
Open Universiteit
www.ou.nl

Non-Quantitative Modeling of Service-Oriented
Architectures, Refactorings, and Performance
Citation for published version (APA):

van Eekelen, M., Lamers, A., & Jongmans, S-S. (2017). Non-Quantitative Modeling of Service-Oriented
Architectures, Refactorings, and Performance. Open Universiteit Nederland. Technical Report - Computer
Science & Information Science (TR-OU-INF) Vol. 2017 No. 2

Document status and date:
Published: 01/01/2017

Document license:
CC BY-NC-ND

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between
the submitted version and the official published version of record. People interested in the research are advised to contact the author for the
final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:

https://www.ou.nl/taverne-agreement

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 09 Sep. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open University of the Netherlands Research Portal

https://core.ac.uk/display/390063249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.ou.nl/en/publications/1c1156c4-3249-4062-9385-52a45ed03be3

Non-Quantitative Modeling of Service-Oriented
Architectures, Refactorings, and Performance

Marko van Eekelen1,2, Arjan Lamers3, and Sung-Shik Jongmans1,4

1 Department of Computer Science, Open University of the Netherlands
2 Institute for Computing and Information Sciences, Radboud University Nijmegen

3 First8 BV, Nijmegen, the Netherlands
4 Department of Computing, Imperial College London

Abstract. Service-oriented architecture has become a popular architec-
tural model to design applications with. Once implemented and deployed,
however, service-oriented architectures often deteriorate into hardly com-
prehensible spaghettis of dependencies among services, until the point
where implementing new performance requirements has become pro-
hibitively complex for non-experts. At this point, an architecture threat-
ens business growth and architecture specialists need to be hired to take
corrective measures. Such measures include architectural refactorings,
which improve the performance of an architecture, while preserving its
functional behavior. Even for architecture specialists, however, reason-
ing about refactorings constitutes a complex intellectual enterprise, cur-
rently undertaken manually. Moreover, predicting performance impact
of a given refactoring is often nothing more than guesswork.
In this paper, we present a formalism of service-oriented architecture that
supports reasoning about refactorings and predicting their performance
impact, by non-quantitatively analyzing dependencies among services.
The aim of this formalism is to provide a foundation for a tool that aids
architecture specialists in their refactoring activities. We also present
such a proof-of-concept tool.

1 Introduction

Background. Service-orientation [7,15,14] is a software engineering paradigm
centered around the concept of loosely-coupled, reusable, autonomous software
units called services. Key to service-orientation is the practice of composing small
primitive services, with simple capabilities, into larger compound services, with
complex capabilities. As service-orientation has become widespread, service-
oriented architecture has become a popular architectural model. In this paper, as
part of a research project with industrial partner First8, we present a formalism
of service-oriented architecture to simplify service-oriented software engineering.

First8 is a software company that specializes in business-critical applica-
tions. Among other activities, First8 provides consultancy to improve clients’
existing service-oriented architectures. For instance, clients ask First8 to refac-
tor problematic architectures—architectures that have deteriorated into a hardly

comprehensible spaghetti of dependencies among services—that (are starting to)
pose a threat to their business. Typically in such cases, clients need to implement
new performance requirements to sustain business growth, but lack in-house ex-
pertise to make the necessary changes.

To improve a client’s existing service-oriented architecture, the client and
First8 first engage in an exploratory phase. In this phase, a high-level model of
the architecture is made, and based on intuition and experience of the expert
architects involved, candidate refactorings are proposed. After the exploratory
phase, two activities remain, namely checking that the candidate refactorings:

1. preserve functional behavior (i.e., preservation-checking)
2. improve performance (i.e., improvement-checking)

Intentionally, and notwithstanding a substantial body of scientific literature
(e.g., [1,3,6,9,17]), First8 architects carry out improvement-checking (i.e., activ-
ity (2)) using non-quantitative techniques. Although quantitative techniques are
powerful in theory, experience at First8 suggests that their usage is prohibitively
difficult for them and for their customers in practice. One issue is gathering the
necessary measurements to instantiate a quantitative formal model with (e.g.,
arrival rates of requests). Another issue is that measurements are not only very
implementation-specific but also very deployment-specific: changes in a service
implementation or deployment can greatly impact performance and immediately
render previous measurements—painfully obtained—obsolete.

Problem. The reasoning involved in preservation-checking (i.e., activity (1))
and improvement-checking (i.e., activities (2)) constitutes a complex intellec-
tual enterprise, currently undertaken manually. To assist its architects with such
reasoning, First8 aims to develop computer-aided software engineering (case)
tools that can (semi)automatically reason about service-oriented architectures,
through the use of formal methods.

To develop such case tools, a formalism of service-oriented architecture that
supports reasoning about refactorings and performance, non-quantitatively, is
needed. Moreover, such a formalism must be close to what architects and without
training in formal methods can comfortably use. Such a formalism does, to our
knowledge, not exist. This makes its development not only practically relevant
but also a novel scientific challenge. In this paper, we present such a formalism.

Contribution. In Sect. 2, we present the core of our formalism: its syntax and
its semantics. This formalism formalizes the informal diagrams that First8 ar-
chitects and clients currently use as high-level architectural models. In Sect. 3,
we present a refactoring framework and example refactorings. This refactoring
framework, which extends the core of our formalism with a composition oper-
ation and a congruence relation, supports automation of preservation-checking
(i.e., activity (1)). In Sect. 4, we present non-quantitative performance indicators
to evaluate the effectiveness of refactorings. These performance indicators, which

2

complete our formalism, support automation of improvement-checking (i.e., ac-
tivity (2)). In Sect. 5, we describe the current version of our proof-of-concept
tool, founded on our formalism. In Sect. 6, we discuss related work. Section 7
concludes this paper.

Running example. Throughout this paper, to illustrate various elements of
our formalism, we use a service-oriented webshop as a running example. The
webshop consists of the following services.

First, there is a central database service, called db, that contains information
about products and orders. Then, there is a checkout service, called chkout ,
where customers can order products. The checkout service uses the database
service to read product information and to store order information. The checkout
service also uses a pricing service, called price, for calculating prices (including
additional fees and transport costs). The pricing service, in turn, reads product
information from the database service to get product prices.

There is also an accounting service, called acc, that is responsible for checking
if orders have been paid for. The accounting service uses the database service to
read orders. Finally, there is a back-office service, called office, that is responsible
for maintaining the product catalog of the webshop. The back-office service uses
the database service to store (update) product information.

2 Modeling Architectures

Overview. In this section, we present the core of our formalism of service-
oriented architecture. It consists of two main parts: a syntax to model the struc-
ture of architectures and a semantics to model their functional behavior in terms
of information flows. The idea behind this division is that whenever an archi-
tecture is refactored by changing its syntax (i.e., structure), its semantics (i.e.,
functional behavior) should remain the same. For the example refactorings that
we introduce in Sect. 3, we formally prove this property.

Syntax. In the exploratory phase, First8 architects sit together with their client
to make a high-level model of the architecture-to-be-refactored. These models
are graphical diagrams with services (“boxes”) and calls between services (“ar-
rows”). Services are annotated with the types of information they produce and
consume. Calls come in two flavors: pushes and pulls. A push from service s1
to service s2 means that s1 sends information to s2, while a pull by s1 from s2
means that s1 requests and receives information from s2. A push is a “fire-and-
forget” operation. This means that, at a conceptual level, service s1 does not
wait for an acknowledgment from service s2 after the push.5

5 In terms of the Osi transport layer, of course, Tcp/Ip packet(s) involved in a push
are acknowledged (as part of the Tcp/Ip protocol), but this is at a lower level of
abstraction than the pushes in terms of which we model architectures.

3

chkoutprice

db

office acc
n
or
de
r

pr
od

price

prod

n
pr
od

order

(a) Call graph

chkoutprice

db

office acc

or
de
r

pr
od

price

prod

pr
od

order

(b) Flow graph

�n prod = {office}
�n order = {chkout}
�prod = �n prod = {db}
�order = �n order = {db}
�price = {price}
�prod = {price, chkout}
�order = {acc}
�price = {chkout}

(c) Producers+consumers

Fig. 1: Architecture model in the webshop running example

These informal diagrams are straightforwardly formalized as digraphs with
type-labeled vertices and arcs. We call such digraphs call graphs. As experience
at First8 suggests, call graphs provide an intuitive syntax for both architects
and clients to work with. Let S denote the set of all services, ranged over by s,
and let T denote the set of all types of information, ranged over by t.

Definition 1. A call graph is a tuple (S,�,�, ,), where:

– S ⊆ S denotes a set of services
– �,� : T→ 2S denote sets of producers and consumers (per type)
– , : T→ 2S×S denote typed push and pull relations

Call denotes the set of all call graphs, ranged over by γ.

In words, s ∈ �(t) and s ∈ �(t) mean that service s produces/consumes infor-
mation of type t; in that case, s is called a t-producer/t-consumer. We write �t

and �t instead of �(t) and �(t). In words, (s1, s2) ∈ (t) and (s1, s2) ∈ (t)
mean that service s1 pushes/pulls information of type t to/from service s2. We
write s1

t
s2 and s1

t
s2 instead of (s1, s2) ∈ (t) and (s1, s2) ∈ (t).

We call a type t relevant in a call graph γ = (S,�,�, ,) whenever t ∈
Dom(f) for some f ∈ {�,�, , }; otherwise, we call t irrelevant. In practice,
call graphs have only few relevant types; we omit irrelevant types from examples.6

Figure 1a shows a call graph for the webshop running example in Sect. 1.
As in practice, we make a distinction between new order/product information
(n prod and n order), produced by chkout/office, and existing order/product
information (prod and order), “produced”—“owned” or “maintained” would
perhaps be a better description in this case—by db. This distinction allows for
more fine-grained reasoning about producership and consumership.

Call graphs model only the direction and the initiative of communication;
they do not model quantitative aspects of communication (e.g., frequency) or
transport characteristics (e.g., synchronous vs. asynchronous, reliable vs. lossy,
unordered vs. order-preserving).

6 Alternatively, we could have (i) added a set of relevant types T ⊆ T to Def. 1 and
(ii) defined every f ∈ {�,�, , } as a function over domain T instead of T.

4

Semantics. First8 architects reason about (preservation of) functional behavior
in terms of (preservation of) information flows between services. At this level of
abstraction, the semantics of an architecture can be expressed as a graph whose
arcs represent information flows. We call such graphs flow graphs.7

Definition 2. A flow graph is a tuple (S,�,�,), where:

– S ⊆ S denotes a set of services
– �,� : T→ 2S denote sets of producers and consumers (per type)
– : T→ 2S×S denotes a typed flow relation

Flow denotes the set of all call graphs, ranged over by ϕ.

In words, (s1, s2) ∈ (t) means that information of type t flows from service s1
to service s2. We write s1

t
s2 instead of (s1, s2) ∈ (t).

Figure 1b shows a flow graph for the webshop running example in Sect. 1.
Call graphs (i.e., structure, i.e., syntax) and flow graphs (i.e., functional be-

havior, i.e., semantics) are related by an interpretation function. Let R-1 denote
the inverse of a binary relation R.

Definition 3. J·K : Call → Flow denotes the function defined by the following
equation:

J(S,�,�, ,)K =
(
S,�,�,

{
t 7→ t ∪ (

t
)-1 t ∈ T

})
The interpretation of the call graph in Fig. 1a is the flow graph in Fig. 1b.

3 Modeling Refactorings

Overview. The syntax (i.e., call graphs) and semantics (i.e., flow graphs) in
Sect. 2 formalize the informal diagrams that First8 architects and clients cur-
rently use as high-level architectural models. Our next step, in this section, is
to extend this core of our formalism with a refactoring framework, to support
automation of preservation-checking (i.e., activity (1) in Sect. 1).

To refactor an architecture, First8 architects replace a part of an architecture
(the “substituted part”) for an equivalent part (the “substitute part”) such that
all information flows are preserved and no spurious new ones are introduced. To
formally model such refactorings, we introduce a formal framework consisting
of a binary composition operation on call/flow graphs, denoted by ⊕, and an
equivalence relation on call/flows graphs, denoted by ∼.

The idea is that a full architecture (e.g., call graph γ) can be represented as
the composition of the substituted part (e.g., call graph γ1) and the remaining

7 In this paper, we present only the “tip” of a “semantics iceberg” for call graphs.
Below the surface, more advanced and detailed semantics can be associated with call
graphs, such as a structural operational semantics (where every step corresponds to
an information flow between two services). Such semantics can be seen as refinements
of flow graphs. In this paper, however, this level of detail is unnecessary.

5

∼ ⇒ ∼

γ1 γ̃1 γ = γ1 ⊕ γ2 γ̃ = γ̃1 ⊕ γ2
(“substituted part”) (“substitute part”) (“whole”) (“whole”)

Fig. 2: Refactoring framework

part (e.g., call graph γ2, such that γ = γ1 ⊕ γ2). Refactoring, then, amounts
to replacing the substituted part with an equivalent substitute part (e.g., call
graph γ̃1, such that γ1 ∼ γ̃1). To guarantee that substitution of equivalent parts
yields equivalent “wholes” (i.e., that γ1 ∼ γ̃1 implies γ1 ⊕ γ2 ∼ γ̃1 ⊕ γ2), our
equivalence relation needs to be a congruence relation; shortly, we prove this.
Figure 2 graphically shows the idea behind our refactoring framework.

Composition. We start with defining the composition operation. For func-
tions f1, f2 : X → 2Y , let f1] f2 denote the pointwise union of f1 and f2.8

Definition 4. ⊕ : (Call×Call→ Call)∪ (Flow×Flow→ Flow×Flow) denotes
the function defined by the following equations:

γ1 ⊕ γ2 = (S1 ∪ S2,�1]�2,�1]�2, 1] 2, 1] 2)
ϕ1 ⊕ ϕ2 = (S1 ∪ S2,�1]�2,�1]�2, 1] 2)

where γi = (Si,�i,�i, i, i) and ϕi = (Si,�i,�i, i) for i ∈ {1, 2}.

Note that when composing call/flow graphs, some of the services (i.e., vertices)
are typically shared between the operands, whereas calls (i.e., arcs) are not.

The following theorem states that the interpretation function J·K (Def. 3) is
a homomorphism for the composition operation ⊕ (Def. 4).

Theorem 1. Jγ1 ⊕ γ2K = Jγ1K⊕ Jγ2K

Equivalence. Intuitively, architectures are equivalent if they induce “the same”
information flows. To formally define such equivalence, we draw inspiration from
concurrency theory (e.g., [12,13]). In concurrency theory, a simulation relation
is a binary relation on the state spaces of two concurrent processes P1 and P2,
modeled as labeled transition systems. If a pair of states (q1, q2) is in a simula-
tion relation, intuitively, P2 in q2 can perform at least the same actions as P1

in q1 (i.e., P2 can “mimic” P1). Thus, simulation is an inherently asymmetric
concept; mathematically, it gives rise to a preorder on processes. If two pro-
cesses can simulate each other under the same simulation relation, we call that

8 Formally: f1] f2 = {x 7→ f1(x) ∪ f2(x) | x ∈ X}

6

simulation relation a bisimulation relation instead. Thus, bisimulation is an in-
herently symmetric concept; mathematically, it gives rise to an equivalence on
processes. Below, instead of defining simulation and bisimulation on states in la-
beled transitions systems of processes, we define it on services in flow graphs of
architectures. Let Dom(R) denote the domain of binary relation R, and let R+

denote its transitive closure.

Definition 5. � ⊆ Flow×Flow× (1+S2) denotes the smallest relation induced
by the following rules:

∃R . ϕ �R ϕ̃
ϕ � ϕ̃

∀t, s, s′ .
[
s

t + s′ ⇒ ∃s̃.s̃′ .
[
s̃
∼ t + s̃′ ∧ s R s̃ ∧ s′ R s̃′

]]
∧ ∀t, s .

[
s ∈ �t ⇒ ∃s̃ .

[
s̃ ∈ �̃t ∧ s R s̃

]]
∧ ∀t, s .

[
s ∈ �t ⇒ ∃s̃ .

[
s̃ ∈ �̃t ∧ s R s̃

]]
∧ R ⊆ S × S̃ ∧ S ⊆ Dom(R)

ϕ �R ϕ̃

where ϕ = (S,�,�,) and ϕ̃ = (S̃, �̃, �̃, ∼).

In words, a flow graph ϕ is simulated by a flow graph ϕ̃ whenever there exists
a (left-total) simulation relation R on the services in ϕ and ϕ̃ such that every
information flow between services in ϕ can be mimicked with a corresponding
information flow between services in ϕ̃, where “mimicked” is defined in terms
of reachability.9 At our current level of abstraction, thus, the specific path that
information flows along is unimportant; only reachability matters.

Definition 6. ∼ ⊆ Flow×Flow× (1+S2) denotes the smallest relation induced
by the following rules:

∃R . ϕ ∼R ϕ̃
ϕ ∼ ϕ̃

ϕ �R ϕ̃ ∧ ϕ̃ �R-1 ϕ

ϕ ∼R ϕ̃

Figure 3 shows two equivalent flow graphs. The left flow graph ϕ is the
same as the one in Fig. 1b. The right flow graph ϕ̃ models an architecture
in which the database service is split into two services: one that stores only
product information, and one that stores only order information. To see that ϕ
is simulated by ϕ̃, note that prod information flows from db to chkout and price
in ϕ, while prod information flows from proddb to chkout and price in ϕ̃. Thus, db
in the left flow graph is (partially) simulated by proddb in the right flow graph.
Similarly, with respect to order information flows, db in ϕ is (partially) simulated
by orderdb in ϕ̃. Consequently, db in ϕ is simulated by the combination of proddb
and orderdb in ϕ̃. In the same way, we can also derive that ϕ̃ is simulated by ϕ.

The following theorem states that equivalence relation ∼ (Def. 6) is a con-
gruence relation for the composition operation ⊕ (Def. 4). This means that any
part of an architecture can safely be substituted for an equivalent part. To prove

9 This is where our approach differs significantly from concurrency theory, where the
branching structure of the underlying graphs also plays a major role.

7

chkoutprice

db

office acc

chkoutprice

orderdbproddb

office acc

n
or
de
r

pr
od

price

prod

n
pr
od

order

n
o
r
d
e
rpr

od

price

p
r
o
d

n
p
r
o
d o

r
d
e
r

(a) Flow graphs ϕ (left) and ϕ̃ (right)

�n prod = �̃prod = {office}
�n order = �̃order = {chkout}
�price = �̃price = {price}
�prod = �̃prod = {price, chkout}
�order = �̃order = {acc}
�price = �̃price = {chkout}

�prod = �n prod = {db}
�order = �n order = {db}

�̃prod = �̃n prod = {dbprod}
�̃order = �̃n order = {dborder}

(b) Producers+consumers

Fig. 3: Equivalent flow graphs in the webshop running example (blue dashed
lines indicate bisimulation relation R in Def. 6)

the theorem, we need three additional assumptions beside equivalence of the
parts. These additional assumptions essentially state that after substitution, the
services on the “boundary” between the substituted/substitute part and the re-
maining part must be indistinguishable from those before substitution (in terms
of both their names and information flows). In other words, the interface between
the substituted/substitute and the remainder must stay the same; services on
the boundary may not be renamed, added, or removed by a refactoring.

Theorem 2.


(S1,�1,�1, 1) ∼R1 (S̃1, �̃1, �̃1,

∼
1)

∧ SB = S1 ∩ S2 = S̃1 ∩ S2

∧ ∀s, s̃ .
[[
s R1 s̃ ∧ s ∈ SB

]
⇒ s = s̃

]
∧ ∀s, s̃ .

[[
s R1 s̃ ∧ s̃ ∈ SB

]
⇒ s = s̃

]
 ⇒︸︷︷︸

(S1,�1,�1, 1)

ϕ1⊕ϕ2 ∼

(S̃1,�̃1,�̃1,
∼

1)︷︸︸︷
ϕ̃1⊕ϕ2

Refactorings. The definition of every refactoring in our refactoring framework
(Fig. 2) has two parts: a condition that identifies architectures that can take on
the role of γ1 (the substituted part) and an instruction that describes the trans-
formation of γ into γ̃1 (the substitute part). The condition is formally modeled
as a relation R; the instruction as a function f . An instance of a refactoring,
then, is the transformation of a concrete γ1 that satisfies R into γ̃1 according
to f . We call a refactoring (R, f) safe whenever satisfaction of R by γ1 (a syn-
tactic property) implies that Jγ1K and Jf(γ1)K = Jγ̃1K are equivalent (a semantic
property). Subsequently, Thm. 2 ensures that a safe refactoring for γ1 can, in-
deed, safely be applied in any architecture that contains γ1 (provided that also
the additional assumptions about the boundary services hold; see Thm. 2).

We proceed with three example refactorings: Flip, Split, and Merge. Refactor-
ing Flip converts pushes between services to corresponding “reverse-pulls” and
vice versa. Refactoring Split divides the responsibilities of a single service over
multiple services. Refactoring Merge combines the responsibilities of multiple
services in a single service. Figure 4 shows simple instances of these refactorings.

8

flip

 s1

s2

t

 =

s1

s2

t

(a) Flip, push–pull

split

 s1 s2

s3

t1 t2 ; s3, s3a, s3b, {t1}

 =

s1 s2

s3a s3b

t1 t2

(b) Split

flip

 s1

s2

t

 =

s1

s2

t

(c) Flip, pull–push

merge

 s1 s2

s3a s3b

t1 t2 ; {s3a, s3b}, s3

 =

s1 s2

s3

t1 t2

(d) Merge

Fig. 4: Instances of example refactorings

CanFlip,CanSplit,CanMerge are the smallest relations induced by the following rules:

CanFlip(γ)

s ∈ S ∧ s1, s2 /∈ S
CanSplit(γ; s, s1, s2, T1)

S ⊆ S ∧ s /∈ S
CanMerge(γ;S, s)

where γ = (S,�,�, ,). These are sufficient conditions for Flip, Split, and
Merge to be safe (Thms. 3, 4, and 5). Extra size conditions can be imposed on γ
to ensure that refactorings involving γ (i.e., where γ is the substituted part) are
minimal:

∑
{| t |+ | t | | t ∈ T} = 1 for Flip, , : T→ 2({s}×S)∪(S×{s}) for

Split, and , : T→ 2(S×S)∪(S×S) for Merge.

Fig. 5: Conditions of example refactorings, modeled as relations

Let |X| denote the cardinality of a set X, let X[y/Y] denote the substitu-
tion in X of element y for every element from set Y ,10 and let ◦ : 2X×Y ×
2Y×Z → 2X×Z denote relational composition. Figures 5/6 show the conditions/
instructions of our example refactorings, modeled as relations/functions. In these
relations/functions, the γ left of the semicolon represents the substituted part
(i.e., γ1 in Fig. 2), while the additional variables right of the semicolon represent
other elements that play a role in the refactoring.

The condition of Flip, modeled by relation CanFlip, is empty, meaning that
Flip is applicable to any γ. The instruction of Flip, modeled by function flip,
subsequently states that every push is transformed into a reverse-pull, and vice
versa. Figures 4a and 4c show examples.

The condition of Split, modeled by relation CanSplit, states that for Split to
be applicable to γ, it must contain service s (the existing service to split), while it
may not contain services s1, s2 (the new services after splitting). The instruction
of Split, modeled by function split, subsequently states that the responsibilities
of s are divided over s1 and s2. Service s1 becomes producer/consumer of infor-
mation of all the types in T1 that s used to produce/consume; service s2 gets the

10 Formally: X[y/Y] = (X \ Y) ∪
{
∅ if X ∩ Y = ∅
{y} otherwise

9

flip, split,merge are the functions defined by the following equations:

flip(γ) = (S,�,�, {t 7→ (
t

)-1 | t ∈ T}, {t 7→ (
t

)-1 | t ∈ T})

split(γ; s, s1, s2, T1) = ((S \ {s}) ∪ {s1, s2}, �̃, �̃, ∼ ,
∼

)

�̃ = {t 7→ �t[s1/{s}] | t ∈ T1} ∪ {t 7→ �t[s2/{s}] | t /∈ T1}
�̃ = {t 7→ �t[s1/{s}] | t ∈ T1} ∪ {t 7→ �t[s2/{s}] | t /∈ T1}
∼

= {t 7→ {(s1, s)} ◦ t ◦ {(s, s1)} | t ∈ T1}
∪ {t 7→ {(s2, s)} ◦ t ◦ {(s, s2)} | t /∈ T1}

∼
= {t 7→ {(s1, s)} ◦ t ◦ {(s, s1)} | t ∈ T1}
∪ {t 7→ {(s2, s)} ◦ t ◦ {(s, s2)} | t /∈ T1}

merge(γ;S, s) = ((S \ S) ∪ {s}, �̃, �̃, ∼ ,
∼

)

�̃ = {t 7→ �t[s/S] | t ∈ T}
�̃ = {t 7→ �t[s/S] | t ∈ T}
∼

= {t 7→ (s× S) ◦ t ◦ (S × s) | t ∈ T}
∼

= {t 7→ (s× S) ◦ t ◦ (S × s) | t ∈ T}

where γ = (S,�,�, ,).

Fig. 6: Instructions of example refactorings, modeled as functions

remaining production/consumption responsibilities. Accordingly, calls for infor-
mation of a type in T1 involve s1 instead of s; other calls involve s2. (Relational
compositions act as service renaming operations.) Figure 4b shows an example.

The condition of Merge, modeled by relation CanMerge, states that for Merge
to be applicable to γ, it must contain the services in S (the existing services to
merge), while it may not contain service s (the new service after merging). The
instruction of Merge, modeled by function merge, subsequently states that the
responsibilities of the services in S are combined in s. Service s becomes pro-
ducer/consumer of information of all the types that services in S used to pro-
duce/consume. Accordingly, calls involve s instead of any service in S. Figure 4d
shows an example.

The following theorems state the safeness of our example refactorings.

Theorem 3. CanFlip(γ) implies JγK ∼ Jflip(γ)K

Theorem 4. CanSplit(γ; s, s1, s2, T1) implies JγK ∼ Jsplit(γ; s, s1, s2, T1)K

Theorem 5. CanMerge(γ;S, s) implies JγK ∼ Jmerge(γ;S, s)K

4 Modeling Performance, Non-Quantitatively

Overview. Our refactoring framework in Sect. 3 offers a formal means of defin-
ing and reasoning about architectural refactorings, three examples of which
we presented. Moreover, the framework supports automatically checking that

10

a refactoring is applicable and actually carrying out its corresponding changes,
while guaranteeing that all information flows are preserved and no spurious new
ones are introduced (i.e., activity (1) in Sect. 1). What is still missing, though, is
a mechanism to evaluate the effectiveness of a refactoring; our tool should also
assist architects in selecting a “good” refactoring among all applicable ones. To
fill this gap, in this section, we present non-quantitative performance indicators
based on which architects can make informed decisions about refactorings.

(In)sensitivity. An important optimization criterion for First8 architects is the
extent to which one service s1 affects the performance of another service s2. We
call this property the (in)sensitivity of s1 to s2.

Typically, First8 architects refactor architectures to minimize service sensi-
tivities. For instance, in the webshop running example, services chkout and price
are sensitive to service acc: once acc starts checking whether orders have been
paid for, the performance of chkout and price may decrease, because service db
may be unable to process the additional calls from acc without affecting the
calls from chkout and price. Checking payment statuses is, however, only a
low-priority task—it does not matter whether it happens immediately or in
a few hours—and it should definitely not hinder the high-priority front end
of the system (which directly affects business). Refactoring the architecture to
make chkout and price insensitive to acc is therefore an important improvement.

First8 architects distinguish three levels of (in)sensitivity. If services s1 and s2
cannot affect each other’s performance whatsoever, they are insensitive to each
other. If the performance of s1 is affected by s2 because s1 requires information
from s2 (by means of a pull), then s1 is voluntarily sensitive to s2. If the per-
formance of s1 is affected by s2 regardless of s1’s calls to s2, then s1 is forcibly
sensitive to s2. Insensitivity is symmetric, but (voluntary/forcible) sensitivity is
not: service s1 may be sensitive to service s2, while s2 may not be sensitive to s1.

To formalize these levels of (in)sensitivity, we introduce two auxiliary prop-
erties: stress and delay. The stress of a service is a non-quantitative abstraction
of the number of incoming calls that it needs to process. The higher the number
of calls, the higher the stress of the service and the lower its performance. A ser-
vice s1 is therefore forcibly sensitive to another service s2 if s2 stresses s1. The
delay of a service is a non-quantitative abstraction of the number of outgoing
pulls whose processing (by other services) it needs to await. The higher the num-
ber of pulls, the higher the delay of the service and the lower its performance. A
service s1 is therefore voluntarily sensitive to another service s2 if s2 delays s1.

We formalize stress and delay graph-theoretically over call graphs, as sets of
services. The stress set of a service s contains the services that affect the stress
of s: if the stress of a service in its stress set increases, then so does the stress
of s. By convention, we also include s in its own stress set (s may stress itself).
The delay set of a service s contains the services that affect the delay of s.

11

Stress Delay

db S ∅
chkout {chkout} S = S ∪ ∅ ∪ {chkout , price} ∪ S

= Stress(γ, db) ∪ Delay(γ, db) ∪ Stress(γ, price) ∪ Delay(γ, price)

price

{
chkout ,
price

}
S = S ∪ ∅ = Stress(γ, db) ∪ Delay(γ, db)

acc {acc} S = S ∪ ∅ = Stress(γ, db) ∪ Delay(γ, db)
office {office} ∅

Fig. 7: Stress sets and delay sets in the webshop running example, where γ de-
notes the call graph in Fig. 1a and S = {db, chkout , price, acc, office}

forcible
(S)

voluntary
(s)

insensitive
(|S)

s ′
∈

Stress(γ
, s)

s
′ /∈

St
re
ss
(γ
, s
)

s ′
∈

D
elay(γ

, s)

s
′ /∈

D
el
ay
(γ
, s
)

@@

Fig. 8: (In)sensitivity levels, where
x @ y means “x is preferred over y”

s\ s′ db chkout price acc office

db − S S S S
chkout s − s s s

price s S − s s
acc s s s − s

office |S |S |S |S −

Fig. 9: (In)sensitivities in the web-
shop running example (s R s′ for
R ∈ {|S,s,S}), based on the
stress sets and delay sets in Fig. 7.
Undesirable sensitivities are framed.

Definition 7. Stress,Delay : Call × S → 2S denote the functions defined by the
following equations:

Stress(γ, s) = {s} ∪
⋃
{Stress(γ, s′) | s′ t

s ∨ s′
t
s}

Delay(γ, s) =
⋃
{Stress(γ, s′) ∪ Delay(γ, s′) | s t

s′}

where γ = (S,�,�, ,).

Note that the delay set of a service s contains the stress set of every service s′

from which s pulls information. This is because the services in the stress set
of s′ may negatively affect the rate at which s′ can process pulls by s: if the
services in the stress set of s′ heavily stress s′, then this rate goes down. For
instance, in the webshop running example, if service office makes many pushes to
service db (increasing the stress of db), then the rate at which db can process pulls
by service chkout may be negatively affected (increasing the delay of chkout).
Therefore, office is in the delay set of chkout (i.e., chkout pulls from db, which
has office in its stress set). Figure 7 shows a complete overview of the stress sets
and delay sets in the webshop running example.

We define insensitivity, voluntary sensitivity, and forcible sensitivity in terms
of stress and delay; see also Fig. 8.

12

chkoutprice

proddb orderdb

office acc

n
o
r
d
e
rpr

od

price

p
r
o
d

n
p
r
o
d

o
r
d
e
r

(a) Call graph

s \ s′ proddb orderdb chkout price acc office

proddb − |S S S |S S
orderdb |S − S |S S |S
chkout s |S − s |S s

price s |S S − |S s
acc |S s s |S − |S

office |S |S |S |S |S −

(b) (In)sensitivities. Undesirable sensitivities are framed.

Fig. 10: Webshop running example after applying Split (cf. Figs. 1 and 9)

Definition 8. |S,s,S ⊆ Call × S × S denote the smallest relations induced
by the following rules:

s′ /∈ Stress(γ, s)
∧ s′ /∈ Delay(γ, s)

s |Sγ s
′︸ ︷︷ ︸

insensitivity

s′ /∈ Stress(γ, s)
∧ s′ ∈ Delay(γ, s)

ssγ s
′︸ ︷︷ ︸

voluntary

s′ ∈ Stress(γ, s)

sSγ s
′︸ ︷︷ ︸

forcible

Figure 9 shows the (in)sensitivities in the webshop running example.

Running example. To illustrate reasoning based on (in)sensitivities of services,
we end this section by applying two refactorings in the webshop running example.

Figure 9 already showed that services chkout and price are voluntarily sen-
sitive to services acc and office. As stated before, however, the former two high-
priority services should not be hindered by the latter two low-priority services.

The first refactoring that we apply is Split, to divide the responsibilities of
the existing service db over new services proddb and orderdb. The former becomes
responsible for product information; the latter for order information. Figure 10
shows the result of this refactoring. By the theorems in Sect. 3, we already know
that this refactoring is correct. Figure 10b moreover shows that services chkout
and price are insensitive to service acc after the refactoring.

To make services chkout and price insensitive also to service office, we apply
refactoring Flip to the part consisting of service proddb, office, and the n prod-
call between them. This basically means that instead of letting office take the ini-
tiative of pushing new product information to db, the initiative lies now with db
(e.g., pulling via some etl process). Figure 11 shows the result of this refactoring.
After this refactoring, chkout and price are insensitive to both acc and office.

Reasoning in terms of sensitivities in this way thus provides a formal justifi-
cation for applying refactorings. Note also that the computation of sensitivities
can be fully automated, both before and after refactoring.

13

chkoutprice

proddb orderdb

office acc

n
o
r
d
e
rpr

od

price

p
r
o
d

n
p
r
o
d o

r
d
e
r

(a) Call graph

s \ s′ proddb orderdb chkout price acc office

proddb − |S S S |S S
orderdb |S − S |S S |S
chkout s |S − s |S |S

price s |S S − |S |S
acc |S s s |S − |S

office |S |S |S |S |S −

(b) (In)sensitivities

Fig. 11: Webshop running example after applying Split and Flip (cf. Fig. 10)

(a) Before applying Split (cf. Fig. 1) (b) After applying Split (cf. Fig. 10)

Fig. 12: Proof-of-concept tool applied to the webshop running example

5 Tool

We developed a proof-of-concept tool built on our formalism. Our tools enables
architects to draw call graphs as models of architectures. Subsequently, the tool
computes and reports stress sets, delay sets, and sensitivities (both textually
and visually, with colors). It also proposes a number of candidate refactorings.
Currently, we support Flip, Split, and Merge. With a click of a button, architects
can select and apply a candidate refactoring, after which the tool recomputes and
reports stress sets, delay sets, and sensitivities. Based on this output, architects
can make an informed decision about the desirability of the refactoring.

Figure 12 shows two screenshots of the tool, before and after applying refac-
toring Split in the webshop running example, as also discussed in Sect. 4. The box
with the blue text (chkout) is the currently selected service; the red/orange/white
fill color of a box means that a service is forcibly sensitive/voluntarily sensitive/
insensitive to the currently selected service. The panel on the top right gives a

14

textual summary of stress sets, delay sets, and sensitivities; the panel on the
bottom right lists candidate refactorings.

6 Related Work

Perhaps closest—at least in spirit—to our work on formalizing service-oriented
architectures is existing work on formalizing (composition of) service-oriented
systems using process calculi (e.g., [2,4,5,8,11,16]). The main difference between
those approaches and ours lies in the level of abstraction. Whereas we stay at the
higher architectural level, process calculi for service orientation require its users
to dive deeper into the local behavior of, and communication between, services.
For our current purpose, such details are excessive. From the abstraction level
perspective, thus, such calculi are unsuitable for us. Moreover, as such calculi
are often rather formal, they are too far from what architects without training
in formal methods can comfortably use.

There exists an extensive body of literature on quantitative reasoning about
performance in service oriented architecture (e.g., [1,3,6,9,17]). In general, how-
ever, these models require load functions, detailed descriptions, or actual imple-
mentations for each service. Determining load functions and finding reasonable
values for parameters of these models is demanding and might be possible only
quite late in the development process. Additionally, calculating the performance
of the architecture might not be instant but requires a lengthy simulation. In-
stead, our work focuses on finding performance dependencies among services,
expressed in terms of sensitivity levels, without quantification. The properties
can be quickly derived, even manually up to a certain complexity, and tooling
can extensively compare alternatives. Our notions of sensitivity, stress, and delay
are inspired by work by Lamers and Van Eekelen [10].

7 Conclusion

Summary. We presented a formalism of service-oriented architecture that sup-
ports reasoning about refactorings and predicting their performance impact, by
non-quantitatively analyzing dependencies among services. The aim of our for-
malism is to provide a foundation for a tool that aids architecture specialists in
their refactoring activities. We also presented such a proof-of-concept tool.

Our formalism consists of syntax to model the structure of architectures (call
graphs; Def. 1), semantics to model their behavior in terms of information flows
(flow graphs; Def. 2), a composition operation to model refactorings (⊕; Def. 4),
and an equivalence relation to prove the safeness of refactorings (∼; Def. 6). We
proved that this equivalence relation is, in fact, a congruence relation (Thm. 2),
which is of essential importance. We presented three example refactorings (Flip,
Split, Merge; Figs. 5 and 6), and proved their safeness (Thms. 3, 4, and 5).

15

Future work. We see two main directions for future work. The first one is
extending our formalism from architectures to deployments. Formally, the ex-
tension seems straightforward: we can define a deployment as a triple (M,γ,s),
where M is a set of machines, γ a call graph, and s : M → 2S a function from
the machines in M to sets of services in γ that run on those machines. The chal-
lenging part is leveraging such deployment models to automate reasoning about
refactorings and performance at the deployment level in a meaningful way.

The second line of future work concerns proving equivalences of architectures.
Although Thms. 3, 4, and 5 guarantee the safety of the refactorings in Sect. 3,
not all changes that architects may want to apply to an architecture are instances
of these refactorings. For such changes, architects still need to manually check
preservation of information flows. To assist them in this laborious task, we aim
to develop an efficient equivalence checking algorithm and add it to our tool.

16

References

1. Marco Bertoli, Giuliano Casale, and Giuseppe Serazzi. JMT: performance engi-
neering tools for system modeling. SIGMETRICS Performance Evaluation Review,
36(4):10–15, 2009.

2. Michele Boreale, Roberto Bruni, Lúıs Caires, Rocco De Nicola, Ivan Lanese,
Michele Loreti, Francisco Martins, Ugo Montanari, António Ravara, Davide San-
giorgi, Vasco Thudichum Vasconcelos, and Gianluigi Zavattaro. SCC: A service
centered calculus. In Web Services and Formal Methods, Third International Work-
shop, WS-FM 2006 Vienna, Austria, September 8-9, 2006, Proceedings, pages 38–
57, 2006.

3. Paul Brebner. Real-world performance modelling of enterprise service oriented
architectures: delivering business value with complexity and constraints (abstracts
only). SIGMETRICS Performance Evaluation Review, 39(3):12, 2011.

4. Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-
centered programming for web services. ACM Trans. Program. Lang. Syst., 34(2):8,
2012.

5. Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: multiparty
asynchronous global programming. In The 40th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’13, Rome, Italy -
January 23 - 25, 2013, pages 263–274, 2013.

6. Ana Juan Ferrer, Francisco Hernández, Johan Tordsson, Erik Elmroth, Ahmed Ali-
Eldin, Csilla Zsigri, Raúl Sirvent, Jordi Guitart, Rosa M. Badia, Karim Djemame,
Wolfgang Ziegler, Theo Dimitrakos, Srijith K. Nair, George Kousiouris, Kleopa-
tra Konstanteli, Theodora A. Varvarigou, Benoit Hudzia, Alexander Kipp, Stefan
Wesner, Marcelo Corrales, Nikolaus Forgó, Tabassum Sharif, and Craig Sheridan.
OPTIMIS: A holistic approach to cloud service provisioning. Future Generation
Comp. Syst., 28(1):66–77, 2012.

7. Roy Thomas Fielding. Architectural styles and the design of network-based software
architectures. PhD thesis, University of California, Irvine, 2000.

8. Claudio Guidi, Roberto Lucchi, Roberto Gorrieri, Nadia Busi, and Gianluigi Zavat-
taro. : A calculus for service oriented computing. In Service-Oriented Computing
- ICSOC 2006, 4th International Conference, Chicago, IL, USA, December 4-7,
2006, Proceedings, pages 327–338, 2006.

9. Samuel Kounev. Performance modeling and evaluation of distributed component-
based systems using queueing petri nets. IEEE Trans. Software Eng., 32(7):486–
502, 2006.

10. Arjan Lamers and Marko C. J. D. van Eekelen. A lightweight method for analysing
performance dependencies between services. In Advances in Service-Oriented and
Cloud Computing - Workshops of ESOCC 2015, Taormina, Italy, September 15-17,
2015, Revised Selected Papers, pages 93–110, 2015.

11. Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi. A calculus for or-
chestration of web services. In Programming Languages and Systems, 16th Euro-
pean Symposium on Programming, ESOP 2007, Held as Part of the Joint European
Conferences on Theory and Practics of Software, ETAPS 2007, Braga, Portugal,
March 24 - April 1, 2007, Proceedings, pages 33–47, 2007.

12. Robin Milner. Communication and concurrency. PHI Series in computer science.
Prentice Hall, 1989.

13. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,
I. Inf. Comput., 100(1):1–40, 1992.

17

14. OASIS. OASIS SOA Reference Model TC.
15. The Open Group. Service Oriented Architecture: What Is SOA? http://www.

opengroup.org/soa/source-book/soa/soa.htm#soa_definition.
16. Hugo Torres Vieira, Lúıs Caires, and João Costa Seco. The conversation calculus:

A model of service-oriented computation. In Programming Languages and Sys-
tems, 17th European Symposium on Programming, ESOP 2008, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings, pages 269–283, 2008.

17. Liming Zhu, Yan Liu, Ngoc Bao Bui, and Ian Gorton. Revel8or: Model driven
capacity planning tool suite. In 29th International Conference on Software Engi-
neering (ICSE 2007), Minneapolis, MN, USA, May 20-26, 2007, pages 797–800,
2007.

18

http://www.opengroup.org/soa/source-book/soa/soa.htm#soa_definition
http://www.opengroup.org/soa/source-book/soa/soa.htm#soa_definition

A Proof of Theorem 1

A.1 Sketch

The theorem follows almost immediately by Defs. 4 and 3 of ⊕ and J·K.

A.2 Proof

Proof. Assume:

A1 γ1 = (S1,�1,�1, 1, 1)

A2 γ2 = (S2,�2,�2, 2, 2)

Observe:

Z1 Conclude:

(1] 2)(t) ∪ (1] 2)(t)-1

= {t̂ 7→ t̂
1 ∪

t̂
2 | t̂ ∈ T}(t) ∪ {t̂ 7→ t̂

1 ∪
t̂

2 | t̂ ∈ T}(t)-1

Then, conclude:

(1] 2)(t) ∪ (1] 2)(t)-1 =
t

1 ∪
t

2 ∪ (
t

1 ∪
t

2)
-1

Then, conclude:

(1] 2)(t) ∪ (1] 2)(t)-1 =
t

1 ∪
t

2 ∪ (
t

1)
-1 ∪ (

t
2)

-1

Prove the theorem by the following reduction. By Def. 4 of ⊕, conclude:

J(S1,�1,�1, 1, 1)⊕ (S2,�2,�2, 2, 2)K
= J(S1 ∪ S2,�1]�2,�1]�2, 1] 2, 1] 2)K

Then, by Def. 3 of J·K, conclude:

J(S1,�1,�1, 1, 1)⊕ (S2,�2,�2, 2, 2)K

=

(
S1 ∪ S2,�1]�2,�1]�2,
{t 7→ (1] 2)(t) ∪ (1] 2)(t)-1 | t ∈ T}

)
Then, by Z1 , conclude:

J(S1,�1,�1, 1, 1)⊕ (S2,�2,�2, 2, 2)K

=

(
S1 ∪ S2,�1]�2,�1]�2,

{t 7→ t
1 ∪

t
2 ∪ (

t
1)

-1 ∪ (
t

2)
-1 | t ∈ T}

)
Then, conclude:

J(S1,�1,�1, 1, 1)⊕ (S2,�2,�2, 2, 2)K

=

(
S1 ∪ S2,�1]�2,�1]�2,

{t 7→ t
1 ∪ (

t
1)

-1 | t ∈ T}] {t 7→ t
2 ∪ (

t
2)

-1 | t ∈ T}

)

19

Then, by Def. 4 of ⊕, conclude:

J(S1,�1,�1, 1, 1)⊕ (S2,�2,�2, 2, 2)K

= (S1,�1,�1, {t 7→
t

1 ∪ (
t

1)
-1 | t ∈ T})

⊕ (S2,�2,�2, {t 7→
t

2 ∪ (
t

2)
-1 | t ∈ T})

Then, by Def. 3 of J·K, conclude:

J(S1,�1,�1, 1, 1)⊕ (S2,�2,�2, 2, 2)K
= J(S1,�1,�1, 1, 1)K⊕ J(S2,�2,�2, 2, 2)K

Then, by A1 A2 , conclude Jϕ1 ⊕ ϕ2K = Jϕ1K⊕ Jϕ2K. ut

20

B Proof of Theorem 2

B.1 Sketch

By the antecedent of the theorem and Def. 6 of ∼, we derive ϕ1 �R1 ϕ2 and ϕ2 �
R-1

1 ϕ2. Let R = R1 ∪ {(s, s) | s ∈ S2} be a candidate bisimulation relation. The
following auxiliary theorem states that R is a simulation relation from ϕ1 ⊕ ϕ2

to ϕ̃1 ⊕ ϕ2.

Theorem 6.
ϕ1 �R1 ϕ̃1

∧ SB = S1 ∩ S2 = S̃1 ∩ S2

∧ ∀s, s̃ .
[[
s R1 s̃ ∧ s ∈ SB

]
⇒ s = s̃

]
∧ R = R1 ∪ {(s, s) | s ∈ S2}

 ⇒ ϕ1 ⊕ ϕ2 �R ϕ̃1 ⊕ ϕ2

Proof. See Sect. F. ut
We apply Thm. 6 to show also that R-1 = R-1

1 ∪ {(s, s) | s ∈ S2} is a simulation
relation from ϕ̃1⊕ϕ2 to ϕ⊕ϕ2. The theorem subsequently follows by Def. 6 of ∼
(i.e., the candidate bisimulation relation R is, indeed, a bisimulation relation).

B.2 Proof

Proof. Assume:

A1 ϕ1 ∼R1
ϕ̃1

A2 SB = S1 ∩ S2 = S̃1 ∩ S2

A3
[[
s R1 s̃ and s ∈ SB

]
implies s = s̃

]
for all s, s̃

A4
[[
s R1 s̃ and s̃ ∈ SB

]
implies s = s̃

]
for all s, s̃

A5 R = R1 ∪ {(s, s) | s ∈ S2}
Observe:

Z1 Suppose ϕ1 �R1
ϕ̃1. Then, by A2 , conclude:

ϕ1 �R1
ϕ̃1 and SB = S1 ∩ S2 = S̃1 ∩ S2

Then, by A3 , conclude:

ϕ1 �R1
ϕ̃1

and SB = S1 ∩ S2 = S̃1 ∩ S2

and
[[[
s R1 s̃ and s ∈ SB

]
implies s = s̃

]
for all s, s̃

]
Then, by A5 , conclude:

ϕ1 �R1 ϕ̃1

and SB = S1 ∩ S2 = S̃1 ∩ S2

and
[[[
s R1 s̃ and s ∈ SB

]
implies s = s̃

]
for all s, s̃

]
and R = R1 ∪ {(s, s) | s ∈ S2}

Then, by Thm. 6, conclude ϕ1 ⊕ ϕ2 �R ϕ̃1 ⊕ ϕ2.

21

Z2 By A4 , conclude
[[[
s R1 s̃ and s̃ ∈ SB

]
implies s = s̃

]
for all s, s̃

]
.

Then, conclude
[[[
s̃ R-1

1 s and s̃ ∈ SB
]

implies s̃ = s
]

for all s, s̃
]
.

Z3 By A5 , conclude R = R1 ∪ {(s, s) | s ∈ S2}. Then, conclude:

R-1 = R1 ∪ {(s, s) | s ∈ S2}-1

Then, conclude R-1 = R-1
1 ∪ {(s, s) | s ∈ S2}-1. Then, conclude:

R-1 = R-1
1 ∪ {(s, s) | s ∈ S2}

Z4 Suppose ϕ̃1 �R-1
1
ϕ1. Then, by A2 , conclude:

ϕ̃1 �R-1
1
ϕ1 and SB = S1 ∩ S2 = S̃1 ∩ S2

Then, by Z2 , conclude:

ϕ̃1 �R-1
1
ϕ1

and SB = S1 ∩ S2 = S̃1 ∩ S2

and
[[[
s̃ R-1

1 s and s̃ ∈ SB
]

implies s̃ = s
]

for all s, s̃
]

Then, by Z3 , conclude:

ϕ̃1 �R-1
1
ϕ1

and SB = S1 ∩ S2 = S̃1 ∩ S2

and
[[[
s̃ R-1

1 s and s̃ ∈ SB
]

implies s̃ = s
]

for all s, s̃
]

and R-1 = R-1
1 ∪ {(s, s) | s ∈ S2}

Then, by Thm. 6, conclude ϕ̃1 ⊕ ϕ2 �R-1 ϕ1 ⊕ ϕ2.

Prove the theorem by the following reduction. By A1 , conclude ϕ1 ∼R1 ϕ̃1.

Then, by Def. 6 of ∼, conclude
[
ϕ1 �R1 ϕ̃1 and ϕ̃1 �R-1

1
ϕ1

]
. Then, by Z1

, conclude
[
ϕ1 ⊕ ϕ2 �R ϕ̃1 ⊕ ϕ2 and ϕ̃1 �R-1

1
ϕ1

]
. Then, by Z4 , conclude[

ϕ1 ⊕ ϕ2 �R ϕ̃1 ⊕ ϕ2 and ϕ̃1 ⊕ ϕ2 �R-1 ϕ1 ⊕ ϕ2

]
. Then, by Def. 6 of ∼,

conclude ϕ1⊕ϕ2 'R ϕ̃1⊕ϕ2. Then, by Def. 6 of ∼, conclude ϕ1⊕ϕ2 ' ϕ̃1⊕ϕ2.
ut

22

C Proof of Theorem 3

The scope of auxiliary propositions and auxiliary lemmas in this section is limited
to this section.

C.1 Sketch

Let R = {(s, s) | s ∈ Sf} be a candidate bisimulation relation (Prop. 10). First,
we prove JγK �R Jflip(γ)K (Lemma 1). The main step in this proof is that we show
that information flows resulting from pushes are equivalent to information flows
resulting from corresponding reverse-pulls and vice versa (only the initiative
changes, but initiative is not part of the semantics). A proof for Jflip(γ)K �R-1 JγK
is similar (Lemma 2). The theorem subsequently follows by Def. 6 of ∼ (i.e., the
candidate bisimulation relation R is, indeed, a bisimulation relation).

C.2 Propositions and Lemmas

Antecedent:

Proposition 1. CanFlip(γ)

By Def. 1:

Proposition 2. γ = (Sc,�c,�c, ,)

Proposition 3. flip(γ) = (S̃c, �̃c, �̃c,
∼
,
∼

)

By Def. 3:

Proposition 4. JγK = (Sf ,�f ,�f ,)

Proposition 5. Jflip(γ)K = (S̃f , �̃f , �̃f ,
∼

)

Proposition 6. Sf = Sc

and �f = �c

and �f = �c

and = {t 7→ t ∪ (
t

)-1 | t ∈ T}

Proposition 7. S̃f = S̃c

and �̃f = �̃c

and �̃f = �̃c

and
∼

= {t 7→ ∼ t ∪ (
∼ t

)-1 | t ∈ T}

Proposition 8.
[[
s ∈ �tf implies s ∈ Sf

]
for all s, t

]
and

[[
s ∈ �tf implies s ∈ Sf

]
for all s, t

]
and

[[
s

t
s′ implies s, s′ ∈ Sf

]
for all s, s′, t

]

23

Proposition 9.
[[
s ∈ �̃tf implies s ∈ S̃f

]
for all s, t

]
and

[[
s ∈ �̃tf implies s ∈ S̃f

]
for all s, t

]
and

[[
s
∼ t

s′ implies s, s′ ∈ S̃f

]
for all s, s′, t

]
Proposition 10. R = {(s, s) | s ∈ Sf}

By Fig. 6:

Proposition 11. S̃c = Sc

and �̃c = �c

and �̃c = �c

and
∼

= {t 7→ (
t

)-1 | t ∈ T}
and

∼
= {t 7→ (

t
)-1 | t ∈ T}

24

Lemma 1. JγK �R Jflip(γ)K

Proof. Observe:

Z1 Suppose:
s

t
s′ for some s, s′, t

Then, conclude s′ (
t

)-1 s. Then, conclude (s′, s) ∈ {t̂ 7→ (
t̂

)-1 | t̂ ∈ T}(t).
Then, by Prop. 11, conclude s′

∼ t
s. Then, conclude s (

∼ t
)-1 s′.

Z2 Suppose:
s (

t
)-1 s′ for some s, s′, t

Then, conclude (s, s′) ∈ {t̂ 7→ (
t̂

)-1 | t̂ ∈ T}(t). Then, by Prop. 11, conclude
s
∼ t

s′.

Z3 Suppose:
s

t
s′ for some s, s′, t

Then, by Prop. 6, conclude (s, s′) ∈ {t̂ 7→ t̂ ∪ (
t̂

)-1 | t̂ ∈ T}(t). Then,
conclude (s, s′) ∈ t ∪ (

t
)-1. Then, conclude

[
s

t
s′ or s (

t
)-1 s′

]
.

Then, by Z1 , conclude
[
s (
∼ t

)-1 s′ or s (
t

)-1 s′
]
. Then, by Z2 , conclude[

s (
∼ t

)-1 s′ or s
∼ t

s′
]
. Then, conclude (s, s′) ∈ (

∼ t
)-1 ∪ ∼ t . Then,

conclude (s, s′) ∈ {t̂ 7→ (
∼ t̂

)-1 ∪ ∼ t̂ | t̂ ∈ T}(t). Then, by Prop. 7 conclude
s
∼ t

s′.

Z4 Suppose:
s
∼ t

s′ for some s, s′, t

Then, by Prop. 9, conclude s, s′ ∈ S̃f . Then, by Prop. 7, conclude s, s′ ∈ S̃c.
Then, by Prop. 11, conclude s, s′ ∈ Sc. Then, by Prop. 6, conclude s, s′ ∈ Sf .
Then, conclude (s, s), (s, s′) ∈ {(ŝ, ŝ) | ŝ ∈ Sf}. Then, by Prop. 10, conclude[
s R s and s′ R s′

]
.

Z5 Suppose:
s1

t · · · t
sn for some n, s1, . . . , sn

Then, by Z3 , conclude s1
∼ t · · · ∼ t sn. Then, by Z4 , conclude:

s1
∼ t · · · ∼ t sn and s1 R s1 and sn R sn

Then, conclude
[
s1
∼ t + sn and s1 R s1 and sn R sn

]
.

Z6 Suppose:
s

t + s′ for some s, s′, t

Then, conclude:[
s1

t · · · t
sn and s = s1 and s′ = sn

]
for some n, s1, . . . , sn

Then, by Z5 , conclude:

s1
∼ t + sn and s1 R s1 and sn R sn and s = s1 and s′ = sn

Then, conclude
[
s1
∼ t + sn and s R s1 and s′ R sn

]
.

25

Z7 Suppose:
s ∈ �̃tf for some s, t

Then, by Prop. 9, conclude s ∈ S̃f . Then, by Prop. 7, conclude s ∈ S̃c. Then,
by Prop. 11, conclude s ∈ Sc. Then, by Prop. 6, conclude s ∈ Sf . Then,
conclude (s, s) ∈ {(ŝ, ŝ) | ŝ ∈ Sf}. Then, by Prop. 10, conclude s R s.

Z8 Suppose:
s ∈ �̃tf for some s, t

Then, by a reduction similar to Z7 , conclude s R s.

Z9 Suppose:
s ∈ �tf for some s, t

Then, by Prop. 6, conclude s ∈ �tc. Then, by Prop. 11, conclude s ∈ �̃tc.
Then, by Prop. 7, conclude s ∈ �̃tf . Then, by Z7 , conclude

[
s ∈ �̃tf and s R

s
]
. Then, conclude

[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]
.

Z0 Suppose:
s ∈ �tf for some s, t

Then, by a reduction similar to Z9 , conclude:[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

Y1 Suppose:
s R s̃ for some s, s̃

Then, by Prop. 10, conclude (s, s̃) ∈ {(ŝ, ŝ) | ŝ ∈ Sf}. Then, conclude s, s̃ ∈
Sf . Then, conclude (s, s̃) ∈ Sf×Sf . Then, by Prop. 6, conclude (s, s̃) ∈ Sf×Sc.
Then, by Prop. 11, conclude (s, s̃) ∈ Sf × S̃c. Then, by Prop. 7, conclude
(s, s̃) ∈ Sf × S̃f .

Y2 By Y1 , conclude
[[
s R s̃ implies (s, s̃) ∈ Sf × S̃f

]
for all s, s̃

]
. Then,

conclude R ⊆ Sf × S̃f .

Y3 Suppose:
s ∈ Sf for some s

Then, conclude s ∈ Dom({(ŝ, ŝ) | ŝ ∈ Sf}). Then, by Prop. 10, conclude
s ∈ Dom(R).

Y4 By Y3 , conclude
[[
s ∈ Sf implies s ∈ Dom(R)

]
for all s

]
. Then, conclude

Sf ⊆ Dom(R).

Prove the lemma by the following reduction. By Z6 , conclude:

[
s

t + s′ implies

[[
s̃
∼ t + s̃′ and s R s̃ and s′ R s̃′

]
for some s̃, s

]]
for all s, s′, t

26

Then, by Z9 Z0 , conclude:

[[
s

t + s′ implies

[[
s̃
∼ t + s̃′ and s R s̃ and s′ R s̃′

]
for some s̃, s

]]
for all s̃, s̃′

]
and

[[
s ∈ �tf implies

[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]]
for all s, t

]
and

[[
s ∈ �tf implies

[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]]
for all s, t

]
Then, by Y2 , conclude:

[[
s

t + s′ implies

[[
s̃
∼ t + s̃′ and s R s̃ and s′ R s̃′

]
for some s̃, s

]]
for all s̃, s̃′

]
and

[[
s ∈ �tf implies

[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]]
for all s, t

]
and

[[
s ∈ �tf implies

[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]]
for all s, t

]
and R ⊆ Sf × S̃f

Then, by Y4 , conclude:

[[
s

t + s′ implies

[[
s̃
∼ t + s̃′ and s R s̃ and s′ R s̃′

]
for some s̃, s

]]
for all s̃, s̃′

]
and

[[
s ∈ �tf implies

[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]]
for all s, t

]
and

[[
s ∈ �tf implies

[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]]
for all s, t

]
and R ⊆ Sf × S̃f and Sf ⊆ Dom(R)

Then, by Def. 5 of �, conclude (Sf ,�f ,�f , f) �R (S̃f , �̃f , �̃f ,
∼

f). Then, by
Prop. 4, conclude JγK �R (S̃f , �̃f , �̃f ,

∼
f). Then, by Prop. 5, conclude:

JγK �R Jflip(γ)K

ut

Lemma 2. Jflip(γ)K �R JγK

Proof. Prove the lemma by a reduction similar to the proof of Lemma 1. ut

27

C.3 Proof

Proof. Observe:

Z1 Conclude {(s, s) | s ∈ Sf} = {(s, s) | s ∈ Sf}-1. Then, by Prop. 10, conclude
R = R-1. Then, by Lemma 2, conclude

[
R = R-1 and Jflip(γ)K �R JγK

]
.

Then, conclude Jflip(γ)K �R-1 JγK.

Prove the theorem by the following reduction. By Lemma 1, conclude:

JγK �R Jflip(γ)K

Then, by Z1 , conclude
[
JγK �R Jflip(γ)K and Jflip(γ)K �R-1 JγK

]
. Then, by

Def. 6 of ∼, conclude JγK ∼R Jflip(γ)K. Then, by Def. 6 of ∼, conclude:

JγK ∼ Jflip(γ)K

ut

28

D Proof of Theorem 4

The scope of auxiliary propositions and auxiliary lemmas in this section is limited
to this section.

D.1 Sketch

Let R = {(s, s) | s ∈ Sf \ {s}} ∪ {(s, s1), (s, s2)} be a candidate bisimulation
relation (Prop. 21).

First, we prove JγK �R Jsplit(γ; s, s1, s2, T1)K (Lemma 7). To do this, we first
show that information flows resulting from pushes from a service s to a service s′

in γ can be R-mimicked by split(γ; s, s1, s2, T1) (Lemma 3). The main step in
this proof is that we show that information flows resulting from pushes in γ
that involve s (the service to split) can be mimicked with information flows that
involve s1 or s2 in split(γ; s, s1, s2, T1); information flows resulting from pushes
in γ that do not involve s are identical in split(γ; s, s1, s2, T1). Similarly, infor-
mation flows resulting from pulls in γ can be R-mimicked by split(γ; s, s1, s2, T1)
(Lemma 4).

Subsequently, we show that production responsibilities in γ are R-mimicked
by production responsibilities in split(γ; s, s1, s2, T1) (Lemma 5). The main step
in this proof is that we show that production responsibilities of s are mimicked
by s1 and s2; production responsibilities of other services in γ are identical
in split(γ; s, s1, s2, T1). Similarly, consumption responsibilities in γ can be R-
mimicked by consumption responsibilities in split(γ; s, s1, s2, T1) (Lemma 6).

Using antecedent CanSplit(γ; s, s1, s2, T1), Lemmas 3, 4, 5, and 6, we subse-
quently prove Lemma 7. A proof for Jsplit(γ; s, s1, s2, T1)K �R-1 JγK is similar
(Lemma 8). The theorem subsequently follows by Def. 6 of ∼ (i.e., the candidate
bisimulation relation R is, indeed, a bisimulation relation).

D.2 Propositions and Lemmas

Antecedent:

Proposition 12. CanSplit(γ)

By Def. 1:

Proposition 13. γ = (Sc,�c,�c, ,)

Proposition 14. split(γ; s, s1, s2, T1) = (S̃c, �̃c, �̃c,
∼
,
∼

)

Proposition 15.
[[
s ∈ �tc implies s ∈ Sc

]
for all s, t

]
and

[[
s ∈ �tc implies s ∈ Sc

]
for all s, t

]
and

[[
s

t
s′ implies s, s′ ∈ Sc

]
for all s, s′, t

]
and

[[
s

t
s′ implies s, s′ ∈ Sc

]
for all s, s′, t

]

29

Proposition 16.
[[
s ∈ �̃tc implies s ∈ S̃c

]
for all s, t

]
and

[[
s ∈ �̃tc implies s ∈ S̃c

]
for all s, t

]
and

[[
s
∼ t

s′ implies s, s′ ∈ S̃c

]
for all s, s′, t

]
and

[[
s
∼ t

s′ implies s, s′ ∈ S̃c

]
for all s, s′, t

]
By Def. 3:

Proposition 17. JγK = (Sf ,�f ,�f ,)

Proposition 18. Jsplit(γ; s, s1, s2, T1)K = (S̃f , �̃f , �̃f ,
∼

)

Proposition 19. Sf = Sc

and �f = �c

and �f = �c

and = {t 7→ t ∪ (
t

)-1 | t ∈ T}

Proposition 20. S̃f = S̃c

and �̃f = �̃c

and �̃f = �̃c

and
∼

= {t 7→ ∼ t ∪ (
∼ t

)-1 | t ∈ T}

Proposition 21. R = {(s, s) | s ∈ Sf \ {s}} ∪ {(s, s1), (s, s2)}

By Fig. 5:

Proposition 22. s ∈ Sc and s1, s2 /∈ Sc

By Fig. 6:

Proposition 23. S̃c = (Sc \ {s}) ∪ {s1, s2}
and �̃c = {t 7→ �tc[s1/{s}] | t ∈ T1}

∪ {t 7→ �tc[s2/{s}] | t /∈ T1}
and �̃c = {t 7→ �tc[s1/{s}] | t ∈ T1}

∪ {t 7→ �tc[s2/{s}] | t /∈ T1}
and

∼
= {t 7→ {(s1, s)} ◦

t ◦ {(s, s1)} | t ∈ T1}
∪ {t 7→ {(s2, s)} ◦

t ◦ {(s, s2)} | t /∈ T1}
and

∼
= {t 7→ {(s1, s)} ◦

t ◦ {(s, s1)} | t ∈ T1}
∪ {t 7→ {(s2, s)} ◦

t ◦ {(s, s2)} | t /∈ T1}

30

Lemma 3. s
t
s′ implies

[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′

]

Proof. Assumptions:

A1 s
t
s′

Observe:

Z1 Suppose
[
s = s and s′ = s

]
. Then, by A1 , conclude:

s = s and s′ = s and s
t
s′

Then, conclude s
t
s. Then, conclude (s1, s1) ∈ {(s1, s)} ◦

t ◦ {(s, s1)}.

Z2 Suppose
[
s = s and s′ = s and t ∈ T1

]
. Then, by Z1 , conclude:

(s1, s1) ∈ {(s1, s)} ◦
t ◦ {(s, s1)} and t ∈ T1

Then, conclude (s1, s1) ∈ {t̂ 7→ {(s1, s)} ◦
t̂ ◦ {(s, s1)} | t̂ ∈ T1}(t). Then,

conclude:

(s1, s1) ∈
(
{t̂ 7→ {(s1, s)} ◦

t̂ ◦ {(s, s1)} | t̂ ∈ T1}
∪ {t̂ 7→ {(s2, s)} ◦

t̂ ◦ {(s, s2)} | t̂ /∈ T1}

)
(t)

Then, by Prop. 23, conclude s1
∼ t

s1.

Z3 Suppose
[
s = s and s′ = s and t /∈ T1

]
. Then, by a reduction similar to

Z2 , conclude s2
∼ t

s2.

Z4 Conclude (s, s1) ∈ {(s, s1), (s, s2)}. Then, conclude:

(s, s1) ∈ {(s, s) | s ∈ Sf \ {s}} ∪ {(s, s1), (s, s2)}

Then, by Prop. 21, conclude s R s1.

Z5 By a reduction similar to Z4 , conclude s R s2.

Z6 Suppose:
ŝ = s for some ŝ

Then, by Z4 , conclude
[
ŝ = s and s R s1

]
. Then, conclude ŝ R s1.

Z7 Suppose:
ŝ = s for some ŝ

Then, by a reduction similar to Z6 , conclude ŝ R s2.

Z8 Suppose
[
s = s and s′ = s and t ∈ T1

]
. Then, by Z2 , conclude:

s = s and s′ = s and s1
∼ t

s1

Then, by Z6 , conclude
[
s1
∼ t

s1 and s R s1 and s′ R s1
]
. Then, con-

clude
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]
.

31

Z9 Suppose
[
s = s and s′ = s and t /∈ T1

]
. Then, by a reduction similar to

Z8 , conclude
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]
.

Z0 Suppose
[
s = s and s′ 6= s

]
. Then, by A1 , conclude:

s = s and s′ 6= s and s
t
s′

Then, conclude
[
s

t
s′ and s′ 6= s

]
. Then, conclude:

(s1, s
′) ∈ {(s1, s)} ◦

t ◦ {(s, s1)}

Y1 Suppose
[
s = s and s′ 6= s and t ∈ T1

]
. Then, by Z0 , conclude:

(s1, s
′) ∈ {(s1, s)} ◦

t ◦ {(s, s1)} and t ∈ T1

Then, conclude (s1, s
′) ∈ {t̂ 7→ {(s1, s)} ◦

t̂ ◦ {(s, s1)} | t̂ ∈ T1}(t). Then,
conclude:

(s1, s
′) ∈

(
{t̂ 7→ {(s1, s)} ◦

t̂ ◦ {(s, s1)} | t̂ ∈ T1}
∪ {t̂ 7→ {(s2, s)} ◦

t̂ ◦ {(s, s2)} | t̂ /∈ T1}

)
(t)

Then, by Prop. 23, conclude s1
∼ t

s′.

Y2 Suppose
[
s = s and s′ 6= s and t /∈ T1

]
. Then, by a reduction similar to

Y1 , conclude s2
∼ t

s′.

Y3 Suppose
[
s 6= s and s′ = s and t ∈ T1

]
. Then, by a reduction similar to

Y1 , conclude s
∼ t

s1.

Y4 Suppose
[
s 6= s and s′ = s and t /∈ T1

]
. Then, by a reduction similar to

Y1 , conclude s
∼ t

s2.

Y5 From A1 , conclude s
t
s′. Then, by Prop. 15, conclude s, s′ ∈ Sc.

Y6 Suppose s′ 6= s. Then, by Y5 , conclude
[
s′ ∈ Sc and s′ 6= s

]
. Then, conclude[

s′ ∈ Sc and s′ /∈ {s}
]
. Then, conclude s′ ∈ Sc \ {s}. Then, by Prop. 19,

conclude s′ ∈ Sf \ {s}. Then, conclude (s′, s′) ∈ {(ŝ, ŝ) | ŝ ∈ Sf \ {s}}. Then,
conclude (s′, s′) ∈ {(ŝ, ŝ) | ŝ ∈ Sf \{s}}∪{(s, s1), (s, s2)}. Then, by Prop. 21,
conclude s′ R s′.

Y7 Suppose s 6= s. Then, by a reduction similar to Y6 , conclude s R s.

Y8 Suppose
[
s = s and s′ 6= s

]
. Then, by Y6 , conclude

[
s = s and s′ R s′

]
.

Then, by Z6 , conclude
[
s R s1 and s′ R s′

]
.

Y9 Suppose
[
s = s and s′ 6= s

]
. Then, by a reduction similar to Y8 , conclude[

s R s2 and s′ R s′
]
.

Y0 Suppose
[
s 6= s and s′ = s

]
. Then, by a reduction similar to Y8 , conclude[

s R s and s′ R s1
]
.

32

X1 Suppose
[
s 6= s and s′ = s

]
. Then, by a reduction similar to Y8 , conclude[

s R s and s′ R s2
]
.

X2 Suppose
[
s = s and s′ 6= s and t ∈ T1

]
. Then, by Y1 , conclude:

s = s and s′ 6= s and s1
∼ t

s′

Then, by Y8 , conclude
[
s1
∼ t

s′ and s R s1 and s′ R s′
]
. Then, conclude[[

s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]
.

X3 Suppose
[
s = s and s′ 6= s and t /∈ T1

]
. Then, by a reduction similar to

X2 , conclude
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]
.

X4 Suppose
[
s 6= s and s′ = s and t ∈ T1

]
. Then, by a reduction similar to

X2 , conclude
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]
.

X5 Suppose
[
s 6= s and s′ = s and t /∈ T1

]
. Then, by a reduction similar to

X2 , conclude
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]
.

X6 Suppose
[
s 6= s and s′ 6= s

]
. Then, by A1 , conclude:

s 6= s and s′ 6= s and s
t
s′

Then, conclude (s, s′) ∈ {(s1, s)} ◦
t ◦ {(s, s1)}.

X7 Suppose
[
s 6= s and s′ 6= s and t ∈ T1

]
. Then, by X6 , conclude:

(s, s′) ∈ {(s1, s)} ◦
t ◦ {(s, s1)} and t ∈ T1

Then, conclude (s, s′) ∈ {t̂ 7→ {(s1, s)} ◦
t̂ ◦ {(s, s1)} | t̂ ∈ T1}(t). Then,

conclude:

(s, s′) ∈
(
{t̂ 7→ {(s1, s)} ◦

t̂ ◦ {(s, s1)} | t̂ ∈ T1}
∪ {t̂ 7→ {(s2, s)} ◦

t̂ ◦ {(s, s2)} | t̂ /∈ T1}

)
(t)

Then, by Prop. 23, conclude s
∼ t

s′.

X8 Suppose
[
s 6= s and s′ 6= s and t /∈ T1

]
. Then, by a reduction similar to

Y1 , conclude s
∼ t

s′.

X9 Suppose
[
s 6= s and s′ 6= s and t ∈ T1

]
. Then, by X7 , conclude:

s
t
s′ and s 6= s and s′ 6= s and s

∼ t
s′

Then, by Y6 Y7 , conclude
[
s
∼ t

s′ and s R s and s′ R s′
]
. Then, con-

clude
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]
.

X0 Suppose
[
s 6= s and s′ 6= s and t /∈ T1

]
. Then, by a reduction similar to

X9 , conclude
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]
.

33

W1 Suppose:
s̃
∼ t

s̃′ for some s̃, s̃′

Then, conclude (s̃, s̃′) ∈ ∼ t ∪ (
∼ t

)-1. Then, conclude:

(s̃, s̃′) ∈ {t̂ 7→ ∼ t̂ ∪ (
∼ t̂

)-1 | t̂ ∈ T}(t)

Then, by Prop. 20, conclude s̃
∼ t

s̃′.

Proof the lemma by the following reduction. Conclude:[
s = s or s 6= s

]
and

[
s′ = s or s′ 6= s

]
and

[
t ∈ T1 or t /∈ T1

]
Then, conclude: [

s = s and s′ = s and t ∈ T1
]

or
[
s = s and s′ = s and t /∈ T1

]
or
[
s = s and s′ 6= s and t ∈ T1

]
or
[
s = s and s′ 6= s and t /∈ T1

]
or
[
s 6= s and s′ = s and t ∈ T1

]
or
[
s 6= s and s′ = s and t /∈ T1

]
or
[
s 6= s and s′ 6= s and t ∈ T1

]
or
[
s 6= s and s′ 6= s and t /∈ T1

]
Then, by Z8 Z9 , conclude:[[

s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

or
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

or
[
s = s and s′ 6= s and t ∈ T1

]
or
[
s = s and s′ 6= s and t /∈ T1

]
or
[
s 6= s and s′ = s and t ∈ T1

]
or
[
s 6= s and s′ = s and t /∈ T1

]
or
[
s 6= s and s′ 6= s and t ∈ T1

]
or
[
s 6= s and s′ 6= s and t /∈ T1

]
Then, by X2 X3 X4 X5 , conclude:[[

s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

or
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

or
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

or
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

or
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

or
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

or
[
s

t
s′ and s 6= s and s′ 6= s and t ∈ T1

]
or
[
s

t
s′ and s 6= s and s′ 6= s and t /∈ T1

]

34

Then, by X9 X0 , conclude:[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

or
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

or
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

or
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

or
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

or
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

or
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

or
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

Then, conclude
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]
. Then, by

W1 , conclude
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]
. ut

Lemma 4. s (
t

)-1 s′ implies

[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′

]

Proof. Prove the lemma by a reduction similar to the proof of Lemma 3

35

Lemma 5. s ∈ �tf implies
[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]
Proof. Assume:

A1 s ∈ �tf
Observe:

Z1 Suppose s = s. Then, by A1 , conclude
[
s = s and s ∈ �tf

]
. Then, conclude

s ∈ �tf . Then, conclude �tf ∩ {s} 6= ∅. Then, conclude:

�tf [s1/{s}] = (�tf \ {s}) ∪ {s1}

Then, conclude
[
�tf [s1/{s}] = (�tf \ {s}) ∪ {s1} and s1 ∈ (�tf \ {s}) ∪

{s1}
]
. Then, conclude s1 ∈ �tf [s1/{s}]. Then, by Prop. 19, conclude s1 ∈

�tc[s1/{s}].

Z2 Suppose s = s. Then, by a reduction similar to Z1 , conclude s2 ∈ �tc[s2/{s}].

Z3 Suppose
[
s = s and t ∈ T1

]
. Then, by Z1 , conclude:

s1 ∈ �tc[s1/{s}] and t ∈ T1

Then, conclude s1 ∈ {t̂ 7→ �t̂c[s1/{s}] | t̂ ∈ T1}(t). Then, conclude:

s1 ∈ ({t̂ 7→ �t̂c[s1/{s}] | t̂ ∈ T1} ∪ {t̂ 7→ �t̂c[s2/{s}] | t̂ /∈ T1})(t)

Then, by Prop. 23, conclude s1 ∈ �̃tc. Then, by Prop. 20, conclude s1 ∈ �̃tf .

Z4 Suppose
[
s = s and t /∈ T1

]
. Then, by a reduction similar to Z3 , conclude

s2 ∈ �̃tf .

Z5 Conclude (s, s1) ∈ {(s, s1), (s, s2)}. Then, conclude:

(s, s1) ∈ {(s, s) | s ∈ Sf \ {s}} ∪ {(s, s1), (s, s2)}

Then, by Prop. 21, conclude s R s1.

Z6 By a reduction similar to Z5 , conclude s R s2.

Z7 Suppose s = s. Then, by Z5 , conclude
[
s = s and s R s1

]
. Then, conclude

s R s1.

Z8 Suppose s = s. Then, by a reduction similar to Z8 , conclude s R s2.

Z9 Suppose
[
s = s and t ∈ T1

]
. Then, by Z3 , conclude:

s = s and s1 ∈ �̃tf

Then, by Z7 , conclude
[
s1 ∈ �̃tf and s R s1

]
. Then, conclude:[

s̃ ∈ �̃tf and s R s̃
]

for some s̃

36

Z0 Suppose
[
s = s and t /∈ T1

]
. Then, by a reduction similar to Z9 , conclude[[

s̃ ∈ �̃tf and s R s̃
]

for some s̃
]
.

Y1 Suppose s 6= s. Then, conclude s /∈ {s}. Then, by A1 , conclude:

s /∈ {s} and s ∈ �tf
Then, conclude s ∈ �tf \ {s}. Then, conclude:

s ∈ �tf \ {s} and
[
�tf ∩ {s} = ∅ or �tf ∩ {s} 6= ∅

]
Then, conclude:[

s ∈ �tf \ {s} and �tf ∩ {s} = ∅
]

or
[
s ∈ �tf \ {s} and �tf ∩ {s} 6= ∅

]
Then, conclude:[

s ∈ �tf \ {s} and �tf [s1/{s}] = �tf \ {s}
]

or
[
s ∈ �tf \ {s} and �tf [s1/{s}] = (�tf \ {s}) ∪ {s1}

]
Then, conclude:[

s ∈ �tf \ {s} and �tf [s1/{s}] = �tf \ {s}
]

or
[
s ∈ (�tf \ {s}) ∪ {s1} and �tf [s1/{s}] = (�tf \ {s}) ∪ {s1}

]
Then, conclude

[
s ∈ �tf [s1/{s}] or s ∈ �tf [s1/{s}]

]
. Then, conclude:

s ∈ �tf [s1/{s}]

Then, by Prop. 19, conclude s ∈ �tc[s1/{s}].

Y2 Suppose s 6= s. Then, by a reduction similar to Y1 , conclude s ∈ �tc[s2/{s}].

Y3 Suppose
[
s 6= s and t ∈ T1

]
. Then, by Y1 , conclude:

s ∈ �tc[s1/{s}] and t ∈ T1

Then, conclude s ∈ {t̂ 7→ �t̂c[s1/{s}] | t̂ ∈ T1}(t). Then, conclude:

s ∈ ({t̂ 7→ �t̂c[s1/{s}] | t̂ ∈ T1} ∪ {t̂ 7→ �t̂c[s2/{s}] | t̂ /∈ T1})(t)

Then, by Prop. 23, conclude s ∈ �̃tc. Then, by Prop. 20, conclude s ∈ �̃tf .

Y4 Suppose
[
s 6= s and t /∈ T1

]
. Then, by a reduction similar to Y3 , conclude

s ∈ �̃tf .

Y5 From A1 , conclude s ∈ �tf . Then, by Prop. 19, conclude s ∈ �tc. Then, by
Prop. 15, conclude s ∈ Sc. Then, by Prop. 19, conclude s ∈ Sf .

Y6 Suppose s 6= s. Then, conclude s /∈ {s}. Then, by Y5 , conclude:

s /∈ {s} and s ∈ Sf

Then, conclude s ∈ Sf \ {s}. Then, conclude (s, s) ∈ {(ŝ, ŝ) | ŝ ∈ Sf \ {s}}.
Then, conclude (s, s) ∈ {(ŝ, ŝ) | ŝ ∈ Sf \ {s}} ∪ {(s, s1), (s, s2)}. Then, by
Prop. 21, conclude s R s.

37

Y7 Suppose
[
s 6= s and t ∈ T1

]
. Then, by Y3 , conclude

[
s 6= s and s ∈ �̃tf

]
.

Then, by Y6 , conclude
[
s ∈ �̃tf and s R s

]
. Then, conclude:[

s̃ ∈ �̃tf and s R s̃
]

for some s̃

Y8 Suppose
[
s 6= s and t /∈ T1

]
. Then, by a reduction similar to Y7 , conclude[[

s̃ ∈ �̃tf and s R s̃
]

for some s̃
]
.

Prove the lemma by the following reduction. Conclude:[
s = s or s 6= s

]
and

[
t ∈ T1 or t /∈ T1

]
Then, conclude: [

s = s and t ∈ T1
]

or
[
s = s and t /∈ T1

]
or
[
s 6= s and t ∈ T1

]
or
[
s 6= s and t /∈ T1

]
Then, by Z9 Z0 , conclude:[[

s̃ ∈ �̃tf and s R s̃
]

for some s̃
]

or
[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]
or
[
s 6= s and t ∈ T1

]
or
[
s 6= s and t /∈ T1

]
Then, by Y7 Y8 , conclude:[[

s̃ ∈ �̃tf and s R s̃
]

for some s̃
]

or
[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]
or
[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]
or
[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]
Then, conclude

[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]
. ut

Lemma 6. s ∈ �tf implies
[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]
Proof. Prove the lemma by a reduction similar to the proof of Lemma 5

38

Lemma 7. JγK �R Jsplit(γ; s, s1, s2, T1)K

Proof. Observe:

Z1 Suppose:
s

t
s′ for some s, s′, t

Then, by Prop. 19, conclude (s, s′) ∈ {t̂ 7→ t̂ ∪ (
t̂

)-1 | t̂ ∈ T}(t). Then,
conclude (s, s′) ∈ t ∪ (

t
)-1. Then, conclude

[
s

t
s′ or s (

t
)-1 s′

]
.

Then, by Lemmas 3, 4, conclude:[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

or
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

Then, conclude
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]
.

Z2 Suppose:
s̃ ∈ Sf \ {s} for some s̃

Then, by Prop. 19 conclude s̃ ∈ Sc \ {s}. Then, conclude:

s̃ ∈ (Sc \ {s}) ∪ {s1, s2}

Then, by Prop. 23, conclude s̃ ∈ S̃c. Then, by Prop. 20, conclude s̃ ∈ S̃f .

Z3 Suppose:
(s, s̃) ∈ {(ŝ, ŝ) | ŝ ∈ Sf \ {s}} for some s, s̃

Then, conclude s, s̃ ∈ Sf \ {s}. Then, conclude
[
s ∈ Sf and s̃ ∈ Sf \ {s}

]
.

Then, by Z2 , conclude
[
s ∈ Sf and s̃ ∈ S̃f

]
. Then, conclude (s, s̃) ∈ Sf× S̃f .

Z4 Suppose:
s = s for some s

Then, by Prop. 22, conclude
[
s = s and s ∈ Sc

]
. Then, conclude s ∈ Sc.

Then, by Prop. 19, conclude s ∈ Sf .

Z5 Suppose: [
s̃ = s1 or s̃ = s2

]
for some s̃

Then, conclude s̃ ∈ {s1, s2}. Then, conclude s̃ ∈ (Sc \ {s}) ∪ {s1, s2}. Then,
by Prop. 23, conclude s̃ ∈ S̃c. Then, by Prop. 20, conclude s̃ ∈ S̃f .

Z6 Suppose:
(s, s̃) ∈ {(s, s1), (s, s2)} for some s, s̃

Then, conclude
[
s = s and

[
s̃ = s1 or s̃ = s2

]]
. Then, by Z4 , conclude[

s ∈ Sf and
[
s̃ = s1 or s̃ = s2

]]
. Then, by Z5 , conclude:

s ∈ Sf and s̃ ∈ S̃f

Then, conclude (s, s̃) ∈ Sf × S̃f .

39

Z7 Suppose:
s R s̃ for some s, s̃

Then, by Prop. 21, conclude (s, s̃) ∈ {(ŝ, ŝ) | ŝ ∈ Sf \ {s}} ∪ {(s, s1), (s, s2)}.
Then, conclude

[
(s, s̃) ∈ {(ŝ, ŝ) | ŝ ∈ Sf \ {s}} or (s, s̃) ∈ {(s, s1), (s, s2)}

]
.

Then, by Z3 , conclude
[
(s, s̃) ∈ Sf × S̃f or (s, s̃) ∈ {(s, s1), (s, s2)}

]
. Then,

by Z6 , conclude
[
(s, s̃) ∈ Sf × S̃f or (s, s̃) ∈ Sf × S̃f

]
. Then, conclude

(s, s̃) ∈ Sf × S̃f .

Z8 By Z7 , conclude
[[
s R s̃ implies (s, s̃) ∈ Sf × S̃f

]
for all s, s̃

]
. Then,

conclude R ⊆ Sf × S̃f .

Z9 Suppose:
s = s for some s

Then, conclude
[
s = s and s ∈ Dom({(s, s1), (s1, s2)})

]
. Then, conclude

s ∈ Dom({(s, s1), (s1, s2)}).

Z0 Suppose: [
s ∈ Sf and s 6= s

]
for some s

Then, conclude
[
s ∈ Sf and s /∈ {s}

]
. Then, conclude s ∈ Sf \ {s}. Then,

conclude s ∈ Dom({(ŝ, ŝ) | ŝ ∈ Sf \ {s}}).

Y1 Suppose:
s ∈ Sf for some s

Then, conclude
[
s ∈ Sf and

[
s = s or s 6= s

]]
. Then, conclude:

s = s or
[
s ∈ Sf and s 6= s

]
Then, by Z9 , conclude:

s ∈ Dom({(s, s1), (s1, s2)}) or
[
s ∈ Sf and s 6= s

]
Then, by Z0 , conclude:

s ∈ Dom({(s, s1), (s1, s2)}) or s ∈ Dom({(ŝ, ŝ) | ŝ ∈ Sf \ {s}})

Then, conclude s ∈ Dom({(s, s1), (s1, s2)}) ∪ Dom({(ŝ, ŝ) | ŝ ∈ Sf \ {s}}).
Then, conclude s ∈ Dom({(s, s1), (s1, s2)}∪{(ŝ, ŝ) | ŝ ∈ Sf \{s}}). Then, by
Prop. 21, conclude s ∈ Dom(R).

Y2 By Y1 , conclude
[[
s ∈ Sf implies s ∈ Dom(R)

]
for all s

]
. Then, conclude

Sf ⊆ Dom(R).

Prove the lemma by the following reduction. By Z1 , conclude:

[
s

t + s′ implies

[[
s̃
∼ t + s̃′ and s R s̃ and s′ R s̃′

]
for some s̃, s

]]
for all s, s′, t

40

Then, by Lemmas 5, 6, conclude:

[[
s

t + s′ implies

[[
s̃
∼ t + s̃′ and s R s̃ and s′ R s̃′

]
for some s̃, s

]]
for all s̃, s̃′

]
and

[[
s ∈ �tf implies

[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]]
for all s, t

]
and

[[
s ∈ �tf implies

[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]]
for all s, t

]
Then, by Z8 , conclude:

[[
s

t + s′ implies

[[
s̃
∼ t + s̃′ and s R s̃ and s′ R s̃′

]
for some s̃, s

]]
for all s̃, s̃′

]
and

[[
s ∈ �tf implies

[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]]
for all s, t

]
and

[[
s ∈ �tf implies

[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]]
for all s, t

]
and R ⊆ Sf × S̃f

Then, by Y2 , conclude:

[[
s

t + s′ implies

[[
s̃
∼ t + s̃′ and s R s̃ and s′ R s̃′

]
for some s̃, s

]]
for all s̃, s̃′

]
and

[[
s ∈ �tf implies

[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]]
for all s, t

]
and

[[
s ∈ �tf implies

[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]]
for all s, t

]
and R ⊆ Sf × S̃f and Sf ⊆ Dom(R)

Then, by Def. 5 of �, conclude (Sf ,�f ,�f , f) �R (S̃f , �̃f , �̃f ,
∼

f). Then, by
Prop. 17, conclude JγK �R (S̃f , �̃f , �̃f ,

∼
f). Then, by Prop. 18, conclude:

JγK �R Jsplit(γ; s, s1, s2, T1)K

ut

Lemma 8. Jsplit(γ; s, s1, s2, T1)K �R-1 JγK

Proof. Prove the lemma by a reduction similar to the proof of Lemma 7. ut

41

D.3 Proof

Proof. Prove the theorem by the following reduction. By Lemma 7, conclude:

JγK �R Jsplit(γ; s, s1, s2, T1)K

Then, by Lemma 8, conclude:

JγK �R Jsplit(γ; s, s1, s2, T1)K and Jsplit(γ; s, s1, s2, T1)K �R-1 JγK

Then, by Def. 6 of ∼, conclude JγK ∼R Jsplit(γ; s, s1, s2, T1)K. Then, by Def. 6
of ∼, conclude JγK ∼ Jsplit(γ; s, s1, s2, T1)K. ut

42

E Proof of Theorem 5

The scope of auxiliary propositions and auxiliary lemmas in this section is limited
to this section.

E.1 Sketch

Let R = {(s, s) | s ∈ Sf \S}∪{(s, s) | s ∈ S} be a candidate bisimulation relation
(Prop. 33).

First, we prove JγK �R Jmerge(γ;S, s)K (Lemma 13). To do this, we first show
that information flows resulting from pushes from a service s to a service s′ in γ
can be R-mimicked by merge(γ;S, s) (Lemma 9). The main step in this proof is
that we show that information flows resulting from pushes in γ that involve a
service in S (the services to merge) can be mimicked with information flows that
involve s in merge(γ;S, s); information flows resulting from pushes in γ that do
not involve a service in S are identical in merge(γ;S, s). Similarly, information
flows resulting from pulls in γ can be R-mimicked by merge(γ;S, s) (Lemma 10).

Subsequently, we show that production responsibilities in γ are R-mimicked
by production responsibilities in merge(γ;S, s) (Lemma 11). The main step in
this proof is that we show that production responsibilities of services in S are
mimicked by s; production responsibilities of other services in γ are identical
in merge(γ;S, s). Similarly, consumption responsibilities in γ can be R-mimicked
by consumption responsibilities in merge(γ;S, s) (Lemma 12).

Using antecedent CanMerge(γ;S, s), Lemmas 9, 10, 11, and 12, we sub-
sequently prove Lemma 13. A proof for Jmerge(γ;S, s)K �R-1 JγK is similar
(Lemma 14). The theorem subsequently follows by Def. 6 of ∼ (i.e., the can-
didate bisimulation relation R is, indeed, a bisimulation relation).

E.2 Propositions and Lemmas

Antecedent:

Proposition 24. CanMerge(γ;S, s)

By Def. 1:

Proposition 25. γ = (Sc,�c,�c, ,)

Proposition 26. merge(γ;S, s) = (S̃c, �̃c, �̃c,
∼
,
∼

)

Proposition 27.
[[
s ∈ �tc implies s ∈ Sc

]
for all s, t

]
and

[[
s ∈ �tc implies s ∈ Sc

]
for all s, t

]
and

[[
s

t
s′ implies s, s′ ∈ Sc

]
for all s, s′, t

]
and

[[
s

t
s′ implies s, s′ ∈ Sc

]
for all s, s′, t

]
Proposition 28.

[[
s ∈ �̃tc implies s ∈ S̃c

]
for all s, t

]
and

[[
s ∈ �̃tc implies s ∈ S̃c

]
for all s, t

]
and

[[
s
∼ t

s′ implies s, s′ ∈ S̃c

]
for all s, s′, t

]
and

[[
s
∼ t

s′ implies s, s′ ∈ S̃c

]
for all s, s′, t

]
43

By Def. 3:

Proposition 29. JγK = (Sf ,�f ,�f ,)

Proposition 30. Jmerge(γ;S, s)K = (S̃f , �̃f , �̃f ,
∼

)

Proposition 31. Sf = Sc

and �f = �c

and �f = �c

and = {t 7→ t ∪ (
t

)-1 | t ∈ T}

Proposition 32. S̃f = S̃c

and �̃f = �̃c

and �̃f = �̃c

and
∼

= {t 7→ ∼ t ∪ (
∼ t

)-1 | t ∈ T}

Proposition 33. R = {(s, s) | s ∈ Sf \ S} ∪ {(s, s) | s ∈ S}

By Fig. 5:

Proposition 34. S ⊆ Sc and s /∈ Sc

By Fig. 6:

Proposition 35. S̃c = (Sc \ S) ∪ {s}
and �̃c = {t 7→ �tc[s/S] | t ∈ T}
and �̃c = {t 7→ �tc[s/S] | t ∈ T}
and

∼
= {t 7→ ({s} × S) ◦ t ◦ (S × {s}) | t ∈ T}

and
∼

= {t 7→ ({s} × S) ◦ t ◦ (S × {s}) | t ∈ T}

44

Lemma 9. s
t
s′ implies

[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′

]
Proof. Assumptions:

A1 s
t
s′

Observe:

Z1 Suppose s, s′ ∈ S. Then, conclude
[
(s, s) ∈ {s} × S and (s′, s) ∈ S × {s}

]
.

Then, by A1 , conclude:

(s, s) ∈ {s} × S and (s′, s) ∈ S × {s} and s
t
s′

Then, conclude (s, s) ∈ ({s} × S) ◦ t ◦ (S × {s}). Then, conclude:

(s, s) ∈ {t̂ 7→ ({s} × S) ◦ t̂ ◦ (S × {s}) | t̂ ∈ T}

Then, by Prop. 35, conclude s
∼ t

s.

Z2 Suppose:
ŝ ∈ S for some ŝ

Then, conclude (ŝ, s) ∈ {(š, s) | š ∈ S}. Then, conclude:

(ŝ, s) ∈ {(š, š) | š ∈ Sf \ S}{(š, s) | š ∈ S}

Then, by Prop. 33, conclude ŝ R s.

Z3 Suppose s, s′ ∈ S. Then, by Z1 , conclude
[
s, s′ ∈ S and s

∼ t
s
]
. Then, by

Z5 , conclude
[
s
∼ t

s and s R s and s′ R s
]
. Then, conclude:[

s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′

Z4 Suppose
[
s ∈ S and s′ /∈ S

]
. Then, conclude

[
(s, s) ∈ {s}×S and s′ /∈ S

]
.

Then, by A1 , conclude
[
(s, s) ∈ {s} × S and s′ /∈ S and s

t
s′
]
. Then,

conclude (s, s′) ∈ ({s} × S) ◦ t ◦ (S × {s}). Then, conclude:

(s, s′) ∈ {t̂ 7→ ({s} × S) ◦ t̂ ◦ (S × {s}) | t̂ ∈ T}

Then, by Prop. 35, conclude s
∼ t

s′.

Z5 Suppose
[
s /∈ S and s′ ∈ S

]
. Then, by a reduction similar to Y1 , conclude

s
∼ t

s.

Z6 From A1 , conclude s
t
s′. Then, by Prop. 27, conclude s, s′ ∈ Sc.

Z7 Suppose s′ /∈ S. Then, by Z6 , conclude
[
s′ ∈ Sc and s′ /∈ S

]
. Then, con-

clude s′ ∈ Sc \ S. Then, by Prop. 31, conclude s′ ∈ Sf \ S. Then, conclude
(s′, s′) ∈ {(ŝ, ŝ) | ŝ ∈ Sf \ S}. Then, conclude:

(s′, s′) ∈ {(ŝ, ŝ) | ŝ ∈ Sf \ S} ∪ {(ŝ, s) | ŝ ∈ S}

Then, by Prop. 33, conclude s′ R s′.

45

Z8 Suppose s /∈ S. Then, by a reduction similar to Z7 , conclude s R s.

Z9 Suppose
[
s ∈ S and s′ /∈ S

]
. Then, by Z7 , conclude

[
s = s and s′ R s′

]
.

Then, by Z2 , conclude
[
s R s and s′ R s′

]
.

Z0 Suppose
[
s /∈ S and s′ ∈ S

]
. Then, by a reduction similar to Z9 , conclude[

s R s and s′ R s
]
.

Y1 Suppose
[
s ∈ S and s′ /∈ S

]
. Then, by Z4 , conclude:

s ∈ S and s′ /∈ S and s
∼ t

s′

Then, by Z9 , conclude
[
s1
∼ t

s′ and s R s and s′ R s′
]
. Then, conclude[[

s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]
.

Y2 Suppose
[
s /∈ S and s′ ∈ S

]
. Then, by a reduction similar to Y1 , conclude[[

s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]
.

Y3 Suppose s, s′ /∈ S. Then, by A1 , conclude
[
s, s′ /∈ S and s

t
s′
]
. Then,

conclude (s, s′) ∈ ({s} × S) ◦ t ◦ (S × {s}). Then, conclude:

(s, s′) ∈ {t̂ 7→ ({s} × S) ◦ t̂ ◦ (S × {s}) | t̂ ∈ T}

Then, by Prop. 35, conclude s
∼ t

s′.

Y4 Suppose s, s′ /∈ S. Then, by Y3 , conclude
[
s, s′ /∈ S and s

∼ t
s′
]
. Then,

by Z7 Z8 , conclude
[
s
∼ t

s′ and s R s and s′ R s′
]
. Then, conclude[[

s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]
.

Y5 Suppose:
s̃
∼ t

s̃′ for some s̃, s̃′

Then, conclude (s̃, s̃′) ∈ ∼ t ∪ (
∼ t

)-1. Then, conclude:

(s̃, s̃′) ∈ {t̂ 7→ ∼ t̂ ∪ (
∼ t̂

)-1 | t̂ ∈ T}(t)

Then, by Prop. 32, conclude s̃
∼ t

s̃′.

Proof the lemma by the following reduction. Conclude:[
s ∈ S or s /∈ S

]
and

[
s′ ∈ S or s′ /∈ S

]
Then, conclude:

s, s′ ∈ S or
[
s ∈ S and s′ /∈ S

]
or
[
s /∈ S and s′ ∈ S

]
or s, s′ /∈ S

Then, by Z3 , conclude:[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

or
[
s ∈ S and s′ /∈ S

]
or
[
s /∈ S and s′ ∈ S

]
or s, s′ /∈ S

46

Then, by Y1 Y2 , conclude:[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

or
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

or
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

or s, s′ /∈ S

Then, by Y4 , conclude:[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

or
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

or
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

or
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

Then, conclude
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]
. Then, by

Y5 , conclude
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]
. ut

Lemma 10. s (
t

)-1 s′ implies

[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′

]

Proof. Prove the lemma by a reduction similar to the proof of Lemma 9

47

Lemma 11. s ∈ �tf implies
[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]
Proof. Assume:

A1 s ∈ �tf
Observe:

Z1 Suppose s ∈ S. Then, by A1 , conclude
[
s ∈ S and s ∈ �tf

]
. Then, conclude

S ∩ �tf 6= ∅. Then, conclude �tf [s/S] = (�tf \ S) ∪ {s}. Then, conclude[
�tf [s/S] = (�tf \ S) ∪ {s} and s ∈ (�tf \ S) ∪ {s}

]
. Then, conclude:

s ∈ �tf [s/S]

Then, by Prop. 31, conclude s ∈ �tc[s/S]. Then, conclude:

s ∈ {t̂ 7→ �t̂c[s/S] | t̂ ∈ T}(t)

Then, by Prop. 35, conclude s ∈ �̃tc. Then, by Prop. 32, conclude s ∈ �̃tf .

Z2 Suppose:
ŝ ∈ S for some ŝ

Then, conclude (ŝ, s) ∈ {(š, s) | š ∈ S}. Then, conclude:

(ŝ, s) ∈ {(š, š) | š ∈ Sf \ S}{(š, s) | š ∈ S}

Then, by Prop. 33, conclude ŝ R s.

Z3 Suppose s ∈ S. Then, by Z1 , conclude
[
s ∈ S and s ∈ �̃tf

]
. Then, by Z2 ,

conclude
[
s ∈ �̃tf and s R s

]
. Then, conclude:[

s̃ ∈ �̃tf and s R s̃
]

for some s̃

Z4 Suppose s /∈ S. Then, conclude s /∈ S. Then, by A1 , conclude:

s /∈ S and s ∈ �tf

Then, conclude s ∈ �tf \ S. Then, conclude:

s ∈ �tf \ S and
[
�tf ∩ S = ∅ or �tf ∩ S 6= ∅

]
Then, conclude:[

s ∈ �tf \ S and �tf ∩ S = ∅
]

or
[
s ∈ �tf \ S and �tf ∩ S 6= ∅

]
Then, conclude: [

s ∈ �tf \ S and �tf [s/S] = �tf \ S
]

or
[
s ∈ �tf \ S and �tf [s/S] = (�tf \ S) ∪ {s}

]
48

Then, conclude:[
s ∈ �tf \ S and �tf [s/S] = �tf \ S

]
or
[
s ∈ (�tf \ S) ∪ {s} and �tf [s/S] = (�tf \ S) ∪ {s}

]
Then, conclude

[
s ∈ �tf [s/S] or s ∈ �tf [s/S]

]
. Then, conclude s ∈ �tf [s/S].

Then, by Prop. 31, conclude s ∈ �tc[s/S]. Then, conclude:

s ∈ {t̂ 7→ �t̂c[s1/S] | t̂ ∈ T}(t)

Then, by Prop. 35, conclude s ∈ �̃tc. Then, by Prop. 32, conclude s ∈ �̃tf .

Z5 From A1 , conclude s ∈ �tf . Then, by Prop. 31, conclude s ∈ �tc. Then, by
Prop. 27, conclude s ∈ Sc.

Z6 Suppose s /∈ S. Then, by Z5 , conclude
[
s ∈ Sc and s′ /∈ S

]
. Then, conclude

s ∈ Sc \ S. Then, by Prop. 31, conclude s ∈ Sf \ S. Then, conclude:

(s, s) ∈ {(ŝ, ŝ) | ŝ ∈ Sf \ S}

Then, conclude (s, s) ∈ {(ŝ, ŝ) | ŝ ∈ Sf \ S} ∪ {(ŝ, s) | ŝ ∈ S}. Then, by
Prop. 33, conclude s R s.

Z7 Suppose s /∈ S. Then, by Z4 , conclude
[
s /∈ S and s ∈ �̃tf

]
. Then, by Z6 ,

conclude
[
s ∈ �̃tf and s R s

]
. Then, conclude:[

s̃ ∈ �̃tf and s R s̃
]

for some s̃

Prove the lemma by the following reduction. Conclude
[
s ∈ S or s /∈ S

]
. Then,

by Z3 , conclude
[[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]
or s /∈ S

]
. Then, by Z7 ,

conclude:[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]
or
[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]
Then, conclude

[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]
. ut

Lemma 12. s ∈ �tf implies
[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]
Proof. Prove the lemma by a reduction similar to the proof of Lemma 11

49

Lemma 13. JγK �R Jmerge(γ;S, s)K

Proof. Observe:

Z1 Suppose:
s

t
s′ for some s, s′, t

Then, by Prop. 31, conclude (s, s′) ∈ {t̂ 7→ t̂ ∪ (
t̂

)-1 | t̂ ∈ T}(t). Then,
conclude (s, s′) ∈ t ∪ (

t
)-1. Then, conclude

[
s

t
s′ or s (

t
)-1 s′

]
.

Then, by Lemmas 9, 10, conclude:[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

or
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]

Then, conclude
[[
s̃
∼ t

s̃′ and s R s̃ and s′ R s̃′
]

for some s̃, s̃′
]
.

Z2 Suppose:
s̃ ∈ Sf \ S for some s̃

Then, by Prop. 31 conclude s̃ ∈ Sc \ S. Then, conclude s̃ ∈ (Sc \ S) ∪ {s}.
Then, by Prop. 35, conclude s̃ ∈ S̃c. Then, by Prop. 32, conclude s̃ ∈ S̃f .

Z3 Suppose:
(s, s̃) ∈ {(ŝ, ŝ) | ŝ ∈ Sf \ S} for some s, s̃

Then, conclude s, s̃ ∈ Sf \S. Then, conclude
[
s ∈ Sf and s̃ ∈ Sf \S

]
. Then,

by Z2 , conclude
[
s ∈ Sf and s̃ ∈ S̃f

]
. Then, conclude (s, s̃) ∈ Sf × S̃f .

Z4 Suppose:
s ∈ S for some s

Then, by Prop. 34, conclude
[
s ∈ S and S ⊆ Sc

]
. Then, conclude s ∈ Sc.

Then, by Prop. 31, conclude s ∈ Sf .

Z5 Suppose:
s̃ = s for some s̃

Then, conclude s̃ ∈ {s}. Then, conclude s̃ ∈ (Sc\S)∪{s}. Then, by Prop. 35,
conclude s̃ ∈ S̃c. Then, by Prop. 32, conclude s̃ ∈ S̃f .

Z6 Suppose:
(s, s̃) ∈ {(ŝ, s) | ŝ ∈ S} for some s, s̃

Then, conclude
[
s ∈ S and s̃ = s

]
. Then, by Z4 , conclude:

s ∈ Sf and s̃ = s

Then, by Z5 , conclude
[
s ∈ Sf and s̃ ∈ S̃f

]
. Then, conclude (s, s̃) ∈ Sf× S̃f .

50

Z7 Suppose:
s R s̃ for some s, s̃

Then, by Prop. 33, conclude (s, s̃) ∈ {(ŝ, ŝ) | ŝ ∈ Sf \ S} ∪ {(ŝ, s) | ŝ ∈ S}.
Then, conclude

[
(s, s̃) ∈ {(ŝ, ŝ) | ŝ ∈ Sf \ S} or (s, s̃) ∈ {(ŝ, s) | ŝ ∈ S}

]
.

Then, by Z3 , conclude
[
(s, s̃) ∈ Sf × S̃f or (s, s̃) ∈ {(ŝ, s) | ŝ ∈ S}

]
. Then,

by Z6 , conclude
[
(s, s̃) ∈ Sf × S̃f or (s, s̃) ∈ Sf × S̃f

]
. Then, conclude

(s, s̃) ∈ Sf × S̃f .

Z8 By Z7 , conclude
[[
s R s̃ implies (s, s̃) ∈ Sf × S̃f

]
for all s, s̃

]
. Then,

conclude R ⊆ Sf × S̃f .

Z9 Suppose: [
s ∈ Sf and s /∈ S

]
for some s

Then, conclude s ∈ Sf \ S. Then, conclude s ∈ Dom({(ŝ, ŝ) | ŝ ∈ Sf \ S}).

Z0 Suppose:
s ∈ Sf for some s

Then, conclude
[
s ∈ Sf and

[
s ∈ S or s /∈ S

]]
. Then, conclude:

s ∈ S or
[
s ∈ Sf and s /∈ S

]
Then, conclude

[
s ∈ Dom({(ŝ, s) | ŝ ∈ S}) or

[
s ∈ Sf and s /∈ S

]]
. Then,

by Z9 , conclude:

s ∈ Dom({(ŝ, s) | ŝ ∈ S}) or s ∈ Dom({(ŝ, ŝ) | ŝ ∈ Sf \ S})

Then, conclude s ∈ Dom({(ŝ, s) | ŝ ∈ S})∪Dom({(ŝ, ŝ) | ŝ ∈ Sf \S}). Then,
conclude s ∈ Dom({(ŝ, s) | ŝ ∈ S}∪{(ŝ, ŝ) | ŝ ∈ Sf \S}). Then, by Prop. 33,
conclude s ∈ Dom(R).

Y1 By Y1 , conclude
[[
s ∈ Sf implies s ∈ Dom(R)

]
for all s

]
. Then, conclude

Sf ⊆ Dom(R).

Prove the lemma by the following reduction. By Z1 , conclude:

[
s

t + s′ implies

[[
s̃
∼ t + s̃′ and s R s̃ and s′ R s̃′

]
for some s̃, s

]]
for all s, s′, t

Then, by Lemmas 11, 12, conclude:

[[
s

t + s′ implies

[[
s̃
∼ t + s̃′ and s R s̃ and s′ R s̃′

]
for some s̃, s

]]
for all s̃, s̃′

]
and

[[
s ∈ �tf implies

[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]]
for all s, t

]
and

[[
s ∈ �tf implies

[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]]
for all s, t

]

51

Then, by Z8 , conclude:

[[
s

t + s′ implies

[[
s̃
∼ t + s̃′ and s R s̃ and s′ R s̃′

]
for some s̃, s

]]
for all s̃, s̃′

]
and

[[
s ∈ �tf implies

[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]]
for all s, t

]
and

[[
s ∈ �tf implies

[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]]
for all s, t

]
and R ⊆ Sf × S̃f

Then, by Y1 , conclude:

[[
s

t + s′ implies

[[
s̃
∼ t + s̃′ and s R s̃ and s′ R s̃′

]
for some s̃, s

]]
for all s̃, s̃′

]
and

[[
s ∈ �tf implies

[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]]
for all s, t

]
and

[[
s ∈ �tf implies

[[
s̃ ∈ �̃tf and s R s̃

]
for some s̃

]]
for all s, t

]
and R ⊆ Sf × S̃f and Sf ⊆ Dom(R)

Then, by Def. 5 of �, conclude (Sf ,�f ,�f , f) �R (S̃f , �̃f , �̃f ,
∼

f). Then, by
Prop. 29, conclude JγK �R (S̃f , �̃f , �̃f ,

∼
f). Then, by Prop. 30, conclude:

JγK �R Jsplit(γ; s, s1, s2, T1)K

ut

Lemma 14. Jmerge(γ;S, s)K �R-1 JγK

Proof. Prove the lemma by a reduction similar to the proof of Lemma 13. ut

52

E.3 Proof

Proof. Prove the theorem by the following reduction. By Lemma 13, conclude:

JγK �R Jmerge(γ;S, s)K

Then, by Lemma 14, conclude:

JγK �R Jmerge(γ;S, s)K and Jmerge(γ;S, s)K �R-1 JγK

Then, by Def. 6 of ∼, conclude JγK ∼R Jmerge(γ;S, s)K. Then, by Def. 6 of ∼,
conclude JγK ∼ Jmerge(γ;S, s)K. ut

53

F Proof of Theorem 6

The scope of auxiliary propositions and auxiliary lemmas in this section is limited
to this section.

F.1 Sketch

We first prove that every sequence of information flows from a service s1 to a
service sn in ϕ1 ⊕ϕ′2 either has a prefix in ϕ1 or in ϕ2 that ends on a boundary
service or is completely in ϕ1 or in ϕ2 (Lemma 15). This proof is by induction
on the length of the sequence.

Subsequently, let R = R1 ∪ {(s, s) | s ∈ S2} be a candidate bisimulation
relation (Prop. 39). Using Lemma 15, we prove that for every sequence of infor-
mation flows from a service s1 to a service sn in ϕ1⊕ϕ′2, there exists a sequence
of information flows from a service s̃ to a service s̃ in ϕ′1⊕ϕ2 such that s̃, s̃′ can
R-mimic s1, sn (Lemma 16). The proof works by showing, by induction, that the
sequence of information flows between s1 and sn can be split into a number of
subsequences to which Lemma 15 applies.

The theorem subsequently follows by Lemma 16 and Def. 5 of �.

F.2 Propositions and Lemmas

Antecedent:

Proposition 36. ϕ1 �R1 ϕ̃1

Proposition 37. SB = S1 ∩ S2 = S̃1 ∩ S2

Proposition 38.
[[
s R1 s̃ and s ∈ SB

]
implies s = s̃

]
for all s, s̃

Proposition 39. R = R1 ∪ {(s, s) | s ∈ S2}

By Def. 2:

Proposition 40. ϕ1 = (S1,�1,�1, 1)

Proposition 41. ϕ̃1 = (S̃1, �̃1, �̃1,
∼

1)

Proposition 42. ϕ2 = (S2,�2,�2, 2)

By Def. 4:

Proposition 43. ϕ1 ⊕ ϕ2 = (S,�,�,)

Proposition 44. ϕ̃1 ⊕ ϕ2 = (S̃, �̃, �̃, ∼)

Proposition 45.

S = S1 ∪ S2 and � = �1]�2 and � = �1]�2 and = 1] 2

Proposition 46.

S̃ = S̃1 ∪ S2 and �̃ = �̃1]�2 and �̃ = �̃1]�2 and
∼

=
∼

1] 2

54

Lemma 15.

s1
t · · · t

sn implies
[[[s1 t +

1 sj or s1
t +

2 sj
]

and
[
sj ∈ SB or j = n

]]
for some j

]
Proof. Assume:

A1 s1
t · · · t

sn

Prove the lemma by the following induction on n ≥ 2.

– Base n = 2
Prove the base by the following reduction. By A1 , conclude s1

t · · · t
sn.

Then, by Base, conclude s1
t · · · t

s2. Then, conclude s1
t
s2. Then,

by Prop. 45, conclude (s1, s2) ∈ (1] 2)(t). Then, conclude:

(s1, s2) ∈ {t̂ 7→ t̂
1 ∪

t̂
2 | t̂ ∈ T}(t)

Then, conclude (s1, s2) ∈ t
1 ∪

t
2. Then, conclude:

s1
t

1 s2 or s1
t

2 s2

Then, conclude
[
s1

t +
1 s2 or s1

t +
2 s2

]
. Then, conclude:[[

s1
t +

1 sj or s1
t +

2 sj
]

and j = 2
]

for some j

Then, by Base, conclude
[[
s1

t +
1 sj or s1

t +
2 sj

]
and j = n

]
. Then

conclude
[[
s1

t +
1 sj or s1

t +
2 sj

]
and

[
sj ∈ SB or j = n

]]
.

– IH

[[ŝ1 t̂ · · · t̂
ŝn̂

and 2 ≤ n̂ < n

]
implies


[[
ŝ1

t̂ +
1 ŝj or ŝ1

t̂ +
2 ŝj

]
and

[
ŝj ∈ SB or j = n̂

]]
for some j

]
for all n̂, ŝ1, . . . , ŝn̂, t̂

– Step n > 2
Observe:

Z1 By Step, conclude n > 2. Then, conclude 2 ≤ n− 1 < n.

Z2 By Z1 , conclude 2 ≤ n − 1 < n. Then, by A1 , conclude sn−1
t

sn. Then, by Prop. 45, conclude (sn−1, sn) ∈ (1] 2)(t). Then,
conclude:

(sn−1, sn) ∈ {t̂ 7→ t̂
1 ∪

t̂
2 | t̂ ∈ T}(t)

Then, conclude (sn−1, sn) ∈ t
1 ∪

t
2. Then, conclude:

sn−1
t

1 sn or sn−1
t

2 sn

55

Z3 By Prop. 40, conclude ϕ1 = (S1,�1,�1, 1). Then, by Def. 2 of ϕ,
conclude

[
ϕ1 = (S1,�1,�1, 1) and ϕ ∈ Flow

]
. Then, conclude:

(S1,�1,�1, 1) ∈ Flow

Then, by Def. 2 of Flow, conclude 1 : T→ 2S1×S1 . Then, conclude:

t̂
1 ⊆ S1 × S1 for all t̂

Then, conclude
[[
ŝ

t̂
1 ŝ
′ implies (ŝ, ŝ′) ∈ S1 × S1

]
for all ŝ, ŝ′, t̂

]
.

Then, conclude
[[
ŝ

t̂
1 ŝ
′ implies ŝ, ŝ′ ∈ S1

]
for all ŝ, ŝ′, t̂

]
.

Z4 By a reduction similar to Z3 , conclude:[
ŝ

t̂
2 ŝ
′ implies ŝ, ŝ′ ∈ S2

]
for all ŝ, ŝ′, t̂

Z5 Suppose s1
t +

1 sn−1
t

2 sn. Then, by Z3 Z4 , conclude:

sn−1 ∈ S1 and sn−1 ∈ S2

Then, conclude sn−1 ∈ S1 ∩S2. Then, by Prop. 37, conclude sn−1 ∈ SB .

Z6 Suppose s1
t +

2 sn−1
t

1 sn. By a reduction similar to Z5 , conclude:

sn−1 ∈ SB

Z7 Suppose
[
s1

t +
1 sn−1

t
2 sn and s1

t +
2 sn−1

t
1 sn

]
. Then, by

Z5 Z6 , conclude
[
sn−1 ∈ SB or sn−1 ∈ SB

]
. Then, conclude sn−1 ∈ SB .

Z8 Suppose:[[
s1

t +
1 sj or s1

t +
2 sj

]
and j = n− 1

]
for some j

Then, conclude
[
s1

t +
1 sn−1 or s1

t +
2 sn−1

]
. Then, by Z2 , con-

clude:[
s1

t +
1 sn−1 or s1

t +
2 sn−1

]
and

[
sn−1

t
1 sn or sn−1

t
2 sn

]
Then, conclude:

s1
t +

1 sn−1
t

1 sn or s1
t +

1 sn−1
t

2 sn
or s1

t +
2 sn−1

t
1 sn or s1

t +
2 sn−1

t
2 sn

Then, by Z7 , conclude:

s1
t +

1 sn−1
t

1 sn or sn−1 ∈ SB or s1
t +

2 sn−1
t

2 sn

Then, conclude
[
s1

t +
1 sn or sn−1 ∈ SB or s1

t +
2 sn

]
.

56

Z9 Suppose:[[
s1

t +
1 sj or s1

t +
2 sj

]
and j = n− 1

]
for some j

Then, by Z8 , conclude:[
s1

t +
1 sj or s1

t +
2 sj

]
and j = n− 1

and
[
s1

t +
1 sn or sn−1 ∈ SB or s1

t +
2 sn

]
Then, conclude:[

s1
t +

1 sj or s1
t +

2 sj
]

and
[
s1

t +
1 sn or sj ∈ SB or s1

t +
2 sn

]
Then, conclude:[[

s1
t +

1 sj or s1
t +

2 sj
]

and sj ∈ SB
]

or
[
s1

t +
1 sn or s1

t +
2 sn

]
Then, conclude:[[

s1
t +

1 sj or s1
t +

2 sj
]

and sj ∈ SB
]

or
[[[
s1

t +
1 sj′ or s1

t +
2 sj′

]
and j′ = n

]
for some j′

]
Z0 Suppose:[[[

s1
t +

1 sj or s1
t +

2 sj
]

and sj ∈ SB
]

or
[[
s1

t +
1 sj or s1

t +
2 sj

]
and sj ∈ SB

]] for some j

Then, conclude
[[[
s1

t +
1 sj or s1

t +
2 sj

]
and sj ∈ SB

]]
. Then,

conclude
[[[
s1

t +
1 sj′ or s1

t +
2 sj′

]
and sj′ ∈ SB

]
for some j′

]
.

Prove the step by the following reduction. By Z1 , conclude 2 ≤ n − 1 < n.

Then, by A1 , conclude
[
2 ≤ n− 1 < n and s1

t · · · t
sn−1

]
. Then, by

IH, conclude:[[
s1

t +
1 sj or s1

t +
2 sj

]
and

[
sj ∈ SB or j = n− 1

]]
for some j

Then, conclude: [[
s1

t +
1 sj or s1

t +
2 sj

]
and sj ∈ SB

]
or
[[
s1

t +
1 sj or s1

t +
2 sj

]
and j = n− 1

]
Then, by Z9 , conclude:[[

s1
t +

1 sj or s1
t +

2 sj
]

and sj ∈ SB
]

or
[[
s1

t +
1 sj or s1

t +
2 sj

]
and sj ∈ SB

]
or
[[[
s1

t +
1 sj′ or s1

t +
2 sj′

]
and j′ = n

]
for some j′

]
57

Then, by Z0 , conclude:[[[
s1

t +
1 sj′ or s1

t +
2 sj′

]
and sj′ ∈ SB

]
for some j′

]
or
[[[
s1

t +
1 sj′ or s1

t +
2 sj′

]
and j′ = n

]
for some j′

]
Then, conclude:[[[

s1
t +

1 sj′ or s1
t +

2 sj′
]

and sj′ ∈ SB
]

or
[[
s1

t +
1 sj′ or s1

t +
2 sj′

]
and j′ = n

]]
for some j′

Then, conclude:[[
s1

t +
1 sj′ or s1

t +
2 sj′

]
and

[
sj′ ∈ SB or j′ = n

]]
for some j′

ut

58

Lemma 16.

s1
t · · · t

sn implies

[[
s̃
∼ t + s̃′ and s1 R s̃ and sn R s̃′

]
for some s̃, s̃′

]

Proof. Assume:

A1 s1
t · · · t

sn

Observe:

Z1 Suppose:
s̃1

t
1 · · ·

t
1 s̃m for some m, s̃1, . . . , s̃m

Then, conclude (s̃1, s̃2), . . . , (s̃m−1, s̃m) ∈ t
1 ∪

t
2. Then, by Prop. 46,

conclude s̃1
t · · · t

s̃m. Then, conclude s̃1
t + s̃m.

Z2 Suppose:
s̃1

t
2 · · ·

t
2 s̃m for some m, s̃1, . . . , s̃m

Then, by a reduction similar to Z1 , conclude s̃1
t + s̃m.

Z3 Suppose:
s̃1
∼ t

1 · · ·
∼ t

1 s̃m for some m, s̃1, . . . , s̃m

Then, by a reduction similar to Z1 , conclude s̃1
∼ t + s̃m.

Z4 Suppose:
s̃1

t
2 · · ·

t
2 s̃m for some m, s̃1, . . . , s̃m

Then, by a reduction similar to Z1 , conclude s̃1
∼ t + s̃m.

Z5 Suppose:
s̃

t +
1 s̃′ for some s̃, s̃′

Then, conclude:[
s̃1

t
1 · · ·

t
1 s̃m

and s̃ = s̃1 and s̃′ = s̃m

]
for some m, s̃1, . . . , s̃m

Then, by Z3 , conclude
[
s̃1

t + s̃m and s̃ = s̃1 and s̃′ = s̃m
]
. Then,

conclude s̃
t + s̃′.

Z6 Suppose:
s̃

t +
2 s̃′ for some s̃, s̃′

Then, by a reduction similar to Z5 , conclude s̃
t + s̃′.

Z7 Suppose:
s̃
∼ t +

1 s̃′ for some s̃, s̃′

Then, by a reduction similar to Z5 , conclude s̃
∼ t + s̃′.

59

Z8 Suppose:
s̃

t +
2 s̃′ for some s̃, s̃′

Then, by a reduction similar to Z5 , conclude s̃
∼ t + s̃′.

Z9 Suppose:
s R1 s̃ for some s, s̃

Then, conclude (s, s̃) ∈ R1 ∪ {(ŝ, ŝ) | ŝ ∈ S2}. Then, by Prop. 39, conclude
s R s̃.

Z0 By Prop. 36, conclude ϕ1 �R1 ϕ̃1. Then, by Prop. 40, conclude:

(S1,�1,�1, 1) �R1 ϕ̃1

Then, by Prop. 41, conclude (S1,�1,�1, 1) �R1
(S̃1, �̃1, �̃1,

∼
1). Then,

by Def. 5 of �, conclude:

[
s

t +
1 s′ implies

[[
s̃
∼ t +

1 s̃′ and s R1 s̃ and s′ R1 s̃
′]

for some s̃, s̃′

]]
for all s, s′, t

Y1 Suppose:
s1

t +
1 sj for some j

Then, by Z0 , conclude:[
s̃
∼ t +

1 s̃′ and s1 R1 s̃ and sj R1 s̃
′] for some s̃, s̃′

Then, by Z9 , conclude
[
s̃
∼ t +

1 s̃′ and s1 R s̃ and sj R s̃′
]
. Then, by Z7 ,

conclude
[
s̃
∼ t + s̃′ and s1 R s̃ and sj R s̃′

]
.

Y2 By Prop. 40, conclude ϕ1 = (S1,�1,�1, 1). Then, by Def. 2 of ϕ, conclude[
ϕ1 = (S1,�1,�1, 1) and ϕ ∈ Flow

]
. Then, conclude:

(S1,�1,�1, 1) ∈ Flow

Then, by Def. 2 of Flow, conclude 1 : T→ 2S1×S1 . Then, conclude:

t̂
1 ⊆ S1 × S1 for all t̂

Then, conclude
[[
ŝ

t̂
1 ŝ
′ implies (ŝ, ŝ′) ∈ S1×S1

]
for all ŝ, ŝ′, t̂

]
. Then,

conclude
[[
ŝ

t̂
1 ŝ
′ implies ŝ, ŝ′ ∈ S1

]
for all ŝ, ŝ′, t̂

]
.

Y3 By a reduction similar to Y2 , conclude:[
ŝ

t̂
2 ŝ
′ implies ŝ, ŝ′ ∈ S2

]
for all ŝ, ŝ′, t̂

60

Y4 Suppose:
s̃

t +
2 s̃′ for some s̃, s̃′

Then, by Y3 , conclude s̃, s̃′ ∈ S2. Then, conclude:

(s̃, s̃), (s̃′, s̃′) ∈ {(s, s) | s ∈ S2}

Then, conclude (s̃, s̃), (s̃′, s̃′) ∈ R1 ∪ {(s, s) | s ∈ S2}. Then, by Prop. 39,
conclude

[
s̃ R s̃ and s̃′ R s̃′

]
.

Y5 Suppose: [
s̃

t +
2 s̃′ and s1 = s̃ and s2 = s̃′

]
for some s̃, s̃′

Then, by Y4 , conclude
[
s̃ R s̃ and s̃′ R s̃′ and s1 = s̃ and s2 = s̃′

]
.

Then, conclude
[
s1 R s̃ and s2 R s̃′

]
.

Y6 Suppose:
s1

t +
2 sj for some j

Then, conclude:[
s̃

t +
2 s̃′ and s1 = s̃ and sj = s̃′

]
for some s̃, s̃′

Then, by Y5 , conclude
[
s̃

t +
2 s̃′ and s1 R s̃ and sj R s̃′

]
. Then, by Z6 ,

conclude
[
s̃
∼ t + s̃′ and s1 R s̃ and sj R s̃′

]
.

Prove the lemma by the following induction on n ≥ 2.

– Base n = 2
Prove the base by the following reduction. By A1 , conclude s1

t · · · t
sn.

Then, by Base, conclude s1
t · · · t

s2. Then, conclude s1
t
s2. Then,

by Prop. 45, conclude (s1, s2) ∈ (1] 2)(t). Then, conclude:

(s1, s2) ∈ {t̂ 7→ t̂
1 ∪

t̂
2 | t̂ ∈ T}(t)

Then, conclude (s1, s2) ∈ t
1 ∪

t
2. Then, conclude:

s1
t

1 s2 or s1
t

2 s2

Then, conclude
[
s1

t +
1 s2 or s1

t +
2 s2

]
. Then, by Y1 , conclude:[[

s̃
∼ t + s̃′ and s1 R s̃ and s2 R s̃′

]
for some s̃, s̃′

]
or s1

t +
2 s2

Then, by Y6 , conclude:[[
s̃
∼ t + s̃′ and s1 R s̃ and s2 R s̃′

]
for some s̃, s̃′

]
or
[[
s̃
∼ t + s̃′ and s1 R s̃ and s2 R s̃′

]
for some s̃, s̃′

]
Then, conclude

[[
s̃
∼ t + s̃′ and s1 R s̃ and s2 R s̃′

]
for some s̃, s̃′

]
.

Then, by applying Base, conclude:[
s̃
∼ t + s̃′ and s1 R s̃ and sn R s̃′

]
for some s̃, s̃′

61

– IH [
ŝ1

t̂ · · · t̂
ŝn̂

and 2 ≤ n̂ < n

]
implies

[[
s̃
∼ t + s̃′ and ŝ1 R s̃ and ŝn̂ R s̃′

]
for some s̃, s̃′

]
for all n̂, ŝ1, . . . , ŝn̂, t̂

– Step n > 2
Observe:

X1 Suppose:
s1

t +
1 sj for some j

Then, by A1 , conclude s1
t +

1 sj
t

1 · · ·
t

1 sn. Then, conclude[
2 ≤ j < n or j = n

]
.

X2 Suppose:
s1

t +
2 sj for some j

Then, by a reduction similar to X1 , conclude
[
2 ≤ j < n or j = n

]
.

X3 Suppose:
s1

t +
1 sj for some j

Then, by X1 , conclude
[
s1

t +
1 sj and

[
2 ≤ j < n or j = n

]]
. Then,

conclude
[[
s1

t +
1 sj and 2 ≤ j < n

]
or
[
s1

t +
1 sj and j = n

]]
.

X4 Suppose:
s1

t +
2 sj for some j

Then, by a reduction similar to X3 , conclude:[
s1

t +
2 sj and 2 ≤ j < n

]
or
[
s1

t +
2 sj and j = n

]
X5 Suppose: [

s1
t +

1 sj and sj ∈ SB
]

for some j

Then, by applying X3 , conclude:[[
s1

t +
1 sj and 2 ≤ j < n

]
or
[
s1

t +
1 sj and j = n

]]
and sj ∈ SB

Then, conclude:[
s1

t +
1 sj and 2 ≤ j < n and sj ∈ SB

]
or
[
s1

t +
1 sj and j = n

]
X6 Suppose: [

s1
t +

2 sj and sj ∈ SB
]

for some j

Then, by a reduction similar to X5 , conclude:[
s1

t +
2 sj and 2 ≤ j < n and sj ∈ SB

]
or
[
s1

t +
2 sj and j = n

]
62

X7 Suppose:
s1

t +
1 sj for some j

Then, by A1 , conclude sj
t

1 · · ·
t

1 sn. Then, conclude:

(sj , sj+1), . . . , (sn−1, sn) ∈ t
1 ∪

t
2

Then, by Prop. 46, conclude sj
t · · · t

sn.

X8 Suppose:
s1

t +
2 sj for some j

Then, by a reduction similar to X7 , conclude sj
t · · · t

sn.

X9 Suppose: [
s1

t +
1 sj and 2 ≤ j < n

]
for some j

Then, by X7 , conclude
[
sj

t · · · t
sn and 2 ≤ j < n

]
. Then,

conclude: ŝ1
t · · · t

ŝn̂
and sj = ŝ1 and · · · and sn = ŝn̂
and 2 ≤ n̂ < n

 for some n̂, ŝ1, . . . , ŝn̂

Then, by IH, conclude:

sj = ŝ1 and · · · and sn = ŝn̂
and

[[
s̃
∼ t + s̃′ and ŝ1 R s̃ and ŝn̂ R s̃′

]
for some s̃, s̃′

]
Then, conclude

[[
s̃
∼ t + s̃′ and sj R s̃ and sn R s̃′

]
for some s̃, s̃′

]
.

X0 Suppose: [
s1

t +
2 sj and 2 ≤ j < n

]
for some j

Then, by a reduction similar to X9 , conclude:[
s̃
∼ t + s̃′ and sj R s̃ and sn R s̃′

]
for some s̃, s̃′

W1 Suppose: [
s1

t +
1 sj and 2 ≤ j < n

]
for some j

Then, by X9 , conclude:[
s1

t +
1 sj

and s̃‡
∼ t + s̃′ and sj R s̃‡ and sn R s̃′

]
for some s̃‡, s̃′

Then, by Y1 , conclude:[
s̃
∼ t + s̃† and s1 R s̃ and sj R s̃†

and s̃‡
∼ t + s̃′ and sj R s̃‡ and sn R s̃′

]
for some s̃, s̃†

63

W2 Suppose:
s R s̃ for some s, s̃

Then, by Prop. 39, conclude (s, s̃) ∈ R1∪{(ŝ, ŝ) | ŝ ∈ S2}. Then, conclude[
s R1 s̃ or (s, s̃) ∈ {(ŝ, ŝ) | ŝ ∈ S2}

]
. Then, conclude

[
s R1 s̃ or s = s̃

]
.

W3 Suppose: [
s R s̃ and s ∈ SB

]
for some s, s̃

Then, by W2 , conclude
[[
s R1 s̃ or s = s̃

]
and s ∈ SB

]
. Then, con-

clude
[[
s R1 s̃ and s ∈ SB

]
or s = s̃

]
. Then, by Prop. 38, conclude[

s = s̃ or s = s̃
]
. Then, conclude s = s̃.

W4 Suppose:[
s̃
∼ t + s̃† and s̃‡

∼ t + s̃′

and sj R s̃† and sj R s̃‡ and sj ∈ SB

]
for some j, s̃, s̃†, s̃‡, s̃′

Then, by W3 , conclude:

s̃
∼ t + s̃† and s̃‡

∼ t + s̃′ and sj = s̃† and sj = s̃‡

Then, conclude s̃
∼ t + sj

∼ t + s̃′. Then, conclude s̃
∼ t + s̃′.

W5 Suppose:[
s1

t +
1 sj and 2 ≤ j < n and sj ∈ SB

]
for some j

Then, by W1 , conclude: s̃
∼ t + s̃† and s1 R s̃ and sj R s̃†

and s̃‡
∼ t + s̃′ and sj R s̃‡ and sn R s̃′

and sj ∈ SB

 for some s̃, s̃†, s̃‡, s̃′

Then, by W4 , conclude
[
sn R s̃′ and s1 R s̃ and s̃

∼ t + s̃′
]
.

W6 Suppose: [
s1

t +
2 sj and 2 ≤ j < n

]
for some j

Then, by X0 , conclude:[
s1

t +
2 sj

and s̃‡
∼ t + s̃′ and sj R s̃‡ and sn R s̃′

]
for some s̃‡, s̃′

Then, by Y6 , conclude:[
s̃
∼ t + s̃† and s1 R s̃ and sj R s̃†

and s̃‡
∼ t + s̃′ and sj R s̃‡ and sn R s̃′

]
for some s̃, s̃†

64

W7 Suppose:[
s1

t +
2 sj and 2 ≤ j < n and sj ∈ SB

]
for some j

Then, by W6 , conclude: s̃
∼ t + s̃† and s1 R s̃ and sj R s̃†

and s̃‡
∼ t + s̃′ and sj R s̃‡ and sn R s̃′

and sj ∈ SB

 for some s̃, s̃†, s̃‡, s̃′

Then, by W4 , conclude
[
sn R s̃′ and s1 R s̃ and s̃

∼ t + s̃′
]
.

W8 Suppose:[[
s1

t +
1 sj and 2 ≤ j < n and sj ∈ SB

]
or
[
s1

t +
2 sj and 2 ≤ j < n and sj ∈ SB

]] for some j

Then, by W5 , conclude:[[
sn R s̃′ and s1 R s̃ and s̃

∼ t + s̃′
]

for some s̃, s̃′
]

or
[
s1

t +
2 sj and 2 ≤ j < n and sj ∈ SB

]
Then, by W7 , conclude:[[

sn R s̃′ and s1 R s̃ and s̃
∼ t + s̃′

]
for some s̃, s̃′

]
or
[[
sn R s̃′ and s1 R s̃ and s̃

∼ t + s̃′
]

for some s̃, s̃′
]

Then, conclude
[[
sn R s̃′ and s1 R s̃ and s̃

∼ t + s̃′
]

for some s̃, s̃′
]
.

W9 Suppose: [
s1

t +
1 sj and j = n

]
for some j

Then, by Y1 , conclude:[[
s̃
∼ t + s̃′ and s1 R s̃ and sj R s̃′

]
for some s̃, s̃′

]
and j = n

Then, conclude
[[
s̃
∼ t + s̃′ and s1 R s̃ and sn R s̃′

]
for some s̃, s̃′

]
.

W0 Suppose: [
s1

t +
2 sj and j = n

]
for some j

Then, by Y6 , conclude:[[
s̃
∼ t + s̃′ and s1 R s̃ and sj R s̃′

]
for some s̃, s̃′

]
and j = n

Then, conclude
[[
s̃
∼ t + s̃′ and s1 R s̃ and sn R s̃′

]
for some s̃, s̃′

]
.

V1 Suppose: 
[
s1

t +
1 sj and j = n

]
or
[
s1

t +
2 sj and j = n

]
or
[
s1

t +
1 sj and j = n

]
or
[
s1

t +
2 sj and j = n

]
 for some j

65

Then, by W9 , conclude:[[
s̃
∼ t + s̃′ and s1 R s̃ and sn R s̃′

]
for some s̃, s̃′

]
or
[
s1

t +
2 sj and j = n

]
or
[[
s̃
∼ t + s̃′ and s1 R s̃ and sn R s̃′

]
for some s̃, s̃′

]
or
[
s1

t +
2 sj and j = n

]
Then, by W0 , conclude:[[

s̃
∼ t + s̃′ and s1 R s̃ and sn R s̃′

]
for some s̃, s̃′

]
or
[[
s̃
∼ t + s̃′ and s1 R s̃ and sn R s̃′

]
for some s̃, s̃′

]
or
[[
s̃
∼ t + s̃′ and s1 R s̃ and sn R s̃′

]
for some s̃, s̃′

]
or
[[
s̃
∼ t + s̃′ and s1 R s̃ and sn R s̃′

]
for some s̃, s̃′

]
Then, conclude

[[
s̃
∼ t + s̃′ and s1 R s̃ and sn R s̃′

]
for some s̃, s̃′

]
.

Prove the step by the following reduction. By A1 , conclude s1
t · · · t

sn.
Then, by Lemma 15, conclude:[[

s1
t +

1 sj or s1
t +

2 sj
]

and
[
sj ∈ SB or j = n

]]
for some j

Then, conclude: [[
s1

t +
1 sj or s1

t +
2 sj

]
and sj ∈ SB

]
or
[[
s1

t +
1 sj or s1

t +
2 sj

]
and j = n

]
Then, conclude:[

s1
t +

1 sj and sj ∈ SB
]

or
[
s1

t +
2 sj and sj ∈ SB

]
or
[
s1

t +
1 sj and j = n

]
or
[
s1

t +
2 sj and j = n

]
Then, by X5 X6 , conclude:[

s1
t +

1 sj and 2 ≤ j < n and sj ∈ SB
]

or
[
s1

t +
1 sj and j = n

]
or
[
s1

t +
2 sj and 2 ≤ j < n and sj ∈ SB

]
or
[
s1

t +
2 sj and j = n

]
or
[
s1

t +
1 sj and j = n

]
or
[
s1

t +
2 sj and j = n

]
Then, by W8 , conclude:[

s1
t +

1 sj and j = n
]

or
[
s1

t +
2 sj and j = n

]
or
[
s1

t +
1 sj and j = n

]
or
[
s1

t +
2 sj and j = n

]
or
[[
s̃
∼ t + s̃′ and s1 R s̃ and sn R s̃′

]
for some s̃, s̃′

]
Then, by V1 , conclude:[[

s̃
∼ t + s̃′ and s1 R s̃ and sn R s̃′

]
for some s̃, s̃′

]
or
[[
s̃
∼ t + s̃′ and s1 R s̃ and sn R s̃′

]
for some s̃, s̃′

]
Then, conclude

[[
s̃
∼ t + s̃′ and s1 R s̃ and sn R s̃′

]
for some s̃, s̃′

]
.
ut

66

F.3 Proof

Proof. Observe:

Z1 Suppose:
s

t + s′ for some s, s′, t

Then, conclude:[
s1

t · · · t
sn and s = s1 and s′ = sn

]
for some n, s1, . . . , sn

Then, by Lemma 16, conclude:[[
s̃
∼ t + s̃′ and s1 R s̃ and sn R s̃′

]
for some s̃, s̃′

]
and s = s1 and s′ = sn

Then, conclude
[[
s̃
∼ t + s̃′ and s R s̃ and s′ R s̃′

]
for some s̃, s̃′

]
.

Z2 Suppose:
s̃ ∈ �̃t1 for some s̃, t

Then, conclude s̃ ∈ �̃t1 ∪�t2. Then, conclude s̃ ∈ {t̂ 7→ �̃t̂1 ∪�t̂2 | t̂ ∈ T}(t).
Then, conclude s̃ ∈ (�̃1]�2)(t). Then, by Prop. 46, conclude s̃ ∈ �̃t.

Z3 Suppose:
s̃ ∈ �t2 for some s̃, t

Then, by a reduction similar to Z2 , conclude s̃ ∈ �̃t.

Z4 Suppose:
s̃ ∈ �̃t1 for some s̃, t

Then, by a reduction similar to Z2 , conclude s̃ ∈ �̃t.

Z5 Suppose:
s̃ ∈ �t2 for some s̃, t

Then, by a reduction similar to Z2 , conclude s̃ ∈ �̃t.

Z6 Suppose:
s R1 s̃ for some s, s̃

Then, conclude (s, s̃) ∈ R1 ∪ {(ŝ, ŝ) | ŝ ∈ S2}. Then, by Prop. 39, conclude
s R s̃.

Z7 By Prop. 36, conclude ϕ1 �R1
ϕ̃1. Then, by Prop. 40, conclude:

(S1,�1,�1, 1) �R1
ϕ̃1

Then, by Prop. 41, conclude (S1,�1,�1, 1) �R1
(S̃1, �̃1, �̃1,

∼
1). Then,

by Def. 5 of �, conclude:[
s ∈ �t1 implies

[[
s̃ ∈ �̃t1 and s R1 s̃

]
for some s̃

]]
for all s, t

67

Z8 By a reduction similar to Z7 , conclude:

[
s ∈ �t1 implies

[[
s̃ ∈ �̃t1 and s R1 s̃

]
for some s̃

]]
for all s, t

Z9 Suppose:
s ∈ �t1 for some s, t

Then, by Z7 , conclude:[
s̃ ∈ �̃t1 and s R1 s̃

]
for some s̃

Then, by Z2 , conclude
[
s̃ ∈ �̃t and s R1 s̃

]
. Then, by Z6 , conclude:

s̃ ∈ �̃t and s R s̃

Z0 Suppose:
s ∈ �t1 for some s, t

Then, by a reduction similar to Z9 , conclude
[
s̃ ∈ �̃t and s R s̃

]
.

Y1 By Prop. 42, conclude ϕ2 = (S2,�2,�2, 2). Then, by Def. 2 of ϕ, conclude[
ϕ2 = (S2,�2,�2, 2) and ϕ ∈ Flow

]
. Then, conclude:

(S2,�2,�2, 2) ∈ Flow

Then, by Def. 2 of Flow, conclude �2 : T→ 2S2 . Then, conclude:

�t̂2 ⊆ S2 for all t̂

Then, conclude
[[
ŝ ∈ �t̂2 implies ŝ ∈ S2

]
for all ŝ, t̂

]
.

Y2 By a reduction similar to Y1 , conclude:[
ŝ ∈ �t̂2 implies ŝ ∈ S2

]
for all ŝ, t̂

Y3 Suppose:
s ∈ �t2 for some s, t

Then, by Y1 , conclude s ∈ S2. Then, conclude (s, s) ∈ {(ŝ, ŝ) | ŝ ∈ S2}.
Then, conclude (s, s) ∈ R1 ∪ {(ŝ, ŝ) | ŝ ∈ S2}. Then, by Prop. 39, conclude
s R s.

Y4 Suppose:
s ∈ �t2 for some s, t

Then, by a reduction similar to Y3 , conclude s R s.

68

Y5 Suppose:
s ∈ �t2 for some s, t

Then, by Z3 , conclude
[
s ∈ �t2 and s ∈ �̃t

]
. Then, by Y3 , conclude:

s ∈ �̃t and s R s

Then, conclude
[[
s̃ ∈ �̃t and s R s̃

]
for some s̃

]
.

Y6 Suppose:
s ∈ �t2 for some s, t

Then, by a reduction similar to Y5 , conclude:[
s̃ ∈ �̃t and s R s̃

]
for some s̃

Y7 Suppose:
s ∈ �t for some s, t

Then, by Prop. 45, conclude s ∈ (�1]�2)(t). Then, conclude:

s ∈ {t̂ 7→ �t̂1 ∪�t̂2 | t̂ ∈ T}(t)

Then, conclude s ∈ �t1 ∪�t2. Then, conclude
[
s ∈ �t1 or s ∈ �t2

]
. Then, by

Z9 , conclude
[[[
s̃ ∈ �̃t and s R s̃

]
for some s̃

]
or s ∈ �t2

]
. Then, by Y5

, conclude:[[
s̃ ∈ �̃t and s R s̃

]
for some s̃

]
or
[[
s̃ ∈ �̃t and s R s̃

]
for some s̃

]
Then, conclude

[[
s̃ ∈ �̃t and s R s̃

]
for some s̃

]
.

Y8 Suppose:
s ∈ �t for some s, t

Then, by a reduction similar to Y7 , conclude:[
s̃ ∈ �̃t and s R s̃

]
for some s̃

Y9 By Prop. 36, conclude ϕ1 �R1
ϕ̃1. Then, by Prop. 40, conclude:

(S1,�1,�1, 1) �R1
ϕ̃1

Then, by Prop. 41, conclude (S1,�1,�1, 1) �R1 (S̃1, �̃1, �̃1,
∼

1). Then,
by Def. 5 of �, conclude R1 ⊆ S1 × S̃1.

Y0 Suppose:
s R1 s̃ for some s, s̃

Then, by Y9 , conclude
[
s R1 s̃ and R1 ⊆ S1× S̃1

]
. Then, conclude (s, s̃) ∈

S1 × S̃1. Then, conclude
[
s ∈ S1 and s̃ ∈ S̃1

]
.

69

X1 Suppose:
s R s̃ for some s, s̃

Then, by Prop. 39, conclude (s, s̃) ∈ R1 ∪ {(ŝ, ŝ) | ŝ ∈ S2}. Then, conclude[
s R1 s̃ or (s, s̃) ∈ {(ŝ, ŝ) | ŝ ∈ S2}

]
. Then, by Y0 , conclude:[

s ∈ S1 and s̃ ∈ S̃1

]
or (s, s̃) ∈ {(ŝ, ŝ) | ŝ ∈ S2}

Then, conclude
[[
s ∈ S1 and s̃ ∈ S̃1

]
or s, s̃ ∈ S2

]
. Then, conclude:[

s ∈ S1 ∪ S2 and s̃ ∈ S̃1 ∪ S2

]
or
[
s ∈ S1 ∪ S2 and s̃ ∈ S̃1 ∪ S2

]
Then, conclude

[
s ∈ S1 ∪S2 and s̃ ∈ S̃1 ∪S2

]
. Then, by Prop. 45, conclude[

s ∈ S and s̃ ∈ S̃1 ∪ S2

]
. Then, by Prop. 46, conclude

[
s ∈ S and s̃ ∈ S̃

]
.

Then, conclude (s, s̃) ∈ S × S̃.

X2 By X1 , conclude
[[
s R s̃ implies (s, s̃) ∈ S × S̃

]
for all s, s̃

]
. Then, con-

clude R ⊆ S × S̃.

X3 By Prop. 36, conclude ϕ1 �R1
ϕ̃1. Then, by Prop. 40, conclude:

(S1,�1,�1, 1) �R1
ϕ̃1

Then, by Prop. 41, conclude (S1,�1,�1, 1) �R1 (S̃1, �̃1, �̃1,
∼

1). Then,
by Def. 5 of �, conclude S1 ⊆ Dom(R1).

X4 Suppose:
s ∈ S1 for some s

Then, by X3 , conclude
[
s ∈ S1 and S1 ⊆ Dom(R1)

]
. Then, conclude s ∈

Dom(R1).

X5 Suppose:
s ∈ S for some s

Then, by Prop. 45, conclude s ∈ S1 ∪ S2. Then, conclude:

s ∈ S1 or s ∈ S2

Then, by X4 , conclude
[
s ∈ Dom(R1) or s ∈ S2

]
. Then, conclude:

s ∈ Dom(R1) or s ∈ Dom({(ŝ, ŝ) | ŝ ∈ S2})

Then, conclude:

s ∈ Dom(R1) ∪Dom({(ŝ, ŝ) | ŝ ∈ S2})
or s ∈ Dom(R1) ∪Dom({(ŝ, ŝ) | ŝ ∈ S2})

Then, conclude s ∈ Dom(R1) ∪ Dom({(ŝ, ŝ) | ŝ ∈ S2}). Then, conclude
s ∈ Dom(R1 ∪ {(ŝ, ŝ) | ŝ ∈ S2}). Then, by Prop. 39, conclude s ∈ Dom(R).

70

X6 By X5 , conclude
[[
s ∈ S implies s ∈ Dom(R)

]
for all s

]
. Then, conclude

S ⊆ Dom(R).

Prove the lemma by the following reduction. By Z1 , conclude:

[
s

t + s′ implies

[[
s̃
∼ t + s̃′ and s R s̃ and s′ R s̃′

]
for some s̃, s̃′

]]
for all s, s′, t

Then, by applying Y7 Y8 , conclude:

[[
s

t + s′ implies

[[
s̃
∼ t + s̃′ and s R s̃ and s′ R s̃′

]
for some s̃, s̃′

]]
for all s, s′, t

]
and

[[
s ∈ �t implies

[[
s̃ ∈ �̃t and s R s̃

]
for some s̃

]]
for all s, t

]
and

[[
s ∈ �t implies

[[
s̃ ∈ �̃t and s R s̃

]
for some s̃

]]
for all s, t

]
Then, by applying X2 , conclude:

[[
s

t + s′ implies

[[
s̃
∼ t + s̃′ and s R s̃ and s′ R s̃′

]
for some s̃, s̃′

]]
for all s, s′, t

]
and

[[
s ∈ �t implies

[[
s̃ ∈ �̃t and s R s̃

]
for some s̃

]]
for all s, t

]
and

[[
s ∈ �t implies

[[
s̃ ∈ �̃t and s R s̃

]
for some s̃

]]
for all s, t

]
and R ⊆ S × S̃

Then, by applying X6 , conclude:

[[
s

t + s′ implies

[[
s̃
∼ t + s̃′ and s R s̃ and s′ R s̃′

]
for some s̃, s̃′

]]
for all s, s′, t

]
and

[[
s ∈ �t implies

[[
s̃ ∈ �̃t and s R s̃

]
for some s̃

]]
for all s, t

]
and

[[
s ∈ �t implies

[[
s̃ ∈ �̃t and s R s̃

]
for some s̃

]]
for all s, t

]
and R ⊆ S × S̃ and S ⊆ Dom(R)

Then, by Def. 5 of �, conclude (S,�,�,) �R (S̃, �̃, �̃, ∼). Then, by
Prop. 43, conclude ϕ1 ⊕ ϕ2 �R (S̃, �̃, �̃, ∼). Then, by Prop. 44, conclude:

ϕ1 ⊕ ϕ2 �R ϕ̃1 ⊕ ϕ2

ut

71

	Non-Quantitative Modeling of Service-Oriented Architectures, Refactorings, and Performance

