assist in preparing the metadata description of a 
software asset. It splits the efforts into several annotated steps. This style of presenting the 
metadata is not suitable for the case when users just want to view the asset. To access this 
problem we developed the RAGE Metadata Viewer. This tool extracts the metadata of a 
software asset and presents it in a structured page – see figure 4.  
 

 

Figure 4. Screenshot example of the metadata viewer. 
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The main purpose of the viewer is to provide an easy-to-read description of a software asset 
with appropriately grouped metadata. Additionally, the viewer interface is printer-friendly – i.e. if 
the user prints the page, the viewer hides navigation and control buttons and prints only the 
metadata. This is suitable for creating off-repository records of assets. 
 
The software asset viewer is the intermediate layer between the front-end asset manager and 
the asset wizard – Figure 5. Asset users browse and search all assets in the repository within 
the asset manager. When they click on a selected asset, it is opened in the asset viewer. Asset 
users can inspect the asset description and download it if they like to incorporate it in their 
game. However, if the users are the developers of this asset or if they have sufficient write 
permissions then can further open it in the wizard to edit it. When finished editing the asset, they 
automatically return to the viewer to review the changes. 
 

 

Figure 5. The asset viewer as intermediate layer between the asset manager and the asset 
asset creation wizard. 

 

Asset Manager 
Lists all assets 

Asset Viewer 
Shows one asset 

Asset Wizard 
Edits one asset 

Viewing 
a selected 

asset 

Editing 
the asset 

Reviewing 
the edited 

asset 

For asset users and asset developers For asset developers only 
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6 COORDINATION OF ASSET CREATION AND ASSET 

PUBLICATION (WP1/WP6) 

6.1 Aligning WP1 and WP6 activities 
This chapter reflects coordination of processes designed in WP1 (asset repository) and WP6 
(ecosystem), respectively. It describes the principles and decisions needed for preserving 
correct inclusion of the asset repository in the ecosystem portal. The RAGE asset repository 
(WP1) is the asset creation environment that accommodates the declaration and submission of 
software assets and its constituents in accordance with RAGE’s asset metadata model. It is one 
of the subsystems of the RAGE ecosystem portal (WP6), which is the asset publishing and 
community environment reaching out to end-users of the assets.  
The description fits into the phased approach that was agreed upon with WP6, which entails 
initial focus on the metadata schema and asset repository (WP1) supporting the (mainly 
academic) asset creators. Now that the asset repository and its tools have become available the 
first level of asset consumers (software developers looking for published assets for re-use) and 
their interaction with the ecosystem portal comes into view an update will be needed of the ways 
these user groups interact with the different subsystems. A subsequent update will be required 
at a finale stage when different end-user groups will be considered.  
 
Some key concepts are further explained below: 
 
Asset (software asset) 
In RAGE, the assets are composed of software component(s) and additional artefacts such as 
manuals, documentation, scientific evidence, examples of use, demos, content authoring tools 
and a wide range of additional resources, as well as the set of metadata to describe these (cf. 
RAGE glossary). 
 
Asset repository  
The asset repository (cf. WP1) is essentially a structured collection of assets, along with an 
authoring environment for defining and editing the assets. Asset creation entails the uploading 
of the asset’s ingredients (artefacts) and specifying the associated metadata. End-users of the 
repository are (external) technology providers that want to expose their game software assets to 
the wider game industry and game research communities through the RAGE ecosystem portal. 
 
Ecosystem portal 
This system acts as a publishing and distribution environment that uses the assets (or their 
ingredients) to establish market offerings to target groups in the applied game industry and 
game research communities and accommodates a social space for these. 
 

6.2 Starting points 
 Exploitation of the RAGE system(s) should be lean and efficient, requiring a minimum of 

human interference and overhead costs. 

 Asset submission to RAGE should be as easy as possible, given the general aversion 
of tech developers of specifying metadata, and the associated risk to loose contributors 
already during the submission process.  

 RAGE will partly rely on well-established external services such as GitHub or 
Slideshare rather than trying to duplicate those services (which is out of scope). 

 Accepting early software versions/prototypes for inclusion would be in agreement with 
common practices in IT communities, but should go with clear labelling with respect to 
software status.  

 

6.3 Asset repository as a loosely coupled sub-system 
The idea of defining the asset repository as a separate loosely coupled subsystem of the 
ecosystem portal rather than a single monolithic system is motivated by the extra flexibilities and 
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opportunities of content collection and content distribution it offers. First, by its independence 
the asset creation subsystem (the asset repository) would allow the exposition of assets to 
multiple third party publishing platforms. Second, the ecosystem portal allows for collecting 
additional content from external sources. Finally, asset creation is simply different from asset 
publishing, marketing and selling: the two functions require different contents, sometimes 
covered by different agents.  
 

6.4 Asset creation 
Primary users of the asset creation system are (external) tech providers, tech developers, or 
tech owners, all covered by a single user profile: asset creator. The final result of the asset 
creation process is the inclusion of the asset (viz. its artefacts and its metadata) in the RAGE 
repository. Submission to the repository does not imply the publication of the asset, as 
publication needs to be prepared and arranged in the RAGE ecosystem portal.  
Upon accessing the repository, the asset creators can use an asset manager and asset viewer 
to inspect assets and an asset editor to create new assets or adjust existing ones. In order to 
not deter asset creators beforehand or during the asset creation process, we have radically 
simplified the process by including an asset creation wizard that guides the asset creator step 
by step toward asset submission. Also, we have defined a minimum set of mandatory metadata 
fields, which are clearly marked in the wizard. In the wizard the uploading of artefacts is directly 
collocated with specifying metadata. Artefacts can either be uploaded or referred to via an URI. 
Although the latter implies dependencies of external systems, e.g. CodePlex, BitBucket or 
GitHub for software commits, and thereby may lead to broken links when the external services 
are dismantled, the recreation of many services is beyond the scope of RAGE: e.g. RAGE 
cannot be expected to develop and replace a fully-flashed software versioning service as 
GitHub. If an external service would disappear, the asset creator has to recreate the asset by 
processing the changes (see also “synchronisation” below). 
 
Quality assurance  
So far, quality checks by RAGE can only be performed on the completeness of metadata. The 
asset wizard presents contextual instructions and explanations as to prevent mistakes. The 
quality of artefacts, e.g. the software, the documentation, the manuals, tutorials etc., are 
accepted as is. We might say that for the assets produced by RAGE manual inspection would 
be possible to make sure we start with a well-defined set, but during exploitation after the 
ending of the project labour overheads should be kept to a minimum. Therefore, quality 
assurance is based on self-declaration: upon submission, the asset creator is required to 
answer some questions, e.g. about software documentation, coding style, RAGE architecture 
compliancy, etc., and has to declare that all information provided is correct. This also touches 
on warranty and liability issues: the asset creator remains fully responsible. In addition, an 
important self-organised quality assurance instrument would be the community feedback that is 
collected in the ecosystem portal through quality ratings by end-users.  
 
Allowing early version software 
In accordance with the policies of software versioning systems (e.g. Github) early version 
software is accepted for inclusion without barriers as to allow for early feedback and 
involvement from community members. For indicating software maturity we will use the 
Semantic Versioning Specification 2.0.0 (SemVer, http://semver.org/’, which is explained in the 
asset wizard). Version zero software (0.y.z) is reserved for early development releases and 
patches: the public API should not be considered stable.   
 
Asset packaging 
Although the asset creation sub-system allows for packaging the asset for distribution, all 
asset’s ingredients (artefacts) are stored separately and are available for reuse in different 
constellations. 
 

6.5 The ecosystem portal 
The metadata of an asset and all of its ingredients (artefacts) become available in the 
ecosystem portal, which allows for preparing the enrichment, marketing and publication of 
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assets. Here it is determined how the asset shows up in the portal. Different user roles may be 
authorised for the publishing of assets. In many cases this will be the very same asset creator, 
but also more marketing and sales oriented users or even software publishers may be involved 
here, depending on permissions granted. The user role in charge for publishing is generically 
referred to as the “asset publisher”. 
The asset publishing process basically entails three processes: 1) the arrangement or 
rearrangement of the asset’s ingredients/artefacts, 2) the enrichment of the assets with 
additional content, and 3) the act of making the asset available as a package in the portal. 

1. (Re)Arrangement of the asset’s artefacts 
The asset publisher will generally adopt the asset’s core content as specified in the 
repository. But he/she may also use the wider pool of artefacts, e.g. arising from other 
assets posted under the same account, to adjust the composition of the asset, e.g. for 
tuning it to a specific target group.  

2. Enrichment 
Three methods are available for enriching the asset with additional content: 

 Manual inclusion of additional content, e.g. harvested from external social 
media platforms (e.g. Mendeley, Slideshare).  

 Automated enrichment through a recommender service. 

 The inclusion of marketing, sales and pricing information. 
3. Packaging and releasing 

This act entails pressing a button after a preview check. 
 

Quality assurance 
As is the case in the asset repository, quality assurance and liability issues are covered by a 
self-declaration approach, to be confirmed by the asset publisher upon publication. Community 
rating of assets in the portal are an important self-organised approach to monitor and improve 
asset quality.  
 
Synchronisation of the asset creation and asset publishing 
All data and artefacts entered in the asset repository will become available to the ecosystem 
portal through a one-off, unidirectional pipeline synchronisation. This means that the publishing 
service preserves the synchronised asset in its fixated composition, and remains ignorant of any 
posterior changes made in the repository. The main reason for this approach is to avoid 
potential software compatibility issues when a new software version would become available 
under the same asset ID. To deal with updates the original asset on the repository side should 
be cloned to another ID and adjusted; the same should be done in the ecosystem portal once 
the new data have become available. In the portal, different versions should be grouped 
together for their presentation.  
This one-off synchronisation also radically reduces system overheads. 
 
The single user scenario 
A baseline use case would be a single user both creating and publishing the asset. The switch 
between the two subsystems should be seamless. This is enabled through a single-sign-on to 
preserve the same session, and a synchronised user interface that allows for a smooth, stealth 
transition. 
 

6.6 Anticipated actions for follow-up 
 Clarify the boundaries of the repository content  

 Involve external tech providers for testing the asset creation and publication process 

 Anticipate future changes of the metadata schema (based on usability test, and 
stakeholder consultations) 

 Explore automated quality assurance services (e.g. checks and balances) 

 Design a quality assurance procedure for processing community ratings 

 Establish a seamless user interface shielding the transition between two subsystems 

 Define terms and conditions; liability and warranty statements for assets and for the 
portal 
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 Updating of the ways different user groups (viz. game developers and wider user 
groups) interact with the different subsystems. 
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7 OUTLOOK 

Asset developers have qualified the wizard as a usable and appropriate tool for annotating and 
uploading the assets. But this is not the end point of our activities. First of all, external 
technology providers may be less patient and dedicated to RAGE when entering their metadata. 
Therefore, in the period after completion of this deliverable, additional fine-tuning of the wizard 
and its instructions will be needed. For the internal launch of the RAGE ecosystem platform, 
which is foreseen in month 31-32, the wizard and metadata storage will be linked with the portal 
infrastructure. The quality of entered metadata and artefacts will be manually checked as to set 
high quality standards for the first batch of assets. Although the development of automated 
artefact quality checks, for example automated code checks, would be beyond the scope of the 
project, we think it worthwhile to explore some automation options that might help to enhance 
the quality of submissions. The style of the user interfaces will be aligned with the overall look 
and feel of the portal. Before the (soft) external launch of the ecosystem portal, which is 
scheduled in month 35-36, external parties will be involved to explore the system and make 
judgements about its usability. Also after the external launch user appreciations will be 
investigated. Third parties, e.g. IT research projects, will be actively engaged and invited to 
upload their technologies.  
 



Applied gaming asset methodology                    

WP1-D1.4                                               RAGE                                    Page 26 of 26 

LIST OF ANNEXES  

 
Annex 1: Gala Paper about the Rage repository infrastructure 
 
Georgiev, A., Grigorov, A., Bontchev, B., Boytchev, P., Stefanov, K., Westera, W., Prada, E., 
Hollins, P. and Moreno Ger, P. (2016). The RAGE Advanced Game Technologies Repository 
for Supporting Applied Game Development. In R. Bottina, J. Jeuring and M. Veltkamp (Eds.), 
Proceedings of the 5th International Conference, GALA 2016, Utrecht, The Netherlands, 
December 5-7, 2016, (pp. 235-245). Cham: Springer International Publishing. doi=10.1007/978-
3-319-50182-6_21. 
Preprint available as open access at http://dspace.ou.nl/handle/1820/7329 
 
An extended version of the manuscript will be published in the International Journal of Serious 
Games. 
 
Annex 2: C# manual client-side RAGE assets 
 
Annex 3: TypeScript manual client-side RAGE assets 
 
Annex 4: Code review checks for client assets 
 
Annex 5: Outcomes of the Asset Creation Wizard Usability Study 
 
 



The RAGE Advanced Game Technologies Repository  
for Supporting Applied Game Development 

A. Georgiev1, A. Grigorov1,6, B. Bontchev1, P. Boytchev1, K. Stefanov1, W. 
Westera2, R. Prada3, Paul Hollins4, Pablo Moreno5 

1 Sofia University "St. Kliment Ohridski", Faculty of Mathematics and Informatics, Bulgaria  
{atanas,alexander.grigorov,bontchev,boytchev,stefanov}@fmi.uni-

sofia.bg 
2 Open University of the Netherlands 

Wim.Westera@ou.nl 
3 University of Lisbon, Portugal 

rui.prada@tecnico.ulisboa.pt 
4 The University of Bolton, UK 
pah1@bolton.ac.uk 

5 Universidad Complutense de Madrid, Spain 
pablom@fdi.ucm.es 

6 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria 
grigorov@math.bas.bg 

Abstract. This paper describes the structural architecture of the RAGE reposi-
tory, which is a unique and dedicated infrastructure that provides access to a wide 
variety of advanced technologies (RAGE software assets) for applied game de-
velopment. These software assets are reusable across a wide diversity of game 
engines, game platforms and programming languages. The RAGE repository al-
lows applied game developers and studios to search for software assets for inclu-
sion in applied games. The repository is designed as an asset life-cycle manage-
ment system for defining, publishing, updating, searching and packaging for dis-
tribution of these assets. The RAGE repository provides storage space for assets 
and their artefacts. It will be embedded in a social platform for networking among 
asset developers and other users. A dedicated Asset Repository Manager provides 
the main functionality of the repository and its integration with other systems. 
Tools supporting the Asset Manager are presented and discussed. When the 
RAGE repository is in full operation, applied game developers will be able to 
easily enhance the quality of their games by including advanced game technology 
assets.  

Keywords: software assets, serious games, asset repository, asset development, 
taxonomy tools, metadata editor, applied games, reuse. 

1 Introduction 

Applied gaming is highlighted as one of the main priorities in Horizon2020, the Re-
search and Innovation Programme of the European Commission. Policy makers of the 
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European Commission envision a flourishing applied games industry that helps to ad-
dress a variety of societal challenges in education, health, social cohesion and citizen-
ship, and equally one that stimulates the creation of jobs in the creative industry sector.  

Although applied or serious games have been successfully employed in education 
and training settings across a wide and varied range of application domains, seizing the 
full potential of applied games has been challenging. In contrast, the leisure games in-
dustry is an established industry dominated by large international hardware vendors 
(e.g. Sony, Microsoft and Nintendo) and large publishers and retailers. Conversely, the 
applied game industry is fragmented across a large number of small independent busi-
nesses with limited interconnectedness and knowledge exchange [1, 2]. 

The RAGE project [3] aims to stimulate the applied game industry by making avail-
able a set of advanced reusable game technology components (software assets) that 
game studios can easily integrate in their game development projects. Applied game 
studios would benefit from using state-of-the-art technologies, while incorporating 
complex pedagogic technical functionality would become easier and quicker, and the 
cost of development would be reduced. The software assets cover a variety of function-
alities including game analytics, emotion recognition, assessment, personalised learn-
ing, game balancing and player-centric adaptation, procedural animation, language 
technologies, interactive storytelling, and social gamification.  

While the main research goal of the RAGE project is to support the applied game 
industry by making available a large set of reusable, advanced software components 
(applied gaming assets), this paper focuses on the design of the repository infrastructure 
that supports the processes of development, reuse and sharing of applied gaming assets. 
This paper presents the asset repository architecture and the associated asset develop-
ment methodology. We first present the related work efforts, then discuss our approach 
(research method), describe the software asset concept, provide details of the design 
and implementation of the back-end repository system architecture and corresponding 
front-end tools, and we conclude with a brief description of first experiments with the 
infrastructure, analysis and identification of further development and research efforts.  

2 Related work 

Asset-based software development relies on reusing well documented and cohesive 
software artefacts and, therefore, it is inconceivable without a platform for storing and 
accessing assets. An asset repository as a software tool is defined by Ackerman and 
colleagues [4] for storing and retrieving reusable assets and managing asset access con-
trol for asset producers and consumers, according to the phases of the asset life cycle. 
They introduce the IBM Rational Asset Manager (RAS) repository, which handles tasks 
and activities of software asset producer, consumer and subscriber roles, while offering 
reduced production costs and improved software quality. In order to facilitate cross-
project reuse of assets, the Rational Asset Manager model provides monitoring of asset 
categorization and usage together with multi-platform compliance management.  

Another example for a RAS-based asset repository is the Atego Asset Library [5], 
which is a scalable Web-based repository for reusable software engineering artefacts. 
It is based on OMG RAS and integrates Unified Modelling Language (UML) and Sys-
tems Modelling Language (SysML) in order to facilitate asset reuse at design time. 



Currently, the tool is supported as PTC Integrity Asset Library1 and, besides the pub-
lishing, finding and reuse of assets, provides services as interest registry and notifica-
tion, automatic file interrogation, traceable links and reuse metric dashboard. 

Extensions of the OMG RAS have been proposed for designing open source Web-
based asset repositories providing advanced classification, search and utilization of re-
usable software assets of various types. The OpenCom asset repository was created as 
a supporting tool of Shanghai Component Library [6] based on an extension of OMG 
RAS profile aiming at collaborative creation of knowledge by web users. The Lavoi 
free source asset repository [7] was developed based on an extension of the component 
profile of OMG RAS broadening the categories about classification, solution, usage 
and related assets. 

Within the computer games domain, the asset concept is often reserved for media 
files to be incorporated in a game. For example, the Intel® XDK HTML5 Cross-plat-
form Development Tool [8] offers an asset manager for game development in conjunc-
tion with several game platforms. Here assets are often considered audio-visual game 
objects to be included in a project. In RAGE the focus is on software assets, reusable 
components adding specific (pedagogic) functionality for applied game development. 

A similar attempt related to using a digital repository of metadata resources for ed-
ucation, combined with a portal for the respective community of practices build around 
the repository, is described in [9]. Other approaches to endowing digital libraries with 
adaptability capabilities in order to scaffold and enhance end user experience are pre-
sented in [10]. Similar attempts inside GALA Network of Excellence are the SoA 
framework for SGs [25] and the repository for exchange of game resources [26]. 

3 RAGE Software Assets 

A RAGE asset as a self-contained software component related to computer games, 
intended to be reused and or repurposed across different game platforms. Its formal 
definition is compliant with the asset definition of the W3C ADMS Working Group 
[11], which refers to abstract entities that reflect some “intellectual content independent 
of their physical embodiments”. In principle, not all assets are required to include soft-
ware, however this paper focusses on software assets.  

The RAGE asset is designed to contain advanced game technology (software), as 
well as value-adding services and attributes that facilitate their use, e.g. instructions, 
tutorials, examples and best practices, instructional design guidelines, connectors to 
major game development platforms, test plans, test scripts, design documents, data ca-
pacity, and content authoring tools/widgets for game content creation.  

                                                           
1 http://www.ptc.com/model-based-systems-engineering/integrity-modeler/asset-library 



 
Figure 1. Conceptual layout of a RAGE Asset 

Figure 1 presents the general layout of a RAGE asset. Its software architecture is 
component-based and has been described and validated in [12]. It addresses both the 
internal workings of an asset and the level of interaction of assets with the outside 
world, including the mutual communications between assets. The RAGE architecture 
avoids dependencies on external software frameworks and minimises code that may 
hinder integration with game engines. It relies on a limited set of standard software 
patterns and well-established coding practices. Each RAGE asset contains metadata, 
which describe its content and functionality. RAGE metadata model in the domain of 
applied gaming was designed for defining the asset’s metadata and for enabling the 
proper implementation of the RAGE Asset repository system architecture [13].  

4 Our approach 

The research methodology for this study is based on the Rapid Application Develop-
ment model [14]. We performed an extensive needs assessment study [15], including 
asset developers, educators and game producers. We have identified the services to be 
supported through the repository and other related tools and, in parallel, designed the 
RAGE metadata model to fit the specified domain of reusable gaming components 
(RAGE software assets). It was clear that we could not reuse any existing solution, but 
needed to design and implement our own software repository, targeting the identified 
needs and characteristics of the applied game domain.  

In the next stage we provided the initial design of the RAGE asset as a software 
component, and the architecture of the RAGE software repository, aimed at supporting 
the development, storage, sharing and reuse of assets. In the next stage we provided 
details on the technical implementation of the software repository. We performed sev-
eral interactions between these two stages until we reached a stable and more or less 
complete solution. In the last stage we analysed the first use case scenarios of the re-
pository through several client tools, arranged first evaluations of the repository, and 
collected ideas for its improvement in the next cycle.  

We will present the results of each stage in the next sections.  



5 The Asset repository system architecture 

Metadata is a key part of the information infrastructure necessary to help create order 
and provide a solid foundation for providing various information services such as de-
scriptions, classifications, organizations, store, search, creation, modification and ag-
gregation of information [16]. Rather than merely a software archive, the asset reposi-
tory is viewed as a system for managing the lifecycle of an asset. In the repository the 
asset’s artefacts are collected and conceptually tied together by defining the metadata. 
In addition, the repository allows for publication, updating, packaging for distribution 
and quality assurance, while accommodating different end-user tools.  

The RAGE asset software repository is at the core of the asset development infra-
structure. It is used to store and manage access to: (1) reusable game assets, (2) artefacts 
(resources within game assets), (3) metadata for game assets and artefacts, and (4) re-
lationships between assets – dependencies, related assets, etc. 

The Asset software repository leverages the discovery, development reuse and re-
purpose of game assets and artefacts. It will help both game asset developers and con-
sumers in all the activities relating to the game asset lifecycle.  

The main functions of the RAGE Asset software repository are as follows: 

• Searching, finding and browsing assets/artefacts 
• Creating, updating, publishing, deleting and downloading assets/artefacts 
• Versioning support, source code import from GitHub and integration with IDEs 
• Harvesting of external repositories for game assets and metadata using the Open 

Archives Initiative - Protocol for Metadata Harvesting (OAI-PMH) 
• Reviewing and rating assets/artefacts 

In order to implement these functions, we designed the asset repository infrastruc-
ture in three tiers (Figure 2): client, service and data store tiers.  

 

 
Figure 2. Asset Repository Architecture 



6 Implementation of the asset repository system architecture 

The main result from the second stage – Acting, is the implementation of the Asset 
repository. Fedora [17] is used for storing assets, metadata and artefacts; Sesame [18] 
for managing RDF data and supporting classification and entities; and Solr [19] for 
indexing and searching the repository. The data store tier consists of these three com-
ponents and is used to store game assets, artefacts, metadata, taxonomies and indexes:  

• Fedora stores the game assets, artefacts and metadata using RDF as primary data 
format. When the repository is updated by creating, modifying or deleting re-
sources, it generates specific events so that the Fedora indexer copies RDF from 
the repository to an external triple store to keep it synchronized with the reposi-
tory. Fedora is flexible, well established and it ensures scalability and durability 
(the complete repository can be rebuilt at any time).  

• Sesame is an architecture for the efficient storage and expressive querying of 
large quantities of metadata in RDF and RDF Schema. This includes creating, 
parsing, storing, inferencing and querying over such data. Sesame RDF triple 
store contains metadata from Fedora and classification taxonomies/vocabularies.  

• Solr is an open source platform optimized for searching. Its major features are 
full-text search, sophisticated faceted search, almost real-time indexing, dynamic 
clustering of data, etc. It is used for creating full text indexes on the RAGE 
metadata fields, as well as for realizing full text search and faceted search.  

The service tier is used for access and preservation of the assets and artefacts. For 
the implementation of this tier, we developed the following services that provide access 
to the underlying data store tier: 

• Fedora Services. Fedora provides a general RESTful HTTP API for accessing 
repository resources through HTTP methods. It supports OAI-PMH [20] requests 
on content and metadata in the repository. 

• Sesame Services. Sesame offers a RESTful HTTP interface supporting the 
SPARQL Protocol for RDF. It is a superset of the SPARQL and supports com-
munication for Update operations and the Graph Store HTTP Protocol [21]. 

• Solr Services. Apache Solr exposes Lucene’s Java API as REST-like API’s 
which can be called over HTTP. The RESTful endpoints allow CRUD style op-
erations to be performed on the repository resources. 

In addition, for the service tier to provide access to the client tier, we developed 
Asset Services for composition and execution of workflows over RAGE Game Assets. 

The client tier includes web-based applications, plug-ins for integrated development 
environments (IDEs), and software components from the RAGE ecosystem that uses 
the services supported by Asset Repository Infrastructure. It includes: 

• The Asset Repository Manager – we developed a web-based application em-
bodying main functionalities for lifecycle management of assets and artefacts. 

• IDE plug-ins – we developed rich clients consuming services from the Asset Re-
pository service tier, which thus allows developers to manage assets from within 
their integrated development environment (IDE). 



• Other software components from the RAGE ecosystem, such as the Ecosystem 
Portal (EP), which harvests assets and metadata through an OAI-PMH service 
provider from Asset Repository Service tier. 

The Asset Repository services constitute an open interface for creating, modifying, de-
leting, and searching RAGE assets. They are realised on top of REST APIs, JSON, 
JSON-LD [22] and RDF, using Software as a Service (SaaS) model in the cloud. Based 
on the functionality exposed by these services, they can be grouped as: 

• Asset Access Services defining an open interface for accessing assets within the 
RAGE Asset Repository allow for retrieving asset packages and metadata, and to 
search and browse for assets using keywords and metadata fields. The search in-
terface provides both full-text search and semantic search. Full-text search ena-
bles performing of natural language queries using keywords and phrases occur-
ring in any of indexed asset’s metadata elements. The semantic search is using 
SPARQL for querying on asset metadata and SKOS taxonomies data represented 
as RDF triples. 

• Asset Management Services defining an open interface for administering assets, 
including creating, modifying, and deleting, provide an abstract level of the oper-
ations, thus hiding the complexities of the internal formats, protocols and proce-
dures for storing an asset in the Asset Repository. 

• Taxonomy Services defining an open interface for managing classification tax-
onomies and controlled vocabularies used in RAGE Asset Metadata Model [13] 
to classify and describe an asset in educational and gaming contexts. For repre-
sentation and storing Asset Repository adopts SKOS standard [23]. 

• Authentication and Authorization Services provide access for organisational 
needs. These services are implemented on top of Fedora Authentication and Au-
thorization framework [17].  

7 Usage scenarios 

In order to observe how the asset repository together with related client tools can 
support the asset developers and other users, and how effective and useful the services 
are, which it is offering, we have designed various usage scenarios. Also, asset devel-
opers and game developers have been involved for evaluating the functioning and usa-
bility of the repository. In this section we will present the scenarios, and in the next 
section will present the main conclusions based on the observations of real users.  

To populate the repository with metadata we used four usage scenarios. The first 
scenario is publishing/updating a game asset through the web-based interface offered 
from the Asset Manager. The asset developer signs in, creates/selects an asset, en-
ters/updates metadata and uploads artefacts or a packaged asset (see Figure 3). 

The second scenario is publishing/updating a game asset from GitHub. The asset 
developer again should sign in the Asset Manager, creates/selects an asset, provides the 
GitHub repository identifier and credentials (if required). The files (artefacts) and 
metadata from GitHub are automatically harvested and published in the RAGE Asset 



Repository (using the GitHub API [24]). The user should also supply the rest of the 
required metadata. 

  
Figure 3. Using the RAGE Asset and Artefact managers, the RAGE Metadata editor and the 

RAGE Taxonomy selector to populate the repository 

In the third scenario, we tested publishing/updating a game asset from an IDE. For 
this scenario we developed an Eclipse IDE plugin. The asset developer opens the asset 
project in the Eclipse IDE; using the plugin the developer creates/updates the asset in 
RAGE Asset Repository within the IDE, providing credentials and needed metadata. 

The fourth scenario: Asset consumers can search for a game asset using full text or 
advanced search, browse the repository, view assets metadata and download assets or 
artefacts for reuse. 

At the moment, the repository is populated with the metadata of 12 currently devel-
oped Assets in RAGE project. 

8 Scenario evaluation 

An evaluation of the usage scenarios was carried out by involving a group of 9 end 
users, viz. asset developers from the RAGE project. Preliminary findings of this user 
panel support the relevance of the repository system. Comments about the first version 
of the repository and related client tools can be summarized as follows: 

• Users can easily work with basic services such as searching, downloading or up-
loading assets to the repository. 

• Users need more specific instructions how to populate the repository with 
metadata. 

• The metadata editor improved the process of populating the repository for users. 



• Users encounter problems to identify the source of the information related to some 
of the metadata fields, like keywords and others. 

• There is a need to automate further the definition of metadata fields. 

While the evaluation is preliminary and relatively informal, the initial acceptance is 
positive, and confirms the viability of this first step within the RAGE Project. 

9 Conclusions and future work 

In this paper, we presented a unique software architecture supporting the lifecycle of 
reusable software components for applied gaming. The main innovation is related to 
the combination of RAGE Asset Model and RAGE Asset Metadata Model, backed up 
with server-side infrastructure (repository and services) and many end user tools. The 
software architecture plays a pivotal role within the RAGE Ecosystem, developed for 
the RAGE project and is considered of strategic importance for the domain of applied 
gaming.  

The repository as the content core system of the RAGE Ecosystem allows for flex-
ible design and development of RAGE game assets and future search, packaging and 
exchange. The current architecture guarantees both scalability and durability and the 
approach. It also provides a high level of flexibility across different taxonomies and 
standards.  

Future work is planned on improving the architecture by providing support for 
Quality Assurance, asset development workflows, harvesting of assets from external 
systems and stores, social functions and for specific targeted support for the gaming 
community. A first provisional launch of the repository integrated in the RAGE social 
platform is expected in 2017. 
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Creating C# Assets 

 
For testing the practicability of the RAGE architecture a Proof-of-Concept asset was developed. The code 

of this Proof-of-Concept asset is used as a starting point for creating new assets. It references the 

RageAssetManager. The source code can be found in the GitHub repositories ‘asset-proof-of-concept-

demo-CSharp’ and ‘AssetManager’ at https://github.com/rageappliedgame. 

 

The code in the GitHub AssetManager repository consists of two Visual Studio projects.  

1. The RageAssetManager project contains the actual code and targets the .Net 3.5 framework and 

can be used in for example Unity3D.  

2. The RageAssetManager_Portable contains no sources of its own as it uses sources linked to the 

RageAssetManager project and targets a different .Net framework and generates a portable 

assembly usable in e.g. Xamarin. 

Likewise the asset-proof-of-concept-demo-CSharp repository also contains two projects (a .Net 3.5 and a 

portable project) with some simple assets that were used for testing. The portable project again links to 

the sources of the .Net 3.5 project. Each of the projects links to the corresponding RageAssetManager 

project. 

Creating an asset can be done in two ways. The more automated method is to use Visual Studio project 

templates, but it is of course also possible to create assets from scratch using the code of the asset-

proof-of-concept-demo-CSharp repository at GitHub as starting point. 

Asset Creation using templates. 
 

For this method, two zipped templates have to be downloaded from the GitHub ‘AssetManager-Project-

Templates’ repository at https://github.com/rageappliedgame. These zip files must be placed in the 

correct Visual Studio template folder.  

In a default Visual Studio 2015 installation, the template base folder is a sibling of the project folder 

(where code is stored). By default, for Visual Studio 2015, the folder for placing the template files is 

‘Visual Studio 2015\Templates\ProjectTemplates\Visual C#’ under My Documents. 

Remarks:  

- The zipped templates should not be unzipped. 

With the templates at the correct location, File|New Project will show two new C# project types: 

RageAsset and RageAsset_Portable. 

https://github.com/rageappliedgame
https://github.com/rageappliedgame


 

First create a RageAsset project (the project name will be the name of the asset as well). 

In this project correct the reference to the RageAssetManager assembly and the project can be 

compiled. 

After that it is a good practice to create a RageAsset_Portable project as well inside the same solution 

(name it as the previous project with a ‘_Portable’ suffix). 

In this project one has to correct the reference to the RageAssetManager project as well. This portable 

project is setup with links to the sources in the RageAsset project (so when coding and subsequently 

compiling both projects, only a single set of sources is used). 

Due to a ‘bug’ in Visual Studio the locations of the linked files have to be adjusted (they are relative to 

the temporary directory where the template is unzipped during processing). Basically open the portable 

project’s csproj file with a text editor and correct the Compile and Content tags. 

Tags like: 

    <Compile 
Include="..\..\..\..\..\AppData\Local\Temp\kwnaqsvc.4kc\MyFirstAsset\b.cs"> 

      <Link>MyFirstAsset.cs</Link> 

    </Compile> 

should be changed into: 

    <Compile Include="..\TrackerAsset\TrackerAsset.cs"> 

      <Link>TrackerAsset.cs</Link> 

    </Compile> 



Besides correcting the include path, occurrences of MyFirstAsset in the example above have been 

replaced with the name of the previously created non-portable project (TrackerAsset in this 

example). 

-Please note: Editing the project file in Visual Studio is also possible if you unload the project first, edit it 

and reload it. 

-Please note: When adding new files to the non-portable project they have to be added as linked sources 

to the portable project as well. The context menu Add|Existing Item has a dropdown button that has an 

option to select Add as Link. 

If the projects are setup as described, compiling them will immediately show.NET 3.5 vs Portable coding 

issues. If the projects compile correctly,  two separate assemblies will be available for Unity3D and other 

platforms, e.g. Xamarin, respectively. 

-Please note: The portable project needs a PORTABLE symbol defined in its Build tab. 

Instead of referencing the RageAssetManager assembly, it is also possible to add the two 

RageAssetManager projects to the solution and make a reference to these projects.  

-Please note: when using pdb2mdb utility, keep in mind that it requires the compiled assembly (the dll) 

as a parameter and not the pdb symbol file. The pdb2mdb utility converts .Net symbol files (pdb) into 

mono symbol files (mdb) that can be used with Unity3D to enhance debugging. 

Manual Asset Creation 

 
This method creates a non-portable asset project from scratch.  

 For creating a new asset in Visual Studio, first create a blank solution and add the 

RageAssetManager project as an existing project.  

 Add a new Class Library project that will contain your asset to be developed (from now on this 

will be referred in this manual as the MyAsset project). 

 In the MyAsset project make a reference to the RageAssetManager project.  

 Change the main class of the MyAsset project to: 

 

namespace MyNameSpace 

{ 

    using System; 

    using System.Collections.Generic; 

    using System.Linq; 

    using AssetManagerPackage; 

    using AssetPackage; 

    /// <summary> 

    /// An asset. 

    /// </summary> 

    public class MyAsset : BaseAsset 



    { 

        #region Fields 

        /// <summary> 

        /// Options for controlling the operation. 

        /// </summary> 

        private MyAssetSettings settings = null; 

        #endregion Fields 

        #region Constructors 

        /// <summary> 

        /// Initializes a new instance of the MyAsset class. 

        /// </summary> 

        public MyAsset() 

            : base() 

        { 

            //! Create Settings and let its BaseSettings class assign Defaultvalues where it can. 

            //  

            settings = new MyAssetSettings(); 

        } 

        #endregion Constructors 

        #region Properties 

        /// <summary> 

        /// Gets or sets options for controlling the operation. 

        /// </summary> 

        /// 

        /// <remarks>   Besides the toXml() and fromXml() methods, we never use this property but 

use 

        ///                it's correctly typed backing field 'settings' instead. </remarks> 

        /// <remarks> This property should go into each asset having Settings of its own. </remarks> 

        /// <remarks>   The actual class used should be derived from BaseSettings (and not directly 

from 

        ///             ISetting). </remarks> 

        /// 

        /// <value> 

        /// The settings. 

        /// </value> 

        public override ISettings Settings 

        { 

            get 

            { 

                return settings; 

            } 



            Set 

            { 

                settings = (value as MyAssetSettings); 

            } 

        } 

        #endregion Properties 

        #region Methods 

        // Your code goes here.  

        // Try to keep only API code to be used by the Game-Engine here  

        // and put all other code in separate classes. 

        #endregion Methods 

    } 

} 

 

 

 

Remark:  

 

-When using the Settings property in the Game Engine code you will have to typecast it correctly to 

MyAssetSettings. 

 Next, add a second class called MyAssetSettings to the MyAsset project that will contain the 

assets settings: 

 

namespace MyNameSpace 

{ 

    using System; 

    using System.ComponentModel; 

    using System.Xml.Serialization; 

    using AssetPackage; 

    /// <summary> 

    /// An asset settings. 

    ///  

    /// BaseSettings contains the (de-)serialization methods. 

    /// </summary> 

    public class MyAssetSettings : BaseSettings 

    { 

        /// <summary> 

        /// Initializes a new instance of the MyAssetSettings class. 

        /// </summary> 

        public MyAssetSettings() 



            : base() 

        { 

            // 

        } 

        /// <summary> 

        /// Gets or sets the test property. 

        /// </summary> 

        /// 

        /// <value> 

        /// The test property. 

        /// </value> 

        [DefaultValue("Hello Default World")] 

        [XmlElement()] 

        public String TestProperty 

        { 

            get; 

            set; 

        } 

        /// <summary> 

        /// Gets the string[]. 

        /// </summary> 

        /// 

        /// <value> 

        /// . 

        /// </value> 

        [XmlArray()] 

        [XmlArrayItem("ListItem")] 

        [DefaultValue(new String[] { "Hello", "List", "World" })] 

        public String[] TestList 

        { 

            get; 

            set; 

        } 

        /// <summary> 

        /// Gets a value indicating whether the test read only. 

        /// </summary> 

        /// 

        /// <value> 

        /// true if test read only, false if not. 

        /// </value> 

        public Boolean TestReadOnly 

        { 

            get 

            { 



                return true; 

            } 

        } 

    } 

} 

 

Remarks:  

-The properties TestProperty, TestList and TestReadOnly are just example code and should be removed 

in the final code.  

-Using statements and referenced assemblies should be kept minimal to avoid unnecessary 

dependencies. 

 Create a Resources folder in the MyAsset project and include the following file called 

MyAsset.VersionAndDependencies.xml: 

 

<?xml version="1.0" encoding="utf-8" ?> 

<version> 

  <id>myasset</id> 

  <major>1</major> 

  <minor>2</minor> 

  <build>3</build> 

  <revision></revision> 

  <maturity>alpha</maturity> 

  <dependencies /> 

</version> 

This file can later be edited to add dependencies to other assets and correct the version number 

and maturity (see the proof of concept code for how to specify dependencies). 

 Now the asset can be compiled and can be used.   

 For creating an instance of the asset (and have it create the RageAssetManager and register 

itself) add the following line to your game-engine code: 

MyAsset asset = new MyAsset() 

 

 The code below will return a textual report of the assets registered, their versions and (un)solved 

dependencies: 

AssetManager.Instance. VersionAndDependenciesReport 

 

Remarks: 

 



-The settings base class will (if possible and specified) apply DefaultValue attributes to the properties so 

that the values are actually set (usually this attribute is only used by the .NET PropertyGrid to show when 

values are default). 

 

-The asset base class will use the build-in XmlSerializer class to serialize and deserialize the settings to 

and from XML. It is therefore important that the MySettings class can be serialized. To influence the 

serialization various attributes can be added. 

Creating bridges 
A bridge can be added to both the MyAsset and the RageAssetManager. 

 To persist (save/load) the settings, a bridge needs to be present that implements the 

IDataStorage interface that covers platform and OS dependent saving and loading of files. The 

code: 

asset.SettingsToXml() 

 will return the serialized Settings. 

 

 For the above example the serialized output will look like: 

<?xml version="1.0" encoding="utf-8"?> 

<AssetSettings xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

     <TestProperty>Hello Default Worldtest</TestProperty> 

</AssetSettings> 

 To use bridge code safely in your asset, a pattern such as displayed below can be used: 

            String fid2 = “MyFile.txt”; 

            IDataArchive ds = getInterface<IDataArchive>(); 

            if (ds != null) 

            { 

                // Call the appropriate bridge ds. 

                // 

                ds.Archive(fId2); 

            } 

            else 

            { 

                // Default behavior when no bridge is found. 

                // 

                FileStorage.Remove(fId2); 

            } 

 



Remarks:  

 

-The method getInterface() will look for the specified interface on the asset first. If the interface is not 

present it checks the RageAssetManager Bridge for the implementation of the interface. If that fails as 

well, the getInterface() method will return null. 

 A bridge is easily implemented in the game Engine code by creating a class that implements at 

least IBridge (and a number of interfaces), such as: 

 

Class Bridge: IBridge, IDataStorage { 

} 

 
Remarks: 

-The IBridge interface is empty and only used for identifying bridge objects. 

-The IDataStorage interface is used for saving and loading run-time data. 

-The IDataArchive is intended to be used to off-load data (for example prune old run-time after sending 

it to a server). 

-The IDefaultSettings interface is used to load Default Settings that are compiled into the game (so NOT 

the asset). It also contains a save method that can be used to save a skeleton settings (after creating and 

initializing it when it is absent) to disk, which allows a programmer to include it in the project and 

compile it in the game as either a .Net embedded resource or Unity (text) resource. 

Platform/engine dependency issues 
 

Please note that the common .Net diagnostic logging with Console.Write or Debug.Write is platform 

dependent (Mono has some different methods on these classes). Use the ILog interface instead so the 

game programmer can decide where the logged messages should go. 

Remarks: 

-The next two steps are optional. 

In order to debug in Unity3D not only the assemblies should be dropped in the Unity3D projects Assets 

folder but also the matching Mono Debug Symbols (these can be converted from the .Net pdb files using 

the MonoMdbGenerator pdb2mdb.exe). 

This can be automated either through a batch file or by including the following afterbuild task at the end 

of the csproj file: 

 

<Target Name="AfterBuild"> 

    <CallTarget Targets="GenerateMonoSymbols" Condition=" 

Exists('$(OutputPath)\$(AssemblyName).pdb') " /> 

  </Target> 



  <Target Name="GenerateMonoSymbols"> 

    <Message Text="Unity install folder: $(UnityInstallFolder)" Importance="high" /> 

    <Message Text="$(ProjectName) -&gt; $(TargetPath).mdb" Importance="High" /> 

    <Exec Command="&quot;$(MonoCLI)&quot; &quot;$(MonoMdbGenerator)&quot;  

(AssemblyName).dll" WorkingDirectory="$(MSBuildProjectDirectory)\$(OutputPath)" /> 

  </Target> 

 

Additionally, to determine the location of the pdb2mdb utility, the following lines should be added to the 

end of the PropertyGroup section of the csproj file: 

 

<!-- Look up Unity install folder, and set the ReferencePath for locating managed assembly 

references. --> 

<UnityInstallFolder>$(registry:HKEY_CURRENT_USER\Software\Unity 

Technologies\Installer\Unity@Location 

x64)</UnityInstallFolder><ReferencePath>$(UnityInstallFolder)\Editor\Data\</ReferencePath><

MonoFolder>$(UnityInstallFolder)\Editor\Data\MonoBleedingEdge</MonoFolder><MonoMdbG

enerator>$(MonoFolder)\lib\mono\4.5\pdb2mdb.exe</MonoMdbGenerator><MonoCLI>$(Mon

oFolder)\bin\cli.bat</MonoCLI> 
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Creating TypeScript Assets 

 
For testing the practicability of the RAGE architecture a Proof-of-Concept asset was developed. The code 

of this Proof-of-Concept asset is used as a starting point for creating new assets. 

 

The Proof-of-Concept code repository is called ‘asset-proof-of-concept-demo_TypeScript’ and is located 

on GitHub at https://github.com/rageappliedgame.  

The code in this GitHub repository consists of one Visual Studio project with two folders. One is called 

RageAssetManager and contains both the AssetManager and the base classes for assets. The other 

folder, RageAsset, contains some simple assets that were used for testing. 

Creating an asset can be done in two ways. One is manually using the proof of concept at GitHub as 

starting point. The other (more automated) method is to use a Visual Studio template. 

Asset Creation using templates. 
 

For this method, a zipped template has to be downloaded from the ‘AssetManager-Projects-Templates’ 

repository at GitHub (https://github.com/rageappliedgame). The zip file must be placed in the correct 

Visual Studio template folder. In a default Visual Studio 2015 installation, the template base folder is a 

sibling of the project folder (where code is stored). By default, for Visual Studio 2015, the folder to put 

the template file into is located at ‘Visual Studio 2015\Templates\ProjectTemplates\TypeScript’ under 

My Documents.  

Remarks:  

- The zipped template should not be unzipped. 

With the template at the correct location, File|New Project will show a new TypeScript project, 

RageAsset. 

https://github.com/rageappliedgame
https://github.com/rageappliedgame


 

At the top of the two TypeScript files the path attribute of the /// <reference> directives have to be 

corrected. 

The RageAssetManager project can be retrieved from the ‘asset-proof-of-concept-demo_TypeScript’ 

repository located at GitHub (https://github.com/rageappliedgame), the AssetManager is part of this 

repository. 

-Please note: The AssetManager project can be added to the solution. 

-Please note: In the projects settings it might be necessary to check the ‘Combine JavaScript output into 

file’ option on the TypeScript Build tab. 

Manual Asset Creation 

 
 For creating a new asset in Visual Studio: first create a solution and add the RageAssetManager 

project to the solution.  

 Create a new TypeScript project called MyRageAsset where the Asset being developed will be 

stored. As default namespace use RageAsset, as module name AssetPackage. 

 Add a new class MyAsset for your asset to the RageAsset folder like: 

 

/// <reference path="../RageAssetManager/AssetManager.ts"/> 

/// <reference path="../RageAssetManager/BaseAsset.ts"/> 

/// <reference path="../RageAssetManager/IAsset.ts"/> 

/// 

module AssetPackage { 

 

    // Setup Aliases. 

https://github.com/rageappliedgame


    import AssetManager = AssetManagerPackage.AssetManager; 

    import BaseAsset = AssetPackage.BaseAsset; 

    import IAsset = AssetPackage.IAsset; 

 

    /// <summary> 

    /// Export the Asset. 

    /// </summary> 

    export class MyAsset extends BaseAsset { 

 

        /// <summary> 

        /// Information describing the protected version. 

        /// </summary> 

        /// 

        /// <remarks> 

        /// Commas after the last member and \r\n are not allowed. 

        /// </remarks> 

        protected versionInfo: string = 

        '{ ' + 

        '  "Major":"1", ' + 

        '  "Minor":"2", ' + 

        '  "Build":"3", ' + 

        '  "Maturity":"Alpha", ' + 

        //'  "Dependencies": [ ' + 

        //'        { ' + 

        //'           "Class": "OtherAsset", ' + 

        //'           "minVersion": "1.0.0", ' + 

        //'           "maxVersion": "1.*" ' + 

        //'        } ' + 

        //'   ] ' + 

        '} '; 

 

        /// <summary> 

        /// Initializes a new instance of the Asset class. Sets the ClassName 

property. 

        /// </summary> 

        constructor() { 

            super(); 

        } 

    } 

} 

 

 

 

Remarks: 

-Please note: Unlike the C# implementation the TypeScript version uses natively supported Json 

instead of xml for storing settings and version info. 

- Please note: For retrieving default settings the Bridge object with an IDefaultSettings interface 

is expected and used.  

 

Compile-time supplied defaults are loaded into the Settings property of the underlying BaseAsset 

class.  



 

See the sample Bridge.ts implementation which is based on JavaScript’s localStorage object 

present in most modern browsers. 

-For saving and loading (run-time) Settings an IDataStorage interface is expected on the bridge 

object. 

 Now the asset can be compiled and can be used in another script. 

 

 When ‘compiled’, the TypeScript is translated in JavaScript. This resulting code can be used in the 

browser application. 

 

 For creating the asset (and have it create the RageAssetManager and register itself) add the 

following lines to your game-engine code: 

Above the module/namespace block add two references like: 

/// <reference path="RageAssetManager/AssetManager.ts"/> 

/// <reference path="MyRageAsset/MyAsset.ts"/> 

Inside the module/namespace import block and alias the asset: 

import MyAsset = AssetPackage.MyAsset;  

Finally create an instance with code like: 

var asset1 = new MyAsset(); 

 

 The line below will return a textual report of the assets registered, their versions and (un)solved 

dependencies: 

AssetManager.Instance. VersionAndDependenciesReport 

 

Creating bridges 
A bridge can be added to both the MyAsset and the AssetManager. 

 To persist (save/load) the settings a bridge needs to be present that implements the 

IDataStorage interface that covers platform and OS dependent saving and loading of files. The 

code: 

asset.SettingsToJson() 

 will return the serialized Settings. 

 

 To use bridge code safely in your asset a pattern such as displayed below can be used: 



 

            String fid2 = “MyFile.txt”; 

 

            var ds: IDataStorage = this.getInterfaceMethod("Load");  

            if (ds != null) 

            { 

                // Call the appropriate bridge ds. 

                // 

                ds.Load(fId2); 

            } 

            else 

            { 

                // Default behavior when no bridge is found. 

                // 

            } 

 

Remarks: 

- The method getInterfaceMethod () will look for the specified method on the asset first. If the 

interface is not present it checks the RageAssetManager Bridge for the implementation of 

the method. If that fails too the getInterfaceMethod() method will return null. 

 

- Please note: this differs from for example the C# implementation as TypeScript cannot 

determine the presence of an interface at run-time as the concept does not exist in the 

resulting JavaScript. Also, it is not possible to obtain a list of all methods of an interface, so a 

full test on the completeness of the interface is not possible without additional bookkeeping. 

 

 A bridge is easily implemented in the game Engine code by creating a class that implements at 

least IBridge (and a number of interfaces), such as: 

 

/// <reference path="RageAssetManager/IBridge.ts"/> 

/// <reference path="RageAssetManager/IDataStorage.ts"/> 

 

module MyNameSpace { 

 

    import IBridge = AssetPackage.IBridge; 

    import IDataStorage = AssetPackage.IDataStorage; 

  

    export class Bridge implements IBridge , IDataStorage { 

    } 

} 



 
Remarks: 

-The IBridge interface is empty and is only used for identifying bridge objects. 

-The IDataStorage interface is used for saving and loading run-time data. 

-The IDataArchive is intended to be used to off-load data (for example prune old run-time after sending 

it to the server). 

-The IDefaultSettings interface is used to load Default Settings that are compiled into the game (so NOT 

the asset). It also contains a save method that can be used to save skeleton settings (after creating and 

initializing it when it’s not present) to disk, which allows a programmer to include it in the project and 

compile it into the game as a string. 

Platform/engine dependency issues 
 

Please note that under Windows 10 the default browser, Edge, does not support debugging TypeScript. 

So either Internet Explorer or another suitable and supported browser must be used. 



ANNEX 4: CODE REVIEW CHECKS FOR CLIENT ASSETS 

Compliance with the RAGE client architecture can be (manually) checked via the following checklist.  

To be checked at project setup: 

 Check the assembly naming (‘nnAsset’ and ‘nnAsset_Portable’), so that the assemblies 

have different names. 

 Namespace in portable projects should match namespace in their counterpart projects. 

 Check the default namespace (either the same for both projects or use the default: 

‘AssetPackage’). 

 Check for the presence of a ‘PORTABLE’ symbol define in portable project’s Build tab 

located in the Project settings (this define might be needed when using reflection). 

To be checked at project layout: 

 Check for the presence of the version info xml in Resources directory (and its naming 

matches ‘nnAsset.VersionAndDependencies.xml`), i.e. the asset has version info. 

 Presence of a portable version. 

 Has test/demo project.  

 Check that there are no dependency on external libraries. 

To be checked by source code inspection/search: 

 The Asset extends the BaseAsset class. 

 Debug output uses the BaseAsset Log method (Both BaseAsset and AssetManager have 

a Log method) and not the Console or Debug classes. 

 Check for hardcoded paths (also in test projects). 

 Check for missing test input to projects. 

 Usage of a correct Singleton pattern (if needed). 

 Access to files via the Bridge. 

 Apache License Version 2.0. 

 No embedded test codes present in assets (should be in a separate test/demo project). 

 Source code documentation (xmldoc). 

 Magic values/numbers. 

To be checked by compiling portable asset project: 

 Presence of an AssemblyInfo.cs file. 

 Check for the presence of a #if !PORTABLE / #endif block around the [assembly: Guid] 

attribute in the AssemblyInfo.cs file in order to enable compilation of this class. 

 No references to System.File.IO (not portable). 

 Missing files (i.e. referred to in a project but missing in the repository at GitHub). 

To be checked by executing test/demo project: 

 Check for hardcoded path in test/demo projects. 

 Check for successful test suite completion. 



Additional suggestions: 

 Clean up unnecessary ‘using’ statements. 

 Add test input to the test project as copied content (so they can be accessed without or 

with a relative path). In Visual Studio, copying of files marked as content can be enabled 

in the properties of a file. 

 Use AssetSettings for configuration data like server address and credentials etc. 

 Minimize public methods to API only. 



ANNEX 5 Outcomes of the Asset Creation Wizard Usability Study 
  
By Kiavash Bahreini and Enkhbold Nyamsuren, Open Universiteit, Heerlen, The Netherlands 
2 June 2017 

 

1. Some main issues reported in the 34 and 42 open responses 
a. Apart from this issue that entering metadata is not fun for asset developers, they reported 

that they would use this metadata editor when they have a new asset to introduce or if 

major changes occurs. 

b. Some fields are tricky. Asset developers might not have a logo for their own asset. Game 

development environment and Target Platform should be either a choice on it's own or 

the field should be a set of checkboxes. 

c. The categories in the ACM classification version 2012 are either overly generic ("games") 

or widely inapplicable for the types of assets. Learning goals are also not especially 

useful.  

d. The most important tags may be the user-defined keywords, but those are unlikely to be 

consistent between asset creators. 

e. It is expected to lose your data if you do not fill in the 'mandatory' fields. 

f. There are 8 screens of information before being able to actually save progress. This 

qualifies as moderately cumbersome. 

g. The purpose of some fields, such as technical description, full description, and short 

description should be clearly explained in more details. Thus, the users may understand 

if they need to provide more or less information. Some tips, such as "this will be used in 

the assets gallery" and "this will be displayed on the dedicated page of the asset", etc. 

are proposed. 

h. The asset developers mentioned that they could fill in most of the fields quickly, however 

they had to skip some fields that were beyond their knowledge or not matching the asset. 

Some fields seemed duplicates like the field in Step 6: detailed description and some 

fields in Step 2: technical description. They mentioned that 8 pages take some time to 

scan and read. The others mentioned that the first section was the hardest section, but 

the cloning function could help them to start with an asset completed in percent of about 

60%. Furthermore they mentioned that the 4 description fields (short, detailed, technical, 

etc.) took most of the time from them. 

i. Mandatory fields were clearly visible.  

j. When more than one asset developers working on the same asset, they could potentially 

use very different terms to explain the asset functionalities. Therefore, they may have 

different expectation on which information is expected from them. 

k.  Asset developers did not clearly know at every input what rule they had to stick. There 

was no indication of max size for all the input fields. This raised a problem with their text 

for detailed description [optional] field at step 6, where the input text was not saved after 

submission, without any indications about this limit. The information related to the length 

and date format is missing. Most answer lengths are either one line or four lines. In the 

four lines cases, there is no "expected length" indicator beyond a phrase count; and no 

formatting support to help structure potentially long answers to make them more readable 

when displayed. 

l. The asset developers reported that, except two cases, the fill in was not fully eased by 

given answers using drop-down menus and checkboxes. Some fields did not match the 

expectations and most of the applied computing concepts are of little relevance to 



pedagogical computer game assets. They reported that the excessively long drop down 

menus made searching hard. Plus the metadata editor did not include a general games 

category. 

m. In case of a problem and instruction by an error message on how to solve the problem, 

the asset developers have mentioned the following important issues: 

i. One got 98% completeness in the about section. Not sure why it is not 100%. 

One could not see any error messages. One has mentioned that there was no 

indication of max size for all the input fields. This raised a problem with our text 

for the ‘detailed description [optional]’ field at Step 6, where the input text was not 

saved after submission, without any indications about this limit. When one asset 

developer tried to submit an asset, he encountered with an error message that 

the asset could not be saved due to either a lost connection to the server or that 

could some errors in a given answer. The asset developer had to review 

everything to find in the end that the URL of documentation had a space 

character and no error message was given. One received no error message 

when losing all unsaved data due to accidentally navigating away from page; and 

no way to retrieve unsaved data. When searching for an asset and no matches 

are found, "Cannot retrieve the list of software assets" was displayed instead of 

"no results match this query". 

n. In reply to the question whether the purpose and utility of the metadata editor was clear 

to you, the asset developers mentioned the following issues: 

i. One mentioned that it is not clear to him and the other mentioned that he does 

not think the overall purpose of the asset creation wizard will be clear to the 

developers outside of the RAGE project. What the developers should do with the 

created metadata? The other one mentioned that the main goal of metadata is to 

be searchable. Search currently only looks at full matches starting from the 

beginning of the asset title. The other did not understand whether the metadata 

editor is just an interface for the final "app store", which will be later developed, or 

it is in fact the app store. 

o. Removing an uploaded file does not seem to work. 

p. Some assets contain no setup files, as they are only source code; so the ‘setup files field’ 

can’t be mandatory. This will allow the asset developer to submit the asset. 

q. The final report about the percentage of the filled in asset has no meaning to the asset 

developers at the moment. 

2. Concluding observation based on all instruments and comments 
a. The opinion of the participants in the usability study show that they are moderately 

positive towards using the metadata editor.  

b. Participants provided 34 (mean=3.4, standard error=.56) and 42 (mean=4.2, standard 

error=.7) comments to their responses in the SUS and the FUS questionnaires, 

respectively. While overall usability scores are positive, the number of comments 

indicates that there may be some specific issues in the Asset creation wizard that should 

be further resolved. Finally, more comments in the FUS questionnaire indicate that the 

FUS questionnaire was able to capture the issues that are specific to online forms: as we 

expected. 

c. SUS results (mean=72.83, standard deviation= 16.31, standard error=4.21) indicate that 

the overall usability evaluation is positive. All the participants except one positively 

evaluated the overall usability of the Asset creation wizard. The mean scores for all 

questions except one are positive. The question with the negative mean score 



(mean=1.73, standard error=.27) is concerned with the frequency of using the Asset 

creation wizard. The negative score is expected because the Asset creation wizard 

should not be frequently used. 

d. FUS results (mean=65.74, standard deviation=15.98, standard error=4.13) indicate that 

the overall usability evaluation of the Asset creation wizard is positive with some rooms 

for improvement. Two participants negatively evaluated the overall usability of the Asset 

creation wizard. The correlation between the SUS and the FUS overall scores is 

significantly high (r(13) = .67, p = .006), which indicates that the FUS score is consistent 

with the benchmark score of the SUS. The overall FUS score is lower than the overall 

SUS score. The lower score might indicate that the FUS questionnaire is able to identify 

issues specific to online forms. To further investigate this matter, we look at the scores of 

the individual FUS questions. The mean scores for nine questions are positive. One 

question has a negative mean score (mean=1.87, standard error=.33). The responses to 

this question indicate that the Asset creation wizard did not have sufficient feedback to 

users for resolving unexpected problems. Another question with the lowest mean positive 

score (mean=2.33, standard error=.29) is close to the neutral score of 2. The responses 

to this question indicate that the participants had some difficulties understanding what 

information was expected to enter into the Asset creation wizard. 

e. UMUX results (mean=72.5, standard deviation=16.67, standard error=4.3) indicate that 

the distribution of the overall scores is positive with only one overall score being negative. 

The correlation of the UMUX scores with the SUS scores is significantly high (r(13) = .88, 

p < .001). The correlation of the UMUX scores with the FUS scores is significantly high 

as well (r(13) = .74, p = .002). The results indicate that the evaluations of the three 

usability components are positive. The Asset creation wizard is fit for its purpose for 

managing metadata. The participants also reported positive efficiency indicating that 

metadata management was fast and did not require substantial effort. Finally, the 

participants reported positive satisfaction towards using the Asset creation wizard.  

3. Critical actions to improve the quality 
a. The metadata editor does not support ENTERS KEY for new lines. 

b. The metadata editor generally works as expected, but losing all data if you navigate away 

from the page accidentally before "submitting" a half-complete asset description is highly 

off-putting. 

c. There seems to be some sort of redundancy regarding some fields that require further 

improvement. 

d. The metadata editor should support saving data after every section and not only at the 

end of the last section (section 8). 

e. Some tips, such as "this will be used in the assets gallery" and "this will be displayed on 

the dedicated page of the asset", etc. are proposed to use in the following fields: 

technical description, full description, and short description. Using these, the asset 

developer may understand if they need to provide more or less information. 

f. It is not really necessary to study a dedicated material before using the metadata editor. 

Maybe some "business manual" or something similar that could help the asset developer 

to better emphasize the ideas of the asset and to gain a more downloads. 

g. The length of the metadata editor could have been shorter. It should also allow the 

developer to save draft data. Some fields show a little redundancy. The redundancy 

might me decreased if every field will be better explained. 

h. Duplication in entering some metadata and text in some fields should be removed. 

i. All the links to the asset and to the sources should be provided in a similar step. 



j. Some tips are required to complete some fields. 

k. Importing external files, such as a ‘readme.txt’ file should be smoothly improved. 

l. The information related to the max size, length, and date format are expected to develop 

in the next version of the metadata editor. 

m. The current error message function of the metadata editor is not fully operative. The 

developers of the metadata editor should further improve it in future. 

n. The maximum size of some fields should be clearly stated. 

o. The asset developers might easily loose the entered data if any unwanted error occurs 

during the data entry to the metadata editor and in the worst-case scenario at the end of 

step 8. 

p. The overall utility of the metadata editor should be further explained to asset developers. 

q. The current search functionality of the metadata editor will only find out the asset based 

on the name of the asset developer(s), but in some cases the asset should be found out 

by its owner’s name or by other input fields. 

r. Removing an uploaded file, load/save functionality, sharing functionality, and editing the 

asset should be further improved or developed. 

s. Integration with git version control systems to download and zip a commit would be nice. 

t. In the final step, one received a message that he missed some mandatory fields. It's not 

clear in which steps these are located. An indicator on the tabs (or the submission 

percentage list) might help. 
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