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ABSTRACT The power consumption of digital circuits is proportional to the square of operation voltage 

and the demand for low power circuits reduces the operation voltage towards the threshold of MOSFETs. A 

weak voltage signal makes circuits vulnerable to noise and the optimization of circuit design requires 

modelling noise. Random Telegraph Noise (RTN) is the dominant noise for modern CMOS technologies and 

Monte Carlo modelling has been used to assess its impact on circuits. This requires statistical distributions of 

RTN amplitude and three different distributions were proposed by early works: Lognormal, Exponential, and 

Gumbel distributions. They give substantially different RTN predictions and agreement has not been reached 

on which distribution should be used, calling the modelling accuracy into questions. The objective of this 

work is to assess the accuracy of these three distributions and to explore other distributions for better 

accuracy. A novel criterion has been proposed for selecting distributions, which requires a monotonic 

reduction of modelling errors with increasing number of traps. The three existing distributions do not meet 

this criterion and thirteen other distributions are explored. It is found that the Generalized Extreme Value 

(GEV) distribution has the lowest error and meet the new criterion. Moreover, to reduce modelling errors, 

early works used bimodal Lognormal and Exponential distributions, which have more fitting parameters. 

Their errors, however, are still higher than those of the monomodal GEV distribution.  GEV has a long 

distribution tail and predicts substantially worse RTN impact. The work highlights the uncertainty in 

predicting the RTN distribution tail by different statistical models.     

INDEX TERMS Random telegraph noise (RTN), Yield, Device Variations, Time Dependent Variations, 

Jitters, Traps, Statistical distributions. 

I. INTRODUCTION 

Random telegraph noise (RTN) is a step-like fluctuation of 

drain current under constant gate and drain voltages. It has 

received many attentions, as it adversely affects the 

operation of electronic circuits [1]-[15]. As MOSFETs 

become smaller, RTN becomes increasingly important, 

driven by an increased impact of a single charge on smaller 

devices and an increase in the number of devices in a system 

[1]-[8]. A large number of devices in a system will contain 

more devices in the tail of statistical distributions, which can 

cause errors. Moreover, low power is a key requirement for 

many Internet-of-Things edge units and this drives the 

operation voltage towards threshold voltage, Vth [16]-[18]. 

The minimization of overdrive voltage, (Vg-Vth), in the 

future leaves little room to tolerate the RTN induced jitter 

[5], [16], [18].  

There have been many efforts to model RTN, both in the 

frequency domain [1], [19]-[21] and in the time domain [1]-

[6]. It is widely accepted that RTN originates from 

trapping/detrapping charge carriers from/to the conduction 

channel [1]-[21]. The number of traps per device follows the 

Poisson distribution [3]-[6]. To perform Monte Carlo 

simulation in the time domain, one needs the capture-

emission times and RTN amplitude of traps [5], [18], [22], 

[23]. We studied the statistical distribution of 
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capture/emission time constants in an early work [18] and 

focus on the amplitude distribution here.  

The RTN amplitude can be measured as a Vth shift, ∆Vth, 

or a normalized drain current fluctuation, ∆Id/Id. ΔVth is the 

accumulative effect of multiple traps on a device and we use 

δVth to represent the RTN amplitude of one trap. δVth is 

stochastic and one feature of its cumulative distribution 

function (CDF) is a long tail, when compared with the 

Gaussian/Normal distribution, as shown in Fig. 1a [2], [6]. It 

has been proposed that this long tail originates from the 

uneven distribution of current [2], [6], [7] since the impact 

of a trapped charge in the oxide on the device depends on the 

local current density beneath it [7], [24]. As schematically 

illustrated in Fig. 1b, the current near threshold voltage flows 

through narrow percolation path. It is rare to have a trap 

located just above this percolation path and such a trap will 

cause a large δVth and result in the long distribution tail [2], 

[6], [7], [24].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
FIGURE 1. (a) A comparison of different cumulative distribution 
functions (CDF) of threshold voltage shift, δVth. Each ‘o’ represents δVth 
induced by one trap and there are 100 traps here. Although both the 
Exponential and Lognormal CDFs describe the test data well, they give 
very different results when their tails were used to make predictions, for 
example at 5σ, as shown by the dashed lines. (b) A schematic illustration 
of the impact of traps (circles) on current path near threshold condition. 
The red circle represents a trap just above the percolation path of current, 
which has a large δVth and is in the distribution tail. 

 

Modelling the long tail in the CDF is a tall order and three 

statistical distributions have been proposed: Exponential [3]-

[6], [23], [25]-[29], Lognormal [1], [5]-[8], [30]-[32] and 

Gumbel [9]-[11]. The success of RTN modelling in term of 

yield prediction for a system, such as SRAM, requires an 

accurate statistical distribution tail [2], [5], [7], [30], [31]. 

For a dataset of 100 traps, Fig. 1 shows that both Exponential 

and Lognormal CDFs agree well with the test data, but they 

have substantially different tails. For example, at 5σ where σ 

is the standard deviation, the δVth predicted by Exponential 

and Lognormal CDFs is 23 mV and 44 mV respectively. This 

uncertainty calls the accuracy of RTN modelling into 

question.  

Agreement has not been reached on which distribution 

should be used. Many early works [1], [4], [9], [10], [25]-

[28] only fitted their data with one statistical distribution. 

Different distributions were not compared and the reason for 

selecting a specific model is not given. For the works that 

compared the Exponential and Lognormal distributions [30], 

[31], it was reported that the Lognormal fitted the data better. 

There are, however, more fitting parameters in the 

Lognormal distribution than the Exponential distribution, so 

that it is not clear whether the improved fitting with the 

Lognormal originates from using extra fitting parameters.  

 

 
 
 

 
 
FIGURE 2. (a) Extraction of RTN amplitude directly from the two discrete 
levels of Id used in this work. (b) The same data in (a) was used to extract 
the RTN amplitude by the conventional time-lag method. The RTN 
amplitudes extracted by these two methods agree well when there is only 
one trap in a device. 
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The motivation of this work is to address the uncertainty in  

model selection for RTN amplitude through two ways. First, 

we attempt to find a statistical distribution that has lower 

error without using higher number of fitting parameters. In 

addition to the three distributions mentioned above, thirteen 

other distributions are evaluated. Second, we propose a new 

criterion for selecting statistical models. It will be shown that 

if the data truly follows a specific CDF, the error per trap 

should decrease when increasing the trap number.  

We start by examining the three distributions mentioned 

above in terms of their errors both over the whole distribution 

and in the distribution tail. The number of traps used in some 

early works [7], [10], [25] is  ~100, leaving too few traps in 

the tail (e.g. >95%) to evaluate the error reliably. To enable 

the tail evaluation, 1,178 traps were used here. 

The CDF parameters are extracted by the Maximum 

likelihood estimation (MLE). Early works suggest that the 

accuracy can be improved by using either bimodal 

Exponential [29] or bimodal Lognormal distributions [6]. 

We will examine the impact of using bimodal distributions 

on the accuracy.     

An analysis of the distributions proposed by early works 

[1]-[11] have not identified a clear winner. This leads us to 

search for new statistical distributions. Since there is little 

research on whether the RTN amplitude can be modeled 

better by other statistical distributions, apart from the three 

distributions mentioned above, a scoping study of different 

distributions are carried out. To emphasize the importance of 

the accuracy in the distribution tail for RTN modelling, the 

Z-score of corresponding CDF will be used to calculate 

errors, where Z=(δVth-μ)/σ and μ is the average and σ the 

standard deviation. After comparing 16 distributions, it is 

found that Generalized Extreme Value (GEV) distribution 

[32] gives the lowest errors. GEV also meets the new 

criterion.   

The last issue addressed in this work is the impact of trap 

number on the CDF accuracy in the distribution tail. The 

more traps used for extracting the distribution, the better the 

accuracy should be. In practice, however, the number of traps 

available is always limited. It is of importance to assess how 

reliable a CDF extracted from a limited number of traps can 

be used to predict the distribution tail at high sigma.  
 

II.  DEVICES, MEASUREMENT, AND METHODOLOGY   
A.  DEVICES 

This work uses nMOSFETs fabricated by an industrial CMOS 

process, which has metal gate and a high-k/SiON stack. The 

channel length and width are 27×90 nm, respectively. The 

equivalent oxide thickness is 1.2 nm.  
 

 
 

 
 

       
 

    
 

FIGURE 3. (a) An example of two active RTN traps in a device. (b) It is 
difficult to use the time-lag method to extract the RTN amplitudes for the 
dataset in (a). (c) Extraction of the RTN amplitude of fast trap 1 by applying 
our method in the short time range. (d) Extraction of the RTN amplitude of 
slow trap 2 by applying our method in the long-time range. 
 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3065869, IEEE Access

 

VOLUME XX, 2021 4 
 

B.  MEASUREMENTS  
The test starts by applying a step voltage to the gate and drain. 

The Id is then monitored under a fixed Vg and Vd by an 

oscilloscope at a sampling rate of 1 Mpoint/sec [18], [33]. As 

low power requirement is driving operation voltage towards 

Vth and the average Vth of the devices used here is 0.45 V, we 

chose Vg=0.5 V and Vd=0.1 V for monitoring RTN. Unless 

otherwise specified, tests were carried out under 125 ºC. 

Some typical results are given in Figs. 2 and 3, where the 

current fluctuation is plotted as δId/Id=(Id-Iref)/Id. The 

reference Id, Iref, was taken from the average of the first ten 

points of the measurement [18]. As Vg is close to Vth, δVth 

can be evaluated from -δId/gm, where gm is transconductance 

[24]. The gm is evaluated from a pulse (3 μs) Id-Vg, taken 

before the RTN test for each device [24]. 

 
Table I. The cumulative distribution functions (CDFs). 

 

 
C.  METHOD FOR EXTRACTING RTN AMPLITUDE  
In the test of negative bias temperature instability (NBTI), the 

impact of one trap on Id is typically measured directly from its 

discharge induced step-change of Id [28], [34]. For RTN tests, 

Hidden Markov Method [13] and Factorial HMM [14]-[15] 

has been used, when both the RTN amplitude and time 

constants are needed.  The time-lag plot has been often used 

to measure the RTN amplitude [35]. 

 
Table II. The estimated CDF parameters. 

 

CDF 

(Lognormal) 

CDF 

(Exponential) 

CDF 

(Gumbel) 

CDF  

(GEV) 

𝜖 = 0.143 𝜂 = 1.640 𝛼 = 1.033 𝜉 =  0.540 

𝜃 = 0.792 - 
𝛽 = 0.843 𝛼 = 0.831 

- - - 
𝛽 = 0.542 

 

Similar to the NBTI measurement [28], [34], we measured 

the RTN amplitude directly from the step-changes in Id in this 

work. As shown in Fig. 2a, once a step-like change is 

observed, the Id for each discrete level is taken from the 

average of that level to minimize the effect of thermal noise. 

Moreover, unlike NBTI tests where discharging one trap is 

often an one-off event [28], [34], we take advantage of the 

multiple charge-discharge events in RTN and use the average 

of step-heights to further improve measurement accuracy. The 

minimum detectable δId/Id is ~0.2%, corresponding to a δVth 

of ~0.2 mV.  

Fig. 2b shows that the amplitude extracted by our method 

agrees well with that of time-lag method, when there is only 

one trap in a device. The time-lag method, however, uses data 

in the whole time window and is difficult to use when there 

are multiple traps and one example is given in Figs. 3a and 3b. 

The advantage of our method is that it can be applied to a 

selected time range where two-level RTN events are 

identified. For the same dataset in Fig. 3a, Figs. 3c shows that 

the amplitude of fast trap 1 can be measured in a short time 

window. For a longer time window in Fig. 3d, the slow trap 2 

becomes active and its amplitude can be extracted from the 

difference in the two discrete levels after averaging out the 

impact of the fast trap.   

 

 
 

 
 
FIGURE 4. The CDFs (lines) extracted from 1,178 traps by the MLE 
method are compared with the test data (symbols) for: (a) Gumbel, (b) 
Exponential, (c) Lognormal, and (d) GEV, respectively. 
 

III.  RESULTS AND DISCUSSIONS  

A. PROBLEMS WITH THE PROPOSED STATISTICAL 
DISTRIBUTIONS 

For the RTN amplitude per trap, two popular statistical 

distributions used in early works are Lognormal [1], [5]-[8], 

and Exponential [3]-[6], [28], [29]. In addition, Gumbel 

distribution has been used to capture the long tail of RTN 

[9]-[11]. Their cumulative distribution functions (CDF) are 

summarized in Table I. Table I also gives the formula for the 

Generalized Extreme Value (GEV) distribution, which will 

CDF (Exponential) CDF (Lognormal) 

1 − 𝑒
(−

𝛿𝑉𝑡ℎ
𝜂

)
 

 

1

2
𝑒𝑟𝑓𝑐 (−

ln(𝛿𝑉𝑡ℎ) − 𝜀

𝜃√2
) 

 

CDF (GEV) CDF (Gumbel) 

𝑒
{−[1+𝜉(

𝛿𝑉𝑡ℎ−𝛼
𝛽

)]
−

1
𝜉

}

 
e(−e

−(δVth−α)
β ) 
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be investigated in Section III.C. In this section, we focus on 

the three distributions used in early works: Lognormal, 

Exponential, and Gumbel.    

Using the equation in Table I, the parameters of different 

statistic distributions are extracted by the Maximum 

Likelihood Estimation (MLE) [29], [36]. MLE uses different 

weightings to different data to maximize the probability of 

test dataset occurrence [36]. Based on the 1,178 measured 

traps, the estimated parameters are given in Table II. The 

extracted CDFs are plotted together with test data in Fig. 4. 

Following the early works [5], [6], [30], [31], [37], we use 

the error between the extracted CDFs and the test data to 

compare different statistical distributions. Fig. 5a shows the 

sum-square-error (SSE) per trap. Gumbel and Exponential 

CDFs have similar errors, while Lognormal CDF has lower 

error. For convenience, the result of GEV distribution is also 

given in Fig. 5, which will be discussed in Section III.C. If 

one uses the minimum error of whole dataset as a criterion, 

the Lognormal distribution should be better than the 

Exponential and Gumbel distributions.   
 

 
 

 
FIGURE 5. A comparison of the sum of square errors (SSE) per trap for 
CDFs extracted by Maximum likelihood estimation (MLE) at 125 oC (a) and 
28 oC (b). The whole dataset were used in the error evaluation. Lognormal 
has smaller error than Exponential for the whole dataset. 
 

The results in Fig. 5a were obtained at 125 oC.  To show 

that the observation is independent of test conditions, Fig. 5b 

gives the results at 28 oC. RTN is generally sensitive to 

temperature and 814 traps were measured under 28 oC. The 

error of Lognormal distribution again is lower than that of 

Exponential and Gumbel distributions.  

The minimum SSE per trap for the whole dataset should 

not be the only criterion for selecting statistical distribution 

functions. As the loss of yield is mainly caused by traps in 

the distribution tail, the SSE in the tail region should also be 

examined. To see the tail clearly, the corresponding Z-score 

of CDF is plotted linearly in Fig. 6. Some early works used 

~100 traps [7], [10], [25] so that there are too few traps to 

evaluate the SSE reliably in the >95% tail. With 1,178 traps 

here, their SSE in the >95% tail is compared in Fig. 7. 

Although the Lognormal CDF has lower SSE for the whole 

dataset in Figs. 5a&b, Figs. 7a&b show that the Exponential 

CDF actually matches the test data better in this tail region. 

The choice between Lognormal and Exponential is not 

straightforward, therefore.  
 

 

 
 

 
 
FIGURE 6. A comparison of the tail region between the test data 
(symbols) and the CDFs (lines) extracted by Maximum likelihood 
estimation (MLE) for (a) Gumbel, (b) Exponential, (c) Lognormal, and (d) 
GEV. The vertical axis is plotted linearly for the Z-score corresponding to 
the cumulative probability. 

 

B. BIMODAL STATISTICAL DISTRIBUTIONS 

To improve the accuracy of CDFs, bimodal CDF, BCDF, has 

been proposed: 

 

(a) 

(b) 
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𝐵𝐶𝐷𝐹 = 𝑝 ∗ 𝐶𝐷𝐹1 + (1 − 𝑝) ∗ 𝐶𝐷𝐹2       (1) 

 

where 0≤p≤1 is an adjustable parameter that can be fitted by 

using the MLE method [36]. CDF1 and CDF2 are two 

monomodal distributions. Both bimodal Exponential [29] 

and Lognormal [6] CDFs have been used. It has been 

suggested that CDF1 and CDF2 originate from traps in 

different layers of gate dielectric that have different 

statistical properties [29].   

Figs. 8a-f show the bimodal CDFs extracted by the MLE 

method for Lognormal, Exponential, and Gumbel, 

respectively. The bimodal Lognormal in Figs. 8a&b is 

dominated by the first Lognormal CDF and the contribution 

of the second Lognormal CDF is weak with a p value of only 

0.033. For bimodal Exponential CDFs, the second CDF only 

counts for 9% in Figs. 8c&d. This increases to 25% for the 

bimodal Gumbel in Figs. 8e&f. 

 

 
 

 
FIGURE 7. The error per trap of CDFs in the >95% tail extracted by MLE 
at 125 oC (a) and 28 oC (b). Exponential has smaller error than Lognormal 
in the tail. 
 

To compare the bimodal CDFs with their monomodal 

counterparts, we calculate their errors from their Z-score plot 

in Figs. 8b, 8d, and 8f. This places more weightings on the 

distribution tails where accuracy is important for RTN 

modelling. It is more appropriate than the error calculation 

directly from CDF values in Fig. 5, therefore. 

  

 

 
 

 
 

 
 
FIGURE 8.  Bimodal CDFs for Lognormal (a) and (b), Exponential (c) and 
(d), and Gumbel (e) and (f). (b), (d) and (f) are the Z-score to enlarge the 
tail region. The symbols are test data. The black lines are the sum of two 
CDFs. The blue and red lines are the monomodal CDF1 and CDF2, 
respectively.  
 

Fig. 9 shows that, although bimodal Gumbel has less error 

than monomodal Gumbel, it is still well above the error of 

monomodal Lognormal. The impact of using bimodal CDFs 

on the errors is modest for both Lognormal and Exponential. 

When compared with monomodal CDFs, bimodal CDFs 

more than double the number of fitting parameters. 
According to the Bayesian Information Criterion [38], 

penalty should be applied to models with more fitting 

parameters, so that using bimodal CDFs is not strongly 

supported by the data in this work. The question is whether 

(b) 

(a) 
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there is a monomodal CDF that can give similar or even 

smaller error than the lowest error achieved by the bimodal 

Lognormal CDF in Fig. 9. This will be investigated next.    

C. GENERALIZED EXTREME VALUE (GEV) 
DISTRIBUTION  

Driven by the desire to find a statistical distribution that has 

the lowest SSE per trap without using its bimodal CDF, we 

evaluated 13 other distributions [39] and their SSE per trap 

is compared in Fig. 10, together with the three distributions 

used in early works. Among the 16, the Generalized Extreme 

Value (GEV) distribution has the lowest error. It is worth of 

exploring this distribution further, therefore. 

 

 
 
FIGURE 9. A comparison of errors in bimodal CDFs with their 
monomodal CDFs for Exponential, Lognormal, and Gumbel: The SSE per 
trap is calculated from the Z-score for the whole dataset. The use of 
bimodal CDFs has not reduced errors below the level achieved with a 
monomodal GEV. 

 

 

FIGURE 10.  A comparison of the SSE per trap for 16 CDFs [39]. The error 
is calculated from the Z-score for the whole dataset. The Generalized 
extreme value (GEV) distribution has the lowest error.   

 

The equation for GEV is included in Table I and the 

extracted parameter values are given in Table II. Fig. 4d 

shows that the CDF of GEV agrees well with the test data 

overall. Although Fig. 6d shows that the difference between 

GEV and the highest few data points appear increasing, this 

is an artifact, as the last few points of test data is always lifted 

upwardly by the limitation in the size of dataset. The Z-score 

approaches infinity when CDF approaches 1. As the last data 

point has CDF=1, its Z-score would be infinity. To avoid 

this, it is a common practice to calculate the CDF of test data 

by [40], 

 

CDF(δVth,i)=(i-0.5)/N, 

 

where i=1 has the lowest δVth and i=N=1,178 has the highest 

δVth in our test dataset. This brings the last CDF point from 

1 to 0.999576 and their corresponding Z-score from infinity 

to 3.34. It, however, cannot completely eliminate the 

artificial up-swing of the last few data points.   

    Figs. 5 and 7 show that the GEV has the lowest error for 

both the whole dataset and the tail region when compared 

with other CDFs. Fig. 9 shows that the error of monomodal 

GEV CDF is also lower than that of the bimodal Lognormal, 

Exponential, and Gumbel CDFs. The number of fitting 

parameters is 5, 3, and 5 for the bimodal Lognormal, 

Exponential, and Gumbel CDFs, respectively. It is 3 for the 

GEV in Fig. 9, so that the better accuracy of GEV was not 

gained from using larger number of fitting parameters. 

 

 

FIGURE 11.  A comparison of different CDFs extracted from the same 
dataset (symbols). The solid lines are the monomodal CDFs and the 
dashed lines are their bimodal counterparts for the same color.  

 

Fig. 11 compares the CDFs of different distributions 

extracted from the same dataset. The predicted distribution 

tail is sensitive to model selection. The δVth at high σ 

increases in the order of Gumbel, Exponential, Lognormal, 

and GEV. In another word, Gumbel has the shortest tail and 

gives the optimistic prediction, while the GEV has the 

longest tail and gives the pessimistic prediction. Fig. 12 

compares the probability for δVth≥25 mV predicted by 

different CDFs. Quantitatively, it is 4.5×10-7, 0.24, 52, and 

2553 parts-per-million (ppm) for Gumbel, Exponential, 
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Lognormal, and GEV, respectively. This highlights the 

uncertainty of RTN prediction when using different CDFs. 

On the applicability of the conclusions drawn here to other 

fabrication processes, ideally we should compare the results 

of samples fabricated by different processes. However, we 

only have one wafer from one company. The test samples 

used here were fabricated by the 28 nm CMOS process, 

which has been widely used commercially. The results 

reported here should be a typical representation of industrial 

processes, but further work will be needed to confirm this. 

 

 
FIGURE 12.  A comparison of the probability of occurrence for δVth≥25 
mV predicted by different CDFs.  The CDF values at δVth=25 mV were 
taken from Fig. 11, as marked out by the vertical dashed line.  

D. NEW MODEL SELECTION CRITERION  

Given the large uncertainties in the RTN predicted by 

different CDF models, further work is needed to justify their 

selection, in addition to their errors. Ideally, the selected 

model should be justified by device physics. Unfortunately, 

we could not link the Exponential, Gumbel, and GEV with a 

physical process, as these models are empirical [1]. GEV is 

developed from the extreme value theory to capture the long 

distribution tails, with Gumbel, Fréchet, and Weibull 

distributions as its special cases [32]. The number of traps in 

a device is minimized in a modern commercial CMOS 

process through quality control and one may consider that 

having a trap right above the narrow percolation current path 

in Fig. 1b is extremely rare.  

The Lognormal CDF has been interpreted physically [6], 

[7]. As the number of charge carrier in the channel depends 

on (Vg-Vth) exponentially in the subthreshold region, a local 

Vth fluctuation spatially leads to an exponential fluctuation 

of local density of charge carrier, n. If Vth varies spatially by 

following Normal distribution, Log(n) will vary by 

following Normal distribution. The impact of a trapped 

charge on the channel is proportional to n, so that Log(δVth) 

will also follow the normal distribution, i.e.  δVth follows 

Lognormal distribution [7].  

There are, however, two difficulties with this 

interpretation. One is that Id was monitored above threshold 

in typical RTN tests, where n no longer depends on (Vg-Vth) 

exponentially. The other is that the impact of trapping on 

carrier mobility is neglected here [7]. It has been reported 

that the contribution of charge-induced mobility degradation 

is similar to that of carrier number reduction [41]. 

In searching for further criterion for model selection, we 

examine the dependence of error per trap on the number of 

traps. If the test data truly follow a specific CDF, we expect 

that the error per trap decreases with increasing number of 

traps, because an infinite number of data should produce this 

specific CDF perfectly. To support this statement, we used a 

theoretical Lognormal CDF to randomly generate a number 

of data and then treat them as ‘test data’. These ‘test data’ 

were used to extract the Lognormal CDF and the errors were 

evaluated in the same way as that for the real test data. Fig. 

13a shows that the SSE per trap indeed reduces for higher 

number of traps, despite of the statistical scattering. The 

same also applies to the GEV CDF. 

 

 
 

 

FIGURE 13.  Dependence of SSE per trap on the number of traps used to 
extract the CDFs. (a) The data are generated randomly from the 
theoretical Lognormal (■) and GEV (●). They were treated as the ‘test data’ 
and used to extract Lognormal and GEV CDFs, respectively. Their SSE 
per trap decreases with increasing trap number, as shown by the fitted 
dashed lines. (b) The real test data were used to extract CDFs and 
calculate SSE per trap. The solid lines are fitted. For comparison, the two 
dashed lines in (a) were replotted in (b). Only GEV clearly shows the 
expected decrease of errors with increasing trap number. 
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Fig. 13b shows the dependence of SSE per trap on the trap 

number for the real test data. Only the error of GEV exhibits 

a clear decrease for higher number of traps. To quantitatively 

compare the error of theoretical and real test data, the two 

fitted lines in Fig. 13a were reproduced as the two dashed 

lines in Fig. 13b. The difference in the error between the 

theoretical and real test data is substantially larger for 

Lognormal, when compared with GEV distribution. This 

supports the GEV model.       

 

 

FIGURE 14.  A comparison between theoretical GEV by using parameters 
in Table II and the GEV fitted by using 100 hypothetical traps, which were 
randomly generated by the theoretical GEV. The difference between 
theoretical and fitted GEV at 5σ is shown by the dashed lines. 

E. IMPACT OF TRAP NUMBERS ON PREDICTION 
ACCURACY  

Fig. 13a shows that the error per trap reduces for higher 

number of traps. In practice, the number of available traps is 

always limited. When the CDFs extracted from a limited 

number of traps is used to predict the RTN in the long tail, 

an important question is how accurate it is.  

To assess the impact of trap number on this accuracy, one 

needs a reference distribution as the benchmark. Here, we 

use the GEV distribution extracted in Fig. 11 as the reference 

and their parameters are given in Table II. One set of ‘N’ data 

is randomly generated according to this distribution, as 

shown in Fig. 14. These N data are then used to extract the 

statistical distribution, which gives the orange curve in Fig. 

14. The difference between the fitted and the reference 

distributions (the blue curve in Fig. 14) at a given σ can then 

be determined, as illustrated by the dashed lines in Fig. 14. 

By repeating this process 1000 times and each time with a 

different and randomly generated set of N data, we can 

obtain the confidence for the accuracy of statistical 

distributions extracted from a set of N data [42]. 

Fig. 15a shows the error at 3σ for different N. For N=100, 

the error at 90% confidence is -58.35% and 57.42%, 

respectively. For N=1,000, these two errors are reduced to -

13.68% and 13.18%. If one targets an accuracy of 15% at 3σ 

with 90% confidence, 1,000 traps can be used. 

Fig. 15b shows the errors for N=1000 at different sigma. 

The error increases from -13.68% and 13.18% at 3σ to -

37.15% and 26.5% at 5σ (a probability of 0.57 parts per 

million) for 90% confidence. To be conservative, the guide-

band for RTN induced δVth at 5σ should be increased by 

26.5% from the value predicted by the statistical distribution 

extracted from 1000 traps, therefore. 

With 1000 traps, the probability of occurrence for 

δVth≥25 mV is between 1584.2 and 3537.6 with 90% 

confidence. This uncertainty is substantially smaller than 

that from using different CDF models shown in Fig. 12. We 

conclude that the uncertainty in RTN amplitude prediction is 

dominated by model selection.  

 

 

 
 

 
FIGURE 15.  (a) shows the errors of prediction at 3σ by the CDFs 
extracted from different number of traps with 80%, 90%, 95% and 99% 
confidence. (b) shows the errors at different σ for 1,000 traps. 

 

IV. CONCLUSION 

This work assesses the accuracy of the statistical distributions 

for the RTN amplitude per trap.  Its novelty includes proposing 

a new model selection criterion based on the relation between 

error and trap number, exploring the applicability of a wide 

range of statistical distributions to RTN amplitudes, and 

finding that the Generalized Extreme Value (GEV) 

distribution has the least Z-score based error. The new model 

selection criterion requires a monotonic error decrease for 
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higher number of traps. The GEV meets this criterion, while 

the Exponential, Lognormal, and Gumbel distributions do not. 

Based on our data, using bimodal Exponential and Lognormal 

CDFs only has a modest impact on the error, despite the 

increased fitting parameters.  

The accuracy of CDF extracted from a limited number of 

traps is also assessed. For 90% confidence, the guide-band for 

RTN induced δVth at 5σ should be increased by 26.5% from 

the value predicted by the statistical distribution extracted 

from 1,000 traps. The uncertainties caused by using a limited 

number of traps is relatively small and the selection of CDF 

model dominates the uncertainty in RTN amplitude prediction 

and modelling.      
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