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Magnetic and superconducting phase diagrams and transition
temperatures predicted using text mining and machine learning
Callum J. Court1 and Jacqueline M. Cole 1,2,3,4✉

Predicting the properties of materials prior to their synthesis is of great importance in materials science. Magnetic and
superconducting materials exhibit a number of unique properties that make them useful in a wide variety of applications, including
solid oxide fuel cells, solid-state refrigerants, photon detectors and metrology devices. In all these applications, phase transitions
play an important role in determining the feasibility of the materials in question. Here, we present a pipeline for fully integrating
data extracted from the scientific literature into machine-learning tools for property prediction and materials discovery. Using
advanced natural language processing (NLP) and machine-learning techniques, we successfully reconstruct the phase diagrams of
well-known magnetic and superconducting compounds, and demonstrate that it is possible to predict the phase-transition
temperatures of compounds not present in the database. We provide the tool as an online open-source platform, forming the basis
for further research into magnetic and superconducting materials discovery for potential device applications.
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INTRODUCTION
Experimentally driven materials discovery is costly, inefficient and
largely reliant on scientific intuition1,2. Materials informatics is an
emerging field of research that aims to enhance this materials
discovery process through computational methods. Although still
developing, materials informatics has demonstrated the effective-
ness of machine learning for property prediction and materials
discovery2–6. Spearheaded by the Materials Genome Initiative7, a
variety of big-data projects have since emerged. By far, the
majority of such projects are high-throughput computational
methods; examples include the Harvard Clean Energy Project8 and
the Materials Project9, focussed on the discovery of photovoltaic
and battery materials, respectively. Although computationally
expensive, these approaches present significant savings in time
and cost compared with experimentally driven research, thereby
decreasing the timeline of materials discovery from decades to
months. High-throughput projects that integrate computational
and experimental data are rare, but afford actual materials
discovery where they do exist10.
Despite the rapid increase in the use of machine learning for

materials discovery over the last decade, relatively little has been
reported for the prediction of properties of inorganic compounds
that exhibit magnetism and superconductivity. Some recent work
has used machine learning to investigate inorganic materials and
properties, such as the ferroelectric Curie points in perovskites11,
superconducting critical temperatures in cuprates12, bandgaps in
double perovskites13 and thermal hysteresis and glass-forming
abilities in alloys6. Across the experimental and computational
spectrum, a great deal of attention has been paid to the
identification of previously unobserved structure–property rela-
tionships. However, the relationships between bulk properties,
materials composition and structure are non-linear, and the
dimensionality of the data space is far too large to analyse

experimentally. As such, machine learning has the potential for
great utility in magnetic and superconducting materials science.
For example, the phase space of magnetic and superconducting

materials is highly influential on the possible device applications.
For magnetic materials, the Curie and Néel temperatures, which
denote the points at which a material transitions to a ferromag-
netic or antiferromagnetic state, respectively, are important
properties for solid-state refrigerants14, generators and spintronic
or data-storage devices15. Similarly, in the domain of super-
conductivity, experimental research has been dedicated to the
discovery of near-room-temperature superconductors that would
have applications in magnetometers, digital circuits, photon
detection and power conversion16.
A key barrier to the widespread use of machine learning for

materials discovery is the lack of large and structured materials
property databases upon which machine-learning techniques can
be applied. Previous studies make use of small-scale, manually
compiled databases or repositories that are not freely available17–19.
Thus, the research does not make full use of the vast amount of
data available in the scientific literature, and often focusses on
small subsets of data that are not fully representative. Manual
compilation of scientific literature data is clearly unfeasible, but
with recent advances in the field of natural language processing
(NLP), it is now possible to automate data mining from text and
tables. This provides an opportunity for the automated generation
of materials property databases and complete integration of data
extracted from the scientific literature into machine-learning
pipelines. Such NLP-driven materials science has yielded novel
embeddings for structure–property relationships20, large auto-
generated property databases21 and mappings of quantum
materials databases22.
To that end, we herein present a complete and general pipeline

that fully integrates the scientific literature into a machine- learning
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and property prediction toolkit. Our combined workflow is shown
in Fig. 1.
From a corpus of 74,000 scientific journal articles that are

scraped from the webpages of Elsevier, Springer and Royal Society
of Chemistry publishers, we use the advanced NLP pipeline within
the ‘chemistry aware’ ChemDataExtractor toolkit23 to autogene-
rate a database of �20,400 magnetic and superconducting phase-
transition temperature records and their associated chemical
compound names. These data are automatically cleaned and
paired with elemental and structural data present in existing data
repositories24. We freely provide the complete database in the
form of an online magnetic materials-discovery web application at
http://magneticmaterials.org. Based on user input of the desired
material compositions, the web application automatically recon-
structs the phase diagram from the mined data. This gives the
user an ability to explore previously unseen structure-phase
relationships across multiple independent source documents.
Beyond visualisation, the user is able to make use of machine-
learning methods to predict phase transitions for materials not
present in the database. These predictions can be further
validated though an ‘Associated Data’ facility that allows for
backward validation of predictions against DOI-tagged experi-
mental research.

In this paper, we demonstrate, through case studies of the
perovskite-type oxides and pnictide superconductors, that the
reconstructed phase diagrams and associated predictions are
highly accurate and directly relatable to the underlying physical
theory of magnetism and superconductivity.

RESULTS
Case study of perovskite manganites: reconstructing
phase diagrams
We begin with a case study of the perovskite-type oxides. The
properties and phase diagrams of the common perovskite series
have been widely reported, making these materials ideal
candidates to evaluate our database and phase-transition predic-
tion toolkit. The perovskite-type oxides are inorganic compounds
with the general formula ABO3, where A is a large 12-coordinated
cation and B is a smaller 6-coordinated cation. The generic
perovskite structure is cubic; however, this form is rarely found
owing to structural deformation25. These deformations cause
perovskites to exhibit a wide variety of interesting and useful
properties, including ferroelectricity, piezoelectricity, supercon-
ductivity and magnetism26. As such, perovskite materials are
found in a vast number of applications.
Magnetism in perovskites arises through the incorporation of

paramagnetic cations. Commonly, cationic species are lanthanides
or transition metals, which have partially filled d and f orbitals.
Through the crystal-field interaction, local-coordination environ-
ments determine the orbital energy levels and hence the
magnetic moment of the cation. The large dependence of the
magnetic properties on the crystal field leads to a substantial
variation in magnetic state with temperature and composition.
With only minor changes in doping concentration of the A- and B-
site cations, the compounds undergo transitions between multiple
magnetic phases. A prime example of this is the La1�xSrxMnO3

(0 � x � 1) system27 that displays a bulk metallic ferromagnetic
phase and four different antiferromagnetic phases.
An example of the reported phase diagram of La1�xSrxMnO3 is

shown in Fig. 2a. Owing to the costly nature of producing
experimental data, research articles often focus on a small
subsection of magnetic and superconducting phase diagrams, or
alternatively present general trends with little specificity, as shown
in Fig. 2a. The first key contribution of our work is the ability to
automatically aggregate materials property data across a vast
number of source documents. These data contain independent
experimental results, and therefore our toolkit visualises

Fig. 1 Overview of our phase-diagram reconstruction pipeline.
1. Using the advanced ‘chemistry aware’ NLP toolkit, ChemDataEx-
tractor (Version 1.3), we extract chemical names and their associated
phase-transition temperatures from the scientific literature. 2. These
data are automatically standardised and paired with relevant atomic
and structural features to form a highly detailed database of
materials properties. 3. Using machine learning, we are able to
accurately reconstruct phase diagrams and predict phase transitions
for unseen compounds. 4. An ‘Associated Data’ facility enables
backward validation of predictions against DOI-tagged
experimental data.

Fig. 2 Reconstructed phase diagram of the La1�xSrxMnO3 series. a Reported phase diagram of the perovskite-type oxide series
La1�xSrxMnO3, reproduced with permission from Tilley25. AFM A, AFM C and AFM G refer to the A-, C- and G-type antiferromagnetic phases,
respectively. b The autoreconstructed phase diagram created using our text-mining and visualisation toolkit. The diagram clearly exhibits a
bulk ferromagnetic phase for 0:1 � x � 0:6 and antiferromagnetic phases for x � 0:1 and x � 0:5. Error bars show the standard deviation
between values of individual measurements mined for each composition where multiplicate data exist.
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previously unseen chemical property relationships where previous
data were highly fragmented.
The corresponding phase diagram that has been automatically

reconstructed from the scientific literature using our NLP pipeline
is shown Fig. 2b. The reconstructed diagram shows high
correlation with the generally reported trend, and clearly
distinguishes the ferromagnetic (0:1 � x � 0:6) and the antiferro-
magnetic (x � 0:1 and x � 0:5) phases, although currently we are
unable to distinguish between the A-, C- and G-type antiferro-
magnetism. As shown in Fig. 2b, each transition temperature has
associated error bars. The phase-transition temperature at each
composition is calculated as the mean of all text-mined values,
with the error bars taken to be 1 standard deviation. All values can
be easily referenced back to their original sources since our toolkit
tracks the DOI associated with each data point in the reconstruc-
tion. This permits backward validation and investigation of
spurious or interesting values.

Case study of antiferromagnetic perovskites: predicting Néel
temperatures in rare-earth manganites
Antiferromagnetic interactions in perovskites originate from the
superexchange mechanism25. This is defined as an indirect
exchange interaction between non-neighbouring magnetic
cations that is mediated by a non-magnetic anion (Fig. 3).
Such examples include the rare-earth manganite series LNMnO3

where LN is a lanthanide ion. The Néel temperature dependence of
the series, reconstructed using our NLP pipeline, is shown in Fig. 4
vs. the ionic radius of the LN cation. We also show reference
values28,29, taken from articles not present in our text-mining corpus,
for comparison. Both the reference and reconstructed diagrams
show a clear non-linear dependence. This non-linearity results from
a structural phase transition. For LN=Dy, Ho, Er, Yb, Lu, the
compounds typically crystallise in a stable hexagonal structure30. In
these perovskites, the linkage between the cations can be either
180� or 90� (Fig. 3b), yielding very different superexchange
mechanisms to the typically orthorhombic manganite compounds
for LN= La, Pr, Nd, Sm, Eu, Gd, Tb, which show a roughly linear Néel
temperature dependence.

Case study of antiferromagnetic perovskites: predicting Néel
temperatures in rare-earth orthochromites
In the orthorhombic perovskite structure, which displays 180�
superexchange, the geometry favours antiferromagnetic align-
ment, and thus, the orthorhombic perovskites typically demon-
strate a clear Néel transition. Another example of the
orthorhombic perovskites are the rare-earth orthochromite series
LNCrO3. Here, the theory of superexchange indicates that the

strength of the antiferromagnetic interaction, and hence the Néel
temperature of the material, depends on the degree of the orbital
overlap between the cations and their mediating anion. Figure 5a
shows the reported Néel temperature of the LNCrO3 series as a
function of the LN ionic radius. In accordance with the super-
exchange theory, increasing ionic radius causes a roughly linear
increase in Néel temperature. Figure 5b shows the corresponding
phase diagram reconstructed using our text-mined database.
Again, we see a highly accurate reconstruction of the phase
diagram. However, the reconstruction tool is not only useful for
visualising these trends. A distinct contribution of this work is that
the text-mined phase-transition records are automatically paired
with bulk structural features and elemental properties of the
constituent elements. Using these features, we are able to
construct physically interpretable machine-learning models of
phase transitions, and therefore perform phase-transition tem-
perature prediction.
To this end, we note that the text-mined series in Fig. 5b is

missing the Tm, Eu, Nd, Pr and Ce members. Making use of the
machine-learning and feature-selection algorithms outlined in the
Methods, the mined data are used to create a predictive model for
the Néel temperature in these rare-earth orthochromites.
Table 1 shows the reported and predicted Néel temperatures

for the missing compounds achieved with various different
prediction methods. As shown, the best model, using ridge
regression (RR) with K-best feature selection (KB) (K= 5), achieved
a mean absolute error (MAE) of 3.1% (for a discussion of the
different methods, see the Methods).
By virtue of the automated feature-selection algorithms, we are

able to determine the most predictive elemental and structural
features, and thus relate the machine-learning model back to the
underlying theory. The KB feature selection determined the most
predictive features of Néel temperature to be the ionic radius,
charge-to-ionic radius ratio and Pauling electronegativity of the LN
cation, all of which can be directly related to the orbital theory of
superexchange given above.
It is important that the end user is able to backward validate

their predictions. We enable this in our platform via an ‘Associated
Data’ facility that directly links the property prediction to DOI-
tagged experimental and computational data. Given the high cost
of generating experimental results from large facilities such as
neutron sources, it is now the norm for national laboratories to
DOI-tag unpublished experimental data. By linking predictions to
these unpublished data, we empower researchers to begin further
investigation on a predicted property. Although this is a simple
step, it completes the integration of data extracted from scientific

Fig. 3 Superexchange orbital diagrams. Orbital diagrams of the a
180� and b 90� superexchange mechanisms that lead to AFM
behaviour in the perovskite materials.

Fig. 4 Reconstructed phase diagram of the rare-earth manga-
nites. The autoreconstructed phase diagram of LNMnO3 series vs.
ionic radius of the 6-coordinated LN cation alongside reported
values28,29 not present in the text-mined corpus. The series
demonstrates non-linear dependence of Néel temperature due to
the structural transition between LN ¼ Dy and LN ¼ Tb. Error bars
show the standard deviation between values of individual measure-
ments mined for each composition where multiplicate data exist.
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literature sources with machine-learning tools and experimental
validation procedures.
We demonstrate this through validation of our Néel tempera-

ture predictions shown in Fig. 5 and Table 1. For CeCrO3, Datacite
reveals neutron diffraction data created at the Institut Laue-
Langevin (ILL)31. These experimental data are still under embargo,
and are therefore not currently available for further analysis.
However, through publications associated with the experimental
data authors, we are able to find reference values for the Néel
temperature in CeCrO3, which confirm our predictions32,33.
Although our associated data facility is not strictly needed to

find validation of phase-transition temperature predictions, we
believe that the Datacite facility greatly enriches the property
prediction pipeline through direct linking to first-hand experi-
mental data. For example, while experimental data for our Néel
temperature prediction of PrCrO3 can be validated by data
tables34, the Datacite DOI linkup from our web application reveals
that neutron diffraction data on PrCrO3 have also been collected
at high pressure, via the ISIS Neutron and Muon Facility, UK.
Although these data are yet to be published, their existence
suggests that high-pressure phases of PrCrO3 may yet enrich our
current understanding of the Néel temperature in praseodymium
orthochromites.
In contrast, a neutron diffraction study on TmCrO3 appears to

have been performed in 201335. These data are sufficiently old
that they are publicly available. The neutron proposal for this
experiment is also available on Datacite. It suggests that there is a
complicated multiferroic phase of TmCrO3 whose Néel tempera-
ture lies at around 125 K. The experimental metadata show that

TmCrO3 was studied above and below this expected Néel
temperature. The lack of published research associated with these
data gives the potential for researchers to download and re-
analyse the raw or processed experimental data to further
understand the complicated multiferroic phases in TmCrO3.

Case study of ferropnictide superconductors: unconventional
superconductivity
As described in the ‘Introduction', phase transitions also play an
important role in the applications of superconducting materials.
The ferropnictides are a series of recently discovered iron-based
superconductors formed from layers of iron and a pnictide
material (see the inset in Fig. 7). The theory of superconductivity in
these compounds diverges from the conventional
Bardeen–Cooper–Schrieffer (BCS) model in which superconduc-
tivity arises as a direct result of electron–phonon coupling36.
Instead, ferropnictide superconductivity is caused by
electron–electron Coulomb interactions37. This unconventional
superconductivity is indicated in the phase diagrams of the ‘1222-
type’ superconductors. Thereby, the superconducting state arises
near the onset of antiferromagnetic order in metals with very low
electrical conductivity.
An example of such a system is BaFe2�xNixAs2, whose phase

diagram is shown in Fig. 6. The compound is a typical 1222-type
superconductor and its end member, BaFe2As2 (x ¼ 0), exhibits
antiferromagnetism up to around 140 K. Above this temperature,
it is a paramagnetic ‘bad-metal’ with high resistivity. As the Ni
content, x, is increased, the Néel temperature decreases until a
superconducting phase begins to emerge below 20 K. At a certain

Fig. 5 Reconstrusted phase diagram of the rare-earth orthochromites. a Reported Néel phase diagram of the LNCrO3 (LN ¼ Lanthanide)
series vs. ionic radius of the 6-coordinated LN cation, values reproduced from Goodenough and Longo34. b The corresponding phase diagram
that has been autoreconstructed with our text-mining pipeline. We also show the predicted Néel phase-transition temperatures (orange) of
the Tm, Eu, Sm, Nd, Pr and Ce members, obtained using Automatic Relevance Determination with K-best feature selection on our combined
database. Error bars show the standard deviation between values of individual measurements mined for each composition where multiplicate
data exist.

Table 1. Néel phase-transition temperature predictions for LNCrO3 compounds (LN= Tm, Eu, Nd, Pr, Ce).

Compound Néel temperature RR+ KB RR+ RFE SVR+ KB ARD+ KB ARD+ RFE RFR+ KB RFR+ RFE

(K)34 (K) (K) (K) (K) (K) (K) (K)

TmCrO3 125 126 127 152 118 111 131 128

EuCrO3 181 198 248 168 184 204 192 207

NdCrO3 224 226 228 161 240 235 199 225

PrCrO3 239 244 238 160 254 247 241 213

CeCrO3 257 253 244 161 259 257 287 266

MAE (%) – 3.1% 9.5% 26.3% 4.1% 5.4% 7.8% 7.2%

Phase-transition temperatures generated using the machine-learning and feature-selection methods outlined in ‘Methods'. A minimum mean absolute error
(MAE) is achieved with ridge regression (RR) and K-best (KB) feature selection (K= 5). All methods use the default parameters given on our platform.
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critical doping concentration, xc � 0:07, the antiferromagnetic
and superconducting states coincide at T � 40 K. For higher
concentrations, the Néel phase is suppressed, and superconduc-
tivity below 20 K is observed. For doping concentrations above
x ¼ 0:20, the system returns to a non-superconducting para-
magnet. This is reflected clearly in our autoreconstructed phase
diagram shown in Fig. 6b.

Predicting TC across the lanthanides
The first measurement of superconductivity in ferropnictides was
reported in 2008, where a critical temperature of 26 K was
discovered in LaFeAsO0:89F0:11

38. Subsequently, the highest critical
temperature of any non-cuprate superconductor has been
measured above 50 K in LNFeAsO1�xFx where LN= La, Ce, Pr,
Nd, Sm39.
Figure 7 shows a plot of the reconstructed superconducting

critical temperature presented as a function of LN electronegativ-
ity for the LNFeAsO1�xFx series.
Again, we see that the text-mined data are limited to

LN ¼ La� Gd. Thus, we can use our predictive tools to create a
model for the superconducting critical temperature in
LNFeAsO1�xFx . The plot in Fig. 7 shows the predicted super-
conducting critical temperature for LN= Tb, Dy, Ho, Er, Tm, Yb, Lu
achieved using random forest regression and K-best feature
selection (K= 5). Analysis of the chosen features of this model
indicates a dependence of TC on the work function, atomic
number and ionic radius of the LN ion.
Table 2 shows the TC predictions and the associated reference

values where they could be found. It is interesting here that
the reference values for the LN= Pm, Er, Tm, Yb, Lu compounds
have not yet been reported at the time of publication. We are
therefore ahead of experimental research in this regard.

DISCUSSION
The pipeline and methodology presented here demonstrate the
ability to fully integrate data extracted from the scientific literature
into machine-learning pipelines for materials discovery. By
aggregating data over a large number of independent sources,
we negate the limitations of relying on small annotated datasets.
Furthermore, the methodology presented herein is entirely
general, and can therefore be applied to any set of materials
properties.
Overall, these case studies demonstrate that we can accurately

reproduce phase diagrams and predict phase-transition

Fig. 6 Reconstructed phase diagram of the ferropnictide superconductors BaFe2�xNixAs2. a The reported phase diagram, reproduced with
permission from Si et al.37, and b the autoreconstructed phase diagram created using our toolkit. Both diagrams clearly show that the transition to
the superconducting state arises from an antiferromagnetic metallic state. The reconstructed diagram is highly specific, pinpointing a mixed AFM
and superconducting state in the region of xc � 0:07. Error bars show the standard deviation between values of individual measurements mined
for each composition where multiplicate data exist.

Fig. 7 Reconstructed critical temperature of the ferropnictide
superconductor series LNFeAsO1�xFx where LN= La, Ce, Pr, Nd,
Sm, Gd, presented as a function of LN electronegativity. This series
has been shown to exhibit the highest critical temperature of any non-
cuprate compounds, with superconductivity over 50 K. We also present
TC predictions for LN= Pm, Eu, Tb− Lu generated via random forest
regression with K-best feature selection (K= 5). Error bars show the
standard deviation between values of individual measurements mined
for each composition where multiplicate data exist. Inset: crystal
structure of a typical oxypnictide superconductor GdFeAsO0:53F0:47
with atoms (colours): Gd (magenta), Fe (gold), As (green), O (red) and
F (silver).

Table 2. Reported and predicted superconducting critical
temperature, TC, for the LNFeAsO1�xFx series.

LN TC RFR+ KB

(K) (K)

Pm – 48

Eu 1154 44

Tb 5055 48

Dy 4556 48

Ho 3657 47

Er – 47

Tm – 48

Yb – 43

Lu – 48

Predictions were made using random forest regression and K-best feature
selection.

C.J. Court and J.M. Cole

5

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2020)    18 



temperatures for magnetic and superconducting materials, using
their elemental and structural features as a basis. This allows us to
relate a collection of independent observations to physical
theories of magnetism and superconductivity. This provides a
solid foundation for further data-driven magnetic materials
discovery. In the first instance, we can now embark on the data-
driven mapping of phase diagrams that have yet to be reported.
To this end, our web platform is sufficiently versatile that it can
accommodate mixtures of computational and experimental data,
and machine-learning predictions in its phase-diagram mappings,
rather than just assume the default of employing experimental
data. This may lead to the discovery of new magnetic and
superconducting phases.
Data bestow the core power of our approach. Looking ahead,

we will therefore continue to enhance our materials-discovery
platform by augmenting its underpinning materials database via
extracting data from more articles across a greater number of
literature sources. We will also add new properties to the existing
database, such as temperature and field-dependent magnetic
susceptibility and magnetisation data, as well as superconductivity
parameters such as coherence length and penetration depth. We
can further enrich these data by providing the experimental or
computational parameters associated with each measurement,
indicating how the data were derived in the original source article.
As the database continues to grow, and more properties are

added, we can build predictive models with even more detail and
predictive power. While our current models enable us to predict
phase-transition temperatures for known compounds, our ulti-
mate goal is to predict and experimentally validate new classes of
compounds for magnetic and superconducting applications.
While data-driven materials discovery has been achieved in other
fields of research10,40,41, it remains a distant goal in the magnetic
and superconductivity domain. Yet, our toolkit is poised for this
endeavour since its databank utility could be reverse engineered
with some toolkit adaptations to predict material compositions
that have desired phase transitions. New material predictions
could then be synthesised and verified experimentally. Associated
data from the Datacite Metadata Search Tool could prove very
effective in aiding such predictions or validating them experi-
mentally. Our web platform linkup to Datacite also provides a rare
two-way channel between raw and processed experimental data
within a materials prediction framework. Amongst other benefits,
the two-way mixing of such data knowledge could be exploited to
unravel a new realm of materials prediction that couples raw and
processed data through, as yet unknown, forms of data
correlations. Irrespective of the actual predictive models that
end up being used to realise data-driven materials discovery for
magnetic and superconducting applications, the important end-
game is that they will accelerate discovery to drive innovation
down from its current ‘molecule-to-market’ timeframe of 20 years
towards the 5-year goal of the Materials Genome Initiative7.

METHODS
Autogenerated data extraction and database creation
The methodology for this work can be summarised in seven stages: data
acquisition, database generation, data standardisation, database evalua-
tion, phase-diagram reconstruction, phase-transition temperature predic-
tion and the ‘Associated Data’ facility. The main dataset for this work is a
database of magnetic and superconducting phase transitions for inorganic
compounds. These data were automatically mined from text and tables
contained within journal articles of Elsevier, Springer and the Royal Society
of Chemistry publishers, using the ‘chemistry-aware’ NLP toolkit, ChemDa-
taExtractor23 (Version 1.3). This information-retrieval stage particularly
targeted journals in the area of condensed-matter physics, superconduc-
tivity, magnetism and inorganic chemistry, since these were judged to be
particularly relevant to the data type sought. For a full list of search queries
and publishers used, see Supplementary Table 1. Automated web-scraping

techniques sourced a corpus of 74,000 articles from these academic
publishers.
The mining procedure applied to these data used solely text-parsing

methods, as described in the original ChemDataExtractor v1.3.0 publica-
tion23, in which the toolkit utilises machine-learning processes, such as
Brown clustering42, to identify and associate chemically named entities to
their properties. The built-in interdependency-resolution system enables
ChemDataExtractor to correctly associate chemicals to the correct
compound even when multiple compounds are present in the text.
This process yielded a set of 29,000 mutually consistent data records

from a total of 4728 unique articles. These data were collated in the
Database Management Framework, MongoDB43, containing the chemical
formula of a compound and its associated phase-transition temperature.
Each entry was tagged with the information that identifies its document
source; these tags include the Digital Object Identifier (DOI), title, authors
and the year of publication.

Data standardisation
In their raw form, the chemical data record outputs by ChemDataEx-
tractor23 are noisy and non-standardised, making them relatively unusable
for large-scale analysis and machine learning. Therefore, an automated
data-cleaning process was applied to standardise the form of the records
and remove incorrect entries. This standardisation process contains four
distinct stages:

● Ambiguous TC specifier resolution
● Conversion of inorganic chemical formulae to Hill Formula notation
● Temperature unit conversion to Kelvin
● Resolution of doped compound labels and informal chemical symbols

It is often the case that two separate domains of science use identical
abbreviations to denote different properties. A case in point is found
within the general condensed-matter physics literature. A Curie tempera-
ture is commonly denoted with the specifier TC , which is also used within
the superconductivity literature to denote the superconducting critical
temperature. This causes a problem for text extraction methods when the
definition of a specifiers is implied by general context, but not explicitly
defined. Moreover, magnetism and superconductivity properties are
increasingly being reported together; two distinct TC values can even
appear within the same document. Automated text-parsing techniques are
then unable to determine the meaning of the TC occurrence.
In our database, it was found that 3959 records had ambiguous TC

occurrences that were undefined or could not be distinguished as a Curie
or superconducting critical temperature, thus limiting the precision of
these records. Fortunately, we were able to make this distinction via a
machine-learning technique, whereby text classification was used to
classify ambiguous TC occurrences as pertaining to either superconductiv-
ity or magnetism.
All source documents in our corpus were vectorised using the term

frequency–inverse document frequency (TF-IDF) method. The training set
of the classifiers consisted of TC occurrences that were clearly defined as
being a Curie temperature or superconducting critical temperature. The
test set, comprising the ambiguous TC occurrences, was then classified
with three standard methods: the support vector machine (SVM), naive
Bayes (NB) and K-nearest-neighbour (KNN) classifiers. A peak F1 score of
82% was achieved with the NB classifier (full text-classification results are
given in Supplementary Methods 1). Although this approach uses very
basic text-classification methods, the main benefit is that no annotation of
the training data was required. Therefore, our database was able to self-
learn from the existing data in an unsupervised manner in order to clean
the records and improve precision.

Phase-transition data record format
Following the specifier ambiguity resolution, each record is further
standardised through conversion of compound names to Hill Formula
notation, and temperature values converted to units of Kelvin. Finally, any
chemical labels found in the text are resolved and associated with the
appropriate compound.
At each stage, records that could not be standardised were removed to

increase database precision; the number of records at each stage of the
standardisation pipeline is shown in Table 3. In total, the standardisation
processes yielded a final set of 20,389 records that were retrieved from a
small set of only 3668 articles, thus showing that the relevant data were
highly sparse within our 74,000-paper corpus.
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Overall, this four-stage process affords a single, consistent and highly
standardised set of data records. The final format of the records is given in
Supplementary Table 2.

Database evaluation
The precision of the database was determined using Eq. (1), where TP is
the true-positive rate, FN is the false-negative rate and FP is the false-
positive rate.

P ¼ TP
TPþ FP

(1)

A sample of 300 records (100 Curie, 100 Néel and 100 superconductivity)
were uniformly and randomly sampled from the database, and then
evaluated against the original source material. A record was considered to
be a true positive if all elements of the record were correct when
compared with the original source literature, and all standardisation
processes had succeeded. If any part of the record was incorrect, then it
was marked as a false positive. Table 4 shows the level of precision of the
different record types, and the overall (average) precision of the database,
which was calculated to be 82%.

Creating a web-based application that autoreconstructs phase
diagrams
A web-based platform was created that automatically reconstructs
magnetic and superconducting phase diagrams from the mined data.
The platform is interactive and freely available at http://magneticmaterials.
org, so that users can explore structure–property relationships in
magnetism and superconductivity. Based on user input of any number
of elements and their relative material compositions, the phase diagram of
the series of these compounds is generated. Curie and Néel temperatures
for magnetism, and critical temperatures for superconductivity, can be
visualised against a number of material descriptors to explore the
phase space.
These compound descriptors include bulk and ionic properties of their

constituent elements (e.g. melting points, density and atomic volume;
ionic radii, coordination numbers and oxidation states), which were mined
from well-established data repositories6,44,45 and associated with the
database records during extraction. Some descriptors employed structural
information; accordingly, 403,814 crystallographic information files (CIFs),
accessed from the open-source Crystallography Open Database (COD)46–49,
provided atomic positions of the mined materials. In total, 36 property
features were manually compiled (for a full list of features, see
Supplementary Table 3).

Prediction and feature-selection methods
Machine-learning capabilities were also embedded into the web platform,
so that the user can predict phase-transition temperatures. Four machine-
learning methods were employed: ridge regression (RR), support vector
regression (SVR)50, automatic relevance determination (ARD)51 and random
forest regression (RFR)52.
Selection of the optimal features to predict phase-transition tempera-

tures is very difficult, especially without expert knowledge of the underlying
physics. In order to overcome this difficulty, we provided three methods for
feature selection on our web platform: manual feature selection (MFS), K-
best feature selection (KB) and recursive feature elimination (RFE).
The following paragraphs provide a brief description of each prediction

and feature-selection method with guidance as to where their use is best
suited. All of the prediction and feature-selection methods were
implemented using the Scikit-Learn Python library53.
Ridge regression is a regularised form of linear least-squares regression,

in which the model was designed to reduce overfitting and improve
generalisability. The solution finds the optimal weight, w, that minimizes
the objection function

jjy � Xwjj22 þ αjjwjj22 (2)

where y is the target phase-transition temperature, X is the feature matrix
and jj:jj2 represents the L2 norm. The regularisation parameter, α, controls
the level of regularisation. This method is best suited to out-of-sample
prediction as it attempts to fit a more general set of model coefficients.
In a simple regression model, the weights are optimised to minimise the

error rate. In SVR, we attempt to fit the error within a defined threshold.
This forms a decision boundary that reflects a given tolerance threshold for
the associated error.
The hyperparameters of the SVR are the kernel, tolerance threshold, ϵ

and the penalty, C. The model implemented in our toolkit allows for
multiple choices of kernel, radial basis function, linear or polynomial, which
should be chosen depending on how the data are best represented. The
epsilon argument defines the distance of the decision boundary from the
true values, and the penalty term controls how much to penalise
misclassification of the data points. Overall, SVR is best used when
attempting to fit regression models that have non-linear data distributions.
Automatic relevance determination, or Bayesian ridge regression, is used

to perform standard ridge regression under a probabilistic model. That is,
the coefficient w, is probabilistic with a spherical Gaussian prior defined by

pðwjλÞ ¼ Nðwj0; λ�1Þ (3)

where the priors on λ and α are gamma distributions. All parameters are
estimated jointly during the model fit, and therefore the full implementa-
tion is highly nonparametric. ARD is a very useful ‘general-purpose’
regression method.
Random forest regression is an ensemble regression method that uses

multiple independent decision trees to predict the target variable. These
predictions are then aggregated to form an overall prediction. The main
parameters for RFR are the number of decision trees (the total number of
predictions) and the depth of each tree.
Overall, RFR can form a highly accurate regression model on datasets

with high-dimensional input data. However, by virtue of this, they can be
prone to overfitting. It should also be noted from a practical standpoint
that RFR can be computationally expensive.
All of the regression-based methods rely on an appropriate choice of

features. As such, we employ three main feature-selection routines. The
MFS method enables the user to define their own predictive model. This is
best used when attempting to explore known relationships or ‘sanity-
check’ other models. The KB method chooses the K most optimal features
under a choice-scoring function. In our toolkit, the features are scored
using a simple linear f score. Finally, RFE recursively reduces the number of
features according to a ranking function in an attempt to minimise the
number of features required to explain the data.
The choice of these methods allows varying degrees of control over the

model parameters, ranging from full control, in the case of MFS, to
completely automated model selection with RFE.

Associated data to corroborate phase-transition temperature
predictions
The phase diagrams and phase-transition temperature predictions
autoreconstructed by our web platform all depend on the knowledgebase
of the underpinning material database that we have sourced from the
academic literature. However, not all data in materials science are published

Table 3. Record standardisation.

Stage Output

TC resolution 29,071

Chemical formula conversion 25,158

Temperature unit conversion 23,945

Label resolution 20,389

The number of records at each stage of the data standardisation process.

Table 4. Database precision.

Record type Precision

Curie temperature records 86.0%

Néel temperature records 81.0%

Superconducting critical temperature records 78.0%

Combined 81.67%

Precision of the phase-transition records was based on a random sample of
300 records (100 Curie, 100 Néel and 100 superconductivity).
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in academic journals. There is also the growing trend for data to be published
through other forms of media, and in formats that are at different stages of
data processing. In addition, while data continue to be generated from
experiments, materials data are increasingly computed; examples of high-
throughput computational databases in materials science have already been
mentioned above8–10. Many computational data hosted by online databases,
as well as raw data from high-end experiments, are being given DOIs so that
they can be identified just like a journal article. The field of magnetism and
superconductivity is no exception. The materials project contains a wealth of
computational data in this field of science, whose entries carry DOIs.
Meanwhile, neutron institutes around the world are sources of niche
experimental data on magnetic and superconducting materials, since a
neutron can interact with magnetic materials at the atomic level, by virtue of
its magnetic moment. Neutron data are sufficiently rare and expensive to
create, that DOIs are now being minted to tag and catalogue their raw data
at several institutes (ISIS Neutron and Muon Facility, UK, and Institut Laue-
Langevin, Grenoble, France). The Datacite Metadata Search tool, available at
http://datacite.org, collates all forms of data that are tagged with a DOI, thus
providing a massive resource of unpublished data on materials that
complements our literature-mined database.
Accordingly, we set up an ‘Associated Data’ section on our web platform

that links any predicted material to its bespoke entry of the Datacite
Metadata Search tool. This offers our materials predictions a possible route
to validation through non-literature resources, or at least provides enriched
information about the material under scrutiny, such as details on who has
synthesised, computed or characterised the material in a certain fashion,
with the raw data being openly accessible for fresh data analysis. While
simple in its implementation, the establishment of a two-way channel
between raw and processed experimental data in a materials prediction
platform, as linked to a large corpus of literature-mined data, is rare, if not
unprecedented. Yet, such data channelling has enormous scope since it
invites the development of artificially intelligent data-analytics machinery
to operate autonomously in the middle of these data types. On the one
hand, this machinery could tension the consistency of putative results with
their raw data, leading to highly optimised, self-consistent results, which
are void of potential human bias. On the other hand, it will enable a new
dimension of materials prediction that couples raw and processed data
through, as yet unknown, forms of data correlations.

DATA AVAILABILITY
The web application associated with this work is available on http://
magneticmaterials.org. This contains all underpinning data, a data analysis user
interface with associated demo, usage documentation and source code references
with citing and licensing information.

CODE AVAILABILITY
All the source code used in this work is made freely available under the MIT license.
The code used to generate the database is available at http://github.com/cjcourt/
magdb. A clean build of the ChemDataExtractor toolkit is available at http://
chemdataextractor.org/download.
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