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Abstract

IMPORTANCE An increasing number of machine learning (ML)–based clinical decision support
systems (CDSSs) are described in the medical literature, but this research focuses almost entirely on
comparing CDSS directly with clinicians (human vs computer). Little is known about the outcomes
of these systems when used as adjuncts to human decision-making (human vs human with
computer).

OBJECTIVES To conduct a systematic review to investigate the association between the interactive
use of ML-based diagnostic CDSSs and clinician performance and to examine the extent of the CDSSs’
human factors evaluation.

EVIDENCE REVIEW A search of MEDLINE, Embase, PsycINFO, and grey literature was conducted
for the period between January 1, 2010, and May 31, 2019. Peer-reviewed studies published in English
comparing human clinician performance with and without interactive use of an ML-based diagnostic
CDSSs were included. All metrics used to assess human performance were considered as outcomes.
The risk of bias was assessed using Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2)
and Risk of Bias in Non-Randomised Studies–Intervention (ROBINS-I). Narrative summaries were
produced for the main outcomes. Given the heterogeneity of medical conditions, outcomes of
interest, and evaluation metrics, no meta-analysis was performed.

FINDINGS A total of 8112 studies were initially retrieved and 5154 abstracts were screened; of these,
37 studies met the inclusion criteria. The median number of participating clinicians was 4
(interquartile range, 3-8). Of the 107 results that reported statistical significance, 54 (50%) were
increased by the use of CDSSs, 4 (4%) were decreased, and 49 (46%) showed no change or an
unclear change. In the subgroup of studies carried out in representative clinical settings, no
association between the use of ML-based diagnostic CDSSs and improved clinician performance
could be observed. Interobserver agreement was the commonly reported outcome whose change
was the most strongly associated with CDSS use. Four studies (11%) reported on user feedback, and,
in all but 1 case, clinicians decided to override at least some of the algorithms’ recommendations.
Twenty-eight studies (76%) were rated as having a high risk of bias in at least 1 of the 4 QUADAS-2
core domains, and 6 studies (16%) were considered to be at serious or critical risk of bias using
ROBINS-I.

CONCLUSIONS AND RELEVANCE This systematic review found only sparse evidence that the use
of ML-based CDSSs is associated with improved clinician diagnostic performance. Most studies had a
low number of participants, were at high or unclear risk of bias, and showed little or no consideration
for human factors. Caution should be exercised when estimating the current potential of ML to
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Abstract (continued)

improve human diagnostic performance, and more comprehensive evaluation should be conducted
before deploying ML-based CDSSs in clinical settings. The results highlight the importance of
considering supported human decisions as end points rather than merely the stand-alone
CDSSs outputs.
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Introduction

Artificial intelligence has been a popular term in the medical literature and health care industry for
some time. Although we are still far from true artificial intelligence, advances in mathematical
modeling and computing power have led to an increase in the number of published algorithms.
Claims regarding the potential of artificial intelligence in medicine range from being of use to
clinicians in their decision-making to artificial intelligence outperforming human experts. Funding for
artificial intelligence in health care increases year after year,1 and regulatory agencies are approving
a growing number of software as medical devices (SaMDs) based on advanced machine learning (ML)
algorithms, mainly in medical imaging.2 Recent evidence suggests that the best-performing systems
are now matching human experts’ performance.3 However, few randomized clinical trials or
prospective studies have been carried out, and most nonrandomized trials in the field are at high risk
of bias.4

Machine learning–based clinical decision support systems (CDSSs) are a category of SaMDs
designed to support health professionals’ decision-making by providing patient or problem-specific
information learned from an ideally large number of clinical cases during a training process. Despite
their name, most CDSSs are currently evaluated exclusively against human experts but rarely on their
outcome when used with human clinicians of different seniority. Demonstrating that computers can
be as good as humans for diagnostic tasks has some useful applications, notably for large population
screening in which patients may otherwise not be able to see a physician in a timely manner.
Nevertheless, this approach neglects an important factor in any medical encounter: the human
clinician. As long as physicians hold the ultimate responsibility for signing off a diagnosis or treatment
plan, it will be their interpretation of a CDSS output—not the output itself—that will affect patient
care. Human decision-making is known to be influenced by numerous external factors and cognitive
bias.5-7 It would be unwise to assume without further evidence that a human operator would follow
a diagnostic CDSS recommendation without question. Extending this argument further, we also have
little evidence on how patients would react to fully automated diagnoses or treatment planning. It is
therefore important to evaluate any new CDSSs in terms of its performance when used in interactive
collaboration with a human clinician and not solely on its performance in silico (ie, on a test data set).

Previous systematic reviews have investigated the association of CDSSs with clinician
performance or its surrogate clinical outcomes.8-12 However, most of the included studies described
systems whose parameters were defined by their developers or diagnosis generators based on
handcrafted knowledge bases, hence not fully representing the true promise of ML: to become
better than its creator by “learn[ing] without being explicitly programmed.”13 In this systematic
review, we investigated the current evidence regarding the association between the use of ML-based
diagnostic CDSSs and human performance and the ways these systems are evaluated by including
all retrieved studies comparing human clinicians performing a diagnostic task with and without
ML-based CDSS assistance.
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Methods

Search Strategy and Selection Criteria
We conducted a systematic review of the literature, and this study followed the relevant sections of
the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting
guideline.14 The study is registered with PROSPERO (CRD42019140075).

A search strategy built around 4 additive concepts (machine learning, decision support system,
clinician, and performance evaluation) was designed with the support of a specialist librarian and can
be found in the study protocol (eAppendix 1 in the Supplement). The search was conducted in
MEDLINE, Embase, and PsycINFO for the period between January 1, 2010, and May 31, 2019. The
initial search was conducted on May 20, 2019, and the last search to identify possible late indexation
within the specified time window was conducted on June 1, 2020. One round of a systematic forward
and backward references search was conducted for all included studies. An additional search was
performed using the names of algorithms recently approved by the US Food and Drug
Administration. A grey literature search including the World Health Organization International Clinical
Trials Registry Platform, conference abstracts (from 2017 onward), and the Cochrane Central Register
of Controlled Trials was performed using an adapted search strategy (eAppendix 2 in the
Supplement).

Inclusion criteria were peer-reviewed articles published in the English language, human
physicians as the study population, the interactive use of an ML-based diagnostic CDSSs as
intervention, human physicians without CDSSs as a control, any variable used to measure human
performance as the main outcome, any variable to measure the stand-alone computer performance
(ie, the performance achieved by the computer outputs without subsequent human intervention),
and any variable describing the evaluation of the CDSS by the human operator as a secondary
outcome. A CDSS was considered diagnostic if its output produced qualitative information (eg,
benign vs malignant) about the nature of a lesion or if the detection of a lesion was in itself sufficient
to pose a diagnosis and influence a therapeutic choice (eg, the presence of pulmonary emboli).
Exclusion criteria were monitoring, alert, or detection-only systems; systems based on validated
scores only; systems based on natural language processing only; and systems relying on handcrafted
knowledge or rule bases. The specific definition of key concepts and complete exclusion criteria can
be found in eAppendix 1 in the Supplement. All retrieved titles and abstracts were independently
screened by at least 2 of us (B.V., S.U., E.H.T., N.M., and N.B.). Conflicts were adjudicated by a third
reviewer (S.U. or B.B.). Full-text articles were independently reviewed for eligibility by at least 2 of us
(B.V., S.U., B.B., E.H.T., N.M., and N.B.). Conflicts were resolved in consensus. The abstract screening
and full-text review were conducted using the Covidence software.15

Data were extracted about the study population, patient population, data set characteristics,
experiment description, system characteristics, metrics assessing human performance, metrics
assessing computer performance, and study funding. The full list of data items can be found in
eAppendix 1 in the Supplement. Investigators were not contacted. The risk of bias for each included
study was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool as
modified by Riches8,16 and the Risk of Bias in Non-Randomised Studies–Intervention (ROBINS-I)
tool.17 QUADAS-2 was used to assess the risk of bias regarding the claims of CDSS diagnostic
accuracy, and ROBINS-I was used to consider the risk of bias in the results assessing difference in
performance. Studies were included in the analysis independently of their risk of bias. Data
extraction and bias assessments were all conducted independently by at least 2 of us (B.V., S.U., B.B.,
E.H.T., N.M., and N.B.) using piloted forms. Conflicts were resolved by consensus. To ensure
consistency, the main reviewer (B.V.) screened all abstracts and full texts for eligibility, extracted data,
and assessed risk of bias on all included studies.

Meta-bias was investigated by searching the World Health Organization International Clinical
Trials Registry Platform and Cochrane Central Register of Controlled Trials registers looking for
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unpublished trials and evidence of selective reporting. The origin of study funding and the presence
of a protocol were also considered.

Data Analysis
Narrative summaries were produced for the primary and secondary outcomes. As per protocol,
subgroup analyses were performed for clinicians’ experience level (experienced vs novice), the
mathematical model used, the models’ degree of support (single output vs information about
process), and the reader paradigm (first vs second reader). First reader support displays the model
output at the same time as the clinical data, and second reader support displays the model output
after the observer had a chance to make their own decision on a case. An additional subgroup
analysis for studies evaluating ML-based CDSSs in a representative clinical environment (clearly
reported consecutive or nonaugmented random patient sample and access to the usually available
clinical data at the time of decision-making) was performed. Patient-level results were prioritized
over lesion-level results for the summary of main results. Patient or lesion types subgroup analyses
were summarized separately. Given the heterogeneity of medical conditions, outcomes of interest,
and evaluation metrics, no meta-analysis was performed. All studies were included in the analysis
irrespective of their risk of bias.

Results

A total of 8112 titles were identified, of which 2774 were duplicates and 184 were not published in
English; 5154 abstracts were screened, and 156 of these were selected for full-text review. Of the 156
studies assessed, 22 were eligible for inclusion. Fifteen additional publications meeting the inclusion
criteria were retrieved from other sources, including forward/backward references search, trade
names search, related literature references search, and publications tracing from the grey literature
search. Thirty-seven publications were eventually included in this review.18-54 Figure 1 presents the
PRISMA flowchart.

All included studies described CDSSs based on imaging modalities, with breast and pulmonary
diseases being the most common medical conditions. Twenty studies (54%) investigated CDSSs
technology with a designated trade name at the time of publication.

Thirty-one studies (84%) assessed a CDSS belonging to the International Medical Device
Regulators Forum’s risk category 4 (the highest category),55 25 studies (68%) used a second reader
paradigm (see Data Analysis section) for the CDSS support, 8 (22%) used a first reader paradigm, 1
study (3%) used both, and 3 studies (8%) did not specify. Three studies (8%) used the same cases as
training and test sets, and 3 studies (8%) did not report clearly on test set independence. The median
proportion of events (ie, target condition) in the test set was 44% (interquartile range, 32%-54%).
The median number of clinician participants in the observer test was 4 (interquartile range, 3-8), with
each reading a median of 123 different cases (interquartile range, 79-300). Table 1 gives an overview
of the included studies’ characteristics.

The 10 most common metrics used to quantify human performance in the included studies
were sensitivity (81%), specificity (70%), area under the receiver operating curves (51%), accuracy
(38%), interobserver agreement (30%), positive predictive value (PPV) (30%), negative predictive
value (30%), reading time (22%), rate of recall for further investigation (11%), and the positive value
of further investigations (8%). Equivalent metrics have been aggregated. A full list of evaluation
metrics with their occurrence can be found in eTable 1 in the Supplement.

Table 2 reports a summary of the association between CDSS use and the 10 most common
human performance evaluation metrics. Three studies reported on more than 1 CDSS (or using the
same CDSS in different modalities).21,31,42 A total of 107 main results were reported with statistical
significance, and 41 were reported without it. Most studies defined statistical significance at P < .05,
with some applying correction for multiple comparisons. Of the results reported with statistical
significance, 54 studies (50%) showed an increase in their metrics, 4 (4%) reported a decrease, and
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49 (46%) noted no change or an unclear change. The area under the receiver operating curves,
accuracy, interobserver agreement, and PPV were usually increased with interobserver agreement
showing the clearest change. The sensitivity, specificity, negative predictive value, rate of recall for
further investigation, and PPV of further investigations remained unchanged in most cases, and the
CDSS association with reading time showed no clear pattern. Sixteen studies also reported analyses
on subgroups of patients or lesion types. A summary of these additional analyses can be found in
eTable 2 in the Supplement, and a detailed list of the included studies’ results are reported in eTable 3
in the Supplement.

In the 6 studies20,22,24,29,39,41 evaluating CDSSs in a representative clinical environment for the
same 10 evaluation metrics, 20 results were reported with statistical significance. Of these, 16 (80%)
showed no difference in performance, and 4 (20%) reported an increase in sensitivity, area under
the receiver operating curves, PPV, or interobserver agreement (eTable 4 in the Supplement).

In 19 studies in which a comparison was possible, CDSSs were more often associated with an
increase in performance for less experienced clinicians compared with their senior colleagues
(eTable 5 in the Supplement). The reader paradigm also appeared to be associated with human
performance, with studies investigating CDSSs in the second reader mode appearing to be more
often associated with an increase in the metrics (eTable 6 in the Supplement). The subgroup analyses
according to the mathematical model used (eTable 7 in the Supplement) and degree of support
(eTable 8 in the Supplement) produced no additional findings.

Twenty-seven studies reported on CDSS stand-alone performance. With the exception of 1
unclear case,50 human participants always decided to override at least some of the CDSS
recommendations. Of the 75 main results reported using the 10 most commonly applied metrics, the
human contribution changed the system performance in 70 cases (93%). Compared with the stand-
alone computer performance, adding human intelligence increased the metrics value in 45 cases
(60%) and decreased it in 25 cases (33%). Only 3 results (4%) mentioned statistical significance; of

Figure 1. Flowchart of Study Inclusion

8112 Publications retrieved

5154 Abstracts screened for relevance

156 Publications selected for full-text screening

37 Publications included

0 Publications selected for meta-analysis

4998 Publications irrelevant

Other sourcesa

15 Publications

2958 Titles excluded
2774 Duplicates
184 Publications not in English language

134 Publications excluded
71 Before 2010

14 Wrong study population
14 Wrong comparator
13 Not diagnostic
2 Wrong study design
2 Not peer reviewed

18 Wrong intervention

a Other sources included forward/backward literature
search, reference search from relevant literature,
trade name search, and conference abstracts or
entries in the Cochrane Central Register of Controlled
Trials that led to publications.
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Table 1. Characteristics of Included Studies

Source Medical condition Algorithm used

IMDRF
risk
category

No. of
sites

Test set
sample
sizea

Test set
event
casesb

No. of study
participants

Cases
read/participantc

Reader
paradigm

Private
sector
funding

Aissa et al,18 2018 Melanoma ClearRead CT (CNN)d 4 1 46 46 3 46 First NA

Aslantas et al,19 2016 Bone metastasis Perceptron-based ANN 4 2 130 100 1 130 NA No

Bargalló et al,20 2014 Breast cancer SecondLookd 4 NA 21 321 130 4 8100e Second NA

Barinov et al,21 2019 Breast cancer cCAD (ANN)d 4 Multiple 500 150 3 450 and
500

First and
second

NA

Bartolotta et al,22 2018 Breast cancer S-Detect (CNN)d 4 NA 300 122 4 300 Second NA

Bien et al,23 2018 Knee
musculoskeletal
injury

CNN 3 2 120 99 9 120 First NA

van den Biggelaar
et al,24 2010

Breast cancer SecondLookd 3 1 1048 50 2 524e First No

Blackmon et al,25 2011 Pulmonary
embolism

VA10 PE (SVM) 4 NA 79 32 2 79 Second NA

Cha et al,26 2019 Bladder cancer CNNd 4 NA 123 40 12 123 Second No

Chabi et al,27 2012 Breast cancer B-CAD v.2d 4 1 160 77 4 160 Second NA

Cho et al,28 2018 Breast cancer S-Detect (CNN)d 4 1 119 54 2 119 Second Yes

Choi JH et al,29 2018 Breast cancer S-Detect (CNN)d 4 1 200 12 4 100e Second No

Choi JS et al,30 2019 Breast cancer S-Detect (CNN)d 4 1 253 80 4 253 Second No

Cole et al,31 2014 Breast cancer ImageChecker v.1.0
(CNN) and SecondLook
v.1.4d

4 Multiple 300 and
300

150 and
150

15 and
14

300 and
300

Second No

Endo et al,32 2012 Pulmonary
nodule

Euclidian distance
clustering

4 1 30 23 3 30 NA NA

Engelke et al,33 2010 Pulmonary
embolism

PE-CAD (MIC)d 4 NA 58 58 4 58 Second NA

Giannini et al,34 2017 Prostate cancer SVM 4 NA 89 35 3 89 First No

Hwang et al,35 2019 Thoracic
pathology

CNN 4 1 200 103 15 200 Second No

Lindsey et al,36 2018 Wrist fracture CNN 3 1 300 NA 24 300 Second Yes

Park et al,37 2019 Breast cancer S-Detect (CNN)d 4 1 100 41 5 100 Second No

Rodríguez-Ruiz et al,38

2019
Breast cancer Transpara v.1.3.0

(CNN)d
4 2 240 100 14 240 NA Yes

Romero et al,39 2011 Breast cancer Image Checker v.5.4
(CNN)d

4 1 9389 124 2 4695e Second NA

Samulski et al,40 2010 Breast cancer Image Checker v.8.0
(CNN)d

4 NA 120 40 9 120 Second No

Sanchez Gómez et al,41

2011
Breast cancer SecondLook v.1.1d 4 NA 21 855 94 6 3643e Second No

Sayres et al,42 2019 Diabetic
retinopathy

CNN 3 Multiple 1796 213 10 1796 First Yes

Shimauchi et al,43 2011 Breast cancer Bayesian ANN 4 2 60 30 6 60 Second NA

Sohns et al,44 2010 Breast cancer Image Checker v.2.3
(CNN)d

4 NA 303 98 2 303 First NA

Steiner et al,45 2018 Breast cancer CNN 4 2 70 38 6 70 First Yes

Stoffel et al,46 2018 Breast cancer ViDi Suite v.2.0 (ANN)d 4 1 33 11 4 33 First No

Sun et al,47 2014 Atrial thrombus ANN 3 1 130 31 5 130 Second No

Sunwoo et al,48 2017 Brain metastasis k-means clustering +
ANN

4 1 60 30 4 60 Second No

Tang et al,49 2011 Ischemic stroke ANN 4 Multiple 71 40 6 40 Second No

Taylor et al,50 2018 Parkinsonian
syndromes

SVM 3 1 and
Multiple

55 and
100

33 and
60

2 55 and
100

Second No

Vassallo et al,51 2019 Lung metastasis SVM 4 1 225 75 3 225 Second No

Watanabe et al,52 2019 Breast cancer cmAssist (CNN)d 4 1 122 90 7 120 Second Yes

Way et al,53 2010 Lung cancers Linear discriminant
analysis

4 1 256 124 6 NA Second No

Zhang et al,54 2016 Lymph node
cancers

SVM 4 1 178 87 10 178 Second No

Abbreviations: ANN, artificial neural network; CNN, convolutional neural network;
IMDRF, International Medical Device Regulators Forum; MIC, multiple instance classifier;
NA, not available; SVM, support vector machine.
a For the observer test with support for clinical decision support systems.
b One case can display multiple events.

c Each case was either seen once or multiple times (with or without assistance)
depending on the study.

d Commercial name of proprietary algorithm.
e Mean value.
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these, 1 showed no statistical difference and 2 noted a significant increase in accuracy. An overview
of these results is reported in Table 3, a summary of the subgroup analyses in eTable 9 in the
Supplement, and a detailed list of the results in eTable 10 in the Supplement.

Of the 37 included studies, 15 (41%) attempted to increase the interpretability of the model by
presenting some of the intermediary calculations leading to the models’ final output, and 13 studies
(35%) included users’ training before starting data collection. Four (11%) reported on user feedback
about the CDSSs, of which 3 (8%) gathered feedback through a formalized process. Van den
Biggelaar et al24(p501) asked study participants to indicate on their case evaluation forms if the CDSS
marks “added valuable diagnostic information to their own original evaluation” but did not report on
this outcome. Taylor et al50(p5) designed open and closed question interviews to “provide an insight
into the CADx [computer-aided diagnosis]-radiologist relationship [and] to assess the effects of the
CADx software on clinician decision-making.” The study participants reported good agreement
between their decision and the CDSS outputs, with a small to moderate influence on their reporting

Table 2. Association Between ML-Based CDSS Use and Clinician Performancea

Metric category

Results reported with statistical significance, No. Results reported without statistical significance, No.
Total CDSSs
evaluated,
No.b

Increase overall or
for ≥50% of the
participants

No change or
unclear change
for the group

Decrease overall or
for ≥50% of the
participants

Increase overall or
for ≥50% of the
participants

No change or
unclear change
for the group

Decrease overall or
for ≥50% of the
participants

Sensitivity 10 11 1 9 1 0 32

Specificity 6 11 1 3 2 5 28

Area under the receiver
operating curves

13 7 0 1 0 0 21

Accuracy 8 4 0 5 1 0 18

Interobserver agreement 7 2 0 2 0 0 11

Positive predictive value 5 3 0 2 0 2 12

Negative predictive value 3 5 0 3 1 0 12

Reading time 2 2 2 0 1 1 8

Recall for further
investigations

0 2 0 1 0 0 3

Positive predictive value of
further investigations

0 2 0 0 0 1 3

Abbreviations: CDSSs, clinical decision support systems; ML, machine learning.
a Number of main results reported for the 10 most commonly used metrics groups

comparing computer-assisted clinicians with clinicians alone.

b Three studies reported on more than 1 CDSS or used the same CDSS in different
modalities.

Table 3. Association Between Human Contribution and System Performancea

Metric category

Results reported with statistical significance, No. Results reported without statistical significance, No.
Total CDSSs
evaluated,
No.b

Increase overall or
for ≥50% of the
participants

No change or
unclear change
for the group

Decrease overall or
for ≥50% of the
participants

Increase overall or
for ≥50% of the
participants

No change or
unclear change
for the group

Decrease overall or
for ≥50% of the
participants

Sensitivity 0 0 0 11 2 10 23

Specificity 0 0 0 11 2 5 18

Area under the receiver
operating curves

0 1 0 5 0 7 13

Accuracy 2 0 0 6 0 1 9

Interobserver agreement 0 0 0 6 0 0 6

Positive predictive value 0 0 0 0 0 0 0

Negative predictive value 0 0 0 4 0 2 6

Reading time 0 0 0 0 0 0 0

Recall for further
investigations

0 0 0 0 0 0 0

Positive predictive value of
further investigations

0 0 0 0 0 0 0

Abbreviation: CDSSs, clinical decision support systems.
a Number of main results reported for the 10 most commonly used metrics groups

comparing computer-assisted clinicians with stand-alone computers.

b Three studies reported on more than 1 CDSS or used the same CDSS in different
modalities.
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decision. The participants also considered it would be of small to moderate benefit if the CDSS would
display more information on how it generates its decision and thought CDSSs could be of moderate
to substantial benefit to support training and improve inexperienced clinicians’ performance. Endo
et al32 invited study participants to give direct feedback on CDSS outputs by grading their relevance
in the context of a specific task; 87% of the outputs were judged satisfactory. Additional human
factor–related characteristics of the included studies can be found in eTable 11 in the Supplement.

Using QUADAS-2, 28 studies (76%) were rated as having high risk of bias in at least 1 of the 4
core domains, and none were considered to have a low risk of bias in all 4 core domains. Patient
selection and the index test were the 2 domains most frequently found at high risk of bias. Using
ROBINS-I, 6 studies (16%) were rated as having serious or critical risk of bias due to cofounding,
deviation from the intended interventions, or likely selection of the reported results. Only 1 study was
considered to be at low risk of bias in all 7 domains.47 Figure 2 shows the overall risk of bias
assessment for each category of these tools.

Six studies (16%) reported private sector funding, and 12 (32%) gave no or unclear information
about their source of funding. Only 2 studies (5%) referenced a study protocol.47,54 The grey
literature search retrieved 1 randomized clinical trial protocol (with expected completion after the

Figure 2. Distribution of the Risk of Bias Scores
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Intervention (ROBINS-I) (B) domains.
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present review’s search period), 1 conference abstract (leading to a publication after the present
review’s search period),56 and 1 conference abstract that did not lead to any publication.

Discussion

This systematic review found no robust evidence that the use of ML-based algorithms was associated
with better clinician diagnostic performance. The evidence for any conclusion was weak because of
a high risk of bias in many of the studies and a low number of study participants. Almost half of all
results reported with statistical significance showed no significant difference in performance with or
without the use of CDSSs. In studies conducted in a clearly reported representative clinical
environment, this observation was even clearer, with 80% of the designated results showing no
statistically significant change in performance. These findings corroborate the conclusions of several
other studies assessing the outcome of CDSS use in mammogram screening across large populations,
in which few or no benefits were found.57-59 In a cross-specialty review like ours, expressing a
straightforward judgment about the benefits of a CDSS is often difficult as it heavily depends on
factors such as common clinical practice in a field or the prevalence of the target condition. This
factor is the reason why we summarized the association between the use of CDSSs and clinician
performance by metrics, as they enable readers to decide whether specific changes are desirable in
their specialty. The interobserver agreement was the metric whose change appeared to be the most
clearly associated with the use of CDSSs. The use of CDSSs also appeared to have a more marked
association with increased performance for less experienced clinicians and to be associated with
increased interobserver agreement between clinicians of different experience levels. In this way,
CDSSs need not be solely used to outperform the most experienced clinicians but could be targeted
by design toward those with less experience who may receive more benefit.

Little consideration was given to human factors in included studies. This outcome is surprising
as human clinicians should be the main beneficiaries of the systems tested. In only 13 studies were
the observers trained on the CDSS before the test. Given the likely existence of a learning (or trust)
curve as observed by Rodríguez-Ruiz et al,38 this omission might well have distorted some of the
results. User feedback was reported in only 4 studies, hence hindering any iterative improvement in
the human-computer interaction. This outcome is in contrast to other safety-critical industries, such
as the aviation or energy sectors, where human factors principles have been commonly used
for years.60-64

In all but 1 study in which the information was available, human operators decided to override
at least some of the system recommendations, and it remains unclear to what extent human
intelligence influences the overall system performance. These 2 observations highlight that
computer simulations alone are insufficient to define the effectiveness and safety profile of a CDSS.
In clinical situations in which humans have the responsibility for a diagnostic or therapeutic choice,
they will, consciously or not, factor in other variables than the CDSS outputs and possibly prioritize
their own clinical judgment in case of conflict. Therefore, it is the human processing of algorithm
outputs, rather than the outputs themselves, that will affect patient care. Thus, it is important to
evaluate this shared decision-making process rather than the CDSS stand-alone performance.

Many of the included studies were at high risk of bias, echoing the results of a recent review
assessing studies comparing deep learning–based algorithms to clinicians.4 This elevated risk of bias
was mainly attributed to 3 factors: (1) the lack of prospectively or randomly selected case samples,
(2) the absence during the test of clinical data otherwise available in real-life settings, and (3) the
absence of a protocol. Moreover, the generalizability of the studies’ findings was undermined by the
absence of any power calculation and the median number of participants being only 4. In many cases,
we also observed confusion between statistical significance at the patient and practitioner levels.
Bootstrapping the clinical cases to produce a P value would not, for example, give any indication
about the generalizability of findings to other clinicians. Instead, it would assess the likelihood that
the same clinicians would display similar improvement with a new sample of patients.
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In addition to the issues already outlined, there was a marked heterogeneity in the metrics used
to assess CDSSs. Together, these inconsistencies make a reliable comparison of the different systems
almost impossible. The issue of performance comparability is well known to the field and initiated
the creation of data challenges, notably in medical image analysis, to evaluate how competing
algorithms perform on common data sets.65,66 This harmonization work should now be extended to
the next phases of CDSS evaluation pathways, particularly when first used with human clinicians.
Reporting guidelines would offer a practicable solution to this end.

Strengths and Limitations
The methodologic approach followed best practice standards for systematic reviews, and each step
of the process was performed independently by at least 2 reviewers. This study is, to our knowledge,
the first to put human clinicians, rather than the algorithms, at the forefront of a systematic review
about the clinical use of ML-based CDSSs. This approach provides important information that
nuances a commonly portrayed view that artificial intelligence may soon substantially improve
clinician diagnostic performance across specialties. This approach also highlights the current lack of
consideration of human factors when assessing the potential benefits of new CDSSs. In addition, this
review provides material that can inform the development of further guidance on ML-based CDSS
evaluation, complementing existing or upcoming reporting guidelines.67-70 Such guidance will be
particularly relevant for safety and effectiveness evaluations before the execution of large-scale
clinical trials.

This review has limitations. It is possible that some relevant literature was not retrieved owing
to (1) the heterogeneous description of the target CDSSs across medical specialties, (2) the use of
commercial names only in many studies, and (3) the only recent categorization of this technology in
specialized search engines (machine learning was added as a MeSH term in PubMed in 2016). We
addressed these issues by conducting a forward and backward literature search of the included
studies as well as an additional search for common or new commercial names. Given the broad range
of CDSSs evaluated herein, certain inclusion criteria had to be defined very precisely, and some of
these definitions are debatable because there is no broad consensus in the literature.

Conclusions

This systematic review of the literature provides findings to inform current and future debate about
the evaluation of ML in health care. We found no robust evidence to suggest that the use of ML-based
CDSSs is associated with improved diagnostic performance among clinicians in representative clinical
environments. We also highlighted that most of the studies on this topic were at high or unclear risk
of bias and had a low number of participants. In addition, we observed that the human operators
almost always decided to override at least some of the CDSS recommendations. Therefore, we
recommend more thorough evaluation of ML-based CDSSs and that more consideration be given to
the human component of assisted diagnosis. These changes in practice should be guided by
accepted principles of trial conduct and reporting to avoid repetition of errors noted in the current
literature. Increased regulatory scrutiny also has an important role in ensuring a safe and efficient
translation to the patient bedside. The results of this review should not be interpreted as tarnishing
the prospects of ML-based diagnostic CDSSs. Rather, we encourage qualitative improvements in
future research. Better methodologies and evaluations would allow CDSSs to showcase their full
potential and ultimately improve patient care.
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