

# LJMU Research Online

Turvey, L, Augustine, DX, Robinson, S, Oxborough, D, Stout, M, Smith, N, Harkness, A, Williams, L, Steeds, RP and Bradlow, W

Transthoracic echocardiography of hypertrophic cardiomyopathy in adults: a practical guideline from the British Society of Echocardiography.

http://researchonline.ljmu.ac.uk/id/eprint/14624/

Article

**Citation** (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Turvey, L, Augustine, DX, Robinson, S, Oxborough, D, Stout, M, Smith, N, Harkness, A, Williams, L, Steeds, RP and Bradlow, W (2021) Transthoracic echocardiography of hypertrophic cardiomyopathy in adults: a practical auideline from the British Society of Echocardiography. Echo Research and

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact <a href="mailto:researchonline@ljmu.ac.uk">researchonline@ljmu.ac.uk</a>

http://researchonline.ljmu.ac.uk/

- 1 Title: Transthoracic Echocardiographic of Hypertrophic Cardiomyopathy in Adults: A Practical
- 2 Guideline from the British Society of Echocardiography
- 3 Authors: Lauren Turvey<sup>1</sup>, Daniel Augustine<sup>2</sup>, Shaun Robinson<sup>3</sup>, David Oxborough<sup>4</sup>, Martin Stout<sup>5</sup>,
- 4 Nicola Smith<sup>1</sup>, Allan Harkness<sup>6</sup>, Lynne Williams<sup>7</sup>, Richard Steeds<sup>1</sup> and William Bradlow<sup>1</sup>

# 5 Corresponding author's postal and email address

- 6 Dr W. Bradlow. Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust,
- 7 Mindelsohn Way, Edgbaston, Birmingham, B15 2TH.
- 8 william.bradlow@uhb.nhs.uk

# 9 Authors Institutions:

- Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust,
   Birmingham
- Department of Cardiology, Royal United Hospital Bath, Bath. Department for Health,
   University of Bath, Bath, UK.
- 14 3. Department of Cardiology, North West Anglia NHS Foundation Trust, Peterborough
- Research Institute for Sports and Exercise Physiology, Liverpool John Moores University,
   Liverpool
- North West Heart Centre, Wythenshawe Hospital, Manchester University NHS Foundation
   Trust, Manchester
- 19 6. Department of Cardiology, Colchester Hospital NHS Trust, Colchester
- 20 7. Department of Cardiology, Papworth Hospital, Papworth Everard, Cambridge
- 21 Short Title: BSE HCM Guideline
- 22 Keywords: Hypertrophic cardiomyopathy, hypertrophic obstructive cardiomyopathy, guidelines,
- 23 echocardiography
- 24 Word count: 8394 (including tables and references)

25

26

#### 1 Abstract

Hypertrophic cardiomyopathy (HCM) is common, inherited and characterised by unexplained
thickening of the myocardium. The British Society of Echocardiography (BSE) has recently published a
minimum dataset for transthoracic echocardiography detailing the core views needed for a standard
echocardiogram. For patients with confirmed or suspected HCM, additional views and measurements
are necessary. This guideline, therefore, supplements the minimum dataset and describes a tailored,
stepwise approach to the echocardiographic examination, and echocardiography's position in the
diagnostic pathway, before advising on the imaging of disease complications and invasive treatments.

9

### 1 Intent behind update

These guidelines on hypertrophic cardiomyopathy (HCM) represent a five-year update. They contain a description of pertinent disease features and the critical echo parameters needed to evaluate the condition, alongside a recommended protocol. A specific HCM minimum data set, for use as an aide memoir when reporting, is provided.

6 The guideline also proposes an echocardiographic approach to diagnosis as well as information on the 7 use of echo measurements for sudden death risk stratification. This guideline aims to enhance 8 baseline knowledge and to allow echocardiographers to develop a systematic approach to the image 9 acquisition and echocardiographic reporting of patients with proven or suspected HCM. The guideline-10 writing committee anticipates that readers armed with this knowledge will approach these 11 examinations with confidence, extract as much information about each patient's condition as possible and produce unambiguous, standardised reports. These actions will enhance clinical care by limiting 12 13 the number of patients who are either under or over-diagnosed and highlight the sub-cohorts of 14 patients who need additional investigations and treatments. The guidelines end with short sections 15 covering the use of echo guidance for transseptal alcohol ablation and surgical myectomy as well as 16 strain, stress and three-dimensional echocardiography in patients with HCM.

#### 17 <u>Hypertrophic Cardiomyopathy</u>

HCM in adults is defined 'by a wall thickness ≥15 mm in one or more left ventricular (LV) myocardial segments that is not explained solely by loading conditions'(1), for example, hypertension. In a smaller number of cases, described in the next section, HCM may be associated with an abnormal wall thickness which measures less than 15mm. This dimension-based diagnosis covers a diverse group of diseases, both inherited and acquired, which differ in their pathophysiology and management.

Due to the challenges in certain aspects of diagnosis and management of this patient group, referral
 to specialist centres focused on inherited cardiac conditions and cardiomyopathies is recommended

for patients with suspected or confirmed disease(1). Where possible, echocardiographers should
 obtain dedicated training in the scanning and interpretation of this patient group.

The condition affects between 0.2%(2) and 1.4% of individuals(3). Disease complications are reasonably common; in a multi-centre longitudinal study of patients with HCM, atrial fibrillation occurred in 20%, sudden cardiac death or resuscitated cardiac arrest in 4%(4) and left ventricular systolic dysfunction (ejection fraction <50%) in 8%(5).

7 The pattern of inheritance is autosomal dominant. A clinically meaningful gene change (found 8 predominantly in MYBPC3 and MYH7) occurs in a fifth of patients where the family history is negative, 9 and a half where it is positive(6). Finding a disease-causing gene change allows testing of family 10 members using pre-symptomatic screening.

#### 11 Echocardiography's Position in the Diagnostic Pathway – Wall thickness

Accurate measurement of wall thickness is fundamental to decision-making. Because of this, the echocardiographic examination is a key component of the diagnosis pathway. Ancillary features such as left ventricular outflow tract obstruction (LVOTO) do not contribute.

Measurements should be made in short-axis views orthogonal to the circumference of the endocardium and epicardium, wherever maximal wall thickness occurs. Elements attached to but not incorporated in the septum should be excluded (Figure 1), as this will overestimate wall thickness and run the risk of misdiagnosis of HCM. The report should state if the study failed to visualise any part of the LV (often the basal anterior and anterolateral walls) and recommend alternative imaging modalities, specifically cardiovascular magnetic resonance.

The dimensional threshold for HCM depends on the location of hypertrophy as well as the clinical context. In apical HCM, where normal tapering of both cavity and epicardium is lost, the apical wall thickness may be less than 15 mm(7). One criterion defines apical HCM when the ratio between apical and basal wall thickness exceeds 1.3: 1(8). Visualisation of this area can be difficult and may require

the use of myocardial contrast (Figure 2). By ensuring the apical four, two and three-chamber view section the apex, the echocardiographer will avoid giving the impression of apical hypertrophy by foreshortening views. Apical wall thickness should be measured in the short-axis view, ensuring the cut is not oblique to the long axes of the LV.

In first-degree relatives - who have a 50% risk of inheriting the causative gene - the wall thickness threshold for diagnosis of HCM is  $\geq$ 13 mm (1). The yield of positive screening examinations in first degree relatives vary based on the population tested; in one report, 5% of first-degree relative children were diagnosed with HCM(9), rising to 30 % of a mainly adult cohort in another, where many had a disease-causing gene(10). A feature of HCM is age-related penetrance, where the percentage of individuals carrying the disease-causing gene who express the condition increases with age. The yield of clinical screening is higher in families where the disease onset has been in childhood(9,10).

HCM featuring the so-called dilated-hypokinetic or 'burnt-out' phase (5), or due to specific gene
mutations(11–13), can be associated with only mild increases in wall thickness.

14 Grey Cases

Ethnicity, hypertension, renal disease, significant aortic stenosis, increased body mass index and athletic remodelling all influence left ventricular hypertrophy. Increased LV wall thickness secondary to these processes may fall into a 'grey zone', overlapping with the degree of LV hypertrophy (LVH) seen in HCM (Figure 3). For example, a wall thickness of 15 -20 mm can occur in hypertensive heart disease in individuals of African/Afro-Caribbean ethnicity, whereas the same degree of hypertrophy in a Caucasian hypertensive patient would suggest HCM(1). LVH in hypertensive heart disease and athletic remodelling tends to be uniform and symmetrical.

In athletes, gender, in addition to ethnicity, is relevant. Wall thickness is lower in female athletes than
 their male counterparts and does not exceed 13 mm in Caucasian athletes or 15 mm in athletes of
 African/Afro-Caribbean ethnicity(14). In a study of athletes with HCM compared with athletes without

1 HCM(15), the diagnosis was definite in most individuals as maximal wall thickness was >16 mm, and 2 often the LVH was distributed non-uniformly. The scenario in which there was uncertainty – where 3 LVH was 13-16 mm and concentric (defined by a relative wall thickness of >0.42 (see BSE guidelines 4 on normal reference intervals for cardiac dimensions and function for more information (16)) -5 cropped up in only 14% of athletes with HCM. Measures like left ventricular cavity size (previously 6 reported to be a useful differentiator between HCM and athletic heart; being larger in the latter (17)) 7 showed modest performance in picking out athletes with HCM. Additional tests were required to 8 distinguish these individuals from athletes with physiological remodelling.

#### 9 <u>Recommended Language in Echocardiography Report</u>

10 Echocardiography's pivotal role means that a study's interpretation can strongly influence the clinical 11 team's diagnostic decision. Because of this, we encourage the use of standardised language when 12 reporting. In instances where there is uncertainty, 'raises the possibility of HCM' is recommended. In 13 individuals undergoing screening, where there is no evidence of left ventricular hypertrophy, the 14 conclusion should contain the following suggested phrase: 'wall thickness is normal'. The proposed 15 language provides an objective statement about the echocardiogram findings, rather than a definitive 16 clinical assertion. Hence 'wall thickness is normal' is not the same as 'does not have HCM'. 17 Echocardiographers should exercise their judgement, but when the echocardiographic images show 18 unequivocal evidence of HCM in an appropriate clinical context (clear-cut apical HCM, gross 19 hypertrophy in a young patient and definite LVH in a screening echocardiogram), the phrase 20 *'consistent with HCM'* should be used.

#### 21 Post-echocardiography Work-Up

In patients with suspected HCM, the clinical team will contextualise the echocardiography report with information regarding past medical and family history, blood tests and ECG results, and often cardiovascular magnetic resonance. In grey cases, clinicians judge whether the degree of hypertrophy matches the severity of the comorbidity (Figure 3). Clarification of the diagnosis in these instances is 1 possible after assessing the response of wall thickness and LV mass to a sustained period of reduced 2 afterload, for example, improved blood pressure control in the hypertensive patient, weight loss in 3 the obese individual, aortic valve replacement in the patient with severe aortic stenosis or cessation 4 of training in the athlete(18). In exceptional cases where there is non-apical hypertrophy measuring 5 less than 15 mm, and an ECG highly suggestive of underlying cardiomyopathy, the clinical team might 6 screen first-degree family members to look for clear-cut evidence of HCM. Given the likelihood of 7 finding a negative result on gene testing of confirmed cases, it is rarely used as a diagnostic tool when 8 there is ambiguity about the diagnosis.

## 9 <u>Phenocopies</u>

10 It is possible to find within the population of patients with hypertrophic cardiomyopathy rarer 11 conditions, called phenocopies or 'mimics' (19). In general, these will come to light during clinical 12 evaluation of the patient's medical history, family history, physical examination and the results of 13 blood tests, including genetics, and other imaging modalities. However, there are particular features, 14 termed 'red flags', which should alert the echocardiographer to the possibility of a phenocopy (Table 15 1). Of these, cardiac amyloidosis is the most obvious due to its classical signs: increased biventricular 16 wall thickness, poor long axis function, relative sparing of apical longitudinal contraction and global 17 longitudinal strain (although not pathognomonic of amyloid), interatrial and valvar thickening, 18 pericardial effusion, and mismatch between the degree of LVH seen on echo and low amplitude 19 voltages on ECG. Diagnosing HCM should be avoided immediately after an acute cardiac injury such 20 as myocarditis as the myocardium becomes oedematous and thickened; these changes resolve with 21 time.

# 22 Defining the pattern of hypertrophy in HCM

The echocardiographic report should detail the distribution of LVH using the schema described in
Figure 4 as this informs the clinical team of the likelihood of finding a disease-causing gene change;
being highest in patients with a reverse curvature pattern and lowest in those with a sigmoid septal

pattern(20). Right ventricular hypertrophy is present in around 20% of patients with HCM. The
 echocardiographer should report this as it occurs in disease mimics; however, it does not add to the
 likelihood of finding a disease-causing mutation.

Hypertrophy can also extend to the papillary muscles, which can contribute to mid-cavity obstruction.
Additional morphological abnormalities of papillary muscles in HCM which can cause LVOT obstruction
include antero-apical displacement, double bifid(21) and anomalous papillary muscles which insert
directly into the mitral valve leaflets(22,23). Bands running between the apex and basal anteroseptal
wall are seen in HCM(24).

#### 9 <u>Echo assessment in risk stratification and disease complications</u>

10 Risk stratification of sudden death is the process clinicians follow to decide which patients should receive an implantable cardioverter-defibrillator. Using the European Society of Cardiology (ESC) 11 12 calculator(1), it is possible to generate an estimate of the five-year risk of sudden death and categorise 13 patients into low, intermediate, and high-risk groups. Echocardiography provides three of the seven 14 parameters required in the online tool (maximal wall thickness, LVOT gradient and 2D parasternal long 15 axis left atrial size). To allow this critical information to be accessed rapidly by the referring clinician, 16 the conclusion for every report in a patient with suspected or confirmed HCM should contain these 17 parameters. Although not in the ESC risk calculator, the presence of left ventricular impairment(5) and 18 an apical aneurysm(25) is also essential to include in the study conclusion as they modify risk of sudden 19 cardiac death.

The importance of reporting cardiac rhythm in every echocardiogram report is particularly relevant in HCM as a significant proportion of patients will develop atrial fibrillation. The finding of new atrial fibrillation should be directly communicated to the referring team as anticoagulation is essential to prevent stroke or other embolic complications.

1 Heart failure can occur due to systolic impairment, diastolic dysfunction and LVOT obstruction. As a 2 measure of systolic function, ejection fraction (EF) can be misleading in HCM being normal even when 3 markers of systolic dysfunction such as abnormal regional wall motion and global longitudinal 4 strain(26) (see the section below) are present. Nonetheless, the absolute value helps clinical teams to 5 identify patients in whom systolic dysfunction is likely to develop (50-60%) and those in whom it is 6 overt (<50%)(5). Accurately determining EF using Simpson's biplane, and three-dimensional 7 quantification where possible, and highlighting instances when this measurement is discordant with 8 the systolic function will aid clinical management. Longitudinal systolic function should be assessed 9 using tissue doppler imaging and in select cases strain (see section below), while radial systolic 10 function should be assessed visually. Outcomes are generally adverse once the EF falls below 50% (5). 11 Below this level, clinical teams should consider medications(1), heart transplant(1) and device therapy 12 (27).

13 Diastolic dysfunction is common in HCM and results in elevated filling pressures and dilatation of the 14 left atrium, whose diameter in the parasternal long axis is a predictor of sudden death in the ESC risk 15 calculator (28), and of stroke and other thromboembolic events (29). Accurate classification of 16 diastolic function grade is challenging in HCM due to the concomitant presence of left ventricular 17 outflow tract obstruction and mitral regurgitation in many patients. Many independent echo variables 18 have weak correlations with filling pressures. As such integration of several parameters is necessary 19 to quantify diastolic function accurately. Diastolic function assessment should include Doppler tissue 20 imaging and pulmonary vein Ar timings as per BSE guidelines(30).

It is essential to identify patients with preserved left ventricular ejection fraction but a restrictive diastolic filling pattern, which is often accompanied by pulmonary hypertension(31). These patients have adverse outcomes(32) and should be observed closely for evidence of deterioration as heart transplant is an option when symptoms related to heart failure are resistant to medical treatment(31).

Left ventricular outflow tract obstruction occurs as a result of a reduced cross-sectional area of the 1 2 outflow tract due to hypertrophy, abnormalities of the mitral valve apparatus, and in most patients 3 supranormal ejection, which drags the anterior mitral valve leaflet anteriorly towards the basal 4 septum. The mitral valve coaptation is disrupted, with the resultant jet of mitral regurgitation in the 5 majority of patients being directed posteriorly in mid-to-late systole (65% based on a recent study of 6 patients undergoing myectomy with systolic anterior motion-related mitral regurgitation(33)). The 7 same study found that posteriorly directed mitral regurgitation occurred in approximately a third of 8 patients with intrinsic mitral valve disease.

9 There is a spectrum of LVOTO defined according to the severity and whether it is present at rest or 10 with provocation (Table 2). Echocardiographers should try to provoke LVOT obstruction in every 11 patient at the bedside by re-imaging while the patient is performing a Valsalva manoeuvre and in a 12 seated and standing position. Obstruction in the mid and apical LV and right ventricle can also occur 13 due to narrowing of the cavity as neighbouring myocardial walls contract towards each other. 14 Accurate identification of the site of obstruction is relevant to guiding treatment strategies.

In patients who fail to respond to medical therapy directed at relief of LVOT obstruction, invasive septal reduction therapies (surgical myectomy and alcohol septal ablation) are considered. Given the potential complications of invasive therapies, it is important that patients fulfil the necessary clinical, anatomical, and hemodynamic criteria to determine suitability for a procedure, and this decision is based heavily on the echocardiographic assessment.

Although a complete discussion of the work-up for these procedures is outside this guideline's remit, pertinent echocardiographic features are summarised in Table 3. A clear description of the nature of LVH, mitral valve abnormalities, additional areas of obstruction, and aortic valve disease supports decision-making. The focus is on identifying those elements that point to the need for surgical intervention and not alcohol septal ablation. Surgery can address features aligned with the latter , but the converse is not true <u>for alcohol septal ablation</u>.

1 Alcohol septal ablation is performed through an angiographic percutaneous approach and provides a 2 suitable alternative for patients of advanced age or with significant comorbidities that would lead to 3 an increased surgical risk. Injection of alcohol via a septal perforator branch of the LAD is performed 4 into the target myocardium. This site is the hypertrophied basal septum adjacent to the point of 5 anterior mitral valve leaflet-basal septal (systolic anterior motion-septal) contact, creating an acute 6 infarction and progressive thinning of the myocardium with scar formation over a 6-12-month period. 7 Selective intracoronary injection of contrast is essential to guide the selection of the appropriate 8 septal perforator vessel, ensuring that the selected branch supplies only the targeted area of the 9 myocardium, with no enhancement of remote areas such as the papillary muscles, inferior wall of the 10 LV, or right ventricular free wall. A decrease in resting and provocable LVOT gradients is seen 11 immediately because of myocardial stunning, with a progressive reduction in resting and dynamic 12 LVOT gradients over 3-6 months.

Finally, the examination should include careful evaluation for aneurysm formation and associated thrombi in patients with apical HCM using contrast when necessary (Figure 2). Table 4 describes the relevance of various parameters captured by the echocardiography examination and Table 5 the minimum data set. A protocol for the transthoracic echo study in HCM is described in Table 6.

#### 17 Stress Imaging in HCM

18 By imaging the heart during controlled exercise, stress echocardiography can unmask latent 19 obstruction in symptomatic patients whose baseline transthoracic echocardiography – despite the 20 previously described physiological manoeuvres – has not shown LVOT gradients  $\geq$  50 mmHg. 21 Symptom-limited exercise is safe using an exercise bike or treadmill. There is some evidence to suggest 22 that treadmill exercise can provoke higher LVOT gradients compared to semi-supine bicycle 23 exercise(34). Dobutamine is not employed in HCM since this infusion can induce LVOTO in normal 24 subjects. When the patient has reached peak exercise, images are obtained within 60-90 seconds to detect obstruction which can be present before or after the patient's heart rate reaches 85% of target 25

heart rate. The protocol in Table 7 suggests an optimal scanning order to utilise peak heart rate with
minimal changes to the acoustic window. Table 8 illustrates the data acquired in each step of the
protocol. In specific scenarios, the echocardiographer can employ additional measures to provoke
LVOT obstruction. For patients with postprandial symptoms, exercise after eating is useful(35) while
for those who cannot exercise, administering GTN spray can unmask obstruction(36).

6

## 7 Strain Imaging in HCM

8 Measurement of global longitudinal strain (GLS) by two-dimensional speckle tracking 9 echocardiography is becoming more widely used in current practice. Strain is a measure of myocardial 10 deformation in multiple directions throughout the cardiac cycle. Most commonly, analysis based on 11 the Lagrangian method (derived from speckle tracking techniques) expresses strain as a fractional 12 change in length. Shortening of the myocardium becomes a negative value and lengthening of the 13 myocardium a positive value(37). In HCM, reduced overall left ventricular GLS occurred in individuals 14 with preserved ejection fraction(38). A recent systematic review has shown an association between 15 abnormal GLS and adverse outcomes(39).

However, the author group feel that several practical considerations limit routine use in every HCM patient. These include the expertise and experience needed to ensure the strain curves generated are accurate and the potential difficulties in tracking where there is gross hypertrophy, apical hypertrophy or apical insertion of the papillary muscles. Consequently, inter-observer variability may well be higher in HCM than for dilated cardiomyopathies. Finally, strain-based measures are yet to be adopted into clinical HCM guidelines and so will not routinely alter patient management.

For this reason, we recommend that GLS is used to help distinguish HCM from cardiac amyloidosis,
and athletic remodelling. This position will be re-evaluated in the next update of the guideline as more

24 evidence emerges and the technology evolves.

#### 1 Three-dimensional echocardiography

Besides enabling accurate quantification of left and right ventricular volumes and ejection fraction, three-dimensional echocardiography also allows echocardiographers to describe mitral valve and LVOT morphology. Three-dimensional technology is also valuable in transoesophageal echocardiography to detail SAM's features and underlying causes (40,41). We recommend that patients undergo transoesophageal echocardiography when the transthoracic study suggests significant abnormalities of the mitral valve apparatus, and to evaluate both the mitral valve and the LVOT when planning for invasive septal reduction.

#### 9 <u>Recommendations</u>

- 10 The echocardiogram report conclusion should include:
- 11 1. The following suggested phrases: when there is uncertainty: raises the possibility of HCM;
- 12 when there is unequivocal evidence of HCM: *consistent with HCM;* for screening scans with
- 13 no LVH: wall thickness is normal.
- 14 2. The presence of red flags pointing to a phenocopy.
- 15 3. The pattern of LVH: sigmoid septal, reverse curvature, apical or neutral.
- 16 4. The values for maximal wall thickness, LVOT gradient and LA size.
- 17 5. The presence or absence of disease complications.
- 18a. Left ventricular cavity size
- 19 b. Systolic dysfunction with EF 50-60%, EF<50%.
- 20 c. Diastolic dysfunction, specifically the presence of a restrictive filling pattern with
   21 preserved ejection fraction.
- 22 d. Systolic anterior motion, mitral regurgitation, LVOT obstruction and other forms of
- 23 obstruction; at rest and with provocation. Evidence of intrinsic mitral valve disease.
- e. Aneurysm formation.

- 1 6. Image quality, completeness of LV visualisation and need for contrast and transoesophageal
- 2 echocardiography, and cardiovascular magnetic resonance.

## 3 <u>Conclusion</u>

- 4 Transthoracic echocardiography plays an essential role in the assessment of patients with proven or
- 5 suspected HCM, and their first-degree family members. The guideline writing committee hopes that
- 6 this document equips readers with the knowledge and tools needed to perform and report these
- 7 studies to a uniformly high level.

8

## 1 Declaration of Interest

- 2 The authors declare that there is no conflict of interest that could be perceived as prejudicing the
- 3 impartiality of this guideline.

# 4 Funding

- 5 This work did not receive any specific grant from any funding agency in the public, commercial or
- 6 not-for-profit sector.
- 7

## 8 Figure Titles

- 9 Figure 1. Measurement of Wall Thickness by Echocardiography
- 10 Figure 2. Use of Contrast in Apical Hypertrophic Cardiomyopathy
- 11 Figure 3. Thinking Underlying Clinical Decision-Making in HCM
- 12 Figure 4. Different Phenotypes of Left Ventricular Hypertrophy in Hypertrophic Cardiomyopathy

#### 13 Figure Legends

- 14 Figure 1. The challenges to accurate wall thickness measurement vary at each left ventricular chamber
- 15 level. Dashed lines represent erroneous measurements and solid lines accurate measurements.

Figure 2. An apical four-chamber acquisition enhanced with contrast to show apical hypertrophiccardiomyopathy complicated by aneurysm formation.

**Figure 3.** This schematic demonstrates various scenarios and the corresponding likelihood of the condition. Once investigations are complete, and a full clinical picture is available, this information is

- 20 weighed by clinicians to reach a final diagnosis. Between cases where the likelihood of the condition
- 21 is the same as the background population (left-hand side, green shading) and definite disease (right-
- 22 hand side, green shading), lies the diagnostic grey zone (grey shading).
- 23 Figure 4. Echocardiographic images are displayed for the four main patterns of hypertrophy,
- 24 accompanied by the criteria for each pattern.

### 1 References

- 2 1. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: The Task
   3 Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European
   4 Society of Cardiology (ESC). Eur Heart J. 2014 Oct 14;35(39):2733–79.
- Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE. Prevalence of Hypertrophic
   Cardiomyopathy in a General Population of Young Adults: Echocardiographic Analysis of 4111
   Subjects in the CARDIA Study. Circulation. 1995 Aug 15;92(4):785–9.
- Massera D, McClelland RL, Ambale-Venkatesh B, Gomes AS, Hundley WG, Kawel-Boehm N, et
   al. Prevalence of Unexplained Left Ventricular Hypertrophy by Cardiac Magnetic Resonance
   Imaging in MESA. J Am Heart Assoc. 2019 Apr 6;8(8).
- Ho CY, Day SM, Ashley EA, Michels M, Pereira AC, Jacoby D, et al. Genotype and Lifetime
   Burden of Disease in Hypertrophic Cardiomyopathy. Circulation. 2018 Oct 2;138(14):1387–98.
- Marstrand P, Han L, Day SM, Olivotto I, Ashley EA, Michels M, et al. Hypertrophic
   Cardiomyopathy With Left Ventricular Systolic Dysfunction: Insights From the SHaRe Registry.
   Circulation. 2020 Apr 28;141(17):1371–83.
- Alfares AA, Kelly MA, McDermott G, Funke BH, Lebo MS, Baxter SB, et al. Results of clinical
   genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer
   limited additional sensitivity. Genet Med. 2015 Nov;17(11):880–8.
- Flett AS, Maestrini V, Milliken D, Fontana M, Treibel TA, Harb R, et al. Diagnosis of apical
   hypertrophic cardiomyopathy: T-wave inversion and relative but not absolute apical left
   ventricular hypertrophy. International Journal of Cardiology. 2015 Mar;183:143–8.
- Suzuki J, Shimamoto R, Nishikawa J, Yamazaki T, Tsuji T, Nakamura F, et al. Morphological
   onset and early diagnosis in apical hypertrophic cardiomyopathy: a long term analysis with
   nuclear magnetic resonance imaging. J Am Coll Cardiol. 1999 Jan;33(1):146–51.
- Norrish G, Jager J, Field E, Quinn E, Fell H, Lord E, et al. Yield of Clinical Screening for
   Hypertrophic Cardiomyopathy in Child First-Degree Relatives. Circulation. 2019 Jul
   16;140(3):184–92.
- van Velzen H, Schinkel A, Baart S, Oldenburg R, Frohn-Mulder I, van Slegtenhorst M, et al.
   Outcomes of Contemporary Family Screening in Hypertrophic Cardiomyopathy. Circulation:
   Genomic and Precision Medicine. 2018 Apr 1;11(4):e001896.
- Coppini R, Ho CY, Ashley E, Day S, Ferrantini C, Girolami F, et al. Clinical Phenotype and
   Outcome of Hypertrophic Cardiomyopathy Associated With Thin-Filament Gene Mutations. J
   Am Coll Cardiol. 2014 Dec 23;64(24):2589–600.
- van Velzen HG, Schinkel AFL, Oldenburg RA, van Slegtenhorst MA, Frohn-Mulder IME, van der
   Velden J, et al. Clinical Characteristics and Long-Term Outcome of Hypertrophic
   Cardiomyopathy in Individuals With a MYBPC3 (Myosin-Binding Protein C) Founder Mutation.
   Circ Cardiovasc Genet [Internet]. 2017 Aug [cited 2020 Nov 15];10(4). Available from:
- 38 https://www.ahajournals.org/doi/10.1161/CIRCGENETICS.116.001660

Page SP, Kounas S, Syrris P, Christiansen M, Frank-Hansen R, Andersen PS, et al. Cardiac myosin
 binding protein-C mutations in families with hypertrophic cardiomyopathy: disease expression
 in relation to age, gender, and long term outcome. Circ Cardiovasc Genet. 2012 Apr
 1;5(2):156–66.

- Sheikh N, Papadakis M, Carre F, Kervio G, Panoulas VF, Ghani S, et al. Cardiac adaptation to
   exercise in adolescent athletes of African ethnicity: an emergent elite athletic population. Br J
   Sports Med. 2013 Jun;47(9):585–92.
- Sheikh N, Papadakis M, Schnell F, Panoulas V, Malhotra A, Wilson M, et al. Clinical Profile of
   Athletes With Hypertrophic Cardiomyopathy. Circ Cardiovasc Imaging. 2015 Jul;8(7):e003454.
- Harkness A, Ring L, Augustine DX, Oxborough D, Robinson S, Sharma V. Normal reference
   intervals for cardiac dimensions and function for use in echocardiographic practice: a guideline
   from the British Society of Echocardiography. Echo Research and Practice. 2020 Mar 1;7(1):G1–
   18.
- Caselli S, Maron MS, Urbano-Moral JA, Pandian NG, Maron BJ, Pelliccia A. Differentiating Left
   Ventricular Hypertrophy in Athletes from That in Patients With Hypertrophic Cardiomyopathy.
   The American Journal of Cardiology. 2014 Nov;114(9):1383–9.
- Pelliccia A, Maron BJ, De Luca R, Di Paolo FM, Spataro A, Culasso F. Remodeling of Left
   Ventricular Hypertrophy in Elite Athletes After Long-Term Deconditioning. Circulation. 2002
   Feb 26;105(8):944–9.
- Rapezzi C, Arbustini E, Caforio ALP, Charron P, Gimeno-Blanes J, Heliö T, et al. Diagnostic workup in cardiomyopathies: bridging the gap between clinical phenotypes and final diagnosis. A position statement from the ESC Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2013 May 14;34(19):1448–58.
- Binder J, Ommen SR, Gersh BJ, Van Driest SL, Tajik AJ, Nishimura RA, et al. Echocardiography guided genetic testing in hypertrophic cardiomyopathy: septal morphological features predict
   the presence of myofilament mutations. Mayo Clin Proc. 2006 Apr;81(4):459–67.
- 27 21. Kwon DH, Setser RM, Thamilarasan M, Popovic ZV, Smedira NG, Schoenhagen P, et al.
   28 Abnormal papillary muscle morphology is independently associated with increased left
   29 ventricular outflow tract obstruction in hypertrophic cardiomyopathy. Heart. 2008 Oct
   30 1;94(10):1295–301.
- Klues HG, Roberts WC, Maron BJ. Anomalous insertion of papillary muscle directly into anterior
   mitral leaflet in hypertrophic cardiomyopathy. Significance in producing left ventricular outflow
   obstruction. Circulation. 1991 Sep;84(3):1188–97.
- Lentz Carvalho J, Schaff HV, Morris CS, Nishimura RA, Ommen SR, Maleszewski JJ, et al.
   Anomalous papillary muscles-Implications in the surgical treatment of hypertrophic obstructive
   cardiomyopathy. J Thorac Cardiovasc Surg. 2020 Apr 15;
- Gruner C, Chan RH, Crean A, Rakowski H, Rowin EJ, Care M, et al. Significance of left ventricular
   apical-basal muscle bundle identified by cardiovascular magnetic resonance imaging in
   patients with hypertrophic cardiomyopathy. Eur Heart J. 2014 Oct 14;35(39):2706–13.

Rowin E, Maron B, Haas T, Garberich R, Wang W, Link M, et al. Hypertrophic Cardiomyopathy
 With Left Ventricular Apical Aneurysm: Implications for Risk Stratification and Management. J
 Am Coll Cardiol. 2017 21;69(7):761–73.

- Hiemstra Y, Debonnaire P, Bootsma M, van Zwet E, Delgado V, Schalij M, et al. Global
   Longitudinal Strain and Left Atrial Volume Index Provide Incremental Prognostic Value in
   Patients With Hypertrophic Cardiomyopathy. Circulation: Cardiovascular Imaging. 2017 Jul
   1;10(7):e005706.
- 8 27. Maron MS, Rowin EJ, Wessler BS, Mooney PJ, Fatima A, Patel P, et al. Enhanced American
  9 College of Cardiology/American Heart Association Strategy for Prevention of Sudden Cardiac
  10 Death in High-Risk Patients With Hypertrophic Cardiomyopathy. JAMA Cardiol. 2019 Jul
  11 1;4(7):644.
- O'Mahony C, Jichi F, Pavlou M, Monserrat L, Anastasakis A, Rapezzi C, et al. A novel clinical risk
   prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD).
   Eur Heart J. 2014 Aug 7;35(30):2010–20.
- Guttmann OP, Pavlou M, O'Mahony C, Monserrat L, Anastasakis A, Rapezzi C, et al. Prediction
   of thrombo-embolic risk in patients with hypertrophic cardiomyopathy (HCM Risk-CVA). Eur J
   Heart Fail. 2015 Aug;17(8):837–45.
- 18 30. BSE Guidelines for Diastolic Function in press.
- Rowin E, Maron B, Kiernan M, Casey S, Feldman D, Hryniewicz K, et al. Advanced Heart Failure
   With Preserved Systolic Function in Nonobstructive Hypertrophic Cardiomyopathy. Circulation:
   Heart Failure. 2014 Nov 1;7(6):967–75.
- Biagini E, Spirito P, Rocchi G, Ferlito M, Rosmini S, Lai F, et al. Prognostic Implications of the
   Doppler Restrictive Filling Pattern in Hypertrophic Cardiomyopathy. The American Journal of
   Cardiology. 2009 Dec 15;104(12):1727–31.
- 33. Hang D, Schaff HV, Nishimura RA, Lahr BD, Abel MD, Dearani JA, et al. Accuracy of Jet Direction
   on Doppler Echocardiography in Identifying the Etiology of Mitral Regurgitation in Obstructive
   Hypertrophic Cardiomyopathy. Journal of the American Society of Echocardiography. 2019 Mar
   1;32(3):333–40.
- Reant P, Dufour M, Peyrou J, Reynaud A, Rooryck C, Dijos M, et al. Upright treadmill vs. semisupine bicycle exercise echocardiography to provoke obstruction in symptomatic hypertrophic cardiomyopathy: a pilot study. European Heart Journal - Cardiovascular Imaging. 2018 Jan 1;19(1):31–8.
- Feiner E, Arabadjian M, Winson G, Kim B, Chaudhry F, Sherrid MV. Post-Prandial Upright
   Exercise Echocardiography in Hypertrophic Cardiomyopathy. Journal of the American College
   of Cardiology. 2013 Jun;61(24):2487–8.
- 36. Zemánek D, Tomašov P, Homolová S, Linhartová K, Veselka J. Sublingual isosorbide dinitrate for
   the detection of obstruction in hypertrophic cardiomyopathy. Eur J Echocardiogr. 2011 Sep
   1;12(9):684–7.
- 37. Hoit BD. Strain and Strain Rate Echocardiography and Coronary Artery Disease. Circ Cardiovasc
   40 Imaging. 2011 Mar;4(2):179–90.

- 38. Haland TF, Almaas VM, Hasselberg NE, Saberniak J, Leren IS, Hopp E, et al. Strain
   echocardiography is related to fibrosis and ventricular arrhythmias in hypertrophic
   cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2016 Jun;17(6):613–21.
- 39. Tower-Rader A, Mohananey D, To A, Lever HM, Popovic ZB, Desai MY. Prognostic Value of
  Global Longitudinal Strain in Hypertrophic Cardiomyopathy: A Systematic Review of Existing
  Literature. JACC: Cardiovascular Imaging. 2019 Oct 1;12(10):1930–42.
- 40. Nampiaparampil RG, Swistel DG, Schlame M, Saric M, Sherrid MV. Intraoperative Two- and Three-Dimensional Transesophageal Echocardiography in Combined Myectomy-Mitral
   Operations for Hypertrophic Cardiomyopathy. Journal of the American Society of Echocardiography. 2018 Mar 1;31(3):275–88.
- Vainrib A, Massera D, Sherrid MV, Swistel DG, Bamira D, Ibrahim H, et al. Three-Dimensional
   Imaging and Dynamic Modeling of Systolic Anterior Motion of the Mitral Valve. J Am Soc
   Echocardiogr. 2020 Oct 12;
- Gersh B, Maron B, Bonow R, Dearani J, Fifer M, Link M, et al. 2011 ACCF/AHA Guideline for the
   Diagnosis and Treatment of Hypertrophic Cardiomyopathy. Circulation. 2011 Dec
   13;124(24):e783–831.
- 43. Nistri S, Olivotto I, Betocchi S, Losi MA, Valsecchi G, Pinamonti B, et al. Prognostic significance
  of left atrial size in patients with hypertrophic cardiomyopathy (from the Italian Registry for
  Hypertrophic Cardiomyopathy). Am J Cardiol. 2006 Oct 1;98(7):960–5.
- 44. Maron MS, Olivotto I, Betocchi S, Casey SA, Lesser JR, Losi MA, et al. Effect of Left Ventricular
   Outflow Tract Obstruction on Clinical Outcome in Hypertrophic Cardiomyopathy. New England
   Journal of Medicine. 2003 Jan 23;348(4):295–303.
- Harris K, Spirito P, Maron M, Zenovich A, Formisano F, Lesser J, et al. Prevalence, Clinical
   Profile, and Significance of Left Ventricular Remodeling in the End-Stage Phase of Hypertrophic
   Cardiomyopathy. Circulation. 2006 Jul 18;114(3):216–25.
- Augustine DX, Coates-Bradshaw LD, Willis J, Harkness A, Ring L, Grapsa J, et al.
   Echocardiographic assessment of pulmonary hypertension: a guideline protocol from the
   British Society of Echocardiography. Echo Res Pract. 2018 May 11;5(3):G11–24.
- 47. American Heart Association Writing Group on Myocardial Segmentation and Registration for
  Cardiac Imaging:, Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, et al.
  Standardized Myocardial Segmentation and Nomenclature for Tomographic Imaging of the
  Heart: A Statement for Healthcare Professionals From the Cardiac Imaging Committee of the
  Council on Clinical Cardiology of the American Heart Association. Circulation. 2002 Jan
  29;105(4):539–42.
- 48. Ho C, Sweitzer N, McDonough B, Maron B, Casey S, Seidman J, et al. Assessment of diastolic
  function with Doppler tissue imaging to predict genotype in preclinical hypertrophic
  cardiomyopathy. Circulation. 2002 Jun 25;105(25):2992–7.
- 49. Patel P, Dhillon A, Popovic ZB, Smedira NG, Rizzo J, Thamilarasan M, et al. Left Ventricular
  Outflow Tract Obstruction in Hypertrophic Cardiomyopathy Patients Without Severe Septal
  Hypertrophy: Implications of Mitral Valve and Papillary Muscle Abnormalities Assessed Using
  Cardiac Magnetic Resonance and Echocardiography. Circ Cardiovasc Imaging. 2015
  Jul;8(7):e003132.

## 1 Tables

# 2 Table 1. Echocardiographic Clues to the Presence of Phenocopies

| Condition           | Echocardiographic 'Red Flags' which raise the possibility of a phenocopy *       |
|---------------------|----------------------------------------------------------------------------------|
| Cardiac amyloidosis | Thickened intreratrial septum, mitral and tricuspid valves and right ventricular |
|                     | free wall, mild to moderate pericardial effusion. Ground-glass appearance of     |
|                     | the myocardium. Global hypokinesia (with and without LV dilatation) in TTR       |
|                     | amyloidosis. Markedly reduced longitudinal function, relative sparing of         |
|                     | apical longitudinal contraction/global longitudinal strain, a mismatch           |
|                     | between LVH on echo and low amplitude voltages on ECG.                           |
| Fabry disease       | Thickened mitral and tricuspid valves and right ventricular free wall,           |
|                     | concentric LVH, Global hypokinesia (with and without LV dilatation).             |
| Myocarditis         | Thickened right ventricular free wall, mild to moderate pericardial effusion,    |
|                     | global hypokinesia (with and without LV dilatation)                              |
| Danon disease       | Extreme concentric LVH, global hypokinesia (with and without LV dilatation)      |
| Pompe disease       | Extreme concentric LVH                                                           |
| PRKAG2 mutations    | Global hypokinesia (with and without LV dilatation)                              |
| Glycogenosis        | Concentric LVH                                                                   |
| Mitochondrial       | Global hypokinesia (with and without LV dilatation)                              |
| disease             |                                                                                  |
| Noonan syndrome     | Right ventricular outflow tract obstruction                                      |
| and associated      |                                                                                  |
| disorders           |                                                                                  |

- 3 \*Adapted from Rapezzi et al(19) and Elliott et al(1).
- 4

5

#### 1 Table 2. Definition of LVOT obstruction.

| LVOT gradient at rest and with physiological provocation            | Definition            |
|---------------------------------------------------------------------|-----------------------|
| Gradient ≥30mHg at rest                                             | Basal or resting      |
|                                                                     | obstruction           |
| Gradient ≤30mmHg at rest and ≤30mmHg after provocation              | Non-obstructive       |
| Gradient ≤30mmHg at rest but >30mmHg with physiological provocation | Labile, provocable or |
|                                                                     | dynamic obstruction   |

2 Adapted from Gersh et al. (42)

# 3 Table 3. Use of Echocardiography When Determining Optimal Invasive Septal Reduction Approach

| Favours surgical myectomy             | Aligned with alcohol ablation  | Unfavourable for either |  |
|---------------------------------------|--------------------------------|-------------------------|--|
|                                       | strategy                       |                         |  |
| Septal thickness > 25mm               | Focal basal septal hypertrophy | Apical hypertrophy      |  |
|                                       | or sigmoid septal morphology   |                         |  |
| Central or anteriorly-directed mitral | Posteriorly-directed mitral    |                         |  |
| regurgitation due to intrinsic valve  | regurgitation secondary to     |                         |  |
| disease                               | systolic anterior motion       |                         |  |
| Abnormal mitral subvalvar apparatus   |                                | Mid-cavity obstruction  |  |
| contributing to obstruction           |                                |                         |  |
| Concomitant aortic valve disease or   |                                |                         |  |
| coronary artery disease necessitating |                                |                         |  |
| CABG                                  |                                |                         |  |

4



1

# 2 Table 4. Rationale for Key Echo Parameters in Hypertrophic Cardiomyopathy

| Feature               | Prognostic Relevance                                | Role in ESC HCM Guidelines(1)      |
|-----------------------|-----------------------------------------------------|------------------------------------|
| Left atrial diameter  | Sudden cardiac death (28), with >48 mm              | In risk calculator. If LA >45mm,   |
|                       | predicting all-cause mortality(43). Risk of         | for six to twelve monthly          |
|                       | thromboembolism increases                           | ambulatory monitoring              |
|                       | exponentially (29)                                  |                                    |
| Indexed Left atrial   | >34 mL/m <sup>2</sup> predicts all-cause mortality, |                                    |
| volume                | heart transplantation, sudden cardiac               |                                    |
|                       | death, and appropriate implantable                  |                                    |
|                       | cardioverter-defibrillator therapy (26)             |                                    |
| Mitral valve filling  | Restrictive filling pattern in HCM                  |                                    |
| pattern               | patients with heart failure with                    |                                    |
|                       | preserved ejection fraction carry                   |                                    |
|                       | adverse prognosis HCM(32)                           |                                    |
| Left ventricular wall | Sudden cardiac death(28)                            | In risk calculator                 |
| thickness             |                                                     |                                    |
| Left ventricular      | >30 mmHg predictor of sudden cardiac                | In risk calculator. If the patient |
| outflow tract         | death and heart failure(28,44)                      | has symptoms and > 50 mmHg         |
| obstruction           |                                                     | LVOTO resistant to medical         |
|                       |                                                     | therapy, invasive septal           |
|                       |                                                     | reduction indicated                |
| Left ventricular      | Ejection fraction <50% associated with              | When ejection fraction <50% in     |
| function              | unfavourable outcome(45)                            | patients with NYHA III-IV          |
|                       |                                                     | despite optimal medical            |
|                       |                                                     | therapy, heart transplant          |
|                       |                                                     | indicated                          |

3

# 4 **Table 5. Minimum Dataset**

| Structure and Function         | Measurement            |                      |                                             |                        |
|--------------------------------|------------------------|----------------------|---------------------------------------------|------------------------|
| Left atrium size               | Diameter (mm)          |                      | Indexed biplane volume (mL/m <sup>2</sup> ) |                        |
| Mitral valve inflow<br>Doppler | E wave (m/s)           | A wave (m/s)         | A wave duration<br>(ms)                     | Deceleration time (ms) |
| Pulmonary venous<br>Doppler    | Systolic wave<br>(m/s) | Diastolic wave (m/s) | Ar wave (m/s)                               | Ar duration (ms)       |
| Mitral regurgitation           | Severity               | Mechanism            | Direction of jet                            |                        |
| Systolic anterior motion       | Yes/No                 | Valvular or chordal  | Contact plaque                              |                        |
| Left ventricle wall            | Septum at basal        | Anterior wall at     | Lateral wall at basal                       | Inferior wall at basal |

|                         | 1                 |                        |                     |                         |
|-------------------------|-------------------|------------------------|---------------------|-------------------------|
| thickness in short axis | level, papillary  | basal level, papillary | level, papillary    | level, papillary muscle |
| view                    | muscle level and  | muscle level and       | muscle level and    | level and apex level    |
|                         | apex level (mm)   | apex level (mm)        | apex level (mm)     | (mm)                    |
| LV dimensions           | End diastolic     | End systolic           |                     |                         |
|                         | dimension (cm)    | dimension (cm)         |                     |                         |
| LV volumes              | End-diastolic     | End-systolic Volume    | Systolic Volume     |                         |
|                         | Volume (ml),      | (ml), indexed to       | (ml)                |                         |
|                         | indexed to body   | body surface area      |                     |                         |
|                         | surface area      | (ml/m <sup>2</sup> )   |                     |                         |
|                         | (ml/m²)           |                        |                     |                         |
| LV systolic function    | Ejection fraction | Ejection fraction by   | Global longitudinal |                         |
|                         | by Simpson's      | visual assessment      | strain in selected  |                         |
|                         | Biplane (%)       | when Simpson's         | cases (%)           |                         |
|                         |                   | Biplane cannot be      |                     |                         |
|                         |                   | calculated (%)         |                     |                         |
| Tissue Doppler Imaging  | Anterolateral     | Inferoseptal annulus   | Anterior annulus    | Inferior annulus* (Sm,  |
|                         | annulus (Sm, E',  | (Sm, E', A')           | *(Sm, E', A')       | E', A')                 |
|                         | A') (cm/s)        | (cm/s)                 | (cm/s)              | (cm/s)                  |
| LVOT or intra-cavity    | Resting (mmHg)    | Valsalva (mmHg)        | Sitting (mmHg)      | Standing (mmHg)         |
| obstruction (defining   |                   |                        |                     |                         |
| which)                  |                   |                        |                     |                         |
| Right ventricle (RV)    | Size and function | RV hypertrophy         | RV outflow tract    |                         |
| 0 1                     |                   | (mm)                   | obstruction         |                         |
|                         |                   |                        | (mmHg)              |                         |
| Tricuspid regurgitation | Severity          | Probability of         | Inferior vena cava  |                         |
| and inferior vena cava  | ,                 | pulmonary              | size and collapse   |                         |
|                         |                   | hypertension(46)       | response            |                         |
|                         | 1                 | inpertension(40)       | response            |                         |

1 In individuals being screened for HCM

2

3

# 1 Table 6. Transthoracic HCM protocol

2

| Measurement                       | View         | Modality       | Explanation                                                                                                                                                                                                                                                              | Image                                                                                      |
|-----------------------------------|--------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| LA diameter                       | PLAX         | 2D<br>Unit: mm | Measure LA dimension at end-systole<br>just after the aortic valve closes using<br>2D acquisition as per BSE normal<br>reference intervals guidelines (16). LA<br>diameter is one of the criteria used in<br>ESC risk calculator of SCD. Record in<br>report conclusion. |                                                                                            |
| SAM                               | PLAX         | M-mode         | Place M-mode cursor through the MV<br>leaflet tips, ensuring image is on-axis.<br>Involves MV leaflets and/or chordae.                                                                                                                                                   |                                                                                            |
| Feature of<br>LVOT<br>obstruction | PLAX         | M-mode<br>2D   | Mid-systolic notching and coarse<br>systolic fluttering of the aortic valve are<br>ancillary echocardiographic features in<br>LVOTO.                                                                                                                                     | Alema Market                                                                               |
| Contact<br>plaque                 | PLAX,<br>A3C | 2D             | Increased echogeneticity occurs in the<br>basal anteroseptal wall due to fibrosis<br>where leaflet contact occurs due to<br>SAM.                                                                                                                                         | Alt Echo<br>3.2<br>3.2<br>3.2<br>3.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5 |

| LV wall<br>thickness<br>measuremben<br>ts                      | SAX<br>MV level<br>Papillary<br>level<br>Apex<br>level | 2D<br>Units: mm                   | <ul> <li>Freeze 2D image at end-diastole.</li> <li>Calliper diameter of maximal wall thickness – wherever it occurs - in the anterior, septum, inferior and lateral walls at the basal, mid-ventricular and apical levels(47).</li> <li>Be careful not to include right ventricular (RV) wall, papillary muscles, trabeculations or moderator band.</li> <li>The thickest segment may not be in the septum.</li> <li>Maximal wall thickness is one of the criteria used in ESC risk calculator of SCD. Record in report conclusion.</li> </ul>                                                                                                                    | PHILDS     TISO3 MI 0.3     PHILDS     WELLCOME TRUST     X3-1/Adv/R       Pic dota<br>rision     WELLCOME TRUST     X3-1/Adv/R     WELLCOME TRUST     X3-1/Adv/R       Pic dota<br>rision     WELLCOME TRUST     X3-1/Adv/R     WELLCOME TRUST     X3-1/Adv/R       Pic dota<br>rision     WELLCOME TRUST     X3-1/Adv/R     Pic dota<br>rision     Pic dota<br>rision     Pic dota<br>rision     Pic dota<br>rision     Pic dota<br>rision       V UN Well base 13 mm<br>rision     V WILLING TO TION<br>rision     V Will base 13 mm<br>rision       PMILDS     WELLCOME TRUST     X5-1/Adv/R     TISO3 M 0.3       PMILDS     WELLCOME TRUST     X5-1/Adv/R     Pic dota<br>rision       PMILDS     WELLCOME TRUST     X5-1/Adv/R     P |
|----------------------------------------------------------------|--------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LV Simpson's<br>Biplane<br>volumes and<br>ejection<br>fraction | A4C, A2C                                               | 2D Units: mL/m <sup>2</sup> and % | <ul> <li>LV volumes should be obtained using<br/>2D imaging from A4C and A2C, and<br/>wherever possible 3D imaging.</li> <li>Trace the endocardial border. LV length<br/>is defined as the distance between the<br/>midpoint of the mitral valve level line<br/>and the most distal point of the LV<br/>apex. Take care to ensure the LV is not<br/>foreshortened. Papillary muscles and<br/>trabeculations are excluded from the<br/>volumes and considered part of the<br/>chamber.</li> <li>Measure at end-diastole (onset of QRS<br/>complex) and end-systole(the frame<br/>before MV opens, where AV just<br/>closes)(16). Volumes are indexed to</li> </ul> | Dillos     TIAL & BIL 2       PE BAR     WELLCOME TRUST       PE BAR     IF BAR       PE BAR     IF BAR   <                                                                                                                                                                                                                                                                                                                                                                                                                   |

|                      |         |                                                                                          | BSA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------|---------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LA biplane<br>volume | A4C,A2C | 2D biplane volume using<br>independent A4C and A2C<br>views.<br>Units: ml/m <sup>2</sup> | LA volume should be obtained from<br>apical 4- and 2-chamber windows<br>(separated by 60° of rotation),<br>optimised for LA assessment, using the<br>biplane Simpson's method. Maximal LA<br>volume should be obtained from the<br>frame immediately prior to mitral valve<br>opening. Values should be reported<br>after indexing for BSA(16,30).<br>Trace the inner aspect of the left atrial<br>wall. At the mitral valve level, the<br>contour is closed by a straight line<br>between along the plane of the mitral<br>valve annulus. Exclude left atrial<br>appendage and pulmonary veins. | Adult Echo<br>Soltz<br>TISOL Construction<br>Soltz<br>TISOL Construction<br>Soltz<br>TISOL Construction<br>Soltz<br>TISOL Construction<br>Soltz<br>TISOL Construction<br>Soltz<br>TISOL Construction<br>Soltz<br>TISOL Construction<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Soltz<br>Solt |

| TDI velocities in all four | A4C, A2C | PW TDI      | Systolic (Sm), early (E') and atrial (A')<br>relaxation velocities at anterolateral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| walls                      |          | Units: cm/s | relaxation velocities at anterolateral<br>and inferoseptal walls(30).<br>2D<br>81%<br>C 38<br>P Low<br>B3%<br>3.6MHz<br>2D<br>81%<br>C 38<br>P Low<br>B3%<br>3.6MHz<br>2D<br>81%<br>C 38<br>P Low<br>B3%<br>3.6MHz<br>3.7 Jun<br>1.648 cm/s <sup>2</sup> / <sub>2</sub> MHz<br>2.00 cm/s <sup>-1</sup> / <sub>2</sub> MHz<br>3.7 Jun<br>1.648 cm/s <sup>2</sup> / <sub>2</sub> MHz<br>3.7 Jun<br>1.648 cm/s <sup>-1</sup> / <sub>2</sub> |
|                            |          |             | In screening studies, there is an<br>argument for averaging E <sup>/</sup> across<br>anterolateral, inferioseptal, inferior and<br>anterior LV annulus as a value <13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                            |          |             | cm/s can be useful in identifying<br>genotype positive phenotype negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            |          |             | individuals(48).<br>FR 161Hz<br>13cm<br>2D<br>81%<br>C 38<br>P Low<br>HGen<br>TDI<br>83%<br>3.6MHz<br>15.0<br>E'/A' Lateral 0.6<br>FR 161Hz<br>30%<br>10.0cm<br>10.0cm<br>10.0cm<br>10.0cm<br>10.0cm<br>10.0cm<br>10.0cm<br>10.0cm<br>10.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0cm<br>11.0c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                            |          |             | -6.0<br>-cm/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                            |          |             | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                            |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                            |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Global       | A4C,     | 2D        | This is recommended when cardiac         |
|--------------|----------|-----------|------------------------------------------|
| longitudinal | A2C, A3C |           | amyloidosis or athletic remodelling are  |
| strain (GLS) |          | Units: -% | being considered. Average global         |
|              |          |           | longitudinal strain (GLS) is calculated  |
|              |          |           | using the apical long axis (A3C), four   |
|              |          |           | chamber A4C and two chamber A2C          |
|              |          |           | standard views. High quality image       |
|              |          |           | acquisition, maintaining a frame rate of |
|              |          |           | 40 to 90 frames/second at a stable       |
|              |          |           | heart rate is key. Clear endocardial and |
|              |          |           | epicardial definition (seen throughout   |
|              |          |           | the cardiac cycle) is required to ensure |
|              |          |           | adequate segmental tracking during       |
|              |          |           | systole and diastole. Markers are placed |
|              |          |           | in each of the respective basal and      |
|              |          |           | apical regions, utilising automated      |
|              |          |           | tracking where possible to maintain      |
|              |          |           | reproducible results. ROI should be      |
|              |          |           | manipulated as required to fit the       |
|              |          |           | myocardium. Automated tracking           |
|              |          |           | should also be combined with a visual    |
|              |          |           | assessment of tracking in each view      |
|              |          |           | across the whole region of interest      |
|              |          |           | -                                        |
|              |          |           | including the endocardial and epicardial |
|              |          |           | border. If more than two segments in     |
|              |          |           | any one view are not adequately          |
|              |          |           | tracked, the calculation of GLS should   |
|              |          |           | be avoided.                              |
|              |          |           |                                          |

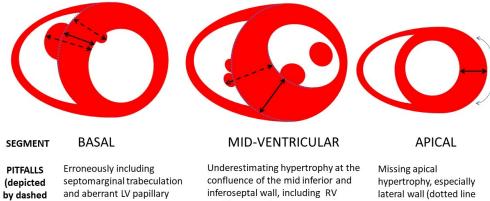
| LVOT or intra-<br>cavity<br>obstruction<br>gradients | A4C, A5C | CW Doppler (or PW with HPRF<br>as a significant gradient will<br>alias on PW Doppler).<br>Sampling PW Doppler<br>throughout the LV cavity is a<br>useful tool to pinpoint the<br>exact location of obstruction if<br>unclear on colour.<br>Units: mmHg | Assess obstruction gradients at rest,<br>with Valsalva manoeuvre and in sitting<br>and standing positions. Align CW<br>Doppler through entire turbulent colour<br>flow for peak obstruction velocity.<br>Peak LVOT obstruction gradient is one<br>of the criteria used in ESC risk calculator<br>of SCD. Record in report conclusion.                                                                     | Photo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multiple LV<br>gradients                             | A4C, A5C | CW Doppler<br>Colour flow mapping<br>Units: mmHg                                                                                                                                                                                                       | Intra-cavity obstruction at the apex<br>produces an additional Doppler signal<br>to the LVOTO signal.                                                                                                                                                                                                                                                                                                     | Nume         Num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MR versus<br>LVOT<br>obstruction                     | A4C, A5C | CW Doppler<br>Colour flow mapping<br>Units: mmHg                                                                                                                                                                                                       | <ul> <li>When mitral regurgitation occurs in the context of SAM or prolapse, its onset is later in mid to late systole. Otherwise, its onset is in early systole helps distinguish it from the LVOT signal which begins later in systole (see right hand image).</li> <li>LVOT obstruction is dagger-shaped due to the progressive decrease in LVOT orifice size as systoles progresses but of</li> </ul> | R 19Hz<br>cm<br><sup>1</sup> 27<br><sup>2</sup> 7<br><sup>2</sup> |

|                                                |                   |                           | lower maximal velocity compared to<br>mitral regurgitation. The lower image<br>shows superimposed CW envelopes in a<br>patient with mitral regurgitation and<br>LVOTO. In this case mitral regurgitation<br>starts later in systole, so timing of onset<br>is a less useful discriminator. However,<br>the velocity for the mitral regurgitation<br>signal is far higher than for LVOTO.                                                           |
|------------------------------------------------|-------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mitral<br>regurgitation<br>secondary to<br>SAM | PLAX,<br>A4C, A5C | Colour flow mapping<br>CW | Mitral regurgitation quantification may<br>be limited as the PISA dome may merge<br>with turbulent LVOT flow. Mitral<br>regurgitation secondary to SAM is<br>mainly posteriorly directed. When<br>quantitative assessment of MR is<br>precluded by LVOTO, other indicators of<br>MR severity should be considered. For<br>example, an E velocity of < 1.3 m/s and<br>an E/A ratio <1 are strongly suggestive<br>of non-severe MR.                  |
| Abnormal MV<br>anatomy<br>(elongated<br>AMVL)  | PLAX,<br>A4C, A3C | 2D                        | Describe MV anatomy; elongation of<br>both leaflets, presence of SAM (and<br>which leaflet(s) it involves), aberrant<br>chordae running from anterior mitral<br>valve leaflet to LVOT, anomalous<br>papillary muscles running directly into<br>the mitral valve leaflets and<br>displacement of the papillary muscles<br>antero- apically. If the anterior mitral<br>valve leaflet is elongated (>16 mm), this<br>increases the likelihood of LVOT |

|           |     |             | obstruction(49).                            |
|-----------|-----|-------------|---------------------------------------------|
| Pulmonary | A4C | PW          | Measure peak systolic (S) velocity, peak    |
| venous    |     |             | diastolic (D) velocity, the S/D ratio, peak |
| Doppler   |     | Units: cm/s | atrial reversal (Ar) velocity in late       |
|           |     |             | diastole and the duration of the Ar         |
|           |     |             | velocity.                                   |
|           |     |             | a state in the in the in the in the in the  |
|           |     |             | In the apical 4-chamber view, superior      |
|           |     |             | angulation of the transducer and use of     |
|           |     |             | colour flow will help locate the            |
|           |     |             | pulmonary veins. This angle often brings    |
|           |     |             | the aorta into the visualised plane. The    |
|           |     |             | right upper is usually easiest and is next  |
|           |     |             | to the atrial septum. If the signal is      |
|           |     |             | weak, ask the patient to adopt a more       |
|           |     |             | supine position. Place the PW Doppler       |
|           |     |             | sample volume (1–3 mm) 1–2 cm into          |
|           |     |             | the right upper vein. Wall filter settings  |
|           |     |             | should be lowered (100–200 MHz). Aim        |
|           |     |             | to include clear visualisation of the       |
|           |     |             | atrial reversal velocity waveform.          |
|           |     |             | Measurements should be averaged over        |
|           |     |             | 3 cardiac cycles, at end expiration.        |
|           |     |             | Additional parameters for diastolic         |
|           |     |             | function should include A wave              |
|           |     |             | duration on transmitral inflow. For the     |
|           |     |             | measurement of the mitral valve A           |
|           |     |             | wave duration, the PW Doppler sample        |
|           |     |             | should be placed at the level of the        |

|                                                                       |                               |                                                                     | annulus rather than at the leaflet tips.<br>This provides a cleaner signal for the<br>start and end of the wave. See BSE<br>guidelines for diastolic function(30).    |                                                |
|-----------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| TR jet velocity<br>and<br>probability of<br>pulmonary<br>hypertension | RV<br>inflow,<br>PSAX,<br>A4C | CW<br>Colour flow mapping<br>Units: Vmax m/s, peak<br>gradient mmHg | See BSE PHTN guidelines for risk of pulmonary hypertension(46).                                                                                                       | TR Vmax 295 cm/s 50%<br>Max PG 33 mmHg W# 225H |
| RV<br>Hypertrophy                                                     | Subcostal<br>view,<br>PLAX    | 2D<br>Units: mm                                                     | Freeze the PLAX or subcostal view of<br>the RV free wall, scroll to end diastole<br>and calliper the RV wall thickness.                                               |                                                |
| RVOT<br>obstruction                                                   | PSAX<br>view                  | 2D<br>Colour flow mapping<br>CW Doppler.<br>Units: mmHg             | Modify both the RV inflow and outflow<br>to assess for RV hypertrophy and RV<br>outflow tract obstruction.<br>Use colour box as a guide for highest<br>RVOT velocity. |                                                |

| Septal<br>myectomy and<br>septal ablation | PLAX,<br>PSAX MV<br>level,<br>A4C,<br>A3C,<br>subcostal<br>views.                                                | 2D                                    | Basal septum has scalloped appearance<br>and is hypokinetic/akinetic.<br>Colour flow Doppler should be applied<br>to the area of myectomy to assess for<br>iatrogenic VSD (systolic flow), and a<br>denuded septal perforator vessel<br>(diastolic flow). The pre-procedure HCM<br>morphology cannot be determined in<br>patients who have undergone a septal<br>myectomy or septal ablation. |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aneurysmal<br>apex                        | A4C,<br>A2C,<br>A3C,<br>PSAX<br>apex<br>level.<br>+/-<br>ultrasoun<br>d<br>enhance<br>d echo<br>with<br>contrast | 2D<br>Colour flow mapping<br>Contrast | Apical HCM can be accompanied by an apical aneurysm which encourages thrombus formation (see non-contrast image on right). Have a low threshold for giving contrast (far right image) if endocardial definition is poor at the apex.                                                                                                                                                          |
| HCM<br>Phenotypes                         | A4C,<br>A2C,<br>A3C,<br>PLAX,<br>PSAX.                                                                           | 2D                                    | Four distinct phenotypes describe the distribution of left ventricular hypertrophy. Comment on morphology in the report conclusion.                                                                                                                                                                                                                                                           |


|                   | View                   | Modality                     | Explanation                        |
|-------------------|------------------------|------------------------------|------------------------------------|
| LVOT or           | A5C/A3C (view which    | CW Doppler (or PW with       | Increase in stroke volume with     |
| intra-cavity      | obtained the highest   | HPRF as a significant        | exercise. Use colour box as a      |
| obstruction       | gradient at rest).     | gradient will alias on PW    | guide to aim CW Doppler beam       |
|                   |                        | Doppler). Sampling PW        | through area of turbulence         |
|                   |                        | Doppler throughout the       | obtaining the highest gradient.    |
|                   |                        | left ventricular cavity is a | Assessment of LVOT obstruction     |
|                   |                        | useful tool to pinpoint the  | assessment is performed prior      |
|                   |                        | exact location of            | to LV assessment it can be a       |
|                   |                        | obstruction if unclear on    | short-lived phenomenon             |
|                   |                        | colour.                      |                                    |
|                   |                        | Units: mmHg                  |                                    |
| MR                | A4C, A3C               | Colour mapping               | Be careful to differentiate mitral |
|                   |                        | CW doppler                   | regurgitation from LVOT            |
|                   |                        |                              | obstruction.                       |
| MV                | A4C                    | PW Doppler                   | Peak exercise and intermediate     |
|                   |                        |                              | stage (100-120bpm).                |
|                   |                        | Units: cm/s                  | Pulse at MV leaflet tips to        |
|                   |                        |                              | obtain inflow Doppler.             |
|                   |                        |                              | Description of MV morphology       |
|                   |                        |                              | and SAM at intermediate and        |
|                   |                        |                              | peak.                              |
| TR                | A4C (alternative views | CW Doppler                   | To exclude exercise induced        |
|                   | are RV inflow or PSAX, |                              | pulmonary hypertension.            |
|                   | however time           | Units: mmHg (m/s)            |                                    |
|                   | consuming as requires  |                              |                                    |
|                   | a different window)    |                              |                                    |
| LV size           | A4C, A2C, A3C, SAX     | 2D imaging                   | A4C and A2C for LV volumes         |
| and               |                        | Systolic TDI velocities in   | and Simpson's Biplane EF. Small    |
| systolic function |                        | anterolateral and            | LV cavity may make measuring       |
|                   |                        | inferoseptal walls           | volumes difficult at               |
|                   |                        |                              | intermediate and peak stress.      |
|                   |                        | Units: cm/s                  | <b>- - - - - - - -</b>             |
| LV diastolic      | A4C, A2C               | Diastolic TDI parameters in  | Peak exercise and intermediate     |
| function          |                        | anterolateral and            | stage (100-120bpm).                |
|                   |                        | inferoseptal walls           | E/A fusion will occur at high      |
|                   |                        | MV inflow flow Doppler       | heart rates.                       |
|                   |                        | E/e' average                 | Intermediate imaging with          |
|                   |                        | Uniter on la                 | supine bicycle only.               |
|                   |                        | Units: cm/s                  |                                    |

# Table 7. Stress Echocardiography protocol in HCM

# Table 8. Illustrated Guide to Stress Echocardiography in HCM

| Table 2<br><mark>COLUMN C</mark><br>ROW 1<br>(C1)                          | HCM stress echo protocol – Quick guide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Echo data –<br>rest<br>COLUMN C<br>ROW 2<br>(C2)                        | TISCA MI 1.3<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Reference<br>Referenc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Resting BSE HCM guidelines 2020.</li> <li>Exclude contraindications to exercise test.</li> </ul>                                                                                                                            |
| 2. Resting<br>haemodyna<br>mics<br>COLUMN C<br>ROW 3<br>(C3)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Perform a resting ECG.</li> <li>Obtain resting BP and standing BP.</li> </ul>                                                                                                                                               |
| 3. Resting<br>spriometry<br>COLUMN C<br>ROW 4<br>(C4)                      | $\begin{array}{c c} Flow/Volume & Spirometry \\ \hline 12 \\ \hline 15 \\ 000 \\ \hline 15 \\ 12 \\ \hline 15 \\ 12 \\ \hline 15 \\ 100 \\ \hline 15 \\ 100 \\ \hline 15 \\ 100 \\ \hline 15 \\ \hline 15 \\ \hline 15 \\ \hline 15 \\ \hline 100 \\ \hline 15 \\ \hline 100 \\ \hline 15 \\ \hline 100 \\ \hline 100$ | <ul> <li>Obtain resting spirometry tests<br/>if performing combined CPEX.</li> <li>CPEX data is used to establish<br/>exercise capacity and true<br/>exercise limitations.</li> </ul>                                                |
| 4. Exercise<br>modality<br>COLUMN C<br>ROW 5<br>(C5)<br>Image 1<br>Image 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Bicycle or treadmill method of exercise</li> <li>Treadmill – resting echo images obtained on echo bed.</li> <li>Bicycle – resting echo images obtained whilst patient on bike to ensure comparable echo windows.</li> </ul> |
| 5. Exercise<br>haemodynamic<br>data<br>COLUMN C<br>ROW 6<br>(C6)           | 122 bpm<br>125/64 mmHg EXERCISE<br>STAGE 1<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Continuous monitoring of ECG<br/>and BP throughout study.</li> <li>Pay particular attention to<br/>arrhythmias, ST changes and<br/>potential BP drop at peak<br/>exercise.</li> </ul>                                       |
| 6. Transition from<br>treadmill to bed<br>COLUMN C<br>ROW 7<br>(C7)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Treadmill – stopped<br/>immediately at peak exercise,<br/>patient is carefully guided back<br/>onto the echo bed.</li> <li>Bicycle – peak images are<br/>obtained whilst patient is still<br/>on bicycle.</li> </ul>        |

| 7. Echo data – peak<br>COLUMN C<br>ROW 8<br>(C8)<br>Image 1<br>Image 2 |                            |                                                                                  |                               | DT<br>SV<br>A'                                                                                                                                                                                                                                                                                   | A due:<br>EF | <ul> <li>and before the patient's rate recovers below 85%</li> <li>See table 1 for echo para collected at peak exercise</li> <li>Echo measurements are calculated post acquisitio utilise time at peak HR.</li> </ul> | obtained within 60-90s.<br>This is before preload decreases<br>and before the patient's heart<br>rate recovers below 85% of THR.<br>See table 1 for echo parameters<br>collected at peak exercise.<br>Echo measurements are<br>calculated post acquisition to |
|------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8. Report<br>COLUMN C<br>ROW 9<br>(C9)                                 | Wasseman 2= 02-PulsHF fill | )<br>R[11mg] 20<br>180 1.7<br>140 1.3<br>100 6.7<br>60 6.3<br>inl 20 6.0         | Wasserman 3= VO:<br>22 [inin] | 2/VCO2 f(t)<br>VCC2 [mg]<br>17<br>13<br>19<br>0.1<br>0<br>10<br>0.1<br>0<br>10<br>0.1<br>0<br>0.1<br>0<br>0.1<br>0<br>0.1<br>0<br>0.1<br>0<br>0.1<br>0<br>0.1<br>0<br>0.1<br>0<br>0.1<br>0<br>0.1<br>0<br>0<br>0<br>0                                                                            |              | ٩                                                                                                                                                                                                                     | <ul> <li>CPEX, echo and haemodynamic<br/>data are combined to produce<br/>a clinical report.</li> </ul>                                                                                                                                                       |
|                                                                        | Wasserman 5s V-Slope       | R (11mig) 55<br>150 67<br>160 53<br>130 44<br>100 27<br>100 12<br>70 13<br>240 0 | Wasserman 6= EQO:             | 2/EQCO2 f(t)<br>50<br>51<br>53<br>52<br>54<br>54<br>57<br>53<br>54<br>57<br>53<br>54<br>57<br>53<br>54<br>57<br>53<br>54<br>57<br>53<br>54<br>57<br>57<br>53<br>50<br>57<br>57<br>53<br>50<br>57<br>57<br>53<br>50<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57 |              |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                               |

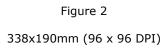


and aberrant LV papillary by dashed lines)

muscles in measurement Exclude these components at

APPROACH (depicted their attachments using continuation of endo- and by solid epicardial curve (dotted lines) lines)

inferoseptal wall, including RV papillary muscles


Exclude these components at their attachments using continuation of endo- and epicardial curve (dotted lines)

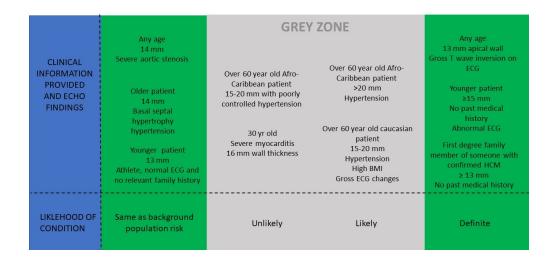
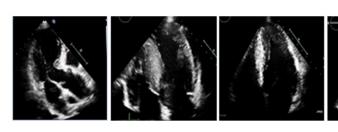
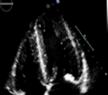

with arrows) Clue in often abnormal ECG Look for 'akinetic' apex Use contrast to confirm

Figure 1.


338x190mm (96 x 96 DPI)








338x190mm (96 x 96 DPI)



**REVERSE CURVATURE** 



NEUTRAL

Defined by maximal wall thickness greatest at: SIGMOID SEPTAL

Basal anteroseptal

wall

Mid inferoseptal wall Apex

APICAL

Anterior wall

338x190mm (96 x 96 DPI)