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How People Learn while playing Serious Games: A Computational 

Modelling Approach 

1. Introduction 

1.1. The absorbing nature of serious games 

Driven by the successes of the leisure game industry, games increasingly find their way into 

non-leisure contexts, serving serious purposes. These so-called “serious games” span a wide 

range of application areas, including training and learning, awareness raising and 

sensitisation, as well as marketing and the advancement of cultural engagement [1,2]. This 

paper focuses particularly on games for learning. A principal argument for using games in 

education and training is the engaging nature of gaming and the motivational power that 

games display: the ability of hooking and  absorbing  players in  such  a  way  that  they  can  

hardly stop playing [3-5]. This potential is ascribed to their dynamic, responsive and 

visualised nature,  which  goes  along  with  novelty,  variation  and  choice,  effecting  strong  

user involvement and providing penetrating learning experiences [4]. In addition,  serious 

games  allow  for  safe  experimentation  in  realistic  environments,  stimulate  problem 

ownership  by  role  adoption,  and  allow  for  learning-by-doing  approaches,  which support  

the  acquisition  of  tacit  and  contextualised  knowledge [6].   

1.2. The inherent complexity of games 

Games are inherently complex constructs comprising knotty structures of highly interrelated 

components that may vary over time. Björk and Holopainen [7] qualify game design and 

development as a semi-formalised, fuzzy and incoherent domain, which eclectically combines 

various approaches that cannot be fully covered by prescriptive or even descriptive theories. 

For serious games, which pair game design with instructional design, the complexity may 

even be larger because of the multiplication of two ill-structured domains, requiring the 
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cautious balancing of “playful” game mechanics and “serious” instructional principles  [8,9]. 

To some extent games suffer from an impenetrable interior. Salen and Zimmerman [10] note 

that the link between the designed structural properties of a game and the effected user 

experience remains often unclear, because of the vast space of game states and the large 

number of trajectories a player could travel through the game’s state space. Consequently, 

different players may have different game experiences as they engage in different trajectories 

and game events and thereby experience different cumulative narratives: different runs of a 

game may be very different. It would not be sufficient to test a game for the “average 

pathway”, because no single player would ever traverse the “average pathway”. In serious 

games it may be hard to tell how individual decisions will impact on the game experience and 

how this affects the game’s effectiveness for learning [11].  

1.3.  A computational modelling approach 

This paper presents a computational model for simulating how people learn while playing 

serious games. Its main purpose is to allow and support researching what happens during 

playing a game under a variety of conditions. Such model should reflect the structural 

dynamics of the game and should help to enlighten its capacity as a learning aid. The research 

is decomposed into the following research questions: 

 How to formulate an expressive computational model for the process of playing a 

serious game that avoids inherent complexity? 

 To what extent is such computational model capable of producing stable results? 

 To what extent does the model produces acceptable outcomes, which are consistent 

with empiricism on learning from games? 

The paper is setup as follows. First the main methodological considerations for this study will 

be summarised. Second, the model’s starting points and its grounding in theory will be made 

explicit. Third, the computational model will be defined and substantiated. Fourth, a variety 
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of simulation experiments will be reported, which include over 100,000 simulation runs in 

total. The paper is concluded by discussing the results and their potential implications. 

2. Methodological considerations  

2.1. Methods fight 

For many years the social sciences have shown a strife between methodological camps with 

on the one hand the empirical hypothesis testing framework, which tries to validate 

hypotheses by subjecting observed measures to statistical analysis, and on the other hand 

deductive modelling (e.g. game theoretical methods), which aims to specify benefits and costs 

schemes for explaining individuals’ behaviours [12]. The empirical methods of 

experimentation have been persistently criticised for their unintelligent data crunching, 

limited explanatory power, their biased focus on positive effects and their arbitrary 

significance measures [13,14]. Game theorists in turn, who describe gaming in terms of 

strategic decision making by rational human players, have been blamed for their believe that 

formal theory doesn’t require empirical referents [12]. Less well known as an additional 

research method in social sciences is computational systems modelling, which incorporates 

aspects of both empirical research and game-theoretical research approaches by capturing the 

individuals’ behaviours in behavioural rules along with a set of contextual parameters and 

constraints, and produce a dynamic model that recreates observed phenomena [12]. Although 

computational system modelling has been criticised for allowing large parameter spaces, 

which easily lead to model overfitting, in the last decades computational methods have been 

successfully applied in diverse complex domains, ranging from atomic scale protein design 

and nuclear fusion to superconductivity and a billion-particles simulation of the Milky Way. 

Various authors advocate the widespread application of computational models for the 

integration of theoretical, technical and empirical research [15].  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

2.2. Serious gaming as an emerging field of research 

In the domain of serious games the contributions from computer science have gained 

importance, particularly because of the impact of advanced digital game technologies [16]. 

Still, most research adheres to empirical research particularly grounded in the learning 

sciences. These aim to professionalise teaching on the basis of sound, empirically supported 

instructional methods rather than viewing teaching as an art, driven by intuition and feeling 

[17,18]. The link with gaming is readily in experiential learning, learning-by-doing, 

motivation theory, multimedia learning, social and collaborative learning, connectionism or 

networked learning. But those theories are largely qualitative and descriptive by nature and 

seem to lack the level of formalisation and precision required for making valid predictions. 

Because of this, research in the learning sciences as well as the instruments used have been 

persistently criticised [15,19-22]. Despite the valuable insights and confirmations that 

learning sciences research has produced over the last decades, it has not been capable of 

making predictions about instructional situations.  

2.3. Strengthening multidisciplinary research 

Given the multidisciplinary nature of the field of serious gaming, its research would require a 

close connection between its constituting domains such as learning sciences, game theory and 

computer sciences. However, the cross-fertilisation between these sub-domains has been 

weak, not just because of different cultures and paradigms in these disciplines, but also 

because of the disparate backgrounds and expertise that is required. Apparently this is the 

inevitable fate of any emerging multidisciplinary field. Current research on serious games is 

dominated by case studies, that is, the research focuses on case-by-case descriptions of a 

highly qualitative nature about particular games under study and its appreciations by users. 

Although an increasing body of evidence is becoming available that reveals the effectiveness 

of serious games for learning, various authors note that many studies fail to evaluate the 
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educational effectiveness of serious games in a rigorous manner and they call for quantitative 

research and comprehensive frameworks for increased scientific robustness [23,24]. Still most 

studies focus on post-practice results and they neglect what actually happens during playing 

games. Given the inherent complexity of serious games, representing a game by a 

computational model would allow for testing and evaluating a wide variety of behaviours and 

thus would allow for a more representative view on game experiences. Once computational 

models have been generalised and verified for explaining behavioural phenomena, e.g. 

playing and learning in a serious game, the model could – in principle - be run and rerun to 

reveal behavioural diversity across different personal traits and external conditions. 

3. Model starting points and ingredients 

Before elaborating the serious gaming model, first the main issues and starting points will be 

reported. 

3.1. Avoiding the combinatorial explosion of game states and player states 

The deterministic idea that knowing all potential game states and all player states and their 

progression over time would eventually allow us to devise the player’s optimal learning 

strategy, that is, the optimal trajectory through the game state space, is illusive. Game 

representation is likely to suffer from a combinatorial explosion of game states. Even a simple 

game such as tic-tac-toe (noughts and crosses) has a state space up to 3
9
=19,683 different 

states (neglecting any symmetries) allowing for 9!=362,880 different trajectories. Taking into 

account symmetries and including games that end within 9 moves only, the number of 

trajectories is still 26,830 [25], an inconceivable number way too high to even be depicted in a 

game tree. 

Likewise, the full user profile of a player includes a wide variety of factors that could be of 

relevance for learning, e.g. intelligence [26,27], motivation [28-31], knowledge and skills [32-
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35], personality traits [36], emotional states [37], playing styles [38], learning styles [39-41], 

learning dispositions [42]. However, most of these factors cannot be tracked during the 

process of play (or even outside), because of either their qualitative nature or the lack of 

reliable measurement methods. Moreover, there is no coherent theory available that would 

connect these variables into an overall causal framework for making predictions.  

For being successful at devising a practicable computational model of serious gaming 

simplification is essential. The model should avoid the detailed game states and micro-level 

decisions in the game, while instead it should focus on meso-level aggregates that constitute 

meaningful activities, directly originating from the game scenario, e.g. write a note, interview 

a person, track a hidden object, buy supplies, navigate. Rather than representing the game by 

a trajectory through its game’s full parameter state space the game will be described by the 

successive moves across such meso-level game activities. Playing the game can thus be 

understood as a trajectory along a limited number of sizable game activities, which are the 

meaningful pursuits within the context of the game and fit the player’s strategies and 

progression toward the game’s objectives. Also it is in agreement with the observation that 

from the player’s perspective most games are quite surveyable, since they perceive the game 

as a series of successive tasks they accomplish. Tic-tac-toe with its nine player steps would be 

a point in case. 

3.2. Grounding on principal concepts of learning and instructional design 

For being effective as a learning tool serious games have to offer appropriate conditions and 

activities that contribute to achieving pursued learning objectives. The model will incorporate 

a number of essential factors identified in learning psychology and instructional design 

research. First, it is acknowledged that activities in the serious game environment may differ 

in complexity and cognitive demand. Also some activities may be more attractive and 

pleasant than others. The effectiveness of learning when passing through a game activity is 
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readily influenced by these factors. Also player characteristics may change the effectiveness 

of learning, for instance the players´ motivations or deficiencies in prior knowledge required 

for a new task. According to Gee [5] tying such factors together is the secret of serious 

gaming, which is not in the high quality graphics, but in the underlying architecture, which 

balances the challenges offered to the player with the players’ abilities seeking at every point 

to be hard enough to be just doable. In psychological terms this mechanism is easily linked 

with Csikszentmihalyi’s theory of cognitive flow [43] and Vygotsky’s zone of proximal 

development [44]. Cognitive flow refers to a mental state characterised by extreme 

involvement, concentration, engrossment, restricted awareness, altered sense of time, 

insensitiveness to hunger and insensitiveness to fatigue [43]. Such state of intensive mental 

activity is highly favourable for sustained learning. Achieving cognitive flow requires a 

cautious adjustment of the challenges offered to the player´s abilities. If the challenges are too 

hard the player is likely to become frustrated and to lapse into apathy. In contrast, if the 

challenges are too easy, the player is like to get bored and lose interest. Under the right 

balance players may be pulled into cognitive flow and benefit from the intensified 

concentration and involvement. In addition, Vygotsky’s theory of social development 

suggests that learners should be challenged slightly beyond the boundaries of their abilities, 

while avoiding both frustration and boredom. This stretching of the boundaries is preserving 

the curiosity and engagement that are needed for learning new things that go beyond existing 

knowledge and routines. A well-designed serious game would incorporate an appropriate 

mechanism for balancing challenges and player’s abilities. The proposed computational 

model will include the cognitive flow mechanism. 

3.3. System components 

Any model that covers the process of playing a serious game should rely on representations of 

the following sub-systems: the knowledge model, the game model, the player model, which 
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all come together in the frame of operation, that is, the overall process of playing the game 

(Figure 1).   

<<< FIGURE 1 ABOUT HERE>>> 

Figure 1. Serious gaming model components. 

 

The knowledge model defines the learning objectives to be attained. The game model 

characterises the game by reflecting the game mechanics, game challenges and game content. 

The player model represents the characteristics and mental states of the player during the 

process of play. The frame of operation refers to the productive interactions between the 

player and the game. For simplifying the overall model, each of these subsystems should be 

described at a sufficiently high level, while preserving the most relevant factors. Frugality 

with respect to the wide range of variables that are available for describing the processes and 

conditions of serious gaming is also dictated to avoid overfitting of the model. Once a simple 

model would have proven its usefulness, it could be further detailed.  

3.4. The knowledge model 

This subsystem reflects the stable structure of the knowledge to be learned in the game. For 

practical reasons this paper does not distinguish between knowledge, skills and competences, 

but instead uses the term knowledge as a transcending, inclusive concept indicating the things 

to be learned. As both in education and training the knowledge model serves as the 

benchmark for assessment and certification, knowledge is often expressed as learning 

objectives [32,33,45,46]. Generally, the knowledge model can be represented as a hierarchical 

framework of interrelated knowledge elements, while child nodes in the hierarchy have a 

precedence relationship with their parent nodes. This means that for being able to learn new 

knowledge from a parent node the (partial) mastery of the child nodes’ knowledge is 

presupposed. The knowledge model is static by its nature of expressing the benchmark of 
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required learning outcomes. In addition several instances of this hierarchical structure can be 

used to represent 1) the baseline prior knowledge requirements for being able to play the 

game, 2) the player´s prior knowledge state, 3) the player’s progressing knowledge state 

during the process of play, and 4) the observable behaviours and performances that provide 

evidence for the mastery of underlying knowledge, the evidence model [45].  

3.5. The game model 

Rather than describing games by their numerous potential game states, which would account 

for every detailed player interaction (e.g. mouse clicks), a game is considered as an 

environment that offers the players a coherent set of activities, e.g. challenges, tasks, 

assignments, missions, scenes or levels that need to be passed through. Thereby a game 

activity is conceived as a higher level aggregate of micro-actions, that constitute a well-

defined chunk of the game scenario: it should offer a clear challenge, it has a well-delineated 

scope, and its completion goes with a clear result or achievement defined by a completion 

criterion. Hence, a game activity transcends the level of elementary user actions (which are 

typically button clicks or keyboard strokes). It does describe only a part of the game rather 

than the whole. Thereby a game activity is very similar to one or more learning tasks or 

learning activities in a lesson. Thus, each game activity offers a learning experience that 

contributes to some of the expected learning outcomes, which in principle refer to the 

elements of the knowledge model. Given the set of game activities, a serious game is 

represented as a network of activity nodes. Playing a serious game can be interpreted as doing 

a trajectory through the network of activities. Thereby it is conceptually related to the 

Travelling Salesperson Problem, which is stated as finding the shortest route along a number 

nodes (locations) in a network [47]. The problem is known as an NP-hard problem in 

combinatorial optimisation, but for a limited number of nodes practical solutions can be found 

by brute force. The conditional dependences that are reflected in the hierarchic knowledge 
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model will generally translate into sequential dependences between the nodes in the game 

activities network, which means that not all trajectories through the activity network will be 

practical, given the required prior knowledge for each node. In addition, the sequence order of 

activities may be restricted by the game narrative, which imposes a logical or causal order of 

game events. Because of these constraints the number of acceptable trajectories through the 

activity network will be appreciably reduced.  

 

A game activity should not only be described by the knowledge elements that it is supposed to 

cover, but it also needs an indicator for its complexity as to allow for determining whether or 

not the activity matches the conditions for the player´s cognitive flow: the next step in the 

trajectory should not be too complex as to avoid frustration, it should not be too simple as to 

avoid boredom. In addition, not all activities will offer the same depth of the learning 

experience, that is, the engagement induced by the activities may greatly differ. Deep and 

engaging experiences will be likely to better learning outcomes. This engagement dimension 

should basically cover the inherent potential of the game activity to engage and immerse the 

player in the game: it reflects the attractiveness of the game (including game mechanics, 

narrative and style) offered. In sum, the main attributes of a serious game activity are the 

knowledge elements that it covers, the complexity of the activity and the attractiveness of the 

activity. 

3.6. The player model 

As the goal of serious gaming is to provide an effective means for training and learning, the 

player’s knowledge state obviously is a key variable. While moving from one game activity to 

the other the players gradually extend their knowledge with new knowledge. A simplified 

player model should limit itself to only include primary factors, while possibly neglecting the 

underlying causal variables. Basically the learning achievements resulting from a learning 
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activity would depend on the players’ prior knowledge on the one hand, and the players’ 

engagement and motivation to learn on the other hand. Meeting prior knowledge requirements 

is an important factor for the successful completion of an activity [48]. Players suffering 

substantial knowledge deficiencies will have a hard time to learn new things that are out of 

reach. Likewise the players’ motivation is an essential factor for productive learning, as a high 

motivation will go with increased engagement, attention, concentration and intensity [28-31]. 

Whilst innate factors such as intelligence and personality tend to be stable, motivation may 

change during the game as a result of the interactions performed. While the prior knowledge 

refers to the learners´ knowledge states, motivation refers to their personal attitudes and 

ambitions. These are exactly the key dimensions that reflect the potential of serious games: 

learning new knowledge, while benefitting from the motivational power of games.  

3.7. The frame of operation 

Given the knowledge model, the game model and the player model, the frame of operation 

reflects the process of play, which describes the player’s interactions, navigation and history 

of activities and achievements. The process of play is the effect of the players’ goal-oriented 

behaviours under the constraints imposed by the game environment and the players’ personal 

capabilities. The dynamics of the proposed model will be based on a quantified version the 

cognitive flow theory, which cautiously takes into account the balancing between the player’s 

capabilities and the challenges offered. In sum, the model starts from cognitive flow theory 

and takes into account the complexity and attractiveness of game activities, the knowledge 

objectives that are addressed by each activity, the player´s progressive knowledge state for 

each node of the knowledge tree, the required prior knowledge for each game activity, the 

level of challenge offered, the player’s motivation, the player’s overall intelligence and the 

resulting effectiveness of the learning.  
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4. Model elaboration 

4.1. Defining the knowledge model 

This model is represented as a so-called k-ary tree of learning objectives (e.g. 

knowledge, skills, competences). Precedence relationships between nodes at different levels 

in the tree are represented as parent-child edges. A parent node may refer to multiple child 

nodes. Note that in educational sciences and cognitive psychology such knowledge or skills 

models are often referred to as hierarchies rather than trees [32,33]. This paper, however, will 

comply with graph terminology and refer to knowledge trees rather than hierarchies. For 

reasons of simplification the knowledge model is described as a perfect k-ary tree, where k is 

called the degree, which is the number of child nodes of each parent node. Assuming a perfect 

k-ary tree, however, does not imply a fundamental constraint, as it would still allow for 

transforming it into any irregular tree model by removing selected nodes and edges from the 

tree.   

For describing the k-ary knowledge tree, the following notation is used: 

Ng  The number of levels in the knowledge tree  

Nc  The number of children each parent node has (the tree’s degree k) 

Nn   The number of nodes in the knowledge tree 

It can be shown that the total number of nodes is given by 

       
       

   
 (1) 

4.2. Defining the game model 

As the serious game is supposed to support the mastery of the objectives described by 

the knowledge model, all knowledge elements (nodes in the hierarchy) are connected with 

game activities. Each game activity may address multiple nodes of the knowledge tree. At the 

same time multiple activities may address the same knowledge node. Although, in principle, 
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the mapping relationships between game activities and knowledge nodes will be diverse, we 

assume for reasons of simplicity that each game activity covers a fixed number of knowledge 

nodes, and that the number of occurrences of the knowledge nodes is likewise a fixed number. 

This can be expressed as follows:  

Na The number of activities that make up the game  

Ni The incidence of each knowledge node in the game 

Nk The number of knowledge nodes that are supported by an activity 

This simplification does not pose a basic restriction of the proposed computational model as it 

only affects the model’s input data.  

As the mapping between knowledge nodes and the game activities in this simple case is 

unambiguous, it can be shown that the number of game activities is given by 

    
     

  
 (2) 

Each game activity j will have the following attributes: 

K(i,j) This indicates the mapping of knowledge nodes i to game activity j, while each game 

activity j addresses Nm knowledge elements 

C(j) The complexity assigned to game activity j (indicated as a fraction) 

A(j) The attractiveness of game activity j (indicated as a fraction) 

4.3. Defining the player model 

4.3.1. The mastery level 

First, during the game the player’s progress should be tracked for each node of the 

knowledge tree. The player’s knowledge model would be an instance of the general 

knowledge tree, be it annotated with the player’s level of mastery for each knowledge node. 

Passing through a game activity would contribute to the mastery of the associated knowledge 
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nodes, be it that in general the mastery will not be perfect. Inevitably each player is cursed 

with limitations of cognitive capacity or intelligence, and the conditions for learning from the 

game may vary in the course of the game. The mastery of a knowledge node will be indicated 

as a fraction or percentage, ranging from no mastery to full mastery. The players are also 

characterised by their motivation, which may change during the game. The following 

variables are required: 

I(i) The intelligence of player I (indicated as a fixed fraction) 

L(i,j) The learning effectiveness of player i during activity j (indicated as a fraction)  

P(i,j) The mastery level of player i in knowledge node j (indicated as fraction) 

Pc(i,jc) Player i’s  mastery level of knowledge in the child node jc of parent node j 

M(i,j) The motivation of player i during activity j. 

4.3.2. Knowledge Deficits 

When the player moves to a new game activity j, the player is supposed to meet the 

activity’s entry requirements (expected prior knowledge). Given the knowledge nodes 

covered by the activity, the prior knowledge requirement will comprise the sufficient mastery 

of all associated child nodes. Any deficits in the prior knowledge may affect the player’s 

progress as the activity may be too demanding: the challenge will be too high, whereby 

motivation and performance would go down. Therefore, the player´s knowledge mastery 

should always be compared with the prior knowledge requirements at hand, thus identifying 

any knowledge deficits upon entering an activity: 

D(i,j)  The prior knowledge deficit of player i for addressing knowledge node j 

When entering a new knowledge node the prior knowledge requirement would be the full 

mastery of the associated child nodes. The knowledge deficit D(i,j) is thus expressed as a ratio 

through a summation over child nodes (for reasons of simplicity the influence of grandchild 

nodes is neglected). 
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      (3) 

4.4. Defining model dynamics 

The overall relational model is depicted in figure 2. 

[FIGURE 2 ABOUT HERE] 

Figure 2. Causal model of learning upon engaging in game activity. 

 

The player’s state of knowledge mastery (1) as well as the complexity of the game activity (2) 

determine the severity of the challenge (3). According to flow theory, the severity of the 

challenge will influence the player’s motivation (4), either by boredom of frustration. Also the 

attractiveness of the game activity (5) would influence motivation. Finally, both the player’s 

motivation level and the player’s intelligence (6) will determine the effectiveness of learning 

(7) and eventually the knowledge gained (8). These relationships translate into a set of 

equations. 

First, the challenge associated with the activity is dependent on the knowledge state of 

the player. On the one hand a knowledge deficit would imply a positive challenge, on the 

other hand the player´s knowledge level may exceed the requirements, for instance when a 

similar activity has been done before, thus posing a negative challenge. The challenge CH(i,j) 

regarding knowledge node i in activity j can be expressed and mapped onto the interval [-1,1] 

as follows: 

                
    

          
    

           (4) 

The severity of the challenge is assumed to be proportional with the complexity C(j) 

of the activity. A deficit of prior knowledge D(i) will contribute to a positive value of the 

challenge, but it can be counteracted by the (partial) mastery P(i) of the knowledge nodes 
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addressed, which reduces the challenge by a negative contribution (the second term in 

equation 4). A perfect match of the task with the player’s knowledge, namely no knowledge 

deficit and no mastery of the new knowledge node, would yield a challenge value equal to 

zero: the player is just ready to address the respective knowledge node.  

As there are multiple knowledge nodes (Nk) addressed by an activity, the overall challenge is 

expressed as the arithmetic average to keep it on the interval [-1,1].   

        
 

  
        

  
    (5) 

Flow theory assumes optimal motivation in case of a perfect match. Imperfect matches 

will reduce motivation. This can be modelled with a normal distribution centred around the 

perfect match CH(i)=0. The attractiveness A(j) of activity j is added as a proportionality 

factor. Hence, the player’s motivation in activity j is expressed as: 

            
 
    

 

   
  

  (6) 

Here σF is the flow factor, which is a scaling parameter indicating how sensitive the 

player’s motivation is to a challenge mismatch. In case of a perfectly matching challenge 

(CH=0), the player´s motivation is maximal. For a non-zero challenge (CH≠0, that is, a 

challenge either too easy or too hard) the flow factor σF determines how much the player’s 

motivation is affected (in section 5.7, simulation study 6, the influence the flow factor will be 

further investigated). Herewith the motivation variable incorporates both the player’s 

affective and cognitive states, which eventually determine the effectiveness of learning L. In 

fact, the learning effectiveness of player i in activity j is assumed to be proportional to both 

the player’s motivation M and the player’s intelligence I: 

                     (7) 
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One adjustment should be allowed for including Vygotsky’s principle of favouring 

challenges that are slightly beyond one’s capabilities. If FV is defined as the Vygotsky factor, 

denoting the required positive challenge value for optimised learning gains [44], equation 6 

should then be rewritten as: 

            
 
          

   
  

  (8) 

 

4.5. Updating the player’s knowledge states 

After having successfully completed a game activity addressing one or more 

knowledge nodes the players’ knowledge mastery states P(i,j) should be updated. There are 

two elements. First, for each knowledge node j addressed by player i the knowledge mastery 

level will increase as new knowledge will be gained with an effectiveness of L(i,j). The 

process of updating is described by the following recurrent expression: 

                                  (9) 

Secondly, the process of mastering a parent node´s knowledge is assumed to 

positively influence the knowledge mastery of child nodes, because the parent knowledge 

node is based on these and is supposed to integrate the child nodes´ knowledge. For instance, 

doing a multiplication exercise would also increase one’s fluency on numbers. Therefore, the 

process of mastering a parent node inherently contributes to the further mastery of all 

subordinate nodes in the full parent tree. This means that equation 9 also applies for updating 

the respective child node states. As a consequence, mastering a parent node in the game, be it 

partially, will indirectly reduce knowledge deficits of all conditional nodes in the knowledge 

hierarchy.  
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5. Simulation experiments 

The serious gaming model described above was technically implemented using Scilab 

5.5.2 (www.scilab.org). Table 1 summarises the independent and dependent variables of the 

computational model.  

<<<INSERT TABLE 1 ABOUT HERE>>> 

5.1. Baseline game and baseline player 

For preliminary testing of the simulation a baseline game was generated based on a 

knowledge tree of 4 levels, presenting 3 child nodes for each parent. In accordance with 

equation 1, the resulting knowledge tree has 40 nodes. While allowing three occurrences of 

each knowledge node and preserving 3 knowledge nodes for each activity the 40 knowledge 

nodes support 40 game activities (equation 2). The knowledge nodes were randomly 

distributed over the game activities. In addition, each game activity was assigned a constant, 

moderate attractiveness of 0.5, as well as a constant, moderate complexity of 0.5. The activity 

with lowest overall rank in the knowledge tree was assigned the start activity and, conversely, 

the activity with highest overall rank in the knowledge tree was assigned the end activity. The 

process of playing the game would in principle allow any trajectory from the start activity 

across the remaining activities toward the end activity.  

Likewise, a baseline game player was generated by assigning a moderate intelligence of 0.5 

and lacking any prior knowledge with respect to the knowledge tree. The flow factor σF 

(equation 6) of this baseline player was set default to a value as large as 100 for initially 

disabling any flow effects. The Vygotsky factor was set to a default value of FV=0. As a 

baseline strategy the player progresses through the game by selecting as the next activity the 

one that yields the highest learning effectiveness.  

In the next sections 7 separate simulation studies will be presented, each focussing on a 

different variable. 
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5.2. Study 1, Fixed player: Stability across random game structure 

The baseline game assumes a (random) distribution of knowledge nodes across the various 

game activities. Figure 3 shows the knowledge gain of the baseline player for 10 different 

(random) instances of the baseline game.  

[FIGURE 3 ABOUT HERE] 

Figure 3. Learning curves of the baseline player for 10 different (random) instances of the 

baseline game.  

 

Here the player´s knowledge gain (vertical scale) is expressed as the average mastery level of 

all nodes in the knowledge tree. It should be noted that, because each game instance in figure 

3 has a different (random) distribution of knowledge nodes over game activities, these are all 

different games and should not necessarily produce the same learning curves or the same 

order of game activities. Obviously, the overall pattern of gradual knowledge gain is 

preserved. For each game activity, the spread of the knowledge values (vertical scale) can be 

expressed as a standard deviation. By averaging these standard deviations over all game 

activities (horizontal scale) a weighted value of the curves’ vertical spread can be obtained, 

indicating the variability of learning curves. Figure 4 shows that the learning curve variability 

saturates to a level of 0.042  (standard deviation SD=0.0002), measured in the interval 

[500,1000]. Across these iterations the overall knowledge gained in the games was found to 

be stable at 0.938 (SD =9*10
-8

). 

[FIGURE 4 ABOUT HERE] 

Figure 4. Learning curve variability as a function of the number of iterations. 

 

Similar stable patterns were found for games with other numbers of knowledge nodes and 

activities. 
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5.3. Study 2, Fixed player: Attractiveness of game activities 

In this study the attractiveness of game activities was varied. The baseline game was selected, 

while the uniform attractiveness of game activities was incrementally changed to cover the 

range [0,1]. The player was represented by the baseline player model. Figure 5 reveals that 

learning achievements increase with attractiveness of the activities. The simulation was then 

repeated with random knowledge distributions over the games´ activities. The result was 

stable, showing standard deviations of the learning outcomes of typically 10
-8

, too small to be 

even indicated in the figure. 

[FIGURE 5 ABOUT HERE] 

Figure 5. The knowledge gained versus the attractiveness of game activities. 

 

Although attractiveness is included in the computational model as a simple multiplier (see 

equation 7), the shape of the curve in figure 5 is essentially non-linear. This can be attributed 

to the power law assumption of knowledge mastery that is enforced by equation 9: Re-

iteration of equation 9 produces a (negative) power law that describes the asymptotic nature 

of the aim at perfect mastery. 

 

Next, the attractiveness values were randomly drawn from a normal distribution (mean=0.5; 

SD=0.5), whereafter they were randomly assigned to the various game activities. The 

calculations show stable results from 150 iteration onward, in a pattern very similar to the one 

in figure 3. The learning curve variability was found to saturate to a level of 0.070 

(SD=0.0003), measured in the interval [500,1000].  This saturation value is substantially 

higher that the value obtained with fixed attractiveness (figure 3). This can be attributed to the 

larger degree of freedom in the current case. The knowledge level attained after playing the 

game was found to be 0.936  (SD=0.025), which is very similar to the result found in study 1. 
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Hence, allowing for diversity of the knowledge nodes’ attractiveness adds to the variability of 

learning during the game, but does not necessarily affect the overall knowledge gain. 

5.4. Study 3, Fixed player: Influence of complexity of game activities  

In this study the complexity of game activities was varied. The baseline game was selected, 

while the complexity of game activities was incrementally changed to cover the full interval 

[0,1]. A critical factor is the flow factor σF. Figure 6 shows the averaged knowledge gain 

results of 20 games for each of 100 complexity values (horizontal axis), for 6 different values 

of σF.  

[FIGURE 6 ABOUT HERE] 

Figure 6. The knowledge gained versus the complexity of game activities for 6 values of the 

flow factor σF. 

 

The repetition of 20 games involved the random redistributing knowledge nodes over the 

games´ activities. In accordance with empiricism, the figure reveals a downward tendency of 

the learning as complexity increases. Differences between the 6 curves are manifest.  As can 

be understood from equation 6 a large value of σF neutralises the effects of challenge and 

thereby the direct influence of complexity: the curves with σF ≥0.5 are quite fluent and the 

influence of complexity is weak. At smaller values of σF, however, the curves become more 

jagged. Here the player is more sensitive to mismatches between the player’s knowledge level 

and the challenges offered. In accordance with flow theory the activity’s complexity (see 

equation 4) comes into play by reducing motivation and the effectiveness of learning, which 

leads to a breakdown of the learning. The jagged patterns are persistent across larger numbers 

of iterations. The variability of the curves increases with smaller values of σF: standard 

deviations in figure 6 (vertical scale) increase from typically 1% at σF=0.5 up to 20% for 

σF=0.01. Moreover, the diversity of the curves increases when complexity is not assigned as a 
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fixed value for all knowledge nodes (as is the case in figure 6), but instead is distributed 

randomly across the nodes.  

5.5. Study 4, Player intelligence 

In this study the baseline game was used, while the intelligence of players was varied. Figure  

7 shows how the overall knowledge gain depends on player intelligence. The horizontal axis  

(intelligence) is composed of 100 steps, each step being re-iterated with 20 baseline games 

with different distributions of knowledge nodes. The variability of the learning curves across 

games with different knowledge distributions is negligible, typically 10
-7

.  

[FIGURE 7 ABOUT HERE] 

Figure 7. The knowledge gained versus player intelligence. 

 

The curve in figure 7 (intelligence) is very similar to the one figure 5 (attractiveness). Both 

player intelligence and game attractiveness are included in the computational model in a 

similar way as simple multipliers (equations 6 and 7, respectively). In both cases the overall 

mastery is modulated by the power law assumption of knowledge mastery that is enforced by 

equation 9.  

5.6. Study 5, Prior knowledge 

In this study the baseline game was used, while the prior knowledge of the baseline player 

was varied. The prior knowledge gives the player a head start. In the calculations the prior 

knowledge was evenly distributed across the game’s knowledge nodes. Figure 8 shows how 

the overall knowledge gain depends on the player’s prior knowledge for each of the 100 

horizontal coordinates, based on 20 iterations of games with different distributions of 

knowledge nodes.  

[FIGURE 8 ABOUT HERE] 
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Figure 8. Player’s knowledge as a function of prior knowledge, for different flow factors σF. 

 

The flow factor σF was used as a mediating parameter, since prior knowledge has a similar 

role in determining the magnitude of the challenge as complexity has (see equation 4). For 

interpreting the curves of figure 8 one should take into account that there is little left for 

learning when the player’s mastery is high from the start. Therefore one should consider the 

net knowledge gain, which is measured by the vertical distance to the dashed diagonal, as the 

latter reflect the knowledge level already mastered prior to playing the game. Although in 

particular the three upper curves suggest a rising tendency of the knowledge gained at 

increased prior knowledge, the nett effect is the opposite: the actual nett knowledge acquired 

decreases with prior knowledge. Drastic reduction of the learning occurs at smaller σF. When 

σF=0.01, which represents a player that is extremely sensitive to mismatches of challenges 

and knowledge level, the curve becomes highly irregular, showing some prior knowledge 

ranges of moderate learning alternated with ranges where the learning completely breaks 

down. The latter suggest catastrophic deadlocks in the game trajectories. 

5.7. Study 6, Effects of flow 

In this study the baseline game was played by the baseline player, be it that the flow factor 

changed to cover the whole interval [0,1]. Figure 9 shows the result for three complexity 

values (evenly distributed across game activities).  

[FIGURE 9 ABOUT HERE] 

Figure 9. The knowledge gained as a function of flow factor for three values of complexity.  

 

For all complexity values the curves show that there is a critical point where the learning 

starts to break down. Critical points are in all cases well below σF=0.1 and they seem to move 

toward smaller σF at smaller complexity. Notwithstanding this breakdown, complexity weakly 
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modulates the learning outcomes across the whole range of flow factors σF. Similar curves 

were found for the dependences of prior knowledge, be it that the prior knowledge produces a 

knowledge off-set on the vertical scale. This similarity can be traced back to the role of both 

complexity and prior knowledge in determining the activities’ challenges (equation 4).  

 

5.8. Study 7, Playing strategies 

In the experiments so far the players’ strategy has been to progress through the game by 

selecting the activity with the highest learning effectiveness. Different decision strategies to 

traverse the game activities, however, might lead to different learning curves. Various options 

could be considered. For instance, the player might opt for selecting the activity that would 

produce the highest motivation as the next one. But as the player’s intelligence is fixed, 

equation 8 shows that opting for the highest motivation would produce the same results as 

opting for highest learning effectiveness. Yet some other strategies so not coincide. The 

following strategies are compared: 

A. Highest learning effectiveness 

So far all studies have used this as the baseline strategy. 

B. Balanced challenge  

This strategy opts for a challenge closest to zero (see equations 4 and 5). 

C. Minimal knowledge deficit 

With this strategy the selection of the next game activity is based on minimal 

knowledge deficit. 

D. Vygotsky’s challenge 

This strategy would select a positive challenge, which is slightly beyond one’s 

capabilities, as indicated by the Vygotsky factor FV. 

E. Random choice 
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Here the player just randomly picks the next activity for the set of options. 

F. Random strategy 

Rather than adopting a fixed strategy the player randomly selects one of the top 4 

strategies for each decision. 

 

Importantly, the model only requires a strategy to be executed, but it remains indifferent about 

who or what is the strategy agent: the player, a teacher, the game or any other agent. For 

allowing these strategies to produce different outcomes, the baseline player was adapted to 

have a flow factor of σF =0.05 rather than σF =100. Also the heterogeneity of the baseline 

game was removed by adding random values of complexity and attractiveness to the game 

activities. These values were drawn from a normal distribution (mean=0.5 and SD=0.1). For 

the Vygotsky strategy the Vygotsky factor was changed from from FV=0 to FV=0.1. Figure 10 

shows the learning curves for the 6 strategies.  

[FIGURE 10 ABOUT HERE] 

Figure 10. learning curves for the 6 strategies A, B, C, D, E, F, respectively. 

 

The dashed-dotted curves show the average result over 1000 iterations for the random choice 

strategy (E) and the random strategy (F). Standard deviations (vertical scale) for both sampled 

curves remained well below 0.1. First of all, this case reveals substantial differences between 

different strategies. Not just the learning curves are different, but also their endpoints, which 

reflect the knowledge state after game completion. Second, strategies A and D show a 

prosperous start, but the learning seems to saturate. In contrast, strategies B and C show 

smaller learning rates, but in the end produce better results. The winning strategy in this 

example game would by Vygotsky’s strategy. However, the data only reflect one particular 
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case. Random choice is the weakest strategy, although in this case still quite some knowledge 

is gained. More investigations are needed to reproduce and establish the effects. 

 

As a final step Table 2 presents the cross-tabulation of Kendall-tau distances between the 4 

single run strategies (A, B, C, D).  

 

<<<INSERT TABLE 2 ABOUT HERE>>> 

 

The Kendall-tau rank distance uses the concordances between pairs of elements for 

comparing two sequences. Equal sequences would receive a distance of 0, opposite sequences 

receive a distance of 1, while a value of 0.5 indicates complete unrelatedness. From the table 

it can be seen that most distance values are close to 0.4, which indicates that the order of 

activies is very different across the different strategies. Hence, this study shows that the 

playing strategy or thereby the learning strategy are important factors that influence the order 

of activities as well is the final learning achievements. 

6. Discussion and conclusion 

The simulation model presented in this paper was motivated by the opportunities that 

it would offer to study detailed in-game mechanisms and processes related to the productive 

mastery of new knowledge and skills. With respect to the research questions framed in the 

introduction it is concluded that it proved possible to formulate an expressive computational 

model for the process of learning from games that avoids inherent complexity by taking up a 

meso-level perspective. The model turns out to deliver stable and reproducible outcomes that 

are consistent with empiricism in serious gaming and allows for investigating detailed and 

quantitative dependences between relevant concepts and variables. It was demonstrated how 

both attractiveness of the game and the player’s intelligence support the knowledge gained 
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through a monotonously rising curve with a gradually diminishing effect. Also, the downward 

tendency of the learning outcomes as complexity increases was observed. The player’s 

sensitiveness for mismatches between the player’s capabilities and the challenges offered was 

identified as a crucial factor for productive learning, which in agreement with empiricism and 

directly related to flow theory. Finally, it was observed how different strategies may lead to 

different learning curves and eventually different outcomes.  

The model as much as the methodology are presented and intended as a starting point 

for establishing a new line of computational research on serious gaming. Its potential is in 

obtaining a deeper understanding of the interplay of learning and playing in serious games. 

Eventually, this research could lead to simulation-based methods and tools that directly 

support serious game designers at optimising their games’ effectiveness for learning. As the 

model was deliberately kept simple, it offers various opportunities for extension. First, 

although the model is based on concepts and theories of learning, it so far omits instructional 

content and didactics. Instead it postulates that the engagement in a game activity constitutes 

a learning experience that has some effectiveness at gaining new knowledge or skills. On the 

expense of increased complexity, various instructional concepts, e.g. guidance, feedback, 

testing or reflection, could be included in the model to enhance model fidelity and precision. 

Second, the model does not include cognitive models of human information processing and 

human learning, but instead just relies on the phenomenology of the process of play. Linking 

the model with existing architectures of human cognition, e.g. Soar [49], Clarion [50], ACT-R 

[51] or COGENT [52], would allow for including psychological constructs such as fatigue, 

attention, intention, concentration, meta-cognition, emotion, perception, cognitive load, 

processing capacity, response times and some more. Third, in the model presented in this 

paper the human player is only characterised by prior knowledge and intelligence, while a lot 

of additional concepts and indicators might be used to describe and qualify the player. Today, 
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advances in datamining, learning analytics and a wide variety of sensor technologies greatly 

extend the opportunities for collecting and extracting user profile data. Fourth, the key 

strategies investigated in this study have their limitations. Particularly, they are used as fixed 

strategies, whereas real players might change their strategies during the game because of 

changed conditions or changed moods. Also, by relying on the Traveling Salesperson 

Problem as a metaphor of progressing thorough a game, the players were restrained from 

revisiting activities. Still, revisiting an activity node after initial failure could be a sensible 

strategy. In all cases the strategies used reflect opportunism by favouring decisions that offer 

the largest utility on the short term: no thinking ahead is occurring. Such strategy of local 

optimisation may eventually not produce the best overall learning outcome. Fifth, as the 

model presupposes well-defined knowledge structures (e.g. skills hierarchies, competence 

maps, goal structures), its extension to ill-defined domains such as soft-skills poses a 

challenge. Still, in those cases machine learning approaches may be applied for identifying 

knowledge patterns and their mapping on to game activities and behaviours [46]. 

Finally, the findings of this study are well in agreement with intuitions and 

empiricism, but extending this research and linking the model with real games would allow 

for more strictness and empiricial validation, as well as enhanced theory development, tuned 

model extensions and deeper insights in game-based learning. Eventually, computational 

modelling could assist game design by testing structural pathways and identifying 

weaknesses, altogether leading to serious games that are more effective for learning.  
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Highlights 

 

 Cognitive flow in serious games can be effective modelled in computational models 

 Complexity of learning from games can be understood from activity-oriented computational 

models 

 Models explain how different user strategies in serious games produce different learning 

curves 

 Computational models open up a new research field of learning processes in serious games  

 

*Highlights (for review)



Changes  

All issues solved. 

 

REVIEWER 1 

1. The abstract should be punchier, really in a nutshell outlining the major achievements of the 

paper, although the first two are there, in my view the authors should replace the last sentence 

outlining the importance of the proposed approach. 

SOLVED 
The final sentence of the abstract was reformulated in order to stress the importance of the work: 
“The model allows researchers to deeply investigate quantitative dependences between relevant 
game variables, gain deeper understanding of how people learn from games, and develop 
approaches to improving serious game design.” 
 

 

REVIEWER 1 

2. All sections and subsections should be numbered. It is then easier to refer to the sections. 

Reviewer 1 

SOLVED 
All sections numbered in accordance with journal style. 

 

REVIEWER 1 

3. In Study 7 section, it should be: 

"Figure 10, learning curves for the 6 strategies A, B, C, D, E, F respectively. (Just take the brackets off). 

SOLVED 

 

REVIEWER 2 

1. The usage of the term "gameplay" throughout the paper is a bit ambiguous. Within the computer 

game community, the term gameplay is used to describe the specific way players interact with a 

game in the sense of game mechanics, i.e. the formal rules of that game and user interface. 

Throughout the paper the term is used more in the sense of "the process of playing a game". 

Additionally, the term is not consistently written as "gameplay", but sometimes as "game play". 

Therefore, please avoid using this term and check the paper for consistent usage. This already affects 

the title and the abstract of the paper. Please rename the title towards "Simulating how People Learn 

while playing Serious Games: A Computational Modelling Approach" or similar. 

SOLVED 
Replaced “game( )play” with “playing the game” 
Title adjusted accordingly 

 

REVIEWER 2 

*Detailed Response to Reviewers



2. The chapter "Model Elaboration", sub-chapter "Defining the Knowledge Model", is difficult to 

understand due to mixing-up terminology. Using graph theoretical terminology, what you are 

describing is a rooted tree, not a hierarchical network. Particularly, it is a perfect k-ary tree, where 

each node has k children, except the leaf nodes, which have zero children, and all leaf nodes are at 

the same depth. Please, avoid the term "generation" when talking about such trees, instead use 

"level" or "depth". Also, there is no "symmetrical" hierarchy. Additionally, without giving the precise 

definition of what kind of tree is used the underlying simplification (i.e. knowledge is represented by 

a perfect k-ary tree) cannot be understood. In your terms Nc = k and number of generations = depth). 

It would help to give references to understand that model. Also, there is a strong simplification of 

using perfect k-ary trees instead of any rooted trees which should be motivated. 

SOLVED 
The description was adjusted in order to consistently comply with graph terminology (rooted tree, k-
ary tree, levels). An annotation was included explaining that in educational sciences and cognitive 
psychology other terms are commonly being used (e.g. Blooms learning objectives/skills taxonomies 
are labelled as hierarchical models in cognitive, affective and sensor-motor domains). 
 
Additional text was included to explain why perfect k-ary trees are used (section 4.1): 
 
“For reasons of simplification the knowledge model is described as a perfect k-ary tree, where k is 
called the degree, which is the number of child nodes of each parent node. Assuming a perfect k-ary 
tree, however, does not imply a fundamental constraint, as it would still allow for transforming it into 
any irregular tree model by removing selected nodes and edges from the tree.  “ 

 

REVIEWER 2 

3. The following chapter "Defining the Game Model" is also a bit awkwardly explained. In my 

understanding, game activities are elements of a finite set of game activities. There are no relations 

between the game activities such as precedence. The set of nodes of the knowledge tree is mapped 

on the set of game activities in such a way that the number of nodes mapped on a single game 

activity is equal for all game activities (described by Ni), and each node supports the same number of 

game activities (described by Nk). Otherwise, equation (2) will not hold. Now by selecting Nn, Ni, and 

Nk the number of activities Na is calculated, and Ni and Nk have to be selected carefully so that Na 

becomes a natural number. Again, this is a simplification which should be motivated. 



SOLVED  
-Additional text was included in section 4.2 
“Although, in principle, the mapping relationships between game activities and knowledge nodes will 
be diverse, we assume for reasons of simplicity that each game activity covers a fixed number of 
knowledge nodes, and that the number of occurrences of the knowledge nodes is likewise a fixed 
number.” 
 
and 
 
“This simplification does not pose a basic restriction of the proposed computational model as it only 
affects the model’s input data.” 
 
-Precedence relationships are referred to in section 3.5 by the prior knowledge requirements and the 
game narrative, which may impose a restricted, logical or causal order of game events, and thereby 
would even reduce the complexity of the model.  

 

REVIEWER 2 

4. With the identified simplifications the whole model is very special and probably not comparable to 

models reflecting real Serious Games. When using this approach to model the playing of a specific 

Serious Game one wouldn't expect a perfect k-ary tree as the knowledge model and the number of 

nodes per activity and vice versa is not expected to be the number for each node and each activity. 

This must be made explicit in the discussion section 

SOLVED 
This is covered by the previous 2 actions. 

 

REVIEWER 2 

5. On page 10 it is stated: "Achieving cognitive flow requires a cautious adjustment of the challenges 

offered to the player's abilities." Therefore, cognitive flow is a mental state of the player. Within the 

model, the player's action (performance?) should be based on that mental state. Surprisingly, the 

"flow factor" in the model is the standard deviation of the distribution of the player's motivation to a 

mismatch. It is not obvious how the concept of flow (mental state of a person), which is dynamic - 

depending on the challenge of an activity and the current ability of the player - can be static input 

data. Obviously, the motivation (equation 6) has something to do with the flow, but for my 

understanding of the model objectives, flow must also be calculated/updated after the completion of 

each game activity. 

SOLVED 
The text below equation(6) was extended to clarify the role of the flow factor σF: 
“Here σF is the flow factor, which is a scaling parameter indicating how sensitive the player’s 
motivation is to a challenge mismatch. In case of a perfectly matching challenge (CH=0), the player´s 
motivation is maximal. For a non-zero challenge (CH≠0, that is, a challenge either too easy or too 
hard) the flow factor σF determines how much the player’s motivation is affected (in section 5.7, 
simulation study 6, the influence the flow factor will be further investigated).” 

 



REVIEWER 2 

6. Grammar and syntax 

SOLVED 

 cf.” removed and/or replaced with “see” 

 “viz.” replaced with “namely” or “that is” 

 All personal pronouns (“we”) removed 

 “Game theory” is correct: rational decisions under conditions of uncertainty; references are 
in place. Explanation is in section 2.1. 

 “Pave the way for”, replaced with “would allow for” 

 Typo “expertise that are required" Replaced with “expertise that is required." 

 Typo: “verified for as explaining” replaced with “verified for explaining” 

 Typo: assed the thousands separator used in numbers 

 "… should stay away from …" by "… should avoid …". 

 "of a larger grainsize" removed 

 “etcetera)” removed 

 "large grainsize" replaxced by "high level". 

 "Thus, each game activity offers …" instead of "Each game activity thus offers …". 

 “… some of the expected learning …" instead of "… some of expected learning …".  

 “from” removed from “suffering from substantial …"  

 "complete mapping" replaced with “unambiguous” 

 "Therefore" replaced with “Therefore,” 

 "positive dependence" reformulated: “Figure 5 reveals that learning achievements increase 
with attractiveness of the activities.” 

 "[0,1]" instead of "[0.1]" 

 "…, be it that still quite …" replaced with “…, although in this case still quite…”  

 Typo: Reference 24, page numbers corrected. 
 

 

 

REVIEWER 3 

1. How could the computational model add value and support a good design if one or many of the 

elements are in the model are omitted? Are there any recommendations to the designers on how 

they can use the computational model to get the best results? 

SOLVED 
The main purpose of the model is “..to allow and support researching what happens during playing a 
game under a variety of conditions” (see section 1.3) 
This was further emphasised In section 6 by the following extended text:  
 
“The model as much as the methodology are presented and intended as a starting point for 
establishing a new line of computational research on serious gaming. Its potential is in obtaining a 
deeper understanding of the interplay of learning and playing in serious games. Eventually, this 
research could lead to simulation-based methods and tools that directly support serious game 
designers at optimising their games’ effectiveness for learning. “  

 

REVIEWER 3 



2. Assuming the computational model is for researchers in the area of games and learning, are there 

other target audiences and how would the model benefit them - assuming a no. of designers are not 

perhaps interested in all the elements in the model? Identifying the contributions of the work to a 

broader audience would strengthen the paper. 

SOLVED 
See previous items.  

 

REVIEWER 3 

3. The paper is very conceptual and does not provide any examples. How would the model perform 

in different learning domains? For example, a domain or types of knowledge that are very clear (e.g. 

procedural knowledge) and one that has more complex or soft competences would be harder to 

model (e.g. project management). Some discussions about the usage of the model and it's suitably 

for learning in different domains or contexts would also strengthen the paper and the model would 

appear more convincing. 

SOLVED 
In section 6 the following text was added: 
 
“Fifth, as the model presupposes well-defined knowledge structures (e.g. skills hierarchies, 
competence maps, goal structures), its extension to ill-defined domains such as soft-skills poses a 
challenge. Still, in those cases machine learning approaches may be applied for identifying knowledge 
patterns and their mapping on to game activities and behaviours [46].” 

 

 



 

 

 Independent variables Dependent variables 

Knowledge tree  Knowledge generations 

 Child degree 

 

 

Game  Distribution of knowledge nodes 

over activities 

 Attractiveness of each activity  

 Complexity of each activity 

 

 

Player  Intelligence 

 Prior knowledge 

 Playing strategy 

 Flow factor 

 Acquired knowledge for each 

activity 

 Challenge of each activity 

 Motivation for each activity 

 Learning effectiveness for each 

activity 

 Game trajectory 

 

Table 1. Overview of variables in the computational model 

 

Table



 

 

 A B C D 

A. Learning effectiveness 0.0 0.341  0.435  0.347 

B. Balanced challenge 0.341 0.0 0.181 0.373 

C. Knowledge deficit 0.435 0.181  0.0 0.423 

D. Vygotsky 0.347 0.373  0.423  0.0 

 

Table 2. Kentall-tau rank distances between the activity orders of 4 strategies. 

 

Table
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