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ABSTRACT

Title: Investigating the effects of extracellular biomolecules on Ab1-42 oligomer uptake and traffick-

ing by microglia cells

Author: Nina Denise Kloss

Arguably, the most prominent of the protein-misfolding disorders is Alzheimer’s disease (AD), a de-

bilitating neurodegenerative disorder pathologically characterised by the deposition of tau fibrillary

tangles and Ab1-42 amyloid plaques in the brain.

To date, the cause of AD is unknown and rising patient numbers pile pressure on the search for a

cure. The protein assembly pathway converting soluble Ab1-42 to mature fibrils is complex and the

heterogeneity of aggregate morphology significantly contributes to the difficulty of studying how

the pathogenic aggregates confer cellular dysfunction. Previous studies have pointed towards sol-

uble oligomers (SO) as opposed to mature amyloid fibrils as the predominant toxic species. This

thesis explores the internalisation of SO by a microglia cell line (EOC 13.31) and provides new in-

sights into the modulation of this process by naturally occuring extracellular biomolecules, namely

the chaperone clusterin (Clu) and the antimicrobial enzyme lysozyme, an important component of

the innate immune system. Microglia cells are the primary immune cells of the brain and as such,

considered to be the first line of defense against intruders. In more recent years, chronic neuroinflam-

mation has been suggested as a central mechanism, even a driver, of AD, which has led to a surge of

investigations into underlying cellular processes that govern SO interactions with microglia.

The oligomer formation of synthetic Ab1-42 is characterised using different biophysical and bio-

chemical techniques in Chapter 3. Initial studies of the interaction of these SO with EOC 13.31 cells

in the presence of Clu suggest that unlike observations in neuroblastoma cells, where Clu prevented

SO interactions, the mechanism in microglia cells is more complex.

The preliminary internalisation experiments of Chapter 3 have prompted a more detailed investiga-

tion into the effect of Clu on SO interaction with EOC 13.31. Chapter 4 uses confocal microscopy
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to probe how Clu alters uptake and trafficking of fluorescently-labelled Ab1-42 oligomers by EOC

13.31 cells, including studying morphological changes in the microglia. Furthermore, exploratory

studies of pro-inflammatory cytokine release using ELISA and qPCR in response to SO and Clu are

discussed.

Chapter 5 explores the effect of lysozyme on SO interactions with EOC 13.31 cells, and compares this

with Clu. The employed biophysical as well as advanced imaging techniques suggest a protective

role for both biomolecules, which appears to be receptor-independent.

The results in this thesis have demonstrated how different biomolecules can alter SO internalisation

by microglia cells. These insights can contribute to understanding the molecular mechanisms by

which amyloid species are processed in a cellular environment and facilitate the development of

effective therapies for AD.
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"The important thing is not to stop questioning. Curiosity has its own reason for

existing."

Albert Einstein
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1

INTRODUCTION

1.1 Amyloid aggregation in disease

Since the 19th century it has been known that the progressive accumulation of insoluble protein

deposits can cause devastating diseases. Over the years, more than fourty proteins or peptides,

of diverse composition and native function, have been linked with protein-misfolding disorders,

including neurodegenerative diseases and also systemic amyloidosis [1].

Alzheimer’s disease (AD) is the arguably most prominent of the protein-misfolding diseases, a dis-

ease category characterised by b-sheet-rich protein aggregates, termed amyloid fibrils, that are de-

posited into various tissues, where they become hallmarks of respective disease pathologies. Al-

though there are many studies trying to elucidate the molecular mechanisms by which these pro-

teins misfold to form amyloid fibrils, the process is still not fully understood (see Fig. 1.1). Protein

misfolding can occur when the monomeric protein adopts a structure that favours intermolecular

interactions which may lead to the formation of "off pathway" oligomers, amorphous aggregates or

amyloid fibril formation. The protein assembly pathway leading to mature fibrils is complex and the

heterogeneity of aggregate morphology significantly contributes to the difficulty of studying how

the pathogenic aggregates confer cellular dysfunction.
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Figure 1.1: Proposed mechanism for amyloid formation and spreading: The first step along the ag-
gregation pathway involves oligomers, which form fibrils and eventually get deposited throughout
the brain. Spreading of protein misfolding can occur on different levels. Schematic adapted from
Soto and Pritzkow [2].

Proteins form an essential part of all living organisms. The large biomolecules are crucial for the

structure and regulation of the body’s cells. The functions performed by proteins are manifold and

range from DNA replication, to catalysing metabolic reactions and transporting molecules within

and between cells [3]. Proteins distinguish themselves from one another through their unique amino

acid sequence, which in return is encoded by the cellular DNA. The amino acid sequence together

with the cellular environment dictate the complex folding pathways that proteins undergo to ob-

tain 3-dimensional (3D), functionally active structures [4, 5]. En route to obtaining their respective

3D conformations, different structural levels in protein folding are passed as illustrated in Fig. 1.2.

The primary structure of the protein is determined by the amino acid sequence, which directs local

confirmations defined as the secondary structure of the protein. These include a-helices, b-sheets

and random coils. In order to reach the tertiary, or native structure, the secondary structure is fur-

ther packed into a globular configuration by which the most aggregation-prone regions, such as

hydrophobic patches, are buried within the folded protein [6]. In some cases, a quaternary structure

is obtained by assembly of discontinuous polypeptide chains, which is required for the protein to be

fully functional [7].
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Figure 1.2: Overview of the four levels of protein structure. The sequence of amino acids is termed
the primary structure of proteins. Interactions between adjacent amino acids allow for the formation
of a-helices and b-sheets, referred to as the secondary structure. The 3D folding of the polypeptide
marks its tertiary structure and the interaction of multiple polypeptides can lead to the formation of
a quaternary structure. Figure as first shown by Helm and colleagues [6].

Within cells, proteins are synthesised on ribosomes based on the genetic information contained in the

nucleotide sequences of the DNA [8]. Proteins that are not able to obtain the functionally active na-

tive state are generally identified as misfolded and targeted to a degradation pathway [9,10]. Proper

protein folding into 3D structures is crucial for protein function. Cells therefore maintain an efficient

quality-control system to prevent the accumulation of misfolded proteins. The mechanisms involved

in clearing protein aggregates in the cell include molecular chaperones, the ubiquitin-proteasome

system (UPS), and autophagy-lysosome pathways (ALPs) as outlined hereinafter.

1.1.1 Cellular uptake and trafficking of amyloidogenic aggregates

To ensure protein homeostasis, which describes the normal cellular repertoire of functional pro-

teins, cells contain coordinated quality-control systems. These are highly complex interconnections

of pathways, some of which promote protein folding and refolding (e.g. heat shock proteins be-

longing to the HSP40, HSP70, and HSP90 families and endomembrane compartments, such as the

endoplasmic reticulum (ER), the Golgi apparatus, and endosomes), while others initiate degradation

(e.g. the UPS and membrane-sequestered ALPs) [11, 12].

Proteins that are targeted for clearance via UPS or ALP are poly-ubiquitinated, which involves the

covalent ligation to at least four small, highly conserved ubiquitin molecules [13]. The majority of

damaged proteins, as well as smaller protein aggregates, are generally tagged with a specific ubiq-

uitin chain marking them for proteasomal degradation. The proteasome is a barrel-shaped structure

forming a channel in which the proteins are enzymatically degraded to small peptides as they pass

through [13, 14]. Proteasomes are present in the nucleus and cytosol of all cells. Proteins and cel-
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lular organelles that are too large to enter the narrow proteasome may be tagged for degradation

via one of the three ALPs, namely the macro-autophagy, micro-autophagy, and chaperone-mediated

autophagy-lysosomal pathways [15]. Macro-autophagy involves the engulfment of proteins or pro-

tein aggregates within a double-membrane forming the autophagosome that, once matured, fuses

with lysosomes [16,17]. Micro-autophagy describes a process by which cytosolic components are di-

rectly taken up by lysosomes through invagination of the lysosomal membrane, thereby eliminating

the need for an intermediary [18, 19]. In chaperone-mediated autophagy, proteins rely on chaper-

one proteins for translocation across the lysosomal membrane [20–22]. Lysosomes contain different

proteolytic enzymes, such as acid-optimal proteases, like cathepsins, as well as acid hydrolases that

degrade the internalised cargo [23].

Increasing evidence suggests that even small perturbations in protein homeostasis can cause exten-

sive cell and tissue damage [24–27]. To date, factors such as harsh environments, oxidative stress,

mutations, increased hydrophobicity or b-sheet propensity, low net charge, surface interactions with

membranes, and ageing have been associated with an increased likelihood of protein misfolding and

aggregation [28–32]. If the level of protein aggregation exceeds the capacity of the degradation path-

ways, misfolded proteins accumulate and become pathogenic. Under certain circumstances, such

as loss-of-function or gain-of-function mutations in the nucleotide sequence, proteins can acquire a

high misfolding propensity and escape the protective mechanisms of the cell. These misfolded pro-

teins not only lack their distinctive function, but are also prone to self-association into either highly

disordered (amorphous) or ordered (amyloidogenic) aggregates [9, 33]. The different intracellular

proteostasis components and their dysregulation by amyloid aggregates are shown in Fig. 1.3 [34].
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Figure 1.3: Proteostasis components and protective mechanisms dysregulated by amyloid disease.
Intracellular components of the proteostasis network are impaired by the presence of amyloid
species (shown in yellow) in the cytosol. Figure first shown by Tipping et al. [34].

Remarkably, amyloid fibrils formed by various proteins share common features despite the differ-

ences in their respective amino acid sequences and in their native 3D conformations [35–37]. Amy-

loid fibrils are composed of filaments that are often flat or able to form periodical helicity, which

are detectable as characteristic unbranched, linear structures by transmission electron microscopy

(TEM) or atomic force microscopy (AFM) [4]. In each protofilament, the protein molecules are ar-

ranged so that the polypeptide chain forms b-strands perpendicular to the long axis of the fibril as

initially shown via synchrotron X-ray diffraction [1, 35, 38]. Fibrils have a diameter of 2-20 nm and

can reach a few microns in length [39].

Using in vitro methods such as light scattering, turbidity, as well as fluorescence and absorption

spectroscopy of intrinsic fluorophores and extrinsic dyes (e.g. Congo red and Thioflavin T, ThT), the

kinetics of amyloid fibril formation have been well established: during an initial lag phase, protein

monomers self-associate into soluble oligomeric species that act as a critical nucleus, which elongates

as more monomeric protein is added until a plateau phase is reached, at which point the monomeric
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proteins are depleted [39–41]. The steps involved in the aggregation process are illustrated in Fig.

1.4. New aggregates can be formed from monomers through primary nucleation, from existing fibrils

through fragmentation or from both, monomeric and aggregated species via secondary nucleation,

which is a surface-catalysed process [42, 43]. Secondary nucleation becomes the predominant route

of oligomer formation once a critical concentration (ca. a few tens of nM) is reached and significantly

contributes to the proliferation of toxic species [44].

Figure 1.4: Schematic representation of the kinetics of amyloid fibril formation. Monomers of the
misfolded proteins initially accumulate and form small, soluble oligomers (SO). Addition of further
protein molecules leads to an elongation to larger, soluble protofibrillar species and lastly, to insolu-
ble fibrils. TEM images show typical species of Ab1-42. The scale bars represent 100 nm. Figure first
published by Hook et al. [45].

Given that aggregating proteins can differ greatly in their primary amino acid sequence, the fibril-

forming ability has been ascribed to the peptide backbone as opposed to the amino-acid side chains

[33,46]. The amino-acid side chains, on the contrary, determine the rate and propensity of protein ag-

gregation under respective conditions and knowledge of the amino-acid sequence serves as a proxy

for its aggregation propensity [28, 47, 48].
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1.2 Dementia and Alzheimer’s disease

AD is one of the most prevalent neurodegenerative diseases and makes up 60-70 % of all dementia

cases, an umbrella term used to describe the progressive deterioration of memory, thinking, and the

ability to perform tasks. An estimated 44 million people worldwide currently suffer from dementia

and while it predominantly affects older people, it is not considered a normal part of ageing [49]. The

economic burden associated with the treatment of dementia is predicted to increase by 16 % every

year, having amounted to total costs of $948 billion in 2016 [50]. Both, the high unmet medical need

as well as the escalating fiscal burden on healthcare systems around the world necessitate a better

understanding of causation and progression of the disease in order to develop effective therapies.

1.2.1 Disease pathology

The first medical record of what is now known as Alzheimer’s disease dates back to the early 20th

century. At a medical congress in Tuebingen in November 1906, Alois Alzheimer, for the first time,

described the appearance of plaques and neurofibrillary tangles in the brain of his deceased patient

Auguste D. The woman had previously been admitted into his care due to progressive cognitive

impairment and hallucinations [51]. The pathological hallmarks and terminology used to describe

AD back then are still applicable today. While there have been advances in the understanding of

plaque composition and the processes leading to neurofibrillary tangles (NFTs), it was not until the

1980s that the underlying structures making up senile plaques were identified as amyloid fibrils

consisting of Ab peptides [52–54]. Moreover, the underlying structure of tangles was identified as

hyperphosphorylated tau [55–57]. However, for some decades and much like a chicken-and-egg

problem, the question of how AD develops has split the scientific community into two camps, the

so-called tauists and the baptists.

Tau is a microtubule-associated protein located in neurons where it promotes microtubule polymeri-

sation as well as their stabilisation. The phosphorylation of tau plays a crucial role in intracellular

trafficking: it facilitates the removal of tau from microtubules thereby enabling transport, followed

by dephosphorylation to return tau to the microtubule. Post-translational modifications (PTMs) of

tau can cause hyperphosphorylation. Hyperphosphorylation of tau, in return, leads to a loss of its

normal physiological function and is responsible for a gain of toxicity and aggregation culminating

in NFTs [58, 59]. While there are several studies linking the tau gene MAPT to various tauopathies,

such as Parkinson’s disease, supranuclear palsy, and frontotemporal dementia, the evidence link-

ing the tau gene to AD has been a lot hazier and to date, there is no compelling proof of a genetic
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association between tau and AD [60–64].

Partly attributable to the lack of genetic evidence for the tau hypothesis, the predominant frame-

work that has governed Alzheimer’s research over the last few decades is provided by the amyloid

cascade hypothesis, which postulates that Ab is a causative agent in pathogenesis as opposed to a

secondary event [50]. The seed of the idea that Ab could, in fact, be causative of AD was originally

planted by Glenner and Wong in 1984 and later refined [52, 65–68]. Despite extensive research, the

contribution of the extracellular Ab aggregates and the NFTs to disease pathogenesis and progres-

sion are still not fully understood and none of the clinical efforts to date have yielded an effective

treatment for AD. However, in more recent years, the two camps have come closer together in trying

to better understand the intersection of the two pathologies [69–73]. Since the early 2000s, a third

line of research has entered the AD field, namely neuroinflammation, which may provide the miss-

ing link in the cascade of events that ultimately leads to the symptomatic disease pathology [74–77].

While this work predominantly focuses on Ab and neuroinflammation, it is acknowledged that un-

derstanding tauopathy in AD is equally important, especially as rising patient numbers increase the

pressure on finding a cure.

1.2.2 Genetics and risk factors

Data supporting the amyloid cascade hypothesis are derived from human genetics. Four main ap-

proaches have largely guided the field of AD genetics: genetic linkage analysis, study of candidate

genes, genome-wide association studies (GWASs), and next generation sequencing (NGS) [78–83].

Even though AD is primarily sporadic, also referred to as late onset AD (LOAD, >90 % of cases), fa-

milial forms of AD (fAD/early onset [EOAD]), have been linked to mutations in three genes, namely

APP, PSEN1, and PSEN2. These are all dominantly inherited, substantially involved in Ab produc-

tion, and accelerate the accumulation of Ab plaques [50]. By identifying AD-linked mutations in

both, the precursor of Ab (APP) and the enzymes involved in its generation (PSEN1 and PSEN2), the

amyloid hypothesis of AD has significantly informed our current understanding of the underlying

disease mechanisms. A brief overview of these genes, the involvement of their gene products in Ab

production, and selected mutations follows.

1.2.2.1 APP processing and Ab generation

The APP gene encodes the transmembrane amyloid precursor protein (APP), whose function is still

largely unknown. The genes, PSEN1 and PSEN2, encode the catalytic subunits of the g-secretase
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complex, Presenelin 1 and 2, which are the final endoproteases that cleave APP generating either

Ab1-40 (ca. 80-90 %) or Ab1-42 peptides (ca. 5-10 %) [82–85]. Ab1-42 peptides are more hydrophobic,

fibrillogenic, and more readily form toxic oligomers than Ab1-40 peptides [86, 87].

Prior to the cleavage of APP by the membrane-bound g-secretase, APP is first cleaved by b-secretase

releasing a large secreted derivative called sAPPb (see Fig. 1.5 for a schematic overview of APP pro-

cessing). An APP fragment of 99 amino acids (CTFb) remains membrane bound, and is subsequently

cleaved by g-secretase yielding Ab peptides that are between 39-42 amino acids in length. The bulk

of APP is, however, processed via another route and does not yield the AD-associated Ab peptides.

Roughly 90 % of APP is initially cleaved by a-secretase generating sAPPa. Subsequent processing of

the remaining membrane-bound fragment (CTFa) by g-secretase results in a short fragment called

p3. The activity of b-secretase is therefore believed to be the rate-limiting step in the amyloidogenic

pathway as it processes the remaining 10 % of APP that ultimately result in Ab aggregation [88].

Figure 1.5: APP processing: Formation of Ab peptides through sequential cleavage of APP by b- and
g-secretases. Schematic adapted from Spies et al. and the NIH [89, 90].

1.2.2.2 Genetic mutations linked with EOAD and known risk factors of LOAD

All known mutations causing fAD affect Ab metabolism and stability: mutations within APP result

in an increased Ab load or mutated Ab peptides (e.g. Swedish and London mutations) and mutations
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of g-secretase lead to increased Ab1-42 production relative to Ab1-40 (see Table 1.1) [91]. While the

mutations in APP and the presenelins causing fAD account for less than 5 % of all AD cases, they

are fully penetrant and have become the focus of several functional and pathway studies with the

hope of generating transferable insights into AD progression. Late onset AD, on the contrary, is a

lot more common and it is believed that LOAD is affected by highly prevalent genetic variants with

low penetrance [92]. Hence, LOAD is genetically far more complex and the possible involvement

of multiple genes, as well as environmental factors, adds to the challenge of making meaningful

inferences from experimental studies.

Table 1.1: Overview of AD genes associated with autosomal dominant or sporadic inheritance. The
AD genes are located on four different chromosomes. Table adapted from Bekris et al. [93].

Gene symbol Gene name Chromosome Inheritance

APP Amyloid precursor protein 21q21 Autosomal dominant

APOE Apolipoprotein E 19q13.32 Sporadic

PSEN1 Presenilin 1 14q24.2 Autosomal dominant

PSEN2 Presenilin 2 1q42.13 Autosomal dominant

The mapping of the APP gene to chromosome 21 led to the observation that patients with Down

syndrome (trisomy 21) display a tendency to develop amyloid deposits and the neuropathological

features of AD in their 40s [94]. Today, over thirty APP missense mutations in over eighty families

have been identified with the majority of these located in the region of the Ab peptide sequence [93].

Interestingly, the only gene that has been consistently associated with sporadic LOAD across mul-

tiple genetic studies is APOE. APOE has three common polymorphisms resulting in three different

allelle variations, APOE-e2, -e3, and -e4. APOE-e4 can increase the risk for LOAD 3-fold (1 copy)

and 12-fold (2 copies), respectively [95]. The protein APOE is a lipoprotein and acts as a major

cholesterol carrier in the brain, where it is mostly produced by astrocites and microglia [95, 96]. The

initial discovery of APOE as a susceptibility gene for AD arose from genetic linkage studies and

was later confirmed by GWAS [79, 80]. With the advent of high-throughput genotyping and the

completion of the human genome project in 2003, GWASs have become an important tool in the

search for genetic risk factors for complex diseases, including AD. Briefly, a GWAS usually analy-

ses single nucleotide polymorphisms (SNPs) throughout the genome with the goal of identifying

disease-associated genetic variants. The fact that the method enables the simultaneous assessment
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of thousands of genetic variants, including non-coding regions, without prior hypotheses about bi-

ological pathways has made GWAS a particularly powerful approach. To date, all studies, apart

from one, have identified APOE (encoding apolipoprotein E) as a gene associated with LOAD [97].

Another study conducted on over 16,000 individuals identified the chaperone, clusterin (Clu), to be

associated with AD, which reinforced findings of earlier studies that had suggested a link between

Clu and the Ab peptide [81,98]. Overall, it emerged that the roughly 20 AD-associated gene loci that

have been identified by GWASs are involved in one or more of the following three areas: I) inflam-

matory response (e.g. CLU, TREM2, CD33, CR1), II) lipid metabolism (APOE, CLU, SORL1, ABCA7),

and III) endocytosis (PICALM, SORL1, CD2AP) [99]. In order to put these findings into context, it is

vital to first take a closer look at the aggregation pathway of Ab and to address the question of how

the pathogenic aggregates confer cellular dysfunction.

1.2.3 An overview of the different types of Ab aggregates

APP can be cleaved and processed in several ways, resulting in Ab variants that differ in length,

cytotoxicity and proportion in the AD brain. Clinical studies have revealed that a variety of toxic ag-

gregates of different Ab isoforms is variably distributed as depositions in the diseased brains [100].

As mentioned in Section 1.2.2, the most common variant is the 40-residue peptide. Ab is an intrin-

sically disordered peptide (IDP) whose function remains largely unknown. IDPs, also referred to

as natively unfolded proteins, are dynamic conformational ensembles that do not fold into a homo-

geneous 3D structure partially due to their sequence-bias towards a low proportion of hydrophobic

and aromatic amino acids and a high proportion of charged residues [101]. They, however, still expe-

rience conformational fluctuations which may result in folded or partially folded states. Moreover,

protein folding can be triggered by external factors such as pH, temperature, peptide concentration,

and interactions with other molecules [102]. IDPs play a central role in the regulation of signaling

pathways as well as cellular processes including but not limited to transcription, translation, and the

cell cycle [103, 104].

Both, Ab1-40 and Ab1-42 are particularly prone to aggregation. Due to its additional C-terminal

amino acids, namely the hydrophobic residues isoleucine and alanine, Ab1-42 is believed to have

a greater propensity for aggregation (see Fig. 1.6). While in the CSF, the relative Ab1-40-to-Ab1-42

ratio has been experimentally identified as 9:1, senile plaques are predominantly made up of mature

fibrils of Ab1-42 [105–107]. Hence, the field of AD has long been dominated by the notion that ma-

ture Ab fibrils are the main toxic species. However, a lack of correlation between plaque load and

cognitive impairment as well as a discrepancy between location of neuronal injury and Ab plaques
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has put this hypothesis under scrutiny. More recent studies employing Western blot analysis and

quantitative ELISA paired with advanced tissue extraction as well as a shift of focus on patients

with mild-to-moderate as opposed to late-stage AD are pointing at soluble oligomers (SO), rather

than mature amyloid fibrils, as the predominant toxic species [108–111]. In addition to aforemen-

tioned studies that correlate Ab SO concentration with cognitive impairment in AD patients, Walsh

et al. demonstrated that Ab SO can inhibit long-term potentiation (LTP), a sustained increase in the

strength of neuronal signals, when injected in the hippocampus of living rats [112]. In light of this

more recent paradigm shift and the growing body of evidence linking Ab SO to AD pathology, this

thesis will focus on Ab1-42 SO and their associated toxicity.
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Figure 1.6: Amino acid sequences of Ab1-42 (A), Ab1-40 (B), and tau (C). Schematic adapted from
Kolarova et al. [113].

13



1.2.4 Cytotoxicity of soluble Ab1-42 oligomers (SO)

In vivo, SO have been located extracellularly in the CSF and in interstitial fluid [114–116]. As previ-

ously mentioned, there is extensive behavioural, neuropathological, and biochemical evidence indi-

cating that elevated levels of SO are pathogenic [108–112]. However, the fundamental question of

how SO confer toxicity has not been answered. The study of the SO structure-toxicity relationship

has been extremely difficult due to the transient nature of SO resulting in heterogeneous popula-

tions of polymorphic, metastable Ab SO generated via multiple pathways [102,117]. Moreover, there

remains uncertainty regarding the precise identity of the most potent SO structures amongst the

multiplicity of SO species (natural and generated in vitro) [100, 118, 119].

Despite these challenges, there are certain patterns emerging from the literature. For instance, SO, ir-

respective of their origin (AD patient, animal model, or synthetic) can be classified as "toxic" or "non-

toxic" on the grounds of their quaternary structure, molecular weight (MW), and antibody reactivity:

toxic SO tend to have a higher molecular weight (HMW, > 50 kDA) compared to their non-toxic coun-

terparts, and bind to the anti-amyloid oligomer antibody A11 [119–122]. The conformation-selective

polyclonal A11 antibody detects structural epitopes of amyloid-forming proteins independent of

primary amino acid sequence. Specifically, the A11 antibody has been suggested to recognise out-

of-register anti-parallel b-sheet structures [123]. While the exact link between SO formation and cell

death remains elusive, it is postulated that these HMW SO interact with cellular membranes and

confer cellular toxicity by inducing membrane disruptions. Several mechanisms through which SO

can cause membrane disruption have been described and include pore formation, bilayer destabili-

sation (due to detergent-like behaviour of SO), membrane destabilisation due to surface aggregation

(carpet model), and membrane destabilisation due to the formation of peptide-rich microdomains

inside the bilayer by means of peptide fibrilisation [124–126]. It has been moreover observed that,

once internalised, SO can self-propagate via prion-like cell-to-cell transmission thereby spreading

toxicity [127–129].

When discussing SO characterisation and their involvement in AD pathogenesis, it is important to

note that our understanding to-date is derived from both, in vitro and ex vivo experiments, which

each have their advantages and shortcomings. Here, we focus on SO that have been generated

in vitro with the advantage of precise control of the starting materials, such as peptide and buffer

conditions. Moreover, in vitro-generated SO have been shown to meet the general criteria for a

pathogenic protein species, namely that their stability is sensitive to AD-associated mutations, that

they can also be generated from wildtype protein (given AD is largely sporadic), and they can be
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associated with a pathogenic mechanism [100]. The aforementioned multiplicity of SO species does

not only stem from the use of in vitro vs. ex vivo SO, but also from the variation in techniques used to

isolate or generate SO. However, several studies have demonstrated that antibodies raised against

specific types of exogenous SO were able to confirm the presence of the same types of SO in AD

patients, which implies that observations made in vitro are relevant and facilitate our understanding

of SO toxicity in AD patients [130–132].

1.2.4.1 Ab-derived diffusable ligands

In this thesis, Ab-derived diffusible ligands (ADDLs) are used for the experimental work, which

have been first described in 1998 by Lambert and colleagues [133]. It was shown that incubation

of Ab1-42 peptide in low ionic strength solution at low temperature resulted in the formation of

small globular Ab1-42 oligomers that are nonfibrillar, readily diffusible, and toxic to mature CNS

neurons at nanomolar concentrations. ADDLs have further been demonstrated to potently inhibit

hippocampal long-term potentiation, which is a paradigm for synaptic plasticity. Using rats and

transgenic mouse models of AD, ADDLs have since been linked to synapse loss as well as reversible

memory failure [134].

Since their discovery, ADDLs have been well characterised using methods such as AFM, TEM, and

SDS-PAGE [135, 136]. Chromy and colleagues showed that Ab1-42 can self-assemble into small,

stable globular assemblies free of fibrils and protofibrils. Using AFM and nondenaturing gel elec-

trophoresis, they were able to verify absence of large molecules, while denaturing electrophoresis

revealed that the globular assemblies comprised oligomers ranging from trimers to 24-mers. More-

over, it was shown that oligomers prepared at 4 °C stayed fibril-free for days and that the oligomers

were toxic to PC12 cells, as seen by impaired MTT reduction [135]. By using fluorescence and circular

dichroism spectroscopies, while taking advantage of the intrinsic fluorescent properties and suscep-

tibility to fluorescence quenching of Tyr10, Aran Terol and colleagues provided further insights into

the molecular characteristics of ADDLs. The authors reported that Ab1-42 oligomers contain a rela-

tively homogeneous population of small aggregates with spherical morphology as observed by AFM

and analysis of TEM images further indicated that their approximate diameters were 10-20 nm. The

authors concluded that while Ab1-42 oligomers show the presence of a degree of b-sheet structure,

they are distinctly less ordered than fibrils [136]. Evidence of ADDL-resemblance to naturally oc-

curring forms of Ab1-42 oligomers was provided by Gong and colleagues, who demonstrated that

antibodies raised against in vitro ADDLs also recognise oligomeric species that are elevated in AD

brains [137].
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Even though the study of SO-triggered toxicity presents its challenges, our understanding has pro-

gressed by collating findings from many studies employing various biochemical, cellular, and imag-

ing techniques. There is growing consensus that one approach of developing effective AD treatment

strategies is by means of regulating SO-induced toxicity.

1.3 The role of microglia in AD

Microglia cells are the macrophages of the brain and the first line of defense to pathogenic intruders.

Microglia are derived from the embryonic yolk sac and make up the largest population of myeloid

cells in the CNS. They migrate to the brain during early development, where they maintain abun-

dance by local self-renewal [138]. In the healthy brain, they are involved in various neural activities,

such as synaptogenesis, neurogenesis, and the release of neurotrophic factors [139, 140]. Depending

on the brain region, microglia constitute 0.5-16 % of the total cell population in the human brain

and 5-15 % in the mouse brain [141, 142]. In response to an insult, microglia assume different func-

tional states that are characterised by morphological changes as well as phagocytic activity and the

release of proinflammatory cytokines [143]. The revelation that late-onset AD is associated with a

strong activation of the innate immune system has shifted the focus on neuroinflammation as a key

contributor to AD pathogenesis [144].

1.3.1 Microglial activation and cytokine release

Microglial phenotypes are very heterogeneous, both, across CNS regions and within a single tissue.

Their diverse plasticity is not only illustrated by their morphological changes, but also by the variety

of reactive phenotypes in response to changes in their microenvironment with both, neuroprotective

and neuroinflammatory properties [145]. The morphological features of microglial cells and their

function are tightly coupled, however, no morphological classification standards exist, which make

the objective quantification of the pathological status difficult [146, 147].

Despite the difficulty of morphologically distinguishing the fluid transition from "resting" to "ac-

tivated" state, activated microglia share three prominent features: I) they display an enlarged cell

body, II) they retract their branches, appearing round, and III) they accumulate in great numbers

(see 1.7) [148]. The term "resting" is commonly used to describe non-activated microglial cells, how-

ever, it should be clarified that these cells are still highly motile. Using real-time recordings in the

mouse brain, it was shown that "resting" microglial cells undergo continuous cycles of extension and

retraction of their smaller processes [149]. This movement enables the constant surveillance of the
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brain environment for neuronal damage. Because the cell bodies and larger processes remain static,

the subtlety of this movement has been initially overlooked and this misperception has manifested

itself in the nomenclature. In this context, when the term "activated" is used hereinafter, we refer

to a shift in the cell activity rather than an activation in itself. Due to their heterogeneity, microglia

can be induced into several activation phenotypes to detect pathogenic substances and eliminate cell

debris, they can also contribute to nerve regeneration and tissue reconstruction and as such, they are

an important nexus between immunological and neurological processes in the CNS. Here, we focus

on the microglial response to pathogenic intruders, which is also referred to as "classical" or "M1"

activation. This is distinctly different to so-called "alternatively" activated microglia (M2), which has

been observed in microglia upon encounter with tumor cells [150].

Figure 1.7: Schematic representation of microglial activation (adapted from Dilger et al. [151]). Upon
pathophysiological stimuli such as injury or infection, microglia undergo morphological transitions
from a ramified state with many branching processes to an amoeboid state with retracted processes
and enlarged cell bodies.

Microglial activation in response to a pathogenic stimulus elicits a whole cascade of processes includ-

ing cytoskeletal remodeling, transcriptional changes, cell proliferation, and migration to the source

of the insult, where the cells take part in the phagocytosis of the pathogen and removal of cellular

debris [152]. These processes are mitigated by the production of pro-inflammatory mediators, such

as cytokines (TNFa, Interleukin (IL-6, and IL-1b), chemokines, reactive oxygen species (ROS), and

nitric oxide (NO)) [153]. Different mechanisms have been found to contribute to microglial activa-

tion, which include their interaction with neurons and other glial cells, through secreted mediators,

the activation and inhibition of transcription factors, and the regulation of surface and nuclear re-

ceptors. In AD, the effects of microglial activation are believed to be dichotomous: on the one hand,

microglial activation leads to reduced Ab accumulation by means of increasing its phagocytosis and

degradation thereby preventing plaque formation, while on the other hand, their chronic activation

and concomitant release of pro-inflammatory cytokines contribute to neuronal damage [154, 155].

Continuous activation of microglia is potentially elicited by protein aggregates, therefore, the inter-
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actions observed between Ab1-42 amyloidogenic aggregate species and microglia are an interesting

target for the study of events leading to cellular dysfunction.

1.3.1.1 Receptor-mediated and receptor-independent uptake

Microglia express a diverse set of pattern recognition receptor (PRRs) for pathogen-associated molec-

ular patterns (PAMPs) that include Toll-like receptors (TLRs) and inflammasomes. Several members

of the TLR and inflammasome family also recognise endogenously derived molecules that are gen-

erated as a consequence of tissue injury or other pathological processes. Recognition by PAMPs

or endogenous ligands by PRRs in microglia induces the robust activation of innate immune re-

sponses leading to the production of pro-inflammatory mediators and the activation of adaptive

immunity [156].

In the context of AD, it has been previously suggested that Ab SO are internalised by microglial cells

via TLR-signalling pathways [157]. Moreover, the low-density lipoprotein receptor related protein-1

(LRP1, also see Chapter 5) has been linked to the uptake and clearance of Ab, which has been shown

to be involved in the internalisation and the degradation of lipoproteins as well as the endocytosis

of fibrillar Ab [158, 159].

1.3.2 Microglial uptake and trafficking of Ab1-42

The process of internalisation of extracellular material via different routes is collectively referred to as

endocytosis. Internalised material follows branching vesicular transport pathways and as previously

mentioned, the internalised substrates are sorted and targeted to degradative organelles, such as the

acidic late endosomes and lysosomes, where degradation occurs.

There are three main endocytic mechanisms: macropinocytosis, phagocytosis and clathrin-mediated

endocytosis (see Fig. 1.8) [160]. Pinocytosis is a non-selective process by which the plasma membrane

forms vesicles that engulf extracellular fluid [161]. A large amount of receptor-mediated endocyto-

sis occurs via clathrin-coated pits [162]. Upon receptor-mediated endocytosis, substrates bound to

receptors undergo sorting in endosomes and receptors are recycled back to the plasma membrane.

Phagocytosis describes the process by which cells engage in the noninflammatory clearance of apop-

totic cells and cell debris as part of their scavenging role and it is the predominant endocytic pathway

found in microglia cells [163]. Briefly, apoptotic cells release ligands that act as chemoattractants to

recruit microglia (so-called "find me" signals, such as ATP and UDP) and this initiates phagocyto-

sis [164, 165]. Once the microglia cell has migrated to the site of perturbance, so-called "eat me"
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signals or ligands such as phosphatidylserine, calreticulin and complement components C1q and

C3, are recognised by selected microglia surface receptors, which initiate engulfment and phagocy-

tosis [163]. One receptor involved in the recognition of such "eat me" signals is the triggering receptor

expressed on myeloid cells 2 (TREM2), which is exclusively expressed by microglial cells. This re-

ceptor has interestingly been shown to enhance phagocytosis of Ab1-42 as well as inhibit Ab-induced

pro-inflammatory responses in microglial cells thereby modifying their function, while CD33 regu-

lates b-amyloid phagocytosis negatively [166]. In the context of AD, it has been moreover suggested

that Ab SO are internalised by microglial cells via TLR-signalling pathways [157]. Despite advances

in our understanding of microglial function in the brain, two main questions in the context of AD

remain unanswered: can microglia phagocytose Ab and contribute to effective clearance and can

they become progressively dysfunctional thereby contributing to the development of disease onset

and progression?

Figure 1.8: Schematic representation of the different pathways of cell entry (adapted from Mayor and
Pagano [160]). The three main endocytic mechanisms, macropinocytosis, phagocytosis and clathrin-
mediated endocytosis, are illustrated.

1.4 Chaperones and aggregation-modulating biomolecules

In the crowded environment of the cell, many proteins rely on so-called molecular chaperones, spe-

cial kinds of ubiquitous proteins, which enhance folding efficiency by reducing the likelihood of

competing reactions, such as aggregation [9,33]. Chaperones are present in all types of cells and cel-

lular compartments and while some chaperones interact with nascent polypeptide chains emerging
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from the ribosomes, others guide the translocation to different cellular compartments [33,167]. In the

context of AD, the chaperone, Clusterin (Clu) has been repeatedly linked to the disease by means of

various experimental strategies that range from large-scale GWAS to molecular-level toxicity analy-

ses [81, 168, 169]. Chaperones are not the only proteins that have disease-modulating properties. As

a major player of innate immunity, the "old" antimicrobial enzyme lysozyme (Lys) is experiencing a

renaissance in the Alzheimer’s community as a growing body of research suggests a beneficial effect

of this endogenous protein in AD [170,171]. Lysozyme, like serum amyloid P, can be classified as an

aggregation-modulating biomolecule. These are biomolecules that can associate with aggregates but

do not have the potent capacity as chaperones to block the kinetics of aggregation.

This work sets out to investigate how clusterin and lysozyme interact with Ab SO and provide new

insights into how this may influence cellular uptake and trafficking.

1.4.1 Clusterin

Clusterin (Clu, also known as apolipoprotein J and SP-40,40) is ubiquitously expressed in the brain

and peripheral tissues, where it functions as a chaperone, facilitates the regulation of cellular apop-

tosis, and serves as a complement regulating factor [172–174]. Upon translation, the chaperone is

excreted into the extracellular space. Post-translational modifications of the single-chain Clu create

a heterodimeric glycoprotein through internal cleavage. The resulting two 40 kDa subunits, a and b,

are linked by a unique five-disulphide bond motif [175,176]. Roughly 17-27 % of the 80 kDA protein

is glycosylated [177]. Due to the high levels of glycosylation paired with areas of intrinsic disorder, it

has not been possible to fully unravel the structure of Clu with conventional methods such as NMR,

mass spectrometry, or X-ray crystallography. Interestingly, Stewart and colleagues were able to show

that deglycosylation of Clu neither affects its secondary structure nor its chaperone activity [178].

The physiological concentration of Clu ranges from 0.1-3.6 µg/ml in the CSF, 35-105 µg/mL in hu-

man blood plasma, and up to 2-15 mg/mL in seminal plasma [179–181]. Clu is moreover a con-

stituent of a variety of other biological fluids, such as tears, saliva, breast milk, and urine [182]. In

the brain, Clu mRNA has been identified in astrocytes, neurons, and the ependymal cells that line the

ventricles, and it has been associated with lipid transport in the brain along with ApoE [183]. Clu

displays high sequence homology (70-80 %) across a large number of mammalian species, which

implies that the biological functions of Clu are highly conserved and essential to the organism [184].

In its role as an extracellular chaperone, Clu has been shown to preferentially bind to partially un-

folded proteins, preventing their aggregation on the "off-folding" pathway [176, 185]. Strikingly, Clu
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has the capability to bind to and interact with both, Ab1-40 and Ab1-42 peptides, alter Ab aggre-

gation, and increase Ab clearance from the extracellular space [98, 186]. These earlier observations

were supported by results from a large-scale GWAS, which identified CLU as a risk factor of late-

onset AD [81]. While Clu weakly associates with Ab monomers, it has a higher binding affinity for

SO than for fibrils [168, 187, 188]. Interestingly, a multi-centre patient study of subjects with AD of

different severity identified Clu as an indicator of baseline disease severity and a predictor of fibril-

lar Ab burden. These findings were reproduced in an APP/PS1 transgenic mouse model [189]. In

line with these reports, it has been shown that Clu-depleted plasma displays a high susceptibility to

protein aggregation in vitro [190].

The exact function of Clu is still unknown, however, given its elevated expression at fluid-tissue

interphases, it is suspected that Clu plays a role in cell membrane protection from fluids such as

bile, urine, gastric, and pancreatic juices [175]. Convergent genetic, cellular, and molecular data fur-

thermore associate Clu with aggregate uptake by targeting misfolded proteins for receptor-mediated

endocytosis and intracellular lysosomal degradation [168]. Additionally, it was shown that in vitro,

Clu protects against Ab1-40 neurotoxicity and prevents Ab1-42 peptide aggregation suggesting a

protective role of Clu in AD [169, 191].

1.4.2 Lysozyme

Lyoszme is a naturally occurring glycosidase (14.7 kDa), which takes part in the degradation of bac-

terial cell walls [170]. It is a globular protein consisting of 130 amino acids and belongs to the family

of c-type lysozymes. As such, it is part of the innate immune system and exerts its anti-microbial,

anti-inflammatory, and anti-oxidant activity in various tissues and fluids including the liver, spleen,

milk, tears, saliva and the CSF [192–194]. Lys is secreted by epithelial cells, macrophages, astrocytes,

as well as microglia [193].

Besides its anti-microbial activity, several lines of research have surfaced that suggest a protective

role for the biomolecule Lys in AD. In vitro studies carried out by Luo et al. demonstrated that Lys

inhibits Ab1-40 aggregation via binding to the monomeric form of Ab1-40, while it has also been

shown to prevent the aggregation of Ab17-42 [171, 195]. The over-expression of Lys in a Drosophila

melanogaster model of AD was shown to reduce Ab cytotoxicity, which was manifested by increased

survival and locomotor activity of the AD flies [196]. Moreover, the level of Lys in the cortex and

hippocampus of transgenic AD mice was shown to correlate with the plaque-pathology in these

areas, while Lys is upregulated in human brain tissue and in the CSF from AD patients [197]. Recent
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internalisation studies in the neuroblastoma cell line SH-SY5Y by Sandin et al. (unpublished work)

demonstrated that Lys inhibits the uptake of oligomeric Ab1-42 and prevents cell death when added

post-oligomerisation [198]. These experiments formed the basis for the studies outlined in Chapter 5

with the aim of determining whether Lys displayed similar effects when interacting with microglia

cells.

As neuroinflammation is regarded as a key contributor to the progression of AD, it is important to

gain a broader understanding of the interactions between toxic aggregate species and the players of

innate immunity. In particular, studies of such interactions will provide insights into the question of

"When does the neuroinflammatory response to intruders becomes a chronic problem?" and it will

ultimately inform the development of effective interventions.

1.5 Objectives and outline of the thesis

This thesis reports a comprehensive study of the influence of extracellular biomolecules on Ab1-42

SO internalisation and trafficking by microglial cells. Different imaging techniques including con-

focal microscopy and flow cytometry are used with the aim to elucidate how the chaperone clus-

terin and antimicrobial enzyme lysozyme influence the Ab1-42 SO-microglia interaction. Uptake

and trafficking behaviour in the absence and presence of aforementioned biomolecules are studied

at disease-relevant concentrations. Mammalian microglia cells were chosen for this line of experi-

ments as a model system to further explore how Ab1-42 SO confer cellular toxicity at different time

points and how this process is affected by the presence of the different biomolecules.

Following the review of the relevant literature in this chapter, Chapter 2 outlines essential materi-

als and methods used in this work. In Chapter 3, Ab1-42 is characterised and suited controls are

established. In Chapter 4, the uptake and trafficking of Ab1-42 SO by microglia cells in the absence

and presence of Clu and its effect on the microglial pro-inflammatory response are investigated. In

Chapter 5, the uptake and trafficking of Ab1-42 as well as the effect of Lys on these processes are

explored with special emphasis on membrane interaction. Finally, in Chapter 6, topics for future

work are discussed and conclusions are drawn.
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2

MATERIALS AND METHODS

All chemicals and reagents were purchased from Sigma Aldrich (Dorset, UK) unless otherwise spec-

ified.

2.1 Ab1-42 oligomer formation

2.1.1 HiLyte™ Fluor 488- or TAMRA-labelled Ab1-42 preparations

Human Ab1-42 labelled with HiLyte™ Fluor-488 and 5-Carboxytetramethylrhodamine (TAMRA)

were purchased from AnaSpec Inc. (Fremont, CA, USA). The fluorophore-labelled Ab1-42 was dis-

solved in 1 % ammonium hydroxide (NH4OH) (final peptide concentration of 2 mg/mL) and diluted

to 0.5 mg/mL in low-salt phosphate buffer (LSPB; 10 mM Na2HPO4, 10 mM NaCl, pH 7.4). The pep-

tide solution was then aliquoted into working volumes of 10 µL, flash frozen in liquid nitrogen and

stored at -80° C for later use. For oligomer formation, aliquots were thawed and incubated for 12 h

at 4° C.

2.1.2 Unlabelled Ab1-42 preparation

Unlabelled Ab1-42 peptide (1 mg; AnaSpec Inc.) was dissolved in 1 mL of trifluoracetic acid (TFA)

while kept on ice. The peptide solution was then sonicated for 30 s using a Bandelin SONOREX™

bath sonicator and the sample was flash frozen in liquid nitrogen. The TFA was subsequently re-

moved by lyophilisation (12 h, room temperature (RT)). The lyophilised sample was then dissolved

in 1 mL of cold 1,1,1,3,3,3,-Hexafluoro-2-propanol (HFIP) and incubated (10 min, on ice). Upon incu-

bation, the peptide solution was divided into aliquots, dried by rotary evaporation using a Savant™

SpeedVac™ Concentrator (Fisher Scientific UK Ltd., Loughborough, UK), and stored at -80° C for

later use. Two 10 µL samples were sent to the Department of Biochemistry (Cambridge, UK) for
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quantitative amino acid analysis to confirm peptide concentration. Alternatively, the peptide con-

centration was determined using the colometric Pierce® bicinchoninic acid (BCA) Protein Assay Kit

(Fisher Scientific UK Ltd., Loughborough, UK), which enables the detection of Cu2+ reduction to

Cu1+ by protein in an alkaline medium. BCA reacts with the reduced (cuprous) cation yielding a

purple-colored reaction product (BCA/copper complex) which is water soluble and shows a strong

linear absorbance at 562 nm with increasing protein concentration.

For oligomer formation, the lyophilised peptide was dissolved in dimethyl sulfoxide (DMSO; Thermo

Fisher Scientific, Paisley, UK) to a concentration of 5 mM. The peptide in DMSO was subsequently

diluted with LSPB to reach a final concentration of 100 µM. Samples were incubated for 12 h at 4° C

for soluble oligomer (SO) formation.

2.1.3 Recombinant Ab1-42 preparation

Recombinant Ab1-42 was prepared as described by Walsh and colleagues [199]. The lyophilised

samples of recombinant Ab1-42 used in this report were kindly provided by Ewa Klimont (University

of Cambridge, UK).

2.1.4 Transmission electron microscopy (TEM)

To verify that oligomer formation took place, samples were prepared for transmission electron mi-

croscopy (TEM). After completion of the oligomer formation reaction, oligomer samples were di-

luted 1:7 in LSPB, and samples (5 µL) were applied to Formvar-coated copper grids (TAAB Labo-

ratories Equipment Ltd., Aldermasten, UK) (2 min, RT). The samples were carefully removed using

Whatman™ filter paper (GE Healthcare, Little Chalfont, UK) followed by deionised water (dH2O)

washes (2x, 2 min each). The samples were then stained with 2 % weight/volume (w/v) uranyl

acetate in dH2O (2 min, RT) and left to dry for imaging.

Image analysis was performed on a Philips FEI™ Technai G2 TEM (Cambridge Advanced Imaging

Centre, University of Cambridge, UK) using the SIS Megaview II Image Capture system (Olympus,

Muenster, Germany).

2.1.5 Sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis (PAGE)

Each batch of newly prepared Ab1-42 was moreover tested for its ability to form oligomers via

sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis (SDS-PAGE) using pre-cast Novex®

NuPAGE® 4-12 % Bis-Tris protein gels (Thermo Fischer Scientific) according to the manufacturer’s

protocol with the appropriate standard protein ladders. Proteins were transferred from the gel to a
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polyvinylidene difluoride (PVDF) membrane via an iBlot® gel transfer device using the default set-

tings (Thermo Fisher Scientific). Upon transfer, the PVDF membrane was blocked in 1 % (w/v)

bovine serum albumin (BSA; Jackson ImmunoResearch Europe Ltd., Suffolk, UK) in phosphate

buffered saline (PBS; 18 h, 4° C) with gentle agitation and then washed with 0.05 % (v/v) Tween20

(NBS Biologicals Ltd., Huntingdon, UK) in PBS (3x, 10 min each). Primary and secondary antibodies

used for staining were prepared in 0.5 % (w/v) BSA in 0.05 % (v/v) Tween20 in PBS. The membrane

was incubated (18 h, 4° C) with gentle agitation in anti-amyloid b antibody, clone W0-2 (Millipore

Ltd., Livingston, UK, MABN10, 1:1000) and washed with wash buffer (3x, 10 min each) followed

by incubation with an appropriate Alexa Fluor (AF) secondary antibody (Thermo Fisher Scientific,

1:5000, 2 h, RT). The membrane was then washed with wash buffer (3x, 10 min each) and imaged

with a Typhoon variable-mode imager (GE Healthcare) at 500 V.

2.1.6 Ab aggregation kinetics

Fibril formation of 2 µM recombinant, monomeric Ab1-42 was investigated using the well-established

thioflavin-T (ThT)-based kinetics assay [200]. Ab1-42 samples were prepared in the absence and pres-

ence of lysozyme (Lys) or clusterin (Clu) at ratios of 2:1, 1:1, 1:2 and 1:5 molar equivalents

(Ab-to-Lys ) or 10:1 molar equivalents (Ab-to-Clu). Samples were prepared in triplicates in 20 mM

sodium phosphate buffer, pH 8, with 200 µM EDTA at 37° C using Eppendorf® LoBind microcen-

trifuge tubes for preparation on ice. Samples were carefully transferred to a 96-well half-area plate of

black polystyrene with a clear bottom and polyethylene glycol (PEG) coating (Corning 3881, Corning

Inc. Life Sciences, St. Davids, UK) and ThT fluorescence was measured under quiescent conditions

using bottom-optics in a plate reader (Fluostar Omega or Fluostar Optima from BMG Labtech, Ayles-

bury, UK). The reaction was initiated by incubating the plate at 37° C, excitation was performed at

440 nm and the emission intensity was recorded at 480 nm.

2.2 Clusterin preparation

2.2.1 Unlabelled clusterin

Human clusterin (Clu) was provided by Prof. Mark Wilson (University of Wollongong, Australia)

and it was purified in his laboratory as described by Wilson and Easterbrook-Smith [201]. Briefly,

clusterin was purified from human serum by affinity chromatography using monoclonal antibody

G7 (MAb G7). Tandem G7 and 41D monoclonal anti-Clu immunoaffinity columns were first washed

with PBS containing 0.1 % (w/v) azide (PBS/Az) followed by 0.1 % (v/v) Triton™ X-100 in PBS
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before being re-equilibrated in PBS/Az. Next, the columns were washed with 200 mM sodium

acetate in 500 mM NaCl, pH 5, prior to eluting the bound protein using 2 M guanidine hydrochloride

(GdnHCl) in PBS. The eluate was dialysed against 20 mM Tris/Az, pH 8.0, loaded onto a fast flow

column and the bound protein was collected in 2 mL fractions applying a continuous 0-0.7 M NaCl

gradient delivered over 80 min. The purity of the collected fractions was assessed by SDS-PAGE and

Western blot analysis by our Australian colleagues. Purified Clu was subsequently dialysed against

PBS/Az for storage.

Prior to use, the azide added for storage was removed via dialysis in 1 L PBS (12 h, 4° C) using

Slide-A-Lyzer® MINI Dialysis Units (Thermo Fisher Scientific). The clusterin concentration was de-

termined on a NanoDrop 2000 (Thermo Fisher Scientific) using an extinction coefficient of 37525

M�1cm�1 at 280 nm upon which the sample was aliquoted, flash frozen in liquid nitrogen and stored

at -20° C for later use.

2.2.2 Labelled clusterin

Clusterin was labelled with N-hydroxysuccinimidyl ester forms of AF-647, which was kindly pro-

vided by Dr. Ana Bernardo-Gancedo (University of Cambridge, UK). For the labelling reaction,

clusterin (at approximately 0.7 mg/mL) was incubated (1 h, RT) with a 10-fold molar excess of the

functionalised fluorophore (added from a 10 mM stock in DMSO). After incubation, any uncon-

jugated dye was removed by buffer exchange into PBS using a PD-10 column. The final protein

concentration and labelling efficiency were assessed on a NanoDrop 2000 at 280 nm using an extinc-

tion coefficient of 250,000 M�1cm�1. The labelled clusterin was aliquoted and stored at -20° C for

later use.

2.3 Lysozyme preparation

Lysozyme was expressed in Pichia pastoris and purified with the help from Dr. Ana Bernardo-

Gancedo as described by Johnson et al. [202]. Specifically, the wild-type human lysozyme gene

was inserted into a pPIC9 expression vector followed by transformation into P. pastoris GS115 by

electroporation. The cells were subsequently plated on regeneration dextrose agar plates to produce

single-clone colonies. Colonies were screened for lysozyme activity with a hydrolase activity assay

using Micrococcus lysodeikticus as described by Lee and Yang [203].

Protein expression was initiated by inoculating buffered minimal glycerol (BMG) precultures with P.

pastoris cells containing the lysozyme gene. Precultures were incubated for 36 h at 30° C with orbital
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shaking in order to increase aeration. Aliquots (2 mL) of the preculture cell suspension were then

used to inoculate 200 mL of BMG medium in 2 L Erlenmeyer flasks. The cultures were subsequently

incubated for 28 h (30° C and 230 rpm) upon which they were centrifuged in sterile centrifuge bottles

at 1500g for 5 min. The supernatant was discarded and the cells were resuspended in 400 mL of

buffered minimal methanol (BMM) and incubated (30° C and 230 rpm) to induce protein expression.

Methanol (2 mL) was added to the culture every 24 h for a total of 72 h. The methanol-containing

cultures were then centrifuged (1500g at 4° C for 5 min) and the supernatant was stored at 4° C,

filtered (0.45 mm pore size), and purified using a cation-exchange (Poros 20 HS) column (Applied

Biosystems, UK) on a Biocad 700E system (Applied Biosystems, UK). Lysozyme was eluted from

the column by a linear gradient of NaCl solution (0-1M) and fractions were subsequently analysed

by SDS-PAGE, dialysed against water and lyophilised. Lysozyme concentration was determined by

measuring the absorbance at 280 nm using E1% for 1cm path length = 25.5.

2.4 Dot blot assay

For the dot blot assay, Ab1-42 SO were prepared as previously described and applied to a What-

man™ nitrocellulose membrane (GE Healthcare). The membrane was blocked (2 h, RT) in 1 % (w /

v) BSA/PBS and the membrane was incubated with primary and secondary antibodies prepared in

0.5 % (w/v) BSA in 0.05 % (v/v) Tween20 in PBS. The membrane was incubated (18 h, 4° C) with

gentle agitation in anti-amyloid b antibody, clone W0-2 (Millipore Ltd., Livingston, UK, MABN10,

1:1000) and washed with wash buffer (3x, 10 min each) followed by incubation with an appropriate

Alexa Fluor (AF) secondary antibody (Thermo Fisher Scientific, 1:5000, 2 h, RT). The membrane was

then washed with wash buffer (3x, 10 min each) and imaged with a Typhoon variable-mode imager

(GE Healthcare) at 500 V.

2.5 Cell cultures

All cells were cultured in Greiner T-75 tissue culture treated flasks at 37° C in a humidified atmo-

sphere of 5 % carbon dioxide (CO2) and 95 % air.

2.5.1 EOC 13.31 microglial and LADMAC cells

The microglia cell line EOC 13.31 (ATCC® CRL-2468™) and LADMAC cell line (ATCC® CRL-2420™)

were purchased from the American Type Culture Collection (Manassas, VA, USA). LADMAC cells

were cultured for 10 days in Eagle’s Minimum Essential Medium (EMEM) supplemented with 1 %
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(v/v) of 200 mM L-glutamine (Thermo Fisher Scientific), 1 % (v / v) of 100 mM sodium pyruvate,

and 10 % (v/v) fetal bovine serum (FBS) purchased from PAA (GE Healthcare). The conditioned

medium was then collected, centrifuged (5000 rpm, 4° C) in a Hettich Rotina 38R centrifuge (DJB

labcare, Newport Pagnell, UK), filtered through a 0.2 µm filter and stored at -20° C for later use as an

EOC supplement. New flasks were seeded at 2x 105 cells/mL.

EOC 13.31 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM; Thermo Fisher Scien-

tific) enriched with 20 % (v/v) conditioned LADMAC medium, and 10 % (v/v) FBS. When confluent,

medium was discarded and cells were gently removed from the flask using a Corning® Costar® cell

scraper (Corning Inc., St. Davids, UK) prior to splitting at a 1:5 ratio for continued growth.

2.6 Ab1-42 oligomer cell treatment protocols

2.6.1 3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazolium bromide (MTT) assay

To verify that the treatment conditions previously used by Sharon Hook in SH-SY5Y cells were also

suitable for EOC 13.31, cells were incubated with different concentrations of Ab1-42 SO. A 3-[4,5-

dimethylthiazol-2-yl]-2,5- diphenyltetrazolium bromide (MTT) assay was performed. The MTT as-

say measures cellular metabolic activity, which can be an indicator for proliferation, viability, and

cytotoxicity. MTT is a water-soluble tetrazolium salt. Living cells with active metabolism convert the

dissolved MTT to an insoluble formazan product inducing a colour change from yellow to purple.

The measured absorbance is indicative of the concentration of converted dye equating to metabolic

activity [204].

EOC 13.31 cells were plated in triplicates at a density of 20,000 cells/well in a 96-well plate and

incubated in culture medium (24 h, 37° C). Cells were then exposed to 1 µM, 5 µM, and 10 µM Ab1-

42 (30 min, 37° C) in serum-free medium. Cells were treated with 0.1 % (v/v) Triton™ X-100 as a

positive control, (10 min, 37° C) and with medium + LSPB (corresponding to the LSPB concentration

of the 1 µM Ab1-42 SO condition) as a negative control. MTT stock solution (5 mg/mL) was added

to each well at 1/10th the original culture volume and incubated (4 h, 37° C). Next, the cells were

incubated (1 h, 37° C) in 100 µL stop solution (20 % (w/v) SDS, 50 % (v/v) N,N-dimethylformamide,

pH 4.7) and absorbance was measured at 570 nm with background subtraction at 690 nm using a

CLARIOstar® multimode microplate plate reader. Cellular metabolic activity is expressed as the

mean SD of n = 3 biological repeats. Statistical significance was determined using an unpaired t-test

where *, P < 0.05; **, P < 0.005; ***, P < 0.0005, ****, P < 0.00005.
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2.6.2 Cell treatment protocol for Ab1-42 and clusterin

HiLyte™ Fluor 488-labelled Ab1-42 oligomers were prepared as described in Section 2.1.1 and 1 µM

SO were added to the cells unless otherwise stated. All experiments were performed at a SO-to-

clusterin submolar ratio of 10:1 in serum-free cell medium for 30 min at 37° C. For the clusterin

pre-treatment condition, cells were exposed to clusterin for 30 min, after which SO were added for

an additional 30 min and subsequently washed (2x) with PBS. For the negative control (no-treatment

condition), cells were incubated for 30 min in serum-free medium with LSPB (reflecting the amount

of LSPB introduced in the Ab1-42 SO condition).

2.6.3 Cell treatment protocol for Ab1-42 and lysozyme

TAMRA-labelled Ab1-42 SO were generated as stated in section 2.1.1 and 1 µM SO were added to the

cells unless otherwise stated. All experiments were performed at a SO-to-lysozyme molar ratio of 1:2.

Cells were exposed to the respective treatment conditions for 1.5 h in serum-free cell medium at 37°

C, followed by PBS washes (2x). The cells were subsequently incubated in serum-free cell medium

for another 30 min. For the lysozyme pre-treatment condition, cells were exposed to lysozyme for

30 min prior to the SO treatment described above. For the negative control (no-treatment condition),

cells were incubated for 30 min in serum-free medium with LSPB (reflecting the amount of LSPB

introduced in the Ab1-42 SO condition).

2.7 Fluorescent staining and imaging

2.7.1 Cell preparation for fluorescent staining

The oligomer uptake experiments in the presence and absence of clusterin were performed in the

microglia cell line EOC 13.31. EOC 13.31 cells were counted with a Countess™ automated cell

counter (Bio-Rad, Hemel Hempstead, UK) and plated on ethanol-cleaned, fibronectin-coated 22x22

mm coverslips (Thermo Fisher Scientific Gerhard Menzel, Braunschweig, Germany) at a density of

200 cells/mm2. The coverslips were placed in Corning® Costar® 6-well plates (Corning Inc.) for

incubation in culture medium (24 h, 37° C). Next, cells were fast-washed (1x) with Dulbecco’s Phos-

phate Buffered Saline (DPBS) and treated with serum-free culture medium containing 1 µM HiLyte™

Fluor 488-labelled Ab1-42 oligomers and 0.1 µM clusterin (30 min, 37° C) where applicable. Alterna-

tively, cells were treated with serum-free culture medium containing 0.5 µM TAMRA-labelled Ab1-42

oligomers and 1 µM lysozyme (1.5 h, 37° C), followed by 2 PBS washes and incubation in serum-free
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cell medium for 30 min.

2.7.2 Staining protocols for selected immunofluorescent antibodies and dyes

Cells were fast-washed in DPBS (1x) and fixed with 3.7 % (v/v) paraformaldehyde (PFA) solution

(Thermo Fisher Scientific) in PBS (15 min, 37° C). After fixation, cells were washed in PBS (3x) and

permeabilised with 0.2 % (v/v) Triton™ X-100/PBS (5 min, RT) followed by PBS washes (3x). Cells

were blocked in 1 % (w/v) BSA (Jackson ImmunoResearch Europe Ltd.) in PBS (30 min, RT). The

primary and secondary antibodies used for staining were prepared in 0.5 % (w/v) BSA in 0.05 %

(v/v) Tween20 (NBS Biologicals Ltd.) in PBS and include the lysosomal-associated membrane pro-

tein 1 (LAMP1) (Abcam, Cambridge, UK, ab24170, 1:500) and cathepsin D (Abcam, ab72915, 1:200)

as well as the fluorescent stain Hoechst (Thermo Fisher Scientific, 1:7000). Cells were incubated with

the primary-antibody solution (1 h, RT) and washed (3x) with wash buffer (0.05 % v/v Tween20 in

PBS) followed by incubation with the respective secondary antibody (2 h, RT). Once the secondary

incubation was completed, cells were washed with wash buffer (3x). All fluorescent secondary anti-

bodies used were labelled with Alexa Fluor dyes (Thermo Fisher Scientific, 1:500).

For incubation with the membrane stain, wheat germ agglutinin (WGA) (Thermo Fisher Scientific),

a 1:500 (v/v) dilution of WGA in Hank’s Balanced Salt Solution (HBSS) (Thermo Fisher Scientific)

was applied to oligomer- and clusterin-treated cells (10 min, 37° C). Cells were then washed with

HBSS (2x), fixed with PFA as described above, washed with HBSS (3x), and stained with Hoechst (5

min, RT).

For visualisation of acidic organelles, cells were incubated (30 min, 37° C) with LysoTracker® Red

DND-99 (Thermo Fisher Scientific, L7528, 1:20,000) diluted in pre-warmed (37° C) serum-free culture

medium together with the respective oligomer and clusterin treatment. Cells were then fixed with

PFA and stained with Hoechst as described above.

2.7.3 Confocal microscopy and image processing

Coverslips were mounted on microscope slides (Corning Inc.) using 10 µL ProLong® Gold An-

tifade Mountant (Thermo Fisher Scientific). Images were acquired on a Leica TCS SP8 (Cambridge

Advanced Imaging Centre, University of Cambridge, UK) using a 63x HCX PL APO CS NA1.4 oil

objective and LAS X software (Leica Microsystems, Wetzlar, Germany). A typical 2D frame scan ac-

quired in this work consist of 512x512 pixels. Whenever two or more dyes were used in the sample,

care was taken to move detection and emission windows of respective dyes as far apart as possible,

30



while sequential scanning was used to acquire images.

To determine the corrected total cell fluorescence (CTCF) of microglial cells upon exposure to Hi-

Lyte™ Fluor-488 Ab1-42 SO, acquisition settings were established using the positive control (SO-

exposed cells). Once established, the settings were kept constant between samples to allow for later

quantitative comparability. The exposure time, gain and offset were adjusted to use the entire dy-

namic range of the detectors. Importantly, image saturation was controlled for using the autohis-

togram display of the microscope.

Images were further processed with ImageJ software (National Institute of Health, Bathesda, USA)

producing overlaid images of the different channels. To determine the intensity of the labelled

oligomers within the cells, an outline was drawn around each cell. Area, mean fluorescence, and

integrated density were then measured and the corrected total cell fluorescence (CTCF) was calcu-

lated using the following equation [205]:

CTCF = integrated density - (area of selected cell ⇥ mean fluorescence of background readings)

Fluorescence was compared across cell lines as per the Mann-Whitney test, where *, P < 0.05; **, P

< 0.005; ***, P < 0.0005. Data points represent n � 31 cells pooled from n = 3 independent experi-

ments. To ensure proper visibility of immunofluorescent stains in the printed version of this report,

all shown images have been uniformly contrast enhanced post analysis.

For the morphology analysis, the top and bottom planes of WGA-stained microglia cells were man-

ually identified based on visibility of the WGA stain. Once the cell boundaries had been determined,

the first and last position of the z-stack were set accordingly and images were acquired based on opti-

mal step size calculated by the image acquisition software. The total number of acquired planes was

then divided by 2 to identify the centre plane, which was used to score cells based on "elongated",

"intermediate", and "rounded" morphology.

Colocalisation of fluorescently labelled Ab1-42 SO and lysotracker, LAMP1 or Cathepsin D, was

analyzed using the Coloc2 plugin for ImageJ. Prior to colocalisation analysis, background subtrac-

tions were performed for the channels of interest. ROIs were selected on a per-cell basis and Costes

randomization test was set to 100. The degree of colocalisation is illustrated based on Pearson’s cor-

relation coefficient, which estimates the degree of overlap of the red and green fluorophores [206].

Pearson’s correlation coefficient has range of "+1" (perfect correlation) to "−1" (perfect but negative
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correlation) with 0 denoting the absence of a relationship and was chosen here given it is unaffected

by additive offset. A minimum of n = 10 cells were analyzed per treatment condition from n = 3

independent experiments. Data were tested for normality and treatments were compared to the "SO

only" condition via an unpaired t-test where *, P < 0.05; **, P < 0.005; ***, P < 0.0005, ****, P < 0.00005.

2.8 Enzyme-linked immunosorbent assay (ELISA) to assess TNFa release

To assess the effects of Ab1-42 oligomers in the presence and absence of clusterin on the release of

selected cytokines by microglia cells, enzyme-linked immunosorbent assays (ELISAs) were carried

out. Specifically, Ready-Set-Go!® ELISA kits (eBioscience, Ltd., Altrincham, UK) sensitive to mouse

tumor necrosis factor alpha (TNFa) and mouse interleukin 1-beta (IL-1b) were used hereinafter.

EOC 13.31 cells were counted with a Countess™ automated cell counter and plated on Corning®

Costar® 96-well plates (Corning Inc.) in culture medium at a density of 2x104 cells/well (24 h,

37° C). Cells were fast-washed with DPBS and treated with either 2 µM Ab1-42 oligomers diluted

in serum-free culture medium (for oligomer preparation see section 2.1.2), 0.2 µM clusterin, 2 µM

oligomers and 0.2 µM clusterin simultaneously (8 h or 24 h, 37° C), or they were pretreated with 0.2

µM clusterin (30 min, 37° C) upon which oligomers were added (7.5 h or 23.5 h, 37° C). The same

experiment was carried out using 4 µM oligomers and 0.4 µM clusterin respectively. Known to in-

duce a strong immune response in normal mammalian cells, the endotoxin lipopolysaccharide (LPS)

was included at a concentration of 25 ng/mL as a positive control for cytokine release. For the neg-

ative control, cells were incubated in serum-free culture medium (8 h or 24 h, 37° C). Each treatment

was performed in triplicates. Once the incubation was completed, the medium of the triplicates was

combined and centrifuged (14,000 rpm, 15 min, 4° C). The supernatant was collected, flash frozen in

liquid nitrogen, and stored at -80° C until further use.

For the ELISA, Nunc Maxisorp® 96-well plates were used. The ELISA was carried out according to

the manufacturer’s protocol. To increase the effectiveness of the washes, the maximum amount of

recommended washes and wash times were applied at all times. Absorbance was measured on a

CLARIOstar® multimode microplate plate reader (BMG LABTECH Ltd., Aylesbury, UK) at wave-

lengths of both 450 nm and 570 nm. The 570 nm reading was then subtracted from the 450 nm

reading prior to data analysis. The concentration of released TNFa was compared to the SO + Clu

condition using a two-sample t-test. Data represent n = 3 ± SD replicates. The results are represen-

tative of n = 2 experiments. **, P < 0.005.
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2.9 Flow cytometry

The interaction of different Ab1-42 aggregation forms with EOC 13.31 cells in the absence and pres-

ence of clusterin or lysozyme was quantified by flow cytometry. The cells were removed from the

tissue culture flask by gentle scraping. Cells were then counted with a Countess™ automated cell

counter (Bio-Rad), seeded in serum-free EOC medium (see section 2.4) at a density of 0.5x 106 cells

in a Corning® Costar® 12-well plate (Corning Inc.) and incubated for 24 h at 37° C.

Upon incubation, the medium was changed to serum-free EOC medium containing either recom-

binant mouse low density lipoprotein receptor-related protein-associated protein 1 (LRPAP) protein

(0.25 µM, RD Systems, Abingdon, UK), Fucoidan (100 µM) or an equal volume of LSPB as a negative

control (30 min, 37° C). Cells were washed with PBS (2x) and treated with either 2 µM HiLyte™ Fluor

Ab1-42 monomers, SO, or 2 µM TAMRA-labelled Ab1-42 monomers, or SO in the presence and ab-

sence of clusterin (10:1 Ab1-42-to-clusterin molar ratio) or lysozyme (1:2 Ab1-42-to-lysozyme molar

ratio) for 0.5 h and 1.5 h respectively, unless otherwise stated. After incubation, cells were washed

with PBS (2x), collected into Eppendorf® tubes by gentle scraping and stored on ice until analysis

with an Attune NxT Flow Cytometer (Thermo Fisher Scientific). The gating was set around con-

trol cells that had not been exposed to Ab-TAMRA. Further assessment followed using the software

FlowJo™ v10.6.0 (BD Life Sciences, Franklin Lakes, NJ, USA). Analysis of microglial cells exposed to

TAMRA-labelled SO in the absence and presence of Lys was carried out on data from n = 3 indepen-

dent experiments. A Kruskal-Wallis test was performed, where *, P < 0.05 is considered statistically

significant. For the flow cytometry analysis of microglial cells exposed to TAMRA-labelled SO in the

absence and presence of Lys and the receptor inhibitors LRPAP and Fucoidan, data are expressed as

the percentage of the CTRL condition. Data of n � 2 independent experiments were analysed using

multiple t-tests to compare the inhibitor effects to the CTRL group of respective treatment conditions,

where *, P < 0.05; **, P < 0.005; ***, P < 0.0005.

2.10 Immunoprecipitation assay

To assess whether lysozyme and Ab1-42 formed stable complexes under different aggregation con-

ditions, Dynabeads™ His-Tag Isolation and Pulldown beads, as well as Dynabeads™ M-270 Strep-

tavidin beads were used (Thermo Fisher Scientific). An Invitrogen DynaMag™-Spin magnet was

used to separate beads from solutions throughout the experiment. All reactions were performed in
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Eppendorf® LoBind microcentrifuge tubes. Aggregated Ab1-42 solutions (10 µM, 100 µL total vol-

ume) were prepared and incubated with lysozyme at a 1:2 (Ab-to-lysozyme) molar ratio (37° C or

RT where indicated, 1.5 h). The immunoprecipitation assay was performed according to the manu-

facturer’s protocol. Briefly, the Dynabeads™ were resuspended and aliquoted into 50 µL working

volumes. Aliquots were incubated with 5 µg His-tagged anti-lysozyme camelid antibody cAbHul-6

(kindly provided by Dr. Mireille Dumoulin, University of Liege, Belgium [207]) in 1x binding/wash

buffer (prepared as 2x buffer: 100 mM sodium phosphate pH 8.0, 600 mM NaCl, 0.02 % (v/v) Tween-

20) for 5 min RT with gentle agitation. After incubation, Dynabeads™ were washed 4x with 300 µL

of the 1x binding/wash buffer and then incubated with 100 µL Ab1-42/lysozyme solution prepared

in 1x pull down buffer (prepared as 2x buffer: 6.5 mM sodium phosphate pH 7.4, 140 mM NaCl,

0.02 % (v/v) Tween-20) at RT for 10 min with gentle agitation. Dynabead™/protein solutions were

washed four times with 300 µL 1x binding/wash buffer. To elute the protein complex, the beads

were incubated in 50 µL urea (8 M) for 5 min at RT with gentle agitation. Beads were then removed

using a magnet and eluted samples were analysed by western blotting (see section 2.1.5).

2.11 qPCR

EOC 13.31 cells were cultured until confluent and subsequently seeded in 6-well plates (Corning Inc.)

at a density of 5x 105 cells/well. Cells were incubated in culture medium (24 h, 37° C), washed with

DPBS, and treated with different concentrations of LPS in serum-free medium for 6 h and 24 h. Upon

treatment, cells were washed with DPBS and 350 µL of the lysis buffer RLT Plus (QIAGEN, Manch-

ester, UK) was added to each well. Cell treatment was performed in triplicates and subsequently,

lysates were pooled, transferred to Eppendorf® tubes, and stored at -20° C for later analysis. RNA

isolation was performed in collaboration with Zhen Du in Prof. Laura Itzhaki’s Group (Department

of Pharmacology, University of Cambridge, Cambridge, UK) using the RNeasy® Plus Micro Kit (QI-

AGEN) and all steps were performed according to the manufacturer’s protocol. Subsequent qPCR

was kindly performed by Zhen Du (Department of Pharmacology, University of Cambridge). The

results are exploratory and representative of n = 1 experiment. To avoid amplification of genomic

DNA, primers were designed so that they hybridize to different exons. The primer (origin) sequences

and concentrations were as follows:

mouse TNFalpha forward: 117.4 µg, 17.6 nmol (HPLC purified)

5’ - GGTGCCTATGTCTCAGCCTCTT - 3’
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mouse TNFalpha reverse: 89.3 µg, 12.4 nmol (HPLC purified)

5’ GCCATAGAACTGATGAGAGGGAG 3’

2.12 Membrane disruption assay

The membrane disruption assay was carried out as described by Flagmeier et al. [208]. Briefly, the

extent of Ab1-42 aggregate-induced Ca2+ entry into individual lipid vesicles was measured by means

of change in fluorescence using total internal reflection fluorescence microscopy (TIRFM). The vesi-

cles were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and biotinylated

POPC (at a ratio of 100:1) filled with the Ca2+-sensitive Cal-520 dye, which allows for detection of pi-

comolar concentrations of Ab1-42 oligomers. A total of 16 fields of view using a computer-controlled

automatic microscope stage were imaged. The fluorescence signal before and after adding the sam-

ples was measured. In order to quantify the influx of Ca2+, the cation-transporting ionophore iono-

mycin was added, which permits Ca2+ entry to saturation. The maximum fluorescence intensity was

subsequently measured and the percentage of Ca2+ influx was determined using the formula:

(Faggregate-Fblank)*100/ (Fionomycin-Faggregate), where F is the fluorescence.

Statistical analyses were carried out using GraphPad Prism version 8 (GraphPad Software, La Jolla,

USA). The ROUT test was applied to identify and remove outliers from the datasets. The datasets

were then tested for normality using the Shapiro-Wilk test and subsequently analysed using a one-

way ANOVA with Dunnett’s multiple comparisons test. Statistical significance is indicated by an

asterix, where ****, P < 0.00005.

2.13 Statistical analysis

All data are expressed as a mean ± standard deviation (SD) unless otherwise indicated. Statistical

analyses were carried out using OriginPro 9.3 (OriginLab Corporation, Northampton, MA, USA) or

GraphPad Prism ( La Jolla California USA). Datasets were tested for normality using the Shapiro-

Wilk test. If datasets were not consistently normally distributed, the nonparametric Mann-Whitney

test was applied to test for significant differences unless otherwise indicated. If datasets were nor-

mally distributed, the two-sample-t test was used unless otherwise stated. P < 0.05 was considered

statistically significant. *, P < 0.05; **, P < 0.005; ***, P < 0.0005.
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3

FORMATION AND CHARACTERISATION OF Ab1-42

OLIGOMERS

3.1 Introduction and objectives

3.1.1 ADDLs for the study of Ab SO toxicity

Over the last decades, increasing scientific evidence has emerged that links soluble oligomeric forms

of the Ab1-42 peptide, known as amyloid-derived diffusible ligands (ADDLs), to the neurodegen-

erative processes associated with AD. However, the accurate biophysical characterisation of ADDL

preparations is impeded by the strong tendency of Ab to self-associate, while factors such as ionic

strength, temperature, and pH add additional complexity to the study of their behaviour. The chal-

lenges of studying the structure-toxicity relationship of Ab SO is inherent to these characteristics - Ab

SO are transient in nature and readily convert into other conformations during amyloid oligomeri-

sation and fibrillation, which results in a heterogeneous population of polymorphic, metastable Ab

SO.

ADDLs were first described in the context of a seminal study that demonstrated the spontaneous

assembly of Ab into small, soluble oligomeric species and shortly after their discovery, it was shown

that these ADDLs could act as neurotoxins without the presence of amyloid fibrils [82]. Since their

first association with neurotoxic events and the description of their formation by incubating Ab1-42

in F12 media at low temperatures, the protocol has been refined leading to the ability to reproducibly

generate two main conformers, namely SO (generated using low ionic strength solutions, such as F12

media or 10 mM phosphate with 10 mM NaCl and incubation at low temperature) and protofibrillar

aggregates, which are larger in size (using higher ionic strength buffers, such as PBS with incubation

at 37° C) [82, 132, 135]. A benefit of studying synthetic Ab1-42 oligomers is that they are pure in the

sense that no contaminating factors are present, which may not be the case when using oligomers
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extracted from cells, tissues or biological fluids. Moreover, they have been the subject of extensive

characterisation, making ADDLs a suited tool for the study of the effects of SO in AD [136]. How-

ever, it shall be pointed out that the Ab1-42 oligomers produced using these protocols can continue

aggregating during experiments and these techniques do not produce a homogeneous preparation of

one oligomer species, but rather a mixture of oligomers in equilibrium. Effects of oligomer presence

discussed herein can therefore not accurately be ascribed to a particular oligomeric species. Despite

this limitation, observations between experimental variables can advance our understanding of the

effect of presence and timing of Ab SO as well as the effect of biological molecules and chaperones

on these processes.

3.1.2 The use of HiLyte™ Fluor-488-labelled Ab1-42 and TAMRA-labelled Ab1-42 SO

for SO visualisation

For experimental conditions that rely on visualisation of SO interaction with microglial cells, com-

mercially available fluorescently-labelled Ab1-42 peptides were used to form oligomers. Starting

from HFIP-treated N-terminal fluorophore-labelled Ab1-42 peptide, SO were formed under com-

monly used oligomer-forming conditions (see Section 2.2.1). Compared to amine-reactive conju-

gates, this method offers the advantage of not having to purify oligomers from free dye, while la-

belled peptide can be stored for oligomer formation as needed.

Herein, HiLyte™ Fluor-488 label and 5-Carboxytetramethylrhodamine (TAMRA) label were used

where specified. HiLyte™ Fluor-488-labelled Ab1-42 peptide has an absorbance / emission peak at

503 / 528 nm. The spectrum of HiLyte™ Fluor-488 closely resembles that of fluorescein (FITC), while

it is more photostable [209]. TAMRA-labelled Ab1-42 peptide has an absorbance / emission peak at

544 / 572 nm. The chemical structures of respective fluorophores are shown in Figure 3.1.
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Figure 3.1: Chemical structures of HiLyte™ Fluor-488 and TAMRA. Figure adapted from [210].

While optical techniques are a powerful tool for the investigation of Ab1-42 SO interactions with

cells and other biomolecules, one major drawback is their need for fluorescence and the required

modification of the original peptide system through fluorophore attachment. Even though the N-

terminus is considered to be a loose end of the primary peptide structure and as such believed to

not strongly contribute to its aggregation mechanisms nor structure formation, there are experimen-

tal studies that suggest otherwise [211, 212]. Using time-resolved and single-molecule fluorescence

spectroscopy along with AFM and TEM, Waegele and colleagues demonstrated that the sizes of Ab1-

40 oligomeric species varied significantly depending on the chosen fluorophore, likely attributable

to net-attractive, hydrophobic fluorophore-peptide interactions. At the same time, it was shown

that amongst the fluorophores under investigation, HiLyte™ Fluor-488 displayed relatively low net-

attractive interactions with the Ab1-40 peptide making it a more suited labelling candidate compared

to other fluorophores such HiLyte™ Fluor-647 [212]. Chafekar et al. reported that labelled oligomer

and fibril preparations that were formed from a mixture of 2:1 unlabeled Ab1-42-to-TAMRA labelled-

Ab1-42 showed comparable morphology to unlabelled assemblies as indicated by EM [213]. Mix-

tures of unlabelled-to-labelled Ab1-42 at different ratios have been commonly employed in order to

reduce the effects of fluorophore molecular structures on Ab assembly and function [214,215]. Here,

we use 100 % HiLyte™ Fluor-488-labelled as well as TAMRA-labelled Ab1-42 peptides in accordance

with previous studies performed by our group in order to allow for comparability. However, we ac-

knowledge the likely impact of the properties of fluorophores on transient Ab aggregates, which
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needs to be considered in the interpretation of obtained experimental data discussed in this work.

3.2 Identification of stable oligomeric species by SDS-PAGE and TEM

In a first step, it was established that the experimental conditions used in the formation of Ab1-42 SO

do indeed result in the desired Ab1-42 species that should be clearly distinguishable from monomeric

Ab1-42 (see Fig. 3.2). As oligomeric preparations have been reported to result in SDS-stable Ab

species of different sizes, SDS-PAGE followed by Western blot were carried out using the anti-Ab

antibody W02. According to the manufacturer, this antibody binds residues 4-10 of human Ab and

has been shown to detect monomeric as well as oligomeric Ab species [216]. Western blot analysis

of the different monomer and SO preparations showed different-sized Ab1-42 species for SO (lanes

(B) and (C)) with predominantly monomeric and dimeric species, and to a lesser extent, also trimeric

(12-16 kDa) species. The monomer preparation (lane A), yielded solely monomeric Ab1-42 species

(4 kDa), even though the signal was quite faint. Here, we show that our experimental conditions

for Ab1-42 SO preparation can generate Ab1-42 species of higher molecular weight than monomeric

Ab1-42 and that the anti-Ab antibody reliably detects Ab1-42 species of different molecular weights.

Figure 3.2: Ab1-42 SO formed in vitro. Western blot analysis of unlabelled Ab1-42 monomers (A),
and different concentrations of SO: 2 µL sample (B) and 5 µL sample (C). Peptides were transferred
to a PVDF membrane and incubated with the W02 anti-Ab antibody.

Because SDS-PAGE can be prone to artefacts, the generation of Ab1-42 SO was additionally con-

firmed by TEM. Briefly, TEM is a microscopy technique that applies a beam of high energy electrons,
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which are transmitted through and interact with an ultra-thin specimen. Depending on the density

of the material under investigation, the electrons are scattered in unique patterns, while some will

disappear from the beam. Those electrons that hit the screen at the bottom of the microscope are ag-

gregated to form an image. Due to its favourable electron scattering properties, the the stain uranyl

acetate is commonly used with this technique in order to increase the contrast of the image. TEM

is particularly suited for the visualisation of Ab species as it allows for image acquisition at high

resolution revealing information on size and width of the samples.

TEM preparations of unlabelled Ab1-42 SO, HiLyte™ Fluor-488-labelled Ab1-42, and TAMRA-labelled

Ab1-42 SO samples (see Fig. 3.3 (A, II), (B, I) and (B, II) each showed small aggregates of circular,

doughnut-like, shape roughly 10-20 nm in diameter. There was no apparent difference in morphol-

ogy between the labelled and unlabelled SO preparations apart from more background noise in the

unlabelled condition likely induced during the handling of the grid. Figure 3.3, (A, I) shows Ab1-42

monomers and (A, III) fibrils characterised by an elongated and twisted morphology of 100-200 nm

in length. These were included to demonstrate that we can selectively generate the different Ab1-42

species of interest, in our case predominantly SO, whose morphological characteristics compare to

reports in the literature [135, 217].

Figure 3.3: TEM images of unlabelled and labelled Ab1-42 species. TEM grids were coated with 5 µL
unlabelled Ab1-42 monomers (A, I), unlabelled Ab1-42 SO (A, II), and unlabelled Ab1-42 fibrils (A,
III) or with 5 µL HiLyte™ Fluor-488-labelled Ab1-42 SO (B, I), and TAMRA-labelled Ab1-42 SO (B,
II). Monomeric and oligomeric species are indicated by arrows. Scale bar = 200 nm.

In order to further establish antibody specificity of the W02 mouse anti-Ab1-42 monoclonal anti-

body that was used for the detection of Ab1-42 SO throughout this project, a dot blot analysis of
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different concentrations of unlabelled Ab1-42 SO (A), HiLyte™ Fluor-488-labelled Ab1-42 (B), and

TAMRA-labelled Ab1-42 SO (C) samples was carried out. It could be shown that increasing sam-

ple concentrations of respective Ab1-42 SO yielded a concentration-dependent increase in antibody

binding (see Fig. 3.4) with negligible background staining.

Figure 3.4: Dot blot analysis of different concentrations of unlabelled Ab1-42 SO (A), HiLyte™ Fluor-
488-labelled Ab1-42 (B), and TAMRA-labelled Ab1-42 SO (C) samples stained with the anti-Ab1-42
W02 (1:1000) antibody.

3.3 Assessing the suitability of EOC 13.31 cells as a microglial cell model

While primary microglial cells most closely resemble in vivo microglia, their use is limited by the dif-

ficulty of obtaining pure cell populations. Additionally, their limited lifespan as well as availability,

rapid phenotypic changes, and partly missing cell-to-cell interactions combined with the challenges

of adequately culturing primary microglia made this cell line infeasible for the scope of this work.

Immortalised cell lines are, in theory, homogeneous, genetically identical populations facilitating the

generation of consistent and reproducible data [218]. Their high proliferation capacity and indefinite

lifespan therefore make them a robust model for the study of molecular processes. However, a major

drawback to using immortalised cell lines is the loss of their exact phenotypes upon establishment

of immortality by which they could potentially lose relevant attributes compared to "normal" cells.

Previous work of our group along with reports in the literature have suggested the suitability of the

murine microglial cell line EOC 13.31 as a model system for the study of Ab interaction with mi-
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croglia. EOC 13.31 is a spontaneously immortalised microglial cell line that has been derived from

individual agar-cloned microglial precursors residing in the brain. The cell line differs from other

commonly used microglial cell lines in that it has not been produced by deliberate virus transforma-

tion or oncogene transfection [219]. The colony-stimulating factor-1 dependent EOC cells are highly

proliferating and possess the ability to secrete several different cytokines that contribute to neuroin-

flammation as well as reactive species, including nitric oxide [220]. A systematic PubMed database

analysis of different microglial cell lines has further shown that the properties of EOC microglial cells

are largely comparable to those of primary microglia (primary cultures involve the isolation of cells

directly from donor tissue) (see Table 3.1, albeit noticeably fewer published studies (18) reported the

use of EOC 13.31 as compared to e.g. BV2 microglial cells (142) [220]). Cheng-Chung Wei and col-

leagues later evidenced that EOC 13.31 microglial cells release TNFa, interleukin-1b, interleukin-6,

and inducible nitric oxide synthase in response to Ab1-42 exposure as shown by real-time PCR of

respective mRNA expression [221].

Table 3.1: Overview of microglial properties of selected cell lines. Table adapted from Stansley et
al. [220]. *Limited data available.

Properties Primary BV2 N9 EOC 13.31
MAC-1 + + + +
LPS stimulation + + + +
IL-1b release + - + N/A
TNF-release (following LPS) + + + +
Phagocytosis + + + +
Peroxidase - - - -
Non-specific esterase + + + +
Glial fibrillary acidic protein - - - -
Galactocerebroside - - - -
NO production + + + +
Ab-induced IL-1b + + + N/A
Ab-induced TNFa⇤ + + + +
Ab phagocytosis + + + N/A

The demonstrated EOC responsiveness to Ab1-42, the ability to release several neuroinflammatory

cytokines, as well as the possibility of building on previous experience from work within our group

and hence, comparability of experimental data, has encouraged the use of EOC 13.31 cells as a model

system for the study of the modulating effects of Clu and Lys on Ab1-42 SO toxicity. Because cell cul-

tures have the potential to change with time due to selective pressures in the culture environment

and genetic instability, the EOC 13.31 microglial cells were passaged for a maximum of 25 times.
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Prior to investigating how Clu and Lys affect the interactions of SO and microglial cells, the experi-

mental treatment conditions were tested and optimised.

3.3.1 Determining effective Ab1-42 SO treatment conditions

First, an MTT metabolic activity assay was carried out to assess the effect of different Ab1-42 SO

concentrations on cell toxicity. Ab1-42 SO samples ranging from 1-10 µM were added to the cells

for 30 min (the incubation time intended to be used throughout this project) in serum-free medium,

followed by the steps outlined in the standard MTT protocol (see Section 2.6.1). Briefly, MTT is

a water-soluble tetrazolium salt. Living cells with active metabolism convert the dissolved MTT

to an insoluble formazan product inducing a colour change from yellow to purple. The measured

absorbance is indicative of the concentration of converted dye equating to cellular metabolic activ-

ity [204]. The test was used here in order to ensure that the used concentration of 1 µM showed

an observable effect on the cells (measured as % reduction of metabolic activity), while simultane-

ously ensuring that it did not cause cell metabolism to halt. Treatment with Ab1-42 SO resulted in

a concentration-dependent reduction of metabolic activity of the EOC 13.31 cells, where 10 µM SO

resulted in 95 % reduced activity compared to the no-treatment control, while the majority of cells

(72 %) remained metabolically active when treated with 1 µM SO. Since it is the aim of the study

to elucidate the effect of Clu and Lys on Ab1-42 SO interactions with microglial cells, it needed to

be verified that the Ab1-42 SO concentration used was high enough to induce a response, while it

was low enough to remain physiologically relevant and to not induce cell death. Derived from these

results and previous reports of effective Ab1-42 SO treatment conditions, a concentration of 1 µM

(based on monomer concentration) was chosen for the next set of experiments [222].
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Figure 3.5: MTT metabolic activity assay to determine effective Ab1-42 SO treatment concentrations.
EOC 13.31 were treated with 1, 3, 5, and 10 µM Ab1-42 SO for 30 min. An MTT assay was carried
out to determine metabolically active cells, represented as the normalised % of the non-treated cells
(CTRL). Cells were treated in triplicates. Cellular metabolic activity is shown as the mean SD of n
= 3 biological repeats. Statistical significance was determined using an unpaired t-test where *, P <
0.05; **, P < 0.005; ***, P < 0.0005, P < 0.00005.

3.3.2 Exploring and optimising microglial imaging techniques

Next, EOC 13.31 microglial cells were incubated with either 1 µM HiLyte™ Fluor-488-labelled Ab1-

42 SO for 0.5 h or with TAMRA-labelled Ab1-42 SO for 1.5 h at 37° C in order to determine whether

confocal microscopy enabled the detection of microglial morphology and SO. The following exper-

iments are based on the assumption that HiLyte™ Fluor-488-labelled as well as TAMRA-labelled

Ab1-42 SO cause the same degree of toxicity as was observed for unlabelled Ab1-42 SO at given

concentrations, however, this assumption has not been further tested herein. In addition to validate

the chosen imaging conditions, the following study further aimed to determine whether the chosen

time-frames of 0.5 h and 1.5 h were sufficient to show internalisation. The experimental conditions

for the Clu studies outlined in Chapter 4 were chosen based on previous findings of SO interactions

with SH-SY5Y cells by Hook, while the treatment concentration, incubation time, and TAMRA-dye

for the Lys studies were chosen based on unpublished work by Sandin et al. and are outlined in

more detail in Chapter 5 [198,222]. Moreover, the membrane stain wheat germ agglutinin was tested

here, both, in its 488 (for TAMRA experiments) and 633 (for HiLyte™ Fluor experiments) versions in

order to determine its suitability as a cell membrane marker and thus, a morphology marker.

Both treatment conditions enabled the visualisation of labelled Ab1-42 SO, while WGA enabled the
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visualisation of the microglial morphology, though the 488 version proved to be more suited for our

quantitative analysis of intracellular fluorescence. Because WGA 633 did not produce as "sharp" of a

contour as seen for WGA 488, brightfield images were used to quantify cell-internal fluorescence in

the experiments that used HiLyte™ Fluor-488-labelled SO.
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Figure 3.6: Exploratory confocal microscopy study of HiLyte™ Fluor-488 (A) and TAMRA-labelled
(B) Ab1-42 SO treatment of microglial cells. EOC 13.31 cells were incubated with either 1 µM Hi-
Lyte™ Fluor-488) or 0.5 µM (TAMRA) labelled SO for 0.5 h and 1.5 h respectively. The membrane
stain WGA was furthermore tested for the use of morphology studies and compared to brightfield
images (middle panels). Images are representative of n = 4 biological repeats.
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Lastly, a flow cytometry study was performed to further investigate SO and EOC 13.31 interactions

in given experimental conditions. The study design was optimised with the aim of gaining insights

into the size distribution of the microglial cell line (especially since its medium is conditioned with

LADMAC medium, which, even though filtered, could lead to impurities from this cell line). Rep-

resentative scatter plots of untreated (A) and treated (B) EOC 13.31 cells are displayed in Figure 3.7,

which indicate that our experimental conditions yield two distinct populations. The larger-sized

population corresponds to the EOC 13.31 microglia, while the smaller-sized population likely repre-

sent LADMAC cells (see A and B, Panel I.). Cells were therefore selected based on size and the laser

intensity was adjusted based on the control (untreated) condition. Representative measurements

of cell-associated fluorescence are shown in Panel III. with corresponding cell percentages in this

condition. It can be clearly seen that TAMRA-labelled SO associate with the cells, which confirms

our observations from the confocal microscopy study. Noticeably, the flow cytometry study yielded

two peaks for the TAMRA+ condition with the second, smaller peak likely due to an artefact from

the LADMAC medium or due to cell clumping which had not been fully excluded by prior gating.

Given that confocal images do not show evidence for a second cell population (i.e. LADMAC), the

latter explanation seems more likely. Further investigation is needed to identify the origin of the

second peak with certainty.
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Figure 3.7: Representative images of a flow cytometry analysis of EOC 13.31 microglial cells in the
absence (A) and presence (B) of TAMRA-labelled Ab1-42. Cells were incubated with 0.5 µM SO for
1.5 h at 37° C. Microglial subpopulations were selected (I) and from those, single cells were further
selected (II), whose fluorescence intensity was subsequently measured (III). The flow settings were
adjusted based on the control group (medium only) and kept constant across all the experiments.
Scatter plots are representative of n = 3 biological repeats.
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3.4 Summary and discussion

In this Chapter, it was our aim to establish and optimise experimental conditions to meet the fol-

lowing requirements: (I) the ability to visualise fluorescently labelled Ab1-42 SO, (II) the ability to

observe SO internalisation, (III) ensuring that chosen incubation times showed an effect on microglial

cells, while maintaining metabolic health, and (IV) the ability to reliably assess cellular morphology.

Here, the spontaneously immortalised murine microglial cell line EOC 13.31 was chosen based on

published data that highlight the presence of characteristic microglial attributes, which closely re-

semble those of primary microglial cells [220]. By limiting the number of cell passages, precaution-

ary measures were taken to minimise the effect of changes in phenotype and genotype over time. Of

particular importance in choosing an adequate microglial cell model was the demonstrated ability of

EOC 13.31 cells to respond to Ab stimulation [221]. While also BV2 as well as N9 microglial cells have

been found to respond to Ab stimulation, EOC 13.31 were the chosen cell line for this thesis given

previous work of our group that formed the basis for certain experimental conditions and allowed

for comparability. Despite previously addressed research suggesting the suitability of EOC 13.31 for

the study of the modulating effects of Clu and Lys on Ab1-42 SO toxicity, this cell line has not been

used extensively within the scientific community, which limits the interpretation and comparability

of obtained results with the work of other groups. One such example is the observed second peak in

our flow cytometry analysis of TAMRA-labelled Ab1-42 SO (see Fig. 3.7), which, to our knowledge,

has not been reported before and cannot be explained herein with certainty. Given that confocal

images do not show evidence for a second cell population (i.e. LADMAC), the second peak is likely

due to cell clumping which had not been fully excluded by prior gating. The limitation of using a

less common cell line therefore needs to be considered when interpreting experimental results.

In this work, ADDLs were used, which have been previously characterised in the literature [136].

We were able to show by TEM as well as SDS-PAGE that SO of roughly 10-20 nm in diameter could

be robustly generated using established protocols (see Fig. 3.2 and Fig. ref{TEM). It shall be pointed

out that, using these protocols, ADDLs can continue aggregating during experiments, while the em-

ployed techniques produce a mixture of oligomers in equilibrium; the herein observed effects of SO

can hence not be accurately ascribed to a particular oligomeric species but need to be interpreted in

their entirety.

For visualisation of Ab1-42 SO, commercially available HiLyte™ Fluor-488-labelled as well as TAMRA-

labelled Ab1-42 peptides were used to form oligomers. Fluorescently-labelled SO could be success-

fully visualised by confocal microscopy and flow cytometry (see Fig. 3.6 and Fig. 3.7) and SO inter-
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nalisation could be further observed (see Fig. 3.6). In order to further explore observed interactions

of HiLyte™ Fluor-488-labelled SO with EOC 13.31 that had been previously made in our group, ex-

perimental conditions were largely kept consistent to enable comparison of obtained results. We

therefore use 100 % HiLyte™ Fluor-488-labelled or TAMRA-labelled Ab1-42 peptides for all experi-

ments that involve fluorophore-labelled SO. Even though research by Waegele and colleagues sug-

gests that due to its relatively low net-attractive interactions with the b-peptide, HiLyte™ Fluor-488

is a more suited labelling candidate than other fluorophores, it likely still impacts transient Ab aggre-

gates [212]. If comparability to previous work were not of consideration herein, it would be advisable

to generate SO from a mixture of at least 50% unlabeled-to-labelled Ab1-42 to reduce the effects of

fluorophore molecular structures on Ab assembly and function and to validate proper monomer,

SO, and fibril formation using established methods [213–215]. Incubation times and concentrations

of Ab1-42 SO that have been previously used by our group as well as by Sandin et al. could be shown

to yield detectable results, while maintaining metabolic health (see Fig. 3.5) [198,222]. Those experi-

ments that involved fluorophore-labelled Ab1-42 SO are based on the assumption that the HiLyte™

Fluor-488 as well as TAMRA labels have no effect on the degree of toxicity as observed for unlabelled

Ab1-42 SO at given concentrations. This assumption requires further testing in the future.

It was moreover demonstrated that microglial morphology could be visualised using WGA stain.

WGA 488 was found to be better suited for our quantitative analysis of intracellular fluorescence

compared to WGA 633, which did not produce contours that were "sharp" enough for proper de-

tection by confocal microscopy. Hence, brightfield images were used for analysis of cell-internal

fluorescence in the experiments that used HiLyte™ Fluor-488-labelled SO.

Equipped with validated and partly optimised experimental protocols within the constraints of en-

suring comparability with the works of Hook et al. as well as Sandin et al., we next investigated

the effects of the biomolecules Clu and Lys on uptake and trafficking of Ab1-42 SO by EOC 13.31

microglia.
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4

CLUSTERIN

4.1 Introduction and objectives

With increasing scientific evidence suggesting a link between the extracellular chaperone clusterin

(Clu) and AD, a growing body of research is attempting to elucidate exactly how Clu affects the in-

teractions between Ab1-42 and cells. In the past, Clu has been shown to alter Ab aggregation as well

as its clearance. Interestingly, Clu has been ascribed a neuroprotective role, while it has also been

shown to reduce Ab clearance, thereby promoting toxicity [215, 223–226].

Using PDAPP transgenic mice that develop age-dependent Ab accumulation in the absence of Clu,

DeMattos and colleagues demonstrated that Clu along with apoE regulates soluble Ab levels prior to

Ab deposition [223]. With a modified approach of their well-established clearance technique in mice,

Bell et al. showed that binding of synthetic Ab1-42 to native human plasma-derived Clu enhances

the Ab1-42 clearance rate across the blood-brain barrier by 83% [224]. Mulder and colleagues, on the

contrary, found that Ab clearance by primary microglia cells is reduced in the presence of Clu [226].

Previous work of our group showed that Clu prevents SO from binding to the cell surface of the

neuroblastoma cell line SH-SY5Y (4.1). It further appeared that the effect of Clu on SO-cell inter-

action differed by cell type. Using flow cytometry, which assesses the total amount of aggregates

associated with the cells, differences were observed between SH-SY5Y cells (drastically decreased

association of SO with cells upon simultaneous exposure to SO + Clu) and EOC 13.31 microglia cells

(less pronounced effect of Clu on SO interaction with cells when exposed to SO + Clu simultane-

ously, however, increased SO association with cells when pre-exposed to Clu prior to SO addition)

as shown in Fig. 4.1.
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Figure 4.1: Previous work of our group, displayed here, has shown that the order of Clu addition in-
fluences interactions with EOC 13.31 but not SH-SY5Y cells [222]. In SH-SY5Y cells, SO + Clu results
in less associated fluorescence as measured by flow cytometry, while adding Clu prior to introducing
SO shows no effect (A). For EOC 13.31 cells, the decrease in fluorescence is less pronounced for SO +
Clu, however, adding Clu before SO results in an increase in associated fluorescence (B).

The data suggest that the role of Clu in SO interactions with microglia is complex and that unlike

in SH-SY5Y cells, preventing the interaction of SO with the cell membrane may not be the only

predominate mechanism. Flow cytometry, which was used here to assess Ab1-42 SO association

with cells, is a laser-based technique commonly used to detect and measure physical and chemical

characteristics of cell populations and particles. A cell sample is suspended in a fluid and injected

into the instrument. Cells then flow in single file in front of a laser and different parameters of the

cell morphology as well as fluorescent labels on the cell can be measured as they pass the detection

apparatus. It is important to note, however, that flow cytometry measures fluorescence of the cell as

a whole and is therefore not suited to distinguish between external and internal fluorescence.

While it is widely acknowledged that microglia play a critical homeostatic role in both, neuroin-

flammation and phagocytic mechanisms, studies of their effectiveness in the context of Ab clearance

have yielded disparate results. In vivo imaging studies in a mouse model of AD by Bolmont et al.

showed that microglia migrate to amyloid plaques and internalise Ab, which was further shown to

localise in lysosomal compartments [227]. On the contrary, it has also been demonstrated that elimi-

nating microglia from the brains of an AD mouse model does not impact Ab plaque deposition nor

amyloid-associated neuritic dystrophy [228]. A possible explanation for the ambiguous results re-

garding the role of microglia in Ab clearance has been provided by Yamamoto and colleagues, who

suggest that the phagocytic ability of microglia might be directed by pro- and anti-inflammatory
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cytokines [229]. This ambiguity underlines the importance of further investigating the microglial

response mechanism to Ab1-42.

The work in this chapter focuses on the interaction of Ab1-42 SO and microglia cells with particular

interest in the effect of Clu on SO uptake and intracellular trafficking. Furthermore, the effect of

SO and Clu on microglia activation and its inflammatory response in the form of cytokine release

are studied. Advancing the understanding of microglial interactions with SO and possible modes of

intervention, i.e. extracellular chaperones, could provide important information for the development

of strategies to reduce Ab1-42 toxicity. To date, our knowledge of the precise in vivo effects of Clu on

microglia cells and overall AD progression are inconclusive, which further underlines the need for

differentiated experimental investigations into the role of Clu.

4.1.1 Experimental setup

In Chapter 3, Ab1-42 SO were formed using unlabelled Ab1-42, HiLyte™ Fluor-488 labelled Ab1-42,

and TAMRA-labelled Ab1-42. Experimental conditions that had been previously established within

our group were tested and further optimised with the aim to ensure observability of Ab1-42 inter-

nalisation, while enabling comparability with previously obtained data.

In this Chapter, HiLyte™ Fluor-488 labelled Ab1-42 SO, as well as unlabelled SO, are used to investi-

gate their interactions with microglial cells in the absence and presence of Clu. The murine microglia

cells EOC 13.31 were the chosen cell model for SO and Clu interaction at a 10:1 Ab1-42 SO-to-Clu

submolar ratio. Our studies focused specifically on the population of microglia that showed inter-

nalisation of SO to determine how Clu affects the overall uptake and trafficking of SO in this cell

line. Two conditions were used for comparison; incubation with only labelled SO and incubation

with a mixture of SO + Clu (Fig. 4.2, 2 and 3). To evaluate if effects were due to unbound Clu, as

opposed to the combined SO + Clu treatment, a third condition was also investigated in which cells

were pre-incubated with Clu prior to SO exposure (Fig. 4.2, 4). A no-treatment condition (serum-free

medium + solvent) was included throughout the experiments as a negative control (Fig. 4.2, 1).
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Figure 4.2: Schematic overview of experimental design. Note: Items displayed are not drawn to
scale.

An incubation time of 30 min for pre-incubation of cells with Clu and for SO exposure, respectively,

was chosen here in line with previous experiments conducted by Hook (compare Fig.4.1).

4.2 Assessment of cell fluorescence upon SO and Clu treatment

It was examined whether the presence of Clu has an impact, not only on cell interaction, but more

specifically, on the internalisation of Ab1-42 SO in microglia using confocal microscopy. EOC 13.31

were incubated with HiLyte™ Fluor-488 labelled Ab1-42 SO for 30 min in the presence and absence

of Clu. To determine the corrected total cell fluorescence (CTCF) of microglial cells upon exposure

to HiLyte™ Fluor-488 Ab1-42 SO, acquisition settings were established using the positive control

(SO-exposed cells). Once established, the settings were kept constant between samples to allow for

later quantitative comparability. The exposure time, gain and offset were adjusted to use the entire

dynamic range of the detectors. Importantly, image saturation was controlled for using the auto-

histogram display of the microscope. The corrected total cell fluorescence (CTCF) was subsequently

calculated with ImageJ (Fig. 4.3 A) using the following formular:

CTCF = integrated density � (area of selected cell ⇥ mean fluorescence of background readings)

The CTCF, as represented by the mean, is significantly higher in the SO + Clu treatment condition

compared to untreated as well as Clu pre-treated cells. While these findings suggest that Clu en-

hances internalisation, Hook had previously reported that Clu pre-exposure had the largest effect

on the interaction of SO with microglia, as opposed to the simultaneous SO + Clu exposure as ob-

served here. This apparent discrepancy may be due to the use of two different imaging techniques
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(flow cytometry assessing overall SO-cell association vs. confocal microscopy assessing internalised

SO). To further investigate whether this observations can be ascribed to SO and Clu interacting with

one another upon administration to the cells, microglia cells were treated with both, labelled Clu

(shown in red) and labelled SO (shown in green) while using the same treatment conditions as de-

scribed above (Fig. 4.3 B). Colocalisation is observed in the overlaid images when both, SO and

Clu are present, irrespective of when Clu was administered. Yet, qualitatively it appears that the

extent of colocalisation is greater when SO and Clu are administered simultaneously. As previously

mentioned, cells were selected based on whether they displayed SO interaction. The data therefore

provide a snapshot of those microglia cells that have internalised SO and the effect of Clu on this

internalisation. It should be pointed out, however, that the observed trends for the effect of Clu on

SO internalisation are not significant when compared to SO alone. It is possible that this observation

might be due to a selection bias introduced by the screening for those cells that have internalised SO.

While the experimental design enabled the assessment of SO internalisation on a cellular level, it did

not allow for the assessment of the total number of SO-associated cells in a controlled manner as was

done in the flow cytometry experiments. Taken together, these studies suggest that the exposure to

Clu and the timing of this exposure alters the interaction of microglia cells with Ab1-42 SO. To better

understand this observed trend, an investigation of SO trafficking by microglia followed.
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Figure 4.3: CTCF of EOC 13.31 microglia cells upon different treatments (A, 1-4), as well as repre-
sentative images of microglia cells in the respective treatment conditions (B). EOC 13.31 cells were
treated with 1 µM labelled Ab1-42 SO (A, 2), SO + Clu (A, 3) or remained untreated (A, 1) for 30
min, 37° C. Alternatively, cells were pretreated with 0.1 µM Clu (A, 4) for 30 min, 37° C followed by
SO for another 30 min, 37° C. The cell fluorescence was measured in ImageJ and compared across
cell lines as per the Mann-Whitney test. Data points in (A) represent n � 31 cells pooled from n =
3 independent experiments. The mean of each group is marked by a black line. The representative
images of EOC 13.31 show SO treatment (green) and Clu (red). Scale bars = 10 µm (inset) or 30 µm.
*, P < 0.05; **, P < 0.005; ***, P < 0.0005. Panel (B) was contrast-enhanced post-analysis for better
visualisation of fluorescence.
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4.3 Colocalisation study of SO-treated cells

Having observed SO internalisation by EOC 13.31 cells (Fig. 4.3), it was next examined whether

the intracellular trafficking of SO follows the endosomal/lysosomal pathway and whether it is af-

fected by the presence of Clu. Colocalisation patterns of SO with lysotracker (Fig. 4.4) were there-

fore assessed, which stains acidic compartments of the late edosomal/lysosomal pathway [230–232].

Colocalisation was analysed using the Coloc 2 plugin of ImageJ and are expressed and the degree of

colocalisation is expressed as Pearson’s correlation coefficient, where "+1" means perfect correlation

and "−1" perfect but negative correlation with 0 denoting the absence of a relationship. Colocalisa-

tion analysis revealed that SO and lysotracker colocalised, to different degrees, in all three treatment

conditions (Fig. 4.4, B) forming a ring-like structure in close proximity to the cell membrane. The

presence of Clu resulted in a higher degree of colocaliation with pretreatment showing the most sig-

nificant increase, albeit the respective means (shown as a black line) indicate only moderate overall

colocalisation (mean PCC = 0.4 for Clu then SO).
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Figure 4.4: SO colocalisation study of microglial cells stained with lysotracker in different treatment
conditions (A). EOC 13.31 cells were treated with 1 µM labelled Ab1-42 SO (green), SO + Clu, or
pretreated with 0.1 µM Clu for 30 min, 37° C, followed by SO treatment for an additional 30 min,
37° C. Cells were simultaneously treated with lysotracker (red) followed by counterstaining of the
nuclei with Hoechst (blue). Images represent n = 3 independent experiments. Scale bars = 10 µm
(inset) and 30 µm. The degree of colocalisation of Ab1-42 SO and lysotracker was assessed with the
ImageJ Coloc 2 plugin and is shown as the Pearson correlation coefficient of n = 3 experiments for
respective treatment conditions, where *, P < 0.05; **, P < 0.005; ***, P < 0.0005 (B). Images were
contrast-enhanced post-analysis for better visualisation of fluorescence.
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Next, the possible colocalisation of SO and LAMP1, a lysosomal-associated membrane protein that

is involved in maintaining lysosomal acidity was investigated using the same treatment conditions

as described before (Fig. 4.5) [233]. To avoid the possibility of Ab1-42 degradation in the lysosome

and therefore false negative results, the microglial cells were pre-treated with the lysosomal inhibitor

chloroquine, which acts via inhibition of the acidification of the endosome-lysosome system and has

made its way into the clinic primarily used for the treatment of malaria [234].

While the overall degree of colocalisation was lower than observed for lysotracker (mean PCC = 0.29

for SO + ClU), increased punctated SO accumulation throughout the cytoplasm was noticed that

differed from the ring-like distribution of SO previously detected (compare Fig. 4.4 and Fig. 4.5).

Moreover, the highest degree of colocalisation was oberseved for the SO + Clu condition, whereas

pretreatment with Clu resulted in almost no colocalisation (mean PCC = 0.1).
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Figure 4.5: SO and LAMP1 colocalisation study of microglial cells in different treatment conditions.
Representative images of EOC 13.31 cells treated with 200 µM chloroquine for 1 h at 37° C prior to SO
(green) and Clu exposure as described before. Cells were stained with anti-LAMP1 (red) followed by
counterstaining of the nuclei with Hoechst (blue). Images represent n = 3 independent experiments.
Scale bars = 10 µm (inset) and 30 µm. The degree of colocalisation of Ab1-42 SO and LAMP1 was
assessed with the ImageJ Coloc 2 plugin and is shown as the Pearson correlation coefficient of n = 3
experiments for respective treatment conditions, where *, P < 0.05; **, P < 0.005; ***, P < 0.0005, ****,
P < 0.00005 (B). Images were contrast-enhanced post-analysis for better visualisation of fluorescence.
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An additional set of experiments was carried out to assess whether Ab1-42 colocalises with the lyso-

somal aspartic endopeptidase cathepsin D (Fig. 4.6). In this study, Ab1-42 showed the highest degree

of colocalisation in the SO + Clu treatment condition (mean PCC = 0.47), while SO only and pretreat-

ment with Clu show very limited colocalisation (mean PCC  0.2).
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Figure 4.6: SO colocalisation study of microglial cells stained with anti-Cathepsin-D in different treat-
ment conditions. EOC 13.31 cells were treated with 1 µM labelled Ab1-42 SO (green), SO + Clu, or
pretreated with 0.1 µM Clu for 30 min, 37° C, followed by SO treatment for an additional 30 min, 37°
C. Cells were simultaneously stained with Cathepsin-D antibody (red) followed by counterstaining
of the nuclei with Hoechst (blue). Images represent n = 3 independent experiments. Scale bars = 10
µm (inset) and 30 µm. The degree of colocalisation of Ab1-42 SO and Cathepsin D was assessed with
the ImageJ Coloc 2 plugin and is shown as the Pearson correlation coefficient of n = 3 experiments
for respective treatment conditions, where *, P < 0.05; **, P < 0.005; ***, P < 0.0005, ****, P < 0.00005
(B). Images were contrast-enhanced post-analysis for better visualisation of fluorescence.
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4.4 Morphology study of microglia cells under different SO and Clu treat-

ment conditions

As outlined earlier, it is well established that microglial cells undergo a morphological shift upon

activation. To determine the effects of SO and Clu treatments on microglial morphology and con-

comitantly, their activation, confocal microscopy was used to analyse the shapes of treated EOC 13.31

cells after 30 min incubation. Confocal images of microglial cells were taken at a set interval between

the first and last planes of focus (each representing a single optical slice within the cell) to ensure that

the morphological features of the microglial cells were fully captured. The respective centre planes

were then mathematically determined and the cellular morphology of respective 2D images were

analysed (see Section 2.7.3). Representative images of "elongated", "intermediate", and "rounded"

cells are shown in Fig. 4.7. Elongated cells were characterised by their neurite-like processes that

tend to branch out, which is typical for non-activated microglia [235]. Round cells, on the contrary,

represent activated microglia and display an amoeboid morphology with retracted processes [236].

Cells were defined as intermediate if they displayed less pronounced extensions, yet, could not be

described as fully rounded.

Figure 4.7: Microglial activation induces a morphological shift from an elongated to a rounded shape.
Representative images of EOC 13.31 cell morphologies from n � 3 experiments observed upon SO
and Clu exposure as indicated by arrowheads. Cell membranes were stained with WGA. Scale bars
= 30 µm. Images were contrast-enhanced post-analysis for better visualisation of fluorescence.

The percentages of "elongated", "intermediate", and "rounded" cells upon SO, SO + Clu, and Clu!SO

treatments as well as their respective average area are shown in Table 4.1. As a known activator

of microglial cells, lipopolysaccharide (LPS) was included as a positive control, which resulted in

a distinguishable depletion of elongated "resting" cells (Table 4.1). When untreated, the majority

of cells were elongated (65 %), while roughly a quarter of the cells (24 %) showed an activated,

rounded morphology. Similarly, the majority of cells adapted a "resting" morphology in the SO
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(70 %) as well as the Clu!SO (65 %) conditions suggesting that these treatments had little effect

on microglial activation at this short incubation time. The largest decrease in elongated "resting"

cells was observed in the SO + Clu treatment condition (52 % elongated cell population), which is

comparable to the amount of elongated "resting" cells in the LPS condition (54 %). It shall be noted

that the data represent a snapshot of a dynamic process with cells labelled as "intermediate" likely

undergoing activation, which suggests that overall, simultaneous addition of SO + Clu may have a

similarly activating effect on the cells as the LPS control.

Table 4.1: Quanitification of microglial activation upon SO exposure in different treatment condi-
tions. EOC 13.31 cells were treated with SO, SO + Clu, Clu!SO, and LPS for 30 min, 37° C and the
cell morphologies were qualitatively categorised as "elongated", "rounded" or "intermediate". Per-
centages of total cell counts from n � 3 experiments are shown here. The average cell area ± SD was
measured using ImageJ and compared to the "elongated" group within the same treatment condition
applying the Mann-Whitney or two-sample t-test. *, P < 0.05; **, P < 0.005; ***, P < 0.0005.

Cell morphology [%] Area of the cell [µm2]

elongated intermediate rounded elongated intermediate rounded

Treatment [n]

NT [37] 65 11 24 952 ± 399 536 ± 58 623 ± 154*

LPS-treated [24] 54 25 21 1285 ± 684 935 ± 257 532 ± 170*

SO [30] 70 10 20 882 ± 355 555 ± 210 456 ± 136**

SO + Clu [59] 52 5 43 1152 ± 542 740 ± 204 672 ± 248***

Clu!SO [34] 65 18 18 1302 ± 682 757 ± 120* 573 ± 120***

These findings support the internalisation results, which imply increased SO internalisation when

Clu and SO are simultaneously administered (Fig. 4.3). In addition to evaluating microglial acti-

vation based on qualitative categorisation, the average area of the different cells was measured and

compared within each treatment condition (Table 4.1). The round cells were significantly smaller

than the elongated cells in all treatment conditions underlining a noticeable change in morphology.

4.5 Cytokine release of microglia cells upon SO and Clu treatment

In the aforementioned studies, it has become evident that the addition of Clu and importantly, its

timing, impact SO uptake and cell morphology. In a next step, the release of inflammatory cytokines

TNFa and IL-1b as well as the anti-inflammatory cytokine IL-10 was examined. It has been pre-

viously shown that microglia activation by Ab peptides can cause the release of pro-inflammatory
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cytokines in a concentration-dependent manner [237, 238]. Here, it is investigated whether these

observations can be replicated using EOC 13.31 and whether Clu influences this process.

4.5.1 ELISA analysis of TNFa release after Ab1-42 exposure

To better understand how Clu affects the observed microglial activation over an extended period

of time, ELISA assays were performed to determine the concentration of the released inflammatory

cytokines, TNFa (Fig. 4.8) and IL-1b (data not shown), upon SO and Clu treatment. Cytokine release

measurements were determined after extended incubations for 24 h (37° C). SO treatment of EOC

13.31 induced the highest TNFa release (133 pg/mL, (Fig. 4.3, 2) after 24 h, which was significantly

higher than the TNFa released by SO + Clu (110 pg/mL, (Fig. 4.3, 3), while TNFa release in Clu-

pretreated cells (61 pg/mL) was significantly lower compared to simultaneous treatment.

Figure 4.8: TNFa release of microglia cells treated with SO in the presence and absence of Clu. EOC
13.31 cells were treated with 4 µM Ab1-42 SO (2), SO + Clu (3) or remained untreated (1) for 24 h,
37° C. Alternatively, cells were pretreated with 0.4 µM Clu (4) for 30 min followed by SO for 23.5
h, 37° C. The concentration of released TNFa was measured via ELISA and compared to the SO
+ Clu condition using a paired t-test. The bars represent n = 3 ± SD replicates. The results are
representative of n = 2 experiments. **, P < 0.005.

The observed trend in the ELISA assay is surprising not only because the SO + Clu cell population,

which had been previously identified as the population with the highest proportion of activated

cells, did not release the largest amount of TNFa as would have been expected, but also because
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the amounts of released TNFa measured here are 10-30-fold lower than what has been observed

elsewhere using similar treatment controls and/or the same ELISA assay protocol (see Table 4.2)

[221, 239–242]. However, it shall be pointed out that due to the low quantities of TNFa release and

associated difficulty of obtaining meaningful ELISA readouts, the data discussed herein are not fully

conclusive and need to be confirmed.

Table 4.2: Overview of selected TNFa ELISA measurements and associated experimental conditions
based on a literature search. *TNFa concentrations are estimated based on histogram representations
of data.

Author Microglia cell line Stimulant Stimulant
concentration

Incubation
time [h]

TNFa release*
[pg / mL]

Yao et al. [239] BV2 AnaSpec Ab1-42 SO 20 µ/mL 24 38
Jian et al. [240] BV2 GL Biochem Ab1-42 SO 0 µM 24 280

2.5 µM 24 210
5 µM 24 190
10 µM 24 600
20 µM 24 590

Floden and Combs [241] Postn. brain-derived Amer. Peptide Ab1-42 SO 0 µM 24 120
5 µM 24 205
10 µM 24 260
20 µM 24 210

Adult brain-derived Amer. Peptide Ab1-42 SO 0 uM 24 140
5 µM 24 220
10 µM 24 290
20 µM 24 510

Cheng-Chung Wei et al. [221] EOC 13.31 AnaSpec Ab1-42 SO 10 µM 24 3500
LPS 100 ng/mL 24 4700

Korneev et al. [242] BMDM LPS 10 ng/mL 5 2800

It appears that Ab1-42 SO-induced TNFa release greatly varies between studies even though higher

amounts of Ab1-42 SO (between 10-20 µM) have been shown to elicit higher quantities of released

TNFa. While our data combined with findings reported in the literature suggest that Ab1-42 SO

can induce TNFa release in EOC 13.31 microglial cells, further investigation is needed in order to

substantiate our observations. The experimental conditions would likely need to be adjusted by

increasing the Ab1-42 SO concentration and it could be worth considering using the RD Systems

ELISA kit that has been commonly used by others.

The repeated assessment of IL-1b release yielded measurements below the quantifiable cytokine

threshold of 16 pg/mL. In order to determine whether the presence of Clu may exert a protective

role by means of stimulating anti-inflammatory cytokine release, the supernatant levels of the anti-

inflammatory cytokine IL-10 were measured next. However, similarly to the problems experienced

with the IL-1b assay, the measurement of IL-10 release was also below the quantifiable threshold of

32 pg/mL for the assay kit. Additionally, it was tested whether a shorter incubation (8 h) would

increase the measurable cytokine release, which resulted in even less quantifiable results (data not
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shown). Therefore, alternative methods to investigate cytokine production were explored by means

of qPCR.

4.5.2 qPCR analysis of TNFamRNA content

Since the study of cytokine release upon EOC 13.31 stimulation produced ambiguous results, it was

explored whether qPCR would be better suited for the given experimental design. An exploratory

study of the effect of exposure to different concentrations of LPS, a known inducer of microglial

inflammation and used as a positive control in the previous experiment, was carried out next. In

particular, the effect of LPS (0 ng/mL, 25 ng/mL, 50 ng/mL, and 75 ng/mL) on TNFamRNA levels

upon cell exposure for 6 h and 24 h were studied. After 6 h LPS incubation, the mRNA levels

increased in a concentration-dependent manner up to a 2-fold increase at an LPS concentration of 75

ng/mL (the highest LPS concentration used in this study). Interestingly, the mRNA levels decreased

compared to the control condition when exposed to LPS for 24 h, with the lowest amount of mRNA

measured in the highest LPS treatment condition. While there appears to be an effect of LPS on TNFa

expression levels, the effect on EOC 13.31 is weaker than anticipated based on the literature, where a

fraction of the used LPS concentration (10 ng/mL) induced a much larger relative change in mRNA

levels (�3-fold) [243].
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Figure 4.9: Relative TNFamRNA levels upon LPS treatment (analysis kindly conducted by Zhen Du,
Department of Pharmacology, University of Cambridge). EOC 13.31 cells were treated with 25 ng,
50 ng, and 75 ng LPS for 6 h and 24 h respectively. The levels of mRNA were subsequently measured
by qPCR. The bars represent n = 1 ± SD replicate. The results are exploratory and representative of
n = 1 experiment.

4.6 Summary and discussion

In this Chapter it has been shown that EOC 13.31 cells internalise synthetic Ab1-42 SO and that this

process is influenced by Clu. The experiments suggest that simultaneous addition of SO + Clu stimu-

lates increased oligomer uptake with concomitant microglial activation as morphologically indicated

by a shift from elongated to rounded cells. Moreover, it appeared that SO colocalise with selected

messengers of the late endosomal-lysosomal pathway which is impacted by the presence of Clu as

well as its timing. Qualitatively, an increase in SO accumulation throughout the cytoplasm upon

lysosomal inhibiton independent of Clu treatment was noticed. After extended incubation times,

this initially increased oligomer uptake seen in the the presence of Clu may have contributed to the

reduced pro-inflammatory response as measured by TNFa release. Albeit exploratory, the cytokine

release studies suggests that Clu may play a protective role in Alzheimer’s disease (subject to fur-

ther investigation), while posing questions about the exact effect that Clu exerts on SO at different

incubation times.

The hypothesis that the effect of Clu on SO interaction might differ depending on cell type under in-

vestigation arose from an initial flow cytometry study (see Fig. 4.1). In the study, the highest amount

of SO-microglia association was observed for the Clu pre-treated cells, however, it fell short to distin-

guish between internalised and membrane-associated SO. The confocal imaging study that followed
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was able to provide insights into the effect of Clu on SO internalisation. Here, the highest uptake

was observed in the SO + Clu treatment condition. While the flow cytometry results had initially led

to the hypothesis that the treatment condition showing the highest degree of SO interaction, namely

Clu!SO, would also equate to the highest degree of SO internalisation, the results herein suggest

otherwise. A possible reason for the observed increased fluorescence in the Clu pre-treatment con-

dition of the flow study might be SO retention on the cell membrane facilitated by the prolonged

presence of Clu. Another, albeit less likely explanation for the comparatively reduced CTCF might

be due to expedited degradation of SO within the cells when pre-exposed to Clu. The simultaneous

addition of SO + Clu, on the contrary, appears to promote SO internalisation. It is moreover possible,

that it slows down trafficking and degradation inside the cell leading to an accumulation of intra-

cellular SO. The colocalisation studies that followed indicated that in the presence of Clu, SO show

greater colocalisation with lysotracker, while SO also appear to colocalise with cathepsin D when

SO + Clu are administered simultaneously. The overall weak colocalisation with LAMP1 may be

due to the time point of 30 minutes chosen for our investigation and would need observing over an

extended period for further analysis. It is possible that Ab1-42 SO and Clu form a complex when ad-

ministered simultaneously, thereby facilitating its uptake and further processing by microglial cells.

It has been previously shown that, in vitro, Ab1-40 complexes with Clu in a concentration-dependent

manner. It was further shown that while Ab1-40 alone does not bind to the low-density lipopro-

tein receptor LRP-2, Clu in complex with Ab1-40 bridges the interaction of Ab with the receptor

and promotes its internalisation and subsequent degradation in lysosomes [244, 245]. The discovery

of a genetic variant of triggering receptor expressed on myeloid cells 2 (TREM2) that increases the

risk of AD in humans 3-4-fold has not only provided strong evidence for the involvement of mi-

croglia in AD, but it has also pointed at receptor-mediated Ab internalisation as a possible route of

Ab-microglia interaction [246, 247]. It has since been shown that TREM2 expression is able to en-

hance phagocytosis of Ab1-42 oligomers as well as inhibit Ab-induced proinflammatory responses

in microglial cells [248,249]. Strikingly, it has been reported that Clu is a ligand of TREM2, whose in-

teraction can increase the Ab uptake by microglia cells providing a potential route of internalisation

of the SO + Clu complex observed in this study [250]. While the underlying cause remains elusive,

these findings along with our confocal imaging data suggesting increased SO internalisation in the

presence of Clu could be explained by an increased SO uptake via receptor-mediated endocytosis,

which may be facilitated by the complexation with Clu.

It would be interesting to further investigate the role of different receptors, including TREM2 as well

as their involvement in cytokine release in the herein outlined experimental conditions. However,
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given the experienced difficulties with the ELISA assay, alternatives should be explored. A lot of the

studies that report significant cytokine release, including TNFa, use murine BV2 microglia cells and

/ or an Ab SO concentration of at least 10 µM [240, 251]. Interestingly, Jian and colleagues observe

an initial decline in TNFawith levels below the control condition when cells were exposed to 2.5 µM

and 5 µM Ab1-42 SO, respectively. These findings, if replicable, would suggest that the herein chosen

Ab1-42 SO concentration might be below the activation threshold for an inflammatory response. It

remains to be determined whether a higher, non-physiological, Ab1-42 SO concentrations would still

provide relevant knowledge furthering our understanding of AD disease progression.

It was furthermore observed that simultaneous administration of SO + Clu induced a change from

"resting" to more "activated" microglia, which was assessed based on microglial morphology and

average cell area. In microglia, a morphological shift from a ramified state featuring small, round

cell bodies with many branching processes to an ameboid state with retracted processes and enlarged

cell bodies is indicative of microglial activation [252]. This complex, multistage process results in the

release of cytokines, such as the aforementioned TNFa [253]. Conspicuously, the rounded cells were

significantly smaller than the "resting", elongated cells, which is contrary to observations reported in

the literature [236, 254]. Most studies, however, compare the size of the cell bodies only, not taking

into account the protrusions as was done here. Our results indicate that EOC 13.31 microglia display

a clearly distinguishable morphology when activated.

Upon internalisation, the SO were shown to colocalise with lysotracker, a marker of acidic com-

partments in the late endosomal/lysosomal pathway. Colocalisation with LAMP1 and Cathepsin D

appeared to be overall more affected by the timing of Clu exposure. This study offers a snapshot

of the SO trafficking after a 30-minute treatment. It is likely that detectable Ab accumulation in the

lysosome occurs at a later point in time as has been reported previously [213, 255]. The presence

of Clu may enhance SO uptake and thereby also the intracellular trafficking of the oligomers. It

remains a goal to develop a more quantitative method of categorising microglial morphology and

their activation state to enable a more objective assessment. Moreover, an investigation into how

different concentrations of Ab1-42 SO influence the morphological shift and how this concentration

then translates into cytokine release would be of interest in the future. The findings herein are based

on investigations using synthetic Ab1-42. A comparison of the results discussed herein with the be-

haviour of recombinant Ab1-42 would further facilitate our understanding of the interaction of Ab1-

42 SO and microglia. The following chapter sets out to explore the influence of another biomolecule,

namely lysozyme, on the interaction of EOC 13.31 with Ab1-42 SO.

70



5

LYSOZYME

5.1 Introduction and objectives

In the previous chapter, the interactions between the extracellular chaperone Clu and microglia cells

have been investigated, along with their effect on neuroinflammatory responses. Employing confo-

cal microscopy, it appears that Ab1-42 SO and Clu colocalise and that Clu exerts a largely protective

effect on Ab1-42 SO-microglia interactions even though further experiments are needed to confirm

these initial findings. While it is still unknown whether inflammation is a driver, a contributor, or

an epiphenomenon of AD, recent years have brought forward new links between endogenous pro-

teins of the immune system and Ab. One such protein, lysozyme (Lys), is a major player of innate

immunity (see Section 1.4.2) that is over-expressed in five different AD mouse models, while ele-

vated levels of Lys have also been measured in the CSF of AD patients [197, 256]. The experimental

foundation for studies that followed was provided by Lou and colleagues, who showed that in vitro,

human Lys can prevent amyloid aggregation of the Ab1-40 peptide at a 1:1 ratio [171]. Unlike Clu,

which is a potent inhibitor of Ab1-42 aggregation at sub-molar ratios, the amount of Lys needed to

perturb Ab1-42 aggregate formation is therefore significantly higher. Helmfors and colleagues later

demonstrated that Lys colocalises with Ab1-42 in plaques of AD patients and, following investigation

of a Drosophila model of AD, they further reported that neuronal co-expression of Lys and Ab1-42

reduced the formation of soluble and insoluble Ab species, prolonged survival, and improved the ac-

tivity of Ab1-42 transgenic flies [196]. The concentrations and treatment durations used herein were

chosen based on the aforementioned study by Lou et al. as well as unpublished work by Sandin et

al., who observed that the uptake of TAMRA-labelled Ab1-42 by SH-SY5Y cells was significantly re-

duced with the highest degree of reduction measured at a 1:2 Ab1-42-to-Lys molar ratio [198]. These

observations laid the foundation for a research collaboration and informed the chosen cell treatment

conditions used herein.
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Given its role during inflammatory events and scientific evidence pointing at a protective role of

Lys in different AD models, this Chapter uses a number of biophysical and biochemical, as well as

fluorescence microscopy techniques to elucidate how Lys interacts with Ab1-42 SO and how this

interaction influences Ab1-42 SO uptake by microglia cells. Ultimately, it is the aim to understand

whether the biomolecule Lys can modify the toxic effect of Ab1-42 SO by changing its cellular inter-

nalisation. By comparing these findings with the insights derived from the Clu studies, we further

aim to explore how the respective modi operandi translate into toxicity or the alleviation thereof. To

date, the number of studies looking into the influence of Lys on microglia in the context of AD are

very limited. However, a better understanding of the underlying processes that govern Lys and Ab1-

42 SO interaction with respect to microglia will help to shed light on how inflammation contributes

to AD and thereby further facilitate the search for effective interventions.

5.1.1 Experimental setup

In this Chapter, TAMRA-labelled, HiLyte™ Fluor-488 labelled SO, as well as unlabelled Ab1-42 SO

are used to investigate oligomer interactions with microglial cells in the absence and presence of

Lys. As this thesis is largely focused on Ab1-42 interaction with microglia, synthetic Ab rather than

recombinant Abwas used. Recombinant Ab is preferentially expressed in E. coli given the simplicity

of its expression system and availability of well-characterised genomic data, which greatly facilitate

the vector design. However, the outer membrane of E. coli, like that of most Gram-negative bacteria,

contains the potent proinflammatory molecule lipopolysaccharide (LPS) [257]. The removal of endo-

toxins from recombinantly expressed proteins require considerable effort and methodological con-

straints impair endotoxin removal in their entirety posing the risk of trace contamination [258–260].

In order to study the aggregation kinetics of Ab1-42 and accompanying effects of the presence of Lys

as well as Clu, recombinant Ab as opposed to synthetic Ab is used (see Fig. 5.2). These experiments

typically require access to very homogeneous Ab peptides as preformed seeds or small impurities

of synthetic Ab (despite the TFA and HFIP treatments) can have a great impact on the aggregation

behavior [261]. Given the thioflavin T kinetics assay is a cell-free assay, possible endotoxin contam-

ination is of lesser concern in this experiment, which further encouraged the use of recombinant

Ab in this set of experiments. However, the use of two different types of Ab, namely synthetic and

recombinant, need to be considered in the interpretation of results.

As in the previous Chapter, all cell experiments were carried out with the murine microglia cell

line EOC 13.31. Here, a 1:2 Ab1-42 SO-to-Lys molar ratio is used to better reflect the physiological

conditions encountered by SO. Previous studies demonstrated, using electron microscopy, that the
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TAMRA label did not affect oligomer formation, a quality control step that is also employed here

[262]. Upon exposure of the microglial cells to TAMRA-labelled Ab1-42 SO for 1.5 h in serum-free

medium, the cells were washed twice with PBS to remove any unbound constituents. The cells were

subsequently incubated in growth medium for 0.5 h to enable uptake of Ab1-42 SO attached to the

plasma membrane and then washed twice with PBS prior to further analysis.

Based on unpublished studies with SH-SY5Y cells and Ab/Lys, the conditions for cell incubation

were as follows: I) incubation with only labelled SO, II) incubation with a mixture of SO + Lys, and

III) pre-incubation with Lys prior to SO exposure (Fig. 5.1, 2, 3, and 4). An additional co-aggregation

condition was included in some experiments with the aim of investigating whether incubation of

Lys and Ab1-42 during oligomer formation had an effect on cellular interaction [198]. This condition

is referred to as "SO/Lys co-aggregated" hereinafter (Fig. 5.1, 4). Incubation times and Ab-to-Lys

ratio were chosen based on previous work [171, 198].

Figure 5.1: Schematic overview of experimental design. Note: items displayed are not drawn to
scale.

5.2 Ab1-42 aggregation kinetics with different lysozyme concentrations

In order to gain a better understanding of the effect that the biomolecule Lys exerts in the mecha-

nism of co-aggregation, exploratory kinetic assays were performed using the benzathiole dye ThT

that enables the monitoring of Ab aggregation in situ. Here, a well-established kinetics assay using

recombinant Ab1-42 was performed to monitor the effects of Lys [200]. Vassar and Culling were first

to describe the use of ThT as a potent fluorescent marker of amyloid in histology [263]. The quan-

tification of amyloid fibrils in vitro by spectrophotometrically detecting the fluorescence emission of
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ThT was first demonstrated by Naiki et al., who observed linearity between fibril concentration and

emission intensity [264]. Since then, ThT has become one of the most widely used gold standards for

selectively identifying and analysing formation of amyloid fibrils, both in vivo and in vitro [265]. De-

spite its extensive use for over 6 decades, the mechanism by which ThT recognises and binds peptide

self-assemblies remains elusive. Proposed mechanisms are ThT interaction with b-sheet structures,

the formation of ThT micelles binding to the grooves of the twisted protofibrils or fibrils, as well as

a channel within the b-sheets of amyloid fibrils as site where ThT binds with its long axis parallel to

that of the fibrils [266–268].

As previously mentioned, this method was chosen over aggregation assays with the synthetic Ab

as it has been reported that trace contaminants of the synthetic peptides may alter the aggregation

kinetics, despite the TFA and HFIP treatments. Abmonomers were incubated at 37° C in the absence

and presence of Lys at a 2:1, 1:1, 1:2, and 1:5 Ab1-42-to-Lys molar ratio (Fig. 5.2, A). For comparison,

a 10:1 Ab1-42-to-Clu condition was included as a positive control, as it is well known that submolar

ratios of Clu can completely inhibit Ab aggregation over the time scale of these assays (Fig. 5.2,

B) [269]. Addition of the dye ThT enabled the monitoring of the formation of cross-b structured

fibrils as indicated by an increase in fluorescence emission at 480 nm.

Figure 5.2 displays the aggregation profiles of Ab1-42 in the absence and presence of Lys (A) and

Clu (B) over time. The typical sigmoidal shape of the "Ab1-42 only" curve is indicative of an ac-

celerating aggregation reaction, suggesting contribution of secondary processes. The data, albeit

exploratory, indicate that Lys might interfere with Ab1-42 aggregation in a concentration-dependent

manner, however, unlike Clu, Lys is not very effective at submolar ratios and 5-fold molar excess

is needed to completely inhibit aggregation over this time scale. With respect to our SO-interaction

studies, the data suggest that the 1:2 Ab-to-Lys ratio is within the effective range of Lys inhibition.

These observations are in line with previous findings reported by Helmfors et al., whose ThT anal-

ysis showed that the presence of Lys significantly slowed Ab1-42 aggregation kinetics at a 1:1 ratio

between Ab1-42 and Lys, while no change in the ThT signal was detected for lysozyme alone. In her

study, TEM images captured 24 h after aggregation initiation further confirmed fibril formation by

the aggregated Ab1-42 sample, whereas no fibrils were detected for the lysozyme samples [197].
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Figure 5.2: Aggregation kinetics of Ab1-42 monomers with different concentrations of Lys. Ab1-42
(2 µM) was incubated in the absence and presence of Lys at a 2:1, 1:1, 1:2, and 1:5 molar ratio of
Ab1-42-to-Lys as well as a 10:1 submolar ratio of Ab1-42-to-Clu. Graphs I. and II. are derived from n
= 2 independent experiments.

The herein presented results provide preliminary findings on the effect of Lys on Ab aggregation.

While a reduction in ThT fluorescence is often interpreted as an indication of the Ab self-assembly

process, additional repeats as well as control experiments, such as TEM analysis of resulting Ab

species and the quantification of resulting Abmonomers need to be performed in order to be able to

confirm Helmfors’s previous findings and rule out fluorescence self-quenching through binding of

ThT to the amyloid fibrils as reported by Lindberg et al. [270].

5.3 Study of Ab1-42 and Lys interactions

Preliminary findings of the kinetics study along with reported results by Helmfors et al. suggest

that Lys has the ability to inhibit Ab1-42 SO aggregation in a concentration-dependent manner [197].

However, the underlying molecular processes of Ab1-42 SO and Lys interactions and the role that

exposure times play with regards to these interactions are not well understood. The following ex-

periments therefore set out to investigate how the exposure of Ab1-42 SO to Lys affects uptake by

microglia and whether the timing of Lys exposure modifies the microglial response. First, the ques-
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tion whether Ab1-42 and Lys form a complex when administered simultaneously was addressed

experimentally.

In order to answer this question, an immunoprecipitation (IP) technique using a His-tagged anti-

Lys antibody as the bait was chosen. This antibody fragment, cAbHuL-6, has a strong affinity for

human Lys in the native state and it has been used for ELISA pull-down assays for quantifying Lys in

Drosophila lysate [207,271]. Briefly, IP enables the immobilisation of an antibody for a target protein

(in this case, Lys) in a complex. Initially, the anti-Lys antibody cAbHuL-6 was immobilised on a

magnetic Dynabead™ coated with cobalt-based immobilised metal affinity chromatography (IMAC)

chemistry, which selectively binds histidine-tagged proteins (in this case, cAbHuL-6). Lys that had

been pre-incubated with Ab1-42 SO was then applied to the beads and the bound protein was eluted

after several wash steps (Fig. 5.3, A). Next, a Western blot analysis on the eluted protein was carried

out probing for Ab1-42 SO. In theory, a band should only appear in those treatment condition that

included both, Lys and Ab1-42 SO as any non-specific binding would have been removed during the

wash steps (see Fig. 5.3, A). The treatment conditions were the same as outlined in Section 5.1.1 with

an Ab1-42 SO-to-Lys molar ratio of 1:2 and an incubation time of 1.5 h at 37° C (Fig.5.3, H).

Figure 5.3 illustrates the reiteration of the IP assay carried out to optimise protocol parameters. Fig-

ure 5.3, B) shows the initial trial using 10 µM Ab1-42 SO and 20 µM Lys, which resulted in high

background noise and indistinguishable bands. A first attempt to reduce the extent of non-specific

binding/noise was made by exchanging the eluent, SDS loading buffer (LB), for 8 M urea, and by

increasing the Tween® concentration in the wash buffer, which was used for the remaining exper-

iments. Iterations C) and D) investigated whether the temperature (37° C vs RT) during the 1.5 h

incubation of Ab1-42 SO and Lys affected their interactions. No detectable difference was observed

between the two conditions, and hence, the remaining experiment were all conducted at 37° C in

line with the incubation conditions of the other studies. While the use of urea and an increased con-

centration of Tween® in the wash buffer improved the signal quality, the visible bands in the Ab1-42

monomer and SO conditions indicate that the experimental conditions resulted in non-specific bind-

ing of Ab1-42 SO. Reiteration E) therefore aimed to identify an Ab1-42 SO concentration that by itself,

would not result in non-specific binding. At the same time, trial F) was carried out to determine the

minimum detectable Lys concentration that resulted in a clear signal. Here, an anti-Lys primary an-

tibody was used for protein visualisation. The results in Fig. 5.3, E) clearly demonstrate that if the

Ab1-42 SO concentration exceeds 0.5 µM, the SO is sticking to the cAbHuL-6 resin even when Lys

is absent. Lys, on the other hand, showed a concentration-dependent signal, as would have been
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expected (Fig. 5.3, F). However, all concentrations above 1 µM resulted in a lot of background noise.

Given we were able to avoid non-specific binding when using 0.5 µM SO, the complex formation was

investigated at a reduced concentration of 0.5 µM SO and 1 µM Lys (Fig. 5.3, G). Despite the various

protocol adaptations, the non-specific binding of Ab1-42 could not be prevented and the elution of

complexed Ab1-42 and Lys was not successful. The presented results (or the lack thereof) are likely

attributable to experimental challenges due to the stickiness of Ab1-42 rather than a lack of complex

formation. A last attempt was made by using streptavidin-coupled Dynabeads® M-280 and biotiny-

lated anti-Ab antibody kindly provided by Sam Ness (University of Cambridge) as the bait. The

experiment was conducted as outlined before, however, this time, an anti-Lys antibody was used

for primary incubation to detect any Lys that, if in complex with Ab1-42, would have been "pulled

down" by the elution buffer. Because the experiment did not yield any visible bands despite the use

of enhanced chemiluminescence (ECL) Western blot detection methods, data have been omitted.
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Figure 5.3: Western blot analysis of eluates from a series of IP assays testing different incubation
temperatures, elution buffers, as well as Ab1-42 and Lys concentrations. A) Overview of experimen-
tal design; B) 10 µM Ab1-42 at a 1:2 molar Ab1-42-to-Lys ratio eluted with SDS LB and probed with
anti-Ab antibody (W02); C) 10 µM Ab1-42 at a 1:2 molar Ab1-42-to-Lys ratio eluted with 8 M urea at
37° C; D) 10 µM Ab1-42 at a 1:2 molar Ab1-42-to-Lys ratio eluted with 8 M urea at RT; E) Different
concentrations of Ab1-42 only; F) Different concentrations of Lys only probed with an anti-Lys anti-
body; G) 0.5 µM Ab1-42 at 1:2 molar Ab1-42-to-Lys ratio; H) Overview of experimental conditions.
M represents monomeric Ab1-42, (-)CTRL is a buffer control. Panels B, C, D, E, and G were probed
with an anti-Ab primary antibody and Panel F was probed with an anti-Lys primary antibody.
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Even though we were unable to clearly demonstrate the complex formation of Ab1-42 and Lys, afore-

mentioned results point at a protective role of Lys in AD, which is in line with the findings of oth-

ers [171, 195–197]. While most of the earlier studies were either performed in situ or in animal mod-

els, our knowledge of the modifying effect of Lys on the interaction of Ab1-42 and microglia cells

is limited. Given the importance of both, microglial cells and Lys in the innate immune response,

the following set of experiments aims to enhance our understanding of whether and how the pres-

ence of Lys affects Ab1-42 uptake by microglial cells, which could have important implications for

neuroinflammation in AD.

5.4 Assessment of cell fluorescence upon SO and Lys treatment

Similar to the experimental design outlined in Chapter 4, Section 4.2, Ab1-42 SO uptake by microglia

cells was analysed using confocal microscopy. After 2 h of total incubation time (treatment + growth

media), the fluorescence present within the cells was assessed with ImageJ. Using the WGA-stained

cell images, the boundaries of the outer cell membrane were selected based on which the total cell

fluorescence was calculated. The corrected total cell fluorescence (CTCF) as represented by the mean,

is highest in the SO + Lys treatment conditions. The "SO only" and pre-treated conditions display

comparable CTCF, whereas the CTCF of the control conditions (media only, i.e. "NT", and "Lys

only") was significantly lower than that of SO-treated cells. The overall trend is similar to the obser-

vations made in the Clu experiment with simultaneous Ab1-42 SO and Clu exposure resulting in the

highest amount of internalised SO. The effect of simultaneous Lys exposure seen here appears more

pronounced compared to Clu.

79



Figure 5.4: CTCF of EOC 13.31 microglia cells upon different treatments with SO and Lys (A, 1-5), as
well as representative images of microglia cells in the respective treatment conditions (B). EOC 13.31
cells were treated with 0.5 µM TAMRA-labelled Ab1-42 SO (A, 3), SO + Clu (A, 4), Lys only (A, 2)
or media only (NT: A, 1) for 1.5 h, 37° C and subsequently incubated in growth medium for 0.5 h.
Alternatively, cells were pretreated with 1 µM Lys (A, 5) for 0.5 h, 37° C followed by SO for another
1.5 h, 37° C and incubation in growth medium. The cell fluorescence was measured in ImageJ and
compared across cell lines as per the Kruskall-Wallis test followed by Dunn’s Multiple Comparisons
test. Data points in A) represent n � 17 cells pooled from n = 3 independent experiments. The
mean of each group is marked by a black line. The representative images of EOC 13.31 show SO
treatment (red) and Lys (unlabelled). The membrane stain WGA (green) was used to visualise the
cell morphology. Scale bars = 10 µm (inset) or 30 µm. *, P < 0.05; **, P < 0.005; ***, P < 0.0005, ****, P
< 0.00005. Images were contrast-enhanced post-analysis for better visualisation of fluorescence.
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5.5 Morphology study of microglia cells under different SO and Lys treat-

ment conditions

Next, the impact of the presence of Lys on microglia cells was assessed applying the same method-

ology as outlined in Chapter 4, Section 4.4. Confocal microscopy analysis of aforementioned cell

treatment conditions revealed changes in microglia cell morphology. As morphological changes are

related to microglia changing from a resting state to an activated form, a morphological response

to SO and Lys treatments was observed and qualitatively analysed. The percentages of "elongated",

"intermediate", and "rounded" cells as well as their respective average area are shown in Table 5.1.

Representative images of the scored cell shapes are displayed in Fig. 5.5. Elongated cells were charac-

terised by their neurite-like processes typical for non-activated microglia. Round cells with retracted

protrusions represent activated microglia. Cells were defined as indeterminate if they displayed less

pronounced extensions, yet, could not be described as round.

Figure 5.5: Morphological analysis of microglial activation. Microglial activation induces a mor-
phological shift from an elongated to a rounded shape. Representative images of EOC 13.31 cell
morphologies from n � 3 experiments observed upon SO and Lys exposure as indicated by arrow-
heads. Cell membranes were stained with WGA. Scale bars = 30 µm. Images were contrast-enhanced
post-analysis for better visualisation of fluorescence.

Additionally, the average area of the different cell morphologies was analysed with LPS treatment

included as a positive control. As expected, the "Lys only" condition yielded the lowest fraction

of "rounded" (activated) cells, while the "SO only" condition showed the highest. Strikingly, the

simultaneous addition of SO + Lys yielded the highest fraction of "elongated" (resting) cells, even

though this condition was shown to result in the largest amount of internalised Ab1-42 SO (Fig. 5.1).

These results imply that the presence of Lys may facilitate SO internalisation but masks the ability of

the SO to elicit microglial activation.
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Table 5.1: Quanitification of microglial activation upon SO exposure in different treatment condi-
tions. EOC 13.31 cells were treated with SO, SO + Lys, Lys!SO, and LPS for 1.5 h, 37° C followed by
a 30 min incubation in growth medium. Cell morphologies were qualitatively categorised as "elon-
gated", "rounded", or "intermediate". Percentages of total cell counts from n � 3 experiments are
shown here. The average cell area ± SD was measured using ImageJ and compared to the "elon-
gated" group within the same treatment condition applying the Welch’s or one-sample t-test. *, P <
0.05; **, P < 0.005; ***, P < 0.0005.

Cell morphology [%] Area of the cell [µm2]

elongated intermediate rounded elongated intermediate rounded

Treatment [n]

NT [31] 65 19 16 988 ± 302 564 ± 62 612 ± 147*

LPS-treated [28] 50 21 29 1285 ± 388 514 ± 018 934 ± 620**

Lys only [23] 78 18 4 1050 ± 245 393 ± 88 401 ± 0***

SO [78] 50 22 28 925 ± 410 666 ± 301 597 ± 239***

SO+Lys [63] 80 6 14 1027 ± 389 531 ± 81 606 ± 336**

Lys!SO [46] 61 22 17 944 ± 438 745 ± 355 507 ± 98***

5.6 Study of the effect of Lys on SO-microglia interactions with selected

receptor inhibition

As indicated by the previous experiments, Lys likely slows down and may even prevent Ab1-42

aggregation (see Fig.5.2), while it can also reduce microglia activation (see Fig. 5.5 and Table 5.1).

Interestingly, the simultaneous addition of Lys and SO resulted in increased internalisation by mi-

croglia, while pre-incubation with Lys showed the same amount of internalisation as "SO only" but

yielded less microglial activation according to the morphology data (28 % vs. 17 % of rounded cells).

It is possible that the interaction of SO and Lys triggers a different, less damaging, route of inter-

nalisation. Using flow cytometry and selected receptor inhibitors, the following experiment aims

to further investigate the interaction of SO with microglial cells at the membrane level. The treat-

ment conditions for TAMRA-labelled SO remained the same as described in Section 5.1.1. Briefly,

microglial cells were incubated with SO, SO + Lys, or pre-incubated with Lys for 0.5 h followed by

1.5 h incubation with SO. Upon treatment, the cells were incubated in growth medium for 0.5 h to

remove non-specific binding. A "Lys only" and a "medium" condition were included as negative

controls. Additionally, the effects of pre-incubation (0.5 h) with the receptor inhibitors LRPAP and

Fucoidan were assessed.
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LRPAP (LDL receptor-related protein-associated protein 1, also named RAP) is a ubiquitously ex-

pressed chaperone for LDL receptor family proteins. In the cell, LRPAP resides in the endoplasmic

reticulum (ER), where it binds lipoprotein receptor-related protein 1 (LRP1). Together, they traffic

to the Golgi apparatus, whose acidic environment causes dissociation of the complex [158]. When

applied exogenously, LRPAP competitively inhibits LDL receptor family binding [272]. It binds to

LRP1 on the cell surface, where it gets endocytosed and trafficked to the acidic endosome. Here,

LRPAP and LRP1 dissociate and LRP1 recycles back to the cell surface [273]. LRP1 serves as a mul-

tifunctional receptor that controls the endocytosis of a variety of ligands, including Ab, influences

signaling pathways, and regulates gene expression through its intracellular domain [274]. Shibata et

al. moreover reported that Ab1-40 clearance was substantially inhibited by antibodies against LRP1

as demonstrated after intracerebral microinjections of Ab1-40 in young mice [275].

Fucoidan is a bio-functional, sulfated polysaccharide extracted from marine sources like sea cucum-

bers and brown algea. Fucoidan has been the focus of many studies that revealed its anti-oxidant,

anti-inflammatory, anti-tumor, anti-viral, and anti-coagulant properties [276–281]. Using a BV2 mi-

croglial cell model, Park and colleagues showed that Fucoidan was able to reduce the LPS-induced

pro-inflammatory response of this cell line [282]. In the context of AD, Jhamandas et al. demon-

strated that Fucoidan pretreatment of rat primary cultures exposed to Ab1-42 resulted in an im-

provement of neuronal survival of cholinergic basal forebrain neurons and that Fucoidan did not

interfere with Ab1-42 aggregation [283]. In this experiment, both, LRPAP and Fucoidan, were in-

cluded in order to investigate targeted receptor inhibition (LRPAP for LRP1 inhibition) and broader

anti-inflammatory effects (Fucoidan as an inhibitor with broad effects).

The flow cytometry analysis revealed that monomeric Ab1-42 displays the highest amount of as-

sociation with microglial cells, followed by SO, then SO + Lys. The increased fluorescence in the

monomeric condition may be explained by a rapid cellular uptake of Ab1-42 monomers via endocy-

tosis during the initial incubation, as was previously observed by Esbjoerner and colleagues [284].

Pre-incubation of microglia with Lys resulted in even less association and the least amount of cell-

associated fluorescence was measured in the co-aggregation condition. These results are interesting

as they are in contrast to the results of the SO internalisation study, where the highest amount of

SO-associated fluorescence was measured in the SO + Lys condition, while pre-treatment of the cells

with Lys did not reduce SO internalisation (see Fig. 5.4). As highlighted in Chapter 4, the confocal

experiments were designed to measure the fluorescence of internalised SO, while flow cytometry

does not distinguish between cell-associated and internalised SO. The fact that we observe different
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trends in these two experiments implies that Lys might influence SO internalisation at the level of cell

membrane interaction between SO and the microglia. It appears to alter cellular uptake by enhanc-

ing SO internalisation, especially when administered simultaneously with SO (SO + Lys yielded the

third highest amount of cell-associated fluorescence, while this condition showed the highest degree

of internalisation, as seen in Fig. 5.4, A) 3). SO, on the contrary, readily associates with the cells but

it does not get internalised as rapidly as shown in the internalisation study (see Fig. 5.4, A) 2). While

the pretreatment of microglia with Lys seems to overall prevent SO association with the cells as indi-

cated by the low signal in the flow cytometry study, the reduced number of microglia-associated SO

appear to get internalised more efficiently than SO (as indicated by comparable levels of internalised

SO in the "SO only" and the Lys-pretreatment conditions, see Fig. 5.4, A) 2 and 4.

Figure 5.6: Flow cytometry analysis of microglial cells exposed to TAMRA-labelled SO in the absence
and presence of Lys. The error bars represent the SD of n = 3 independent experiments. A Kruskal-
Wallis test was performed, however, no statistically significant difference was detected.

The same experiment was carried out using inhibitors LRPAP and Fucoidan to determine whether

LRP1 is involved in the uptake and to understand whether the different treatment conditions affect

the route of internalisation, in which case we would expect to see a difference in the fluorescence pat-

tern that we previously observed in our control experiment (see Fig. 5.7, A). The results are shown

as percentages of the "CTRL" group (i.e. without inhibitor) of the respective treatment conditions.

LRP1 inhibition yielded a slight increase in SO association with microglial cells across almost all

conditions, while "Lys only" and pretreatment with Lys resulted in no change and a slight decrease,

respectively. However, only the increase of microglial association with co-aggregated SO + Lys was

84



statistically significant. The treatment with Fucoidan, on the contrary, resulted in an overall reduc-

tion of SO association with microglia across all treatment conditions, with the SO + Lys condition as

well as the co-aggregated SO + Lys condition showing statistical significance. Given that we aimed

to understand early events of the interactions between microglia and SO, the same experiment was

performed with a reduced (0.5 h) incubation time (see Fig. 5.7, B). LRP1 inhibition resulted in a sta-

tistically increased fluorescence in the SO + Lys condition as well as the co-aggregated SO + Lys con-

dition. Incubation with fucoidan, again, resulted in a reduced fluorescent signal across all treatment

groups, which was statistically significant in the SO, Ab monomer, Lys then SO, and co-aggregated

SO + Lys groups. The fact that LRP1 inhibition with LRPAP results in a significant increase in cell-

association of co-aggregated SO + Lys reinforces our hypothesis that co-aggregation might yield a

different Ab1-42 species, which leads to a different mode of internalisation. An increase in associ-

ation when LRP1 is inhibited might be attributable to receptor binding but blocked endocytosis of

the receptor-ligand complex. However, at this point the available experimental data do not allow

to draw sound conclusions. Fucoidan reduces the association of microglia and SO, which might be

due to both, reduced binding and uptake to the cell. To further determine whether the observed

interactions between SO and microglia are receptor-dependent, the same, short incubation (0.5 h)

experiment was performed at 4° C with the rationale of slowing uptake and therefore only focus on

cell surface interactions (see Fig. 5.7, C). Fucoidan appeared to have the same reducing effect on SO

association with microglia as before, while the statistical significance is more pronounced in the SO

and Lys pretreatment conditions. Overall, this trend suggests that Fucoidan exerts its reducing effect

at the membrane level, possibly by preventing binding of the oligomers rather than at the receptor

level. Noteworthy here is the reduction of SO association with microglia in the co-aggregated condi-

tion, which suggests that co-aggregated SO + Lys interacts with the LRP1 receptor at the membrane

level, however, the underlying mechanisms need to be further explored.
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Figure 5.7: Flow cytometry analysis of microglial cells exposed to TAMRA-labelled SO in the absence
and presence of Lys and the receptor inhibitors LRPAP (grey) and Fucoidan (yellow). Cells were
incubated with the receptor inhibitors for 0.5 h prior to the respective SO treatment condition. The
measured fluorescence is expressed as the percentage of the CTRL (red) condition. The experiment
was carried out after 1.5 h incubation with the respective SO treatment (A), after 0.5 h incubation (B),
and after 0.5 h incubation 4° C. The error bars represent the SD of n � 2 independent experiments.
Multiple t-tests were performed to compare the inhibitor effects to the CTRL group of respective
treatment conditions, where *, P < 0.05; **, P < 0.005; ***, P < 0.0005.

5.7 Study of the impact of Lys on SO-membrane interactions

As mentioned previously, flow cytometry does not distinguish between cell-associated and inter-

nalised SO, however, given that we observe different trends in the flow cytometry study compared

to the confocal microscopy study, Lys might influence SO internalisation at the level of cell membrane
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interaction between SO and the microglial cells. While a large body of evidence in the literature sug-

gests that endocytosis is critical in mediating Ab1-42 toxicity, other studies also implicate that cellular

toxicity of Ab1-42 SO is partly attributable to their capacity to disrupt cellular membranes, thereby

increasing membrane permeability [127, 132, 255, 285]. More specifically. it has been shown that Ab

can associate to the plasma membrane and induce the formation of pores, similar to pore-forming

toxins, upon interaction with membrane lipids like GM1 and cholesterol. This results in increased

permeability enabling the influx of small ions and larger molecules, which in return, may lead to an

increase in intracellular Ca2+ concentration causing alterations in ionic homeostasis and ultimately

cell death [286–288].

We therefore next investigated whether our chosen experimental SO conditions induce membrane

permeabilisation and further elucidate whether Lys can modify Ab1-42 SO membrane interaction,

potentially underlining its previously observed cytoprotective effect. By using a membrane disrup-

tion assay, the responses to Ab1-42 exposure can be investigated independent of possible receptor

interactions. Furthermore, by reducing the number and complexity of different events, we aimed to

provide additional insights on microscopic events that contribute to Ab1-42 SO toxicity. Moreover,

the experimental design allows to investigate the effects of Ab1-42 SO at picomolar concentrations,

which compares to the concentration of oligomers reported in human CSF [289].

In this experiment, membrane disruption was measured according to a protocol developed by Flag-

meier et al. [208]. Briefly, membrane disruption was determined by Ca2+ entry into immobilised,

nanosized vesicles filled with the calcium-sensitive dye Cal-520. Membrane disruption resulted in

different extents of dye leakage allowing the binding of Ca2+ ions within the external media that, in

return, induced an increase in fluorescence. We captured images of hundreds of individual vesicles

per field of view via total internal reflection fluorescence microscopy (TIRFM) allowing the quan-

tification of the change in fluorescence. Measured fluorescence was normalised to the Ca2+ influx

upon addition of ionomycin. To assess the effect of Lys on Ca2+ influx, solutions containing 10 nM

Ab1-42 SO alone (Ab SO), Ab SO + Lys at molar ratios of 100:1, 10:1, 5:1, 1:1, and 1:10 (Ab1-42-to-

Lys) as well as Lys alone were added. Lys significantly reduced the membrane permeating effects

of Ab1-42 SO and the reduction of Ca2+ influx occurred in a concentration-dependent manner by as

much as 87 % (Fig. 5.8, Ab1-42 SO + Lys 1:10). At this ratio, the extent of Ca2+ influx was as low as

that observed in the "Lys only" condition. Additionally, Ab1-42 SO and Lys were co-aggregated at a

ratio of 1:2, which significantly reduced the effect of Ab1-42 SO on membrane disruption, however,

the effect was less pronounced than Lys addition after Ab1-42 oligomer formation. In this condition,
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it is likely that the formation of oligomers in the presence of Lys result in a different morphology

which may contribute to the change in membrane disruption capability. Moreover, the effect of the

extracellular chaperone Clu on membrane permeation was tested and served as a positive control.

Clu has repeatedly been reported to bind Ab aggregates and it was previously shown to reduce Ca2+

influx into vesicles [208]. Here, a significant reduction in Ca2+ influx by as much as 88 % compared

to Ab1-42 SO was observed. We observed that Clu is a more potent inhibitor showing a comparable

effect to the "SO + Lys 1:10" condition, however, at a much lower concentration.

Figure 5.8: Study of the effect of different Lys concentrations as well as the chaperone Clu on Ab1-42
SO induced Ca2+ influx. Error bars represent the SD of n = 3 independent experiments. All conditions
were compared to Ab SO using an ordinary one-way ANOVA with multiple comparisons, where ****,
P < 0.00005.
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5.8 Summary and discussion

The work in this Chapter investigated whether Lys could modify the toxic effect of Ab1-42 on mi-

croglial cells by exploring the uptake and trafficking of Ab1-42 SO in different Lys treatment condi-

tions (simultaneous administration, pre-incubation with Lys, and co-aggregation of SO + Lys). Prior

to exploring the effects of Lys in the cellular environment, it was investigated whether the Ab1-42 SO-

to-Lys molar ratio of 1:2 was within the effective range of Lys inhibition. Assuming that the reduction

in ThT fluorescence is an indication of the inhibition of the macromolecular Ab self-assembly process,

preliminary results of the aggregation kinetics of Ab1-42 in the presence of Lys suggest that Lys can

extend the lag phase in a concentration-dependent manner and that a 1:2 molar ratio of recombinant

Ab1-42-to-Lys was sufficient to show an inhibitory effect (see Fig. 5.2). These observations are in line

with previous findings reported by Luo et al., who showed that human lysozyme prevents Ab pep-

tide aggregation using ThT fluorescence assays and AFM imaging, combined with secondary struc-

ture characterisation by circular dichroism (CD) and NMR spectroscopy [171]. Molecular dynamics

studies have moreover suggested a potential molecular interaction mechanism between lysozyme

and the monomeric Ab peptide [171]. The herein presented results provide preliminary findings on

the effect of Lys on Ab aggregation. While a reduction in ThT fluorescence is commonly interpreted

as an indication for the Ab self-assembly process, additional repeats as well as control experiments,

such as TEM analysis of resulting Ab species and the quantification of resulting Abmonomers need

to be performed in order to rule out fluorescence self-quenching through binding of ThT to the amy-

loid fibrils.

A pull-down assay was performed to further investigate the interaction of SO and Lys with the aim

of demonstrating complex formation (see Fig. 5.3). The assay showed a lot of "false positive" signals,

which were likely caused by non-specific binding of the Ab1-42 to the cAbHuL-6 capture antibody

or the Dynabeads® themselves. To overcome this problem, alternative assays would need to be ex-

plored. Kumita et al., for instance, used an ELISA based pull-down assay to detect clusterin-substrate

complexes formed during aggregation, and this could be applied in the future for the Ab-Lys com-

plexes [290]. Alternatively, a proximity ligation assay or DNA-PAINT may be more suited for the

investigation of complex formation. It has been previously reported, based on molecular docking

simulations, that the N-terminus of Ab1-40 binds to the active site of Lys; however, preliminary

studies in our group did not show interactions between monomeric Ab1-42 and WT Lys using 2D

NMR techniques (personal communication, Dr. Minkoo Ahn), nor was Ab1-42 able to inhibit Lys ac-
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tivity (personal communication with Dr. Janet Kumita). Data on complex formation between Ab1-42

and Lys therefore remain inconclusive and require further investigation.

While complex formation could not be shown here, the previous results taken together with previous

findings hint at a sub-optimal experimental design rather than a lack of interaction between Ab1-42

and Lys. Additional methods, such as a co-localisation study of fluorescently labelled SO and Lys,

similar to the Clu study presented in Chapter 4, will need to be employed in order to further explore

how and when SO and Lys interact. However, given the observed ThT fluorescence reduction during

Ab1-42 aggregation in the presence of Lys along with promising data from the literature, we carried

on with our experimental conditions. The confocal microscopy study showed an increase in internal-

isation when SO and Lys were administered simultaneously. Confocal microscopy was the chosen

method here due to its ability to obtain high-resolution images with all areas in focus throughout the

field of view. It therefore enabled the detection and quantification of internalised SO. The observed

trends across the different treatment conditions were similar to the effect that was seen when cells

were treated with Clu. Strikingly, the increased uptake of SO + Lys was accompanied by the highest

amount of elongated (resting) microglia (80 %). SO treatment and Lys pretreated cells showed the

same amount of SO internalisation, while the concomitant microglial morphology suggested 11 %

more activation (see Table 5.1). These findings suggest that the presence of Lys does not prevent

SO internalisation per se but it may somehow reduce its activating (and potentially toxic) effects on

microglial cells.

The results of the flow cytometry studies further suggest that Lys influences SO internalisation at the

level of cell membrane interactions between SO and the microglia. SO showed the highest degree

of membrane association in the flow study, while the confocal microscopy experiment indicated that

the presence of Lys enhanced their internalisation. An enhancing effect on SO internalisation is also

likely when the cells are pretreated with Lys as suggested by a relatively low degree of microglial

association seen in the flow study and a comparatively high degree of internalisation in the confocal

microscopy study (when compared to the "SO only" treatment condition). Interestingly, Fucoidan

showed a significant reduction in SO-microglia association across all treatment conditions and irre-

spective of the presence of Lys. This effect was more pronounced at shorter incubation times and

given the little effect that the reduction of temperature had on these results, it appears that the ef-

fect may have been receptor-independent. It would be interesting to further investigate whether the

presence of Fucoidan prevents SO internalisation altogether, for example by confocal microscopy as

was done with Lys and Clu. It is possible that during the longer incubation time of 1.5 h at 37° C,
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the SO continue to aggregate and that the conformational change impacts the interaction with the

membrane. Fucoidan has been shown to alter the properties of cell surfaces in the context of anti-

viral studies, however, the underlying molecular mechanisms are not clear [291]. A similar effect

on microglial cell membranes could explain the results observed here, however, these are merely

speculations. Moreover, Fucoidan has been shown to inhibit nitric oxide (NO) synthesis in cells by

down-regulating the expression of iNOS along with pro-inflammatory cytokines (TNFa, IL-6, IL-

1b) [292]. While these results do not offer a direct explanation for the findings presented here, they

can guide the direction for future experiments that would provide a better understanding of the

downstream effects of SO, Lys, and Fucoidan in microglial cells.

The membrane permeabilisation assay provided further insights into the effects of Lys on Ab SO

at the membrane level. Here, we were able to show that synthetic Ab1-42 SO can induce ion-

permeable pores in synthetic membranes. The presence of Lys reduced membrane disruption in

a concentration-dependent manner, though its effect was less potent than that observed for Clu.

Given Clu is a chaperone with a high binding affinity for Ab1-42, these findings do not come as a

surprise [169]. When Ab1-42 was co-aggregated with Lys, its ability to prevent membrane disruption

was less potent. This was further indication that co-aggregation might result in a different species

than addition of Lys post-oligomerisation of Ab1-42. A recent study suggests that Ab oligomers

extract lipids from membranes, which causes membrane deformation and ultimately, membrane

destabilization [293]. Future work could further investigate whether this study can be replicated

with the Ab1-42 SO used here and how Lys effects lipid extraction from membranes. While the

experimental design allowed to investigate Ab 1-42 SO-membrane interaction at physiologically rel-

evant concentrations, the impact of SO requires additional investigation in the cellular context. Here,

we used synthetic vesicles to demonstrate membrane permeabilisation, whereby we do not control

for potential intracellular effects that may counteract membrane disruption.

Taken together, the results suggest that Lys may prevent Ab1-42 aggregation and exert a protective

effect on SO membrane interaction. The simultaneous administration seems to enhance SO uptake,

without inducing microglial activation. Within the scope of our experiments, we observed an overall

protective effect of Lys on the interactions between SO and microglia, which appears to take place at

the membrane level. The search for receptor involvement in this process has not been exhaustive and

could provide a molecular explanation for the observed processes. We acknowledge that the herein

presented experiments partially involve different types of Ab SO (recombinant Ab for the kinetics

assay and synthetic Ab for the other experiments), the impact of which requires further exploration.
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Moreover, some reultst are preliminary and provide guidance for follow-up studies to fully elucidate

the effect of Lys on Ab interaction with microglia cells.
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6

DISCUSSION AND FUTURE WORK

6.1 Discussion

Over a century after its first mention in the scientific literature, AD remains one of the most promi-

nent of the protein misfolding diseases. Despite extensive research over those years, the cause of the

disease is still an enigma and remains a subject of controversy. The last decades have seen signifi-

cant advances in our understanding of disease pathology adding the topic of neuroinflammation to

the discussions around the Ab and tau hypotheses. The once opposing schools of thought are now

shaking hands and with united efforts, the search for effective treatments continues.

While the research focus has shifted to SO as the main toxic species in AD progression, the het-

erogeneity of aggregate morphology significantly contributes to the difficulty of studying how the

pathogenic aggregates confer cellular dysfunction. Since the first description of the generation of

ADDLs in the literature, many modifications have been made that improved our understanding of

their characteristics as well as their physiological effects. Based on this knowledge, this thesis ex-

plored the internalisation of Ab1-42 SO by a microglia cell line (EOC 13.31) in the absence and pres-

ence of the naturally occurring extracellular biomolecules, Clu and Lys, with the following aims: I)

to validate SO formation of synthetic Ab1-42, both, unlabelled as well as labelled with the dyes Hi-

Lyte™ Fluor-488 and TAMRA using different biophysical and biochemical techniques (Chapter 3),

II) to investigate how the extracellular chaperone Clu alters the early events of uptake and trafficking

of HiLyte™ Fluor-488-labelled Ab1-42 SO by EOC 13.31 microglial cells, including studying morpho-

logical changes and microglial activation, along with pro-inflammatory cytokine release (Chapter 4),

and III) to investigate the effect of the biomolecule Lys on the interactions of TAMRA-labelled Ab1-42

and EOC 13.31 microglial cells (Chapter 5).

Findings and observations made throughout this thesis are summarized below, while it is stressed
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that these observations have been made within the constraints of the experimental protocols used

herein. Specifically, findings are limited to the study of synthetic Ab1-42 (with the exception of the

kinetics study, where recombinant Ab was used). Moreover, observed interactions of Ab1-42 SO

and microglia are limited to EOC13.31 cells, while the interaction with other microglial cell lines is

subject to further investigation. Experiments were moreover conducted under the assumption that

labelled Ab1-42 behaves similarly to unlabelled Ab1-42 and that the impact of fluorophore molecular

structures on Ab assembly and function are negligible. Observations outlined below were made

within 30 minutes of SO exposure to cells, which provides a snapshot of early events that occur

upon Ab1-42 exposure to EOC 13.31 microglia cells.

Within the scope of the experiments conducted within this thesis, the following observations were

made:

1) Both, Clu and Lys appeared to increase SO internalisation by microglia when administered simul-

taneously.

2) Both, Clu and Lys may reduce Ab1-42 SO toxicity, while Clu appears to be more potent in vitro.

3) Increased SO internalisation in the presence of Clu may contribute to microglial activation as in-

dicated by a change in morphology, which was less pronounced in the presence of Lys.

4) Co-aggregation of Lys and SO may result in a new species with potentially different interaction

patterns when exposed to EOC 13.31 microglia compared to Ab1-42 SO.

5) Fucoidan appeared to reduce the association of SO with EOC 13.31, independent from the pres-

ence of Lys.

These findings are discussed in more detail below and their implications in the broader context of

AD are highlighted.

Given experimental conditions, it was shown that EOC 13.31 microglial cells internalised Ab1-42

SO and that this process was influenced by Clu, which significantly increased SO internalisation

when administered simultaneously with SO. Simultaneous exposure of SO + Clu moreover resulted

in a morphological shift from elongated cells to a rounded shape. which likely indicates microglial

activation. The morphological features of the microglial cells upon activation are congruent with

previous reports of microglial morphology in resting and activated states [236]. This activation,

which appeared more pronounced when SO + Clu were administered simultaneously compared to

pretreatment of Clu or SO alone may be due to increased SO internalisation as was observed in the

confocal microscopy analysis. As the scoring of microglial morphology was done qualitatively, the

assessment of the data was not fully objective. However, the quantitative assessment of microglial
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activation continues to be a scientific challenge given there are no morphological classification stan-

dards to date [146, 147]. In order to improve the assessment methodology and reduce the potential

risk of bias in the present study, the cell morphology could additionally be scored by colleagues

in order to calculate the representative mean of these assessments and provide an indication of the

standard deviation.

It was further observed that, in situ, Clu is a potent inhibitor of synthetic membrane disruption by

SO. Based on these findings it may be hypothesised that the interaction of SO + Clu could poten-

tially modify the mode of internalisation of SO by EOC 13.31 cells, leading to more efficient, and

less damaging, internalisation as partly suggested by the confocal studies. At the membrane level,

our findings imply a protective role of Clu, which is interesting in the light of the present contro-

versy as to whether Clu is predominantly neuroprotective or exacerbates SO toxicity [215, 223–226].

Importantly, the membrane disruption assay used herein was performed at physiologically relevant

concentrations, which is a recurring point of criticism for cellular studies, which may inadequately

mimic the in vivo events. One major limitation of the use of synthetic membranes, however, is the

simplification of complex biological systems. Here, we do not control for potential intracellular ef-

fects that may counteract membrane disruption. The impact of SO therefore requires additional

investigation in the cellular context to provide further insights.

The colocalisation studies indicated that, in the presence of Clu, SO show greater colocalisation with

lysotracker, while SO also appear to colocalise with Cathepsin D when SO + Clu are administered

simultaneously. The overall weak colocalisation with LAMP1 may be due to the time point of 30

minutes chosen for our investigation. It is possible that Ab1-42 SO and Clu form a complex when

administered simultaneously, thereby facilitating its uptake and further processing by microglial

cells. Here, it is noteworthy that the present study only provides a snapshot of the early events

of SO and microglia encounter. In order to thoroughly assess the trafficking of SO, a time-course

experiment over a few hours or real-time imaging would provide a more thorough investigation.

Our exploratory study of the presence of Clu on microglial TNFa release suggested a reduced pro-

inflmmatory response, which would ascribe Clu a protective role in AD. However, the measured

TNFa release was lower than expected based on a literature review, while we also acknowledge that

a direct comparison is difficult due to a wide array of different experimental designs ranging from

the chosen cell model, over the concentration of the activating stimulus, to incubation times, and

the ELISA kit used. Despite doubling the Ab1-42 SO concentration and testing different collection

times of the cell medium, the TNFa release could not be increased and the attempt to test for other
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the ELISA kit used. Despite doubling the Ab1-42 SO concentration and testing different collection

times of the cell medium, the TNFa release could not be increased and the attempt to test for other

pro- as well as an anti-inflammatory cytokines remained unsuccessful. A possible explanation for the

discrepancy in our results to those of others may be attributable to the significantly longer incubation

times used in those experiments (up to 48 h, whereas we exposed cells to SO for only 0.5 h) along with

higher Abconcentration (up to 20 µM). A longer incubation time is likely to provide an environment

for continued aggregation of Ab1-42 SO that could result in different species, such as fibrils, which

are not the focus of this study. Further exploration of the stimulation of cytokine release by SO

should therefore be continued at the transcription level. The exploratory qPCR experiment showed

a measurable effect on EOC 13.31 TNFamRNA levels, however, these findings need to be confirmed

with SO at different concentrations and incubation times.

In recent years, new links between endogenous proteins of the immune system, such as Lys, and Ab

have been made. An unpublished study by Sandin et al. showed that the uptake of TAMRA-labelled

Ab1-42 by SH-SY5Y cells was significantly reduced with the highest degree of reduction measured at

a 1:2 Ab1-42-to-Lys molar ratio [198]. These findings, as well as earlier reports suggesting a protec-

tive role of Lys in various AD models provided the foundation for the experimental design outlined

in Chapter 5 [196, 197, 256]. Our preliminary studies of the aggregation kinetics of Ab1-42 in the

presence of Lys suggest that Lys can extend the lag phase in a concentration-dependent manner,

assuming that the reduction in ThT fluorescence is an indication of the inhibition of the macromolec-

ular Ab self-assembly process in line with previous findings reported by Luo et al. [171]. However,

additional repeats as well as control experiments, such as TEM analysis of resulting Ab species and

the quantification of resulting Ab monomers need to be performed in order to ensure that fluores-

cence self-quenching through binding of ThT to the amyloid fibrils do not contribute to the observed

effect.

In the presence of Lys, our confocal microscopy analysis suggests that microglial cells may inter-

nalise a larger amount of SO, which also appeared to be the case when Clu was present. This ef-

fect, however, was only observed when Lys and SO were administered simultaneously, which could

point at the necessity of spatial and temporal proximity as determining factors for their interaction

and the herein observed effects. Our attempt to investigate the complex formation of Lys and SO

in different treatment conditions was hampered by challenges that likely arose from the chosen ex-

perimental method, namely an immunoprecipitation assay. The sticky nature of Ab1-42 may have

been the underlying cause of non-specific binding, however, requires further investigation. Based on

96



our previously optimised protocols, a colocalisation study with fluorescently labelled Lys as well as

Ab1-42 SO could provide additional insights into their interaction patterns. Strikingly, the increased

amount of internalised SO elicited contrasting microglial responses: while the presence of Clu ap-

peared to induce microglial activation, Lys seemed to mask the activating effect of SO as indicated

by a higher percentage of resting cells. Being highly glycosylated, Clu has been shown to interact

with microglial receptors, such as TREM2. This interaction can increase the uptake of Ab by mi-

croglial cells and could provide a route of internalisation of the SO + Clu complex observed in this

study [177, 250]. TREM2 therefore presents an interesting inhibition target for further investigation

into SO internalisation. Moreover, we are comparing different incubation times here (0.5 h for Clu

vs. 1.5 h for Lys). It is possible that the extended incubation with Lys results in a different, less toxic,

Ab1-42 species, which might also contribute to the reduced microglial activation.

Lastly, the flow cytometry studies provide additonal insights into the effect of Lys on SO internalisa-

tion at the level of cell membrane interactions between SO and EOC 13.31 microglia. The reduction

in SO-microglia association across all treatment conditions induced by Fucoidan, both at longer and

shorter incubation times and at reduced temperature, implies that the effect of Lys on SO membrane

interaction may, at least in part, be receptor-independent. Fucoidan has been previously shown to

alter the properties of cell surfaces in the context of anti-viral studies although the underlying molec-

ular mechanisms are unknown [291]. A similar effect on microglial cell membranes could explain

the results observed here. However, further studies are needed to draw meaningful conclusions. It

should also be noted that the inhibitory properties of Fucoidan are broad, which means that with

our current knowledge, we cannot pinpoint specific underlying mechanisms for the observed re-

sults. Additional receptor inhibitors should therefore be tested in order to further explore the effects

of Lys on SO.

Taken together, the experimental data within this thesis suggest that Lys may counteract Ab1-42 ag-

gregation and potentially exerts a protective effect on synthetic Ab1-42 SO membrane interactions.

The simultaneous administration seems to enhance SO uptake, without inducing microglial acti-

vation. Lys has shown an overall protective effect on the interactions between SO and microglia,

which appear to take place at the membrane level. The search for receptor involvement in this pro-

cess has not been exhaustive. However, the results in this thesis have demonstrated how different

biomolecules can alter Ab1-42 SO internalisation by EOC 13.31 microglia cells and thereby poten-

tially reduce SO toxicity. Our results further suggest that the underlying molecular mechanisms of

these interactions differ between the chaperone Clu and the biomolecule Lys, while additional ex-
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periments are needed in order to validate these observations. In the next Section, future steps are

discussed that could address limitations, provide additional context to these findings and ultimately,

contribute to the broader understanding of the interplay between Ab1-42 SO, neuroinflammation,

and the role of protecitve innate biomolecules.

6.2 Future work

This study offers informative insights into the interplay of Ab1-42 SO, microglial cells and their

pro-inflammatory response, as well as the largely protective effects of chaperones and proteins of

the innate immune system. The findings presented herein therefore provide an impetus to further

explore the underlying molecular mechanisms of our observations. We already touched upon some

of the shorter term experiments that could improve our understanding, such as developing a less

subjective scoring method of microglial morphology, investigating the effect of additional receptor

inhibitors on Ab1-42 SO internalisation, optimising the qPCR method for evaluation of microglial

cytokine release, and performing a colocalisation study of labelled Ab1-42 SO and Lys to further

investigate their mode of interaction.

More broadly, there are four main areas that would provide valuable insights into the underlying

mechanisms of our observations, namely a study of the interaction of Lys and Ab1-42 SO over longer

periods of time, a study of the molecular events of Ab1-42 SO and microglia at the membrane level,

and a comprehensive study of the downstream processes of Ab1-42 SO and microglia, both, in terms

of intracellular trafficking as well as at the transcription level. Here, we provide snapshots of events

taking place after 0.5 h and 1.5 h incubation, respectively. It is likely that longer incubation times

lead to different Ab1-42 species. A systematic study of Ab1-42 morphology in our treatment con-

ditions could provide a possible explanation for the Ab1-42 membrane interactions described here.

Moreover, it would be insightful to explore the interactions between Lys and microglial cells in nor-

mal, "non-disease" conditions to compare to the effects of Ab1-42 SO exposure. Moreover, real-time

imaging studies would be well-suited to track the internalised Ab1-42 SO to determine whether the

presence of Clu and Lys influence their intracellular trafficking. While our initial studies did not re-

veal any visible effects of Clu on Ab1-42 SO trafficking, different time points along the journey need

to be assessed. Finally, the use of Fucoidan has hinted at the effects of Ab1-42, Clu, and Lys on the

downstream processes that result from their microglial interactions. However, at this point we lack

the molecular information to draw conclusions from our observations. For instance, Fucoidan has

been shown to inhibit NO synthesis in cells by down-regulating the expression of iNOS along with
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pro-inflammatory cytokines (TNFa, IL-6, and IL-1b) [292]. Selective assessment of the underlying

pathways could provide an explanation for our findings at the transcription level. Taken together

with our findings, these approaches would provide a well-rounded assessment of the influence of

Clu and Lys on microglial internalisation and trafficking of Ab1-42 SO.
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