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Abstract: We show that a connection can be recovered up to gauge from source-to-
solution type data associated with the Yang–Mills equations in Minkowski space R

1+3.
Our proof analyzes the principal symbols of waves generated by suitable nonlinear
interactions and reduces the inversion to a broken non-abelian light ray transform. The
principal symbol analysis of the interaction is based on a delicate calculation that involves
the structure of the Lie algebra under consideration and the final result holds for any
compact Lie group.

1. Introduction

The purpose of this paper is to solve an inverse problem associated with Yang–Mills
theories inMinkowski spaceR

1+3. The objective is the recovery of the gauge field A on a
causal domain where waves can propagate and return, given data on a small observation
set inside the domain.

The starting point of Yang–Mills theories is a compact Lie group G with Lie algebra
g. Without loss of generality, we shall think of G as a matrix Lie group and hence g
will be a matrix Lie algebra. We assume also that G is connected and endowed with
a bi-invariant metric, or equivalently, an inner product on g invariant under the adjoint
action.

In theirmost general formulation,Yang–Mills theories take place in the adjoint bundle
of a principal bundle with structure group G over space-time. Since our region of interest
in space-time will be a contractible set M ⊂ R

1+3, we might as well assume from the
start that we are working with the trivial adjoint bundle M × g. The main object of the
theory is a gauge field A, also known asYang–Mills potential. In geometric language this
is simply a connection A ∈ C∞(M; T ∗M ⊗ g) = �1(M; g), that is, a smooth g-valued
1-form. In general, we denote the set of g-valued forms of degree k by�k = �k(M; g).

There is a natural pairing [·, ·] : �p ⊗ �q → �p+q given in our situation as

[ω, η] = ω ∧ η − (−1)pqη ∧ ω,
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where the wedge product of g-valued forms is understood using matrix multiplication
in g. Using the pairing we define a covariant derivative

dA : �k(M; g) → �k+1(M; g), dAω = dω + [A, ω].
Given a gauge field A, we can associate to it, its field strength or curvature. This is
defined as

FA := d A +
1

2
[A, A] = d A + A ∧ A ∈ �2(M; g)

and it always satisfies the Bianchi identity dA FA = 0. Moreover, d2
Aω = [FA, ω] for

any ω ∈ �k .

1.1. Yang–Mills equations. TheYang–Mills equations arise as theEuler–Lagrange equa-
tions for the Yang–Mills action functional which we now recall. The inner product in g
naturally induces a pairing 〈·, ·〉Ad

�p(M, g) × �q(M, g) → �p+q(M).

If � denotes the Hodge star operator of the Minkowski metric, the Yang-Mills functional
is given by

SYM(A) := 1

2

∫
M

〈FA, �FA〉Ad.

If G is a subgroup of the unitary group, we may take as adjoint invariant inner product
−trace(XY ), where X,Y are matrices in g, and thus SYM(A) may also be written as a
constant multiple of

∫
M
trace((FA)αβ Fαβ

A ) dvol,

as is frequently found in the physics literature. From this functional one easily derives
the Yang–Mills equations:

d∗
A FA = 0, (1)

where d∗
A is the formal adjoint of dA and given by

d∗
A : �k(M; g) → �k−1(M; g), d∗

A = �dA � .

(In general for a Lorentzian space-time of dimension m, the formal ajoint acting on
k-forms has the expression d∗

A = (−1)m+km � dA�.)
The Yang–Mills equations are gauge invariant in the sense that if two connections

A and B are gauge equivalent and if A satisfies (1) then also B satisfies d∗
B FB = 0.

The connections A and B being gauge equivalent means that there is a section U ∈
C∞(M; G) such that

B = U−1dU + U−1AU. (2)

This property can be easily deduced from the fact that the action SYM is gauge invariant.
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1.2. Main result. We will consider an inverse problem for the Yang–Mills equations in
the causal diamond

D = {(t, x) ∈ R
1+3 : |x | ≤ t + 1, |x | ≤ 1 − t}.

For a fixed 0 < ε0 < 1, the data will be given on the subset

� = {(t, x) : (t, x) is in the interior of D and |x | < ε0}. (3)

We we say that A ∈ �1(D; g) is a background connection if it satisfies the Yang–Mills
equations (1) in D. Due to the gauge invariance, the determination of a background
connection on D is considered only up to the action of the following pointed gauge
group

G0(D, p) = {U ∈ C∞(D; G) : U(p) = id},
where p = (−1, 0) ∈ �. The reason for considering the pointed gauge group instead of
the full gauge group

G(D) = C∞(D; G),

is technical in nature as we shall explain below, see discussion after Lemma 6. Both
gauge groups are clearly related by G(D)/G0(D, p) = G.

For A, B ∈ Ck(D; T ∗
D ⊗ g), with k ∈ N, we say that A ∼ B in D if there is

U ∈ G0(D, p) such that (2) holds in D. Moreover, we write

∂−
D = {(t, x) ∈ D : |x | = t + 1}

and say that A ∼ B near ∂−
D if there are U ∈ G0(D, p) and a neighbourhood U ⊂ D

of ∂−
D such that (2) holds in U ∩ D. The sets D, � and ∂−

D are visualized in Figure 1.
We let A be a background connection, and consider the data set

DA = {V |� : V ∈ C3(D; T ∗
D ⊗ g) satisfies d∗

V FV = 0 in D \ �

and V ∼ A near ∂−
D}.

Let us remark that we could consider the source-to-solution map given in Proposition 4
instead of the more abstract data set DA. We prefer to formulate our main result using
DA since the definition of the source-to-solution map is technical, requiring suitable
gauge fixing among other things. In fact, it is precisely in the proof of Proposition 4
that the pointed gauge group is needed. Nevertheless, intuitively, it is helpful to think
of the data set as that produced by an observer creating sources J supported in � and
observing solutions V to d∗

V FV = J in �.
The data set DA could also be reformulated in terms of the pairs (J, V |�) satisfying

d∗
V FV = J , with J supported in �. This formulation, while being somewhat redundant

as J = d∗
V FV can be computed given V |�, suggests viewingDA informally as the graph

of the map taking J to V |�. However, we reiterate that defining such map requires care.
In addition to gauge fixing, we need to take into account the compatibility condition
d∗

V J = 0 that every source must satisfy, see Lemma 2. Our abstract formulation of the
data set DA bypasses these problems while incorporating the natural gauge invariance
of the theory.

We are now ready to formulate our main result.
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Fig. 1. The set � (in blue) inside the diamond D in the 1 + 2 dimensional case. The part ∂−
D of the boundary

of D is shaded in yellow. The point p is drawn in red

Theorem 1. Suppose that A, B ∈ �1(D; g) solve (1) in D. Then DA = DB if and only
if A ∼ B in D.

Clearly if A ∼ B in D then DA = DB . The non-trivial content of the theorem is the
opposite implication. It follows from Proposition 10 in Appendix Appendix B that if A
and B are as in the theorem, then A ∼ B in D if and only if A ∼ B near ∂−

D.

1.3. Outline of the proof of Theorem 1. The objective is to reduce the proof of the
theorem to an inversion result for a broken non-abelian light ray transform as in [7].
The broken light ray transform that arises in this paper is that related to the adjoint
representation given the natural habitat of the Yang–Mills theories. In [7] we studied the
broken light ray transform associated with the fundamental representation, so our first
task is to relate the two.

To go from the data set DA to the broken non-abelian light transform we follow the
template laid out in [7] where a considerably simpler wave equation with cubic non-
linearity was studied. The first step is then to process the abstract data set and convert it
into a manageable source-to-solution map and this already brings the question of gauge
fixing to the forefront. The construction of source-to-solution map uses two types of
gauges: the temporal gauge and the relative Lorenz gauge. The temporal gauge is easy
to implement as it involves solving a linear matrix ODE to make the time component of
a Yang–Mills potential A to vanish, that is, A0 = 0. This gauge is particularly suited to
prove uniqueness results, cf. Proposition 2 below.

It is important to remark that uniqueness does really depend on the shape of the
set where the connections satisfy the Yang–Mills equations. The causal diamond D has
the special feature that perturbations cannot propagate in it through the top boundary
|x | = 1 − t , whereas the bottom boundary is under control due to the assumed gauge
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equivalence near ∂−
D. In particular, even if a background connection A satisfies the

Yang–Mills equations on a larger set than D, we do not expect to be able to recover it
outsideD given data on�.Moreover, it does not appear to be possible to proveTheorem1
using presently known unique continuation results, as discussed in more detail below.

A connectionV is said to be in relative Lorenz gaugewith respect to the background A
if d∗

AV = d∗
A A. The advantage of this gauge is that if A satisfies Yang–Mills d∗

A FA = 0,
and d∗

V FV = J , then the difference W = V − A satisfies a semilinear wave equation
where the leading part is given by the connection wave operator�A = dAd∗

A +d∗
AdA, cf.

(23). This is very helpful for solving the foward problem and for the microlocal analysis
used to extract information from the source-to-solution map.

Following [7], the idea is to consider the non-linear interaction of three singularwaves
produced by sources which are conormal distributions. We carefully track the principal
symbol produced by the non-linear interaction and extract from that the non-abelian
broken light ray transform. This requires a delicate calculation unlike anything in the
previous literature, in which the structure of the Lie algebra g comes into consideration.
This is the technical core of the proof, and perhaps one of the most innovative aspects of
the paper. After this computation, contained in Section 8.2, there is one further hurdle to
overcome: to use the source-to-solution map we must revert back to the temporal gauge
and check that no information is lost in the process.

1.4. Discussion and comparison with previous literature. It is tempting to think that
a result like Theorem 1 can be obtained from a unique continuation principle. It must
be stressed that unique continuation for linear wave equations with time-dependent co-
efficients is simply false as there are counterexamples [1]. Although the difference of
two solutions to the Yang–Mills equations in the Lorenz gauge satisfies a linear wave
equation (with coefficients depending on both the solutions), due to unique continua-
tion failing, our inverse problem is not “immediately solvable” and hence a different
approach is needed. We mention that an inverse problem for Yang–Mills connections
on a Riemannian manifold was studied in [6]. The proofs there are based on unique
continuation for elliptic systems, however, the elliptic case is very different from the
hyperbolic one.

This paper sits firmly within the program, initiated in [7], that is motivated by the
Yang–Mills–Higgs system. In addition to the Yang–Mills potential A, a Higgs field

 ∈ C∞(M, g) is present in this system. The equations for the pair of fields (A,
) are
given by

d∗
A FA + [
, dA
] = 0; (4)

d∗
AdA
 + V ′(|
|2)
 = 0, (5)

where V ′ is the derivative of a smooth function V : [0,∞) → R. More generally, we
can consider these equations when
 is a section of an associated bundle determined by a
given representation of G. The focus of [7] was the recovery of A via the second equation
(5), when V is assumed to be a quadratic potential (the most popular choice in Yang–
Mills–Higgs theories): this turns (5) into a wave equation with a cubic non-linearity. The
present paper focuses on the first equation (4); more precisely in the pure Yang–Mills
case where 
 = 0. There are two substantial differences between [7] and the present
paper. First, when A is fixed, the second equation (5) is no more gauge invariant, and
hence the construction of source-to-solution map in [7] does not require gauge fixing.
Second, the quadratic potential V leads to particularly simple non-linear structure in [7],
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and the resulting analysis of principal symbols is much more straightforward than in the
present paper.

As already mentioned above, we consider the non-linear interactions of three singu-
lar waves. Interaction of singular waves has been studied outside the context of inverse
problems. In particular, the wave front set of a triple cross-derivative has been studied
in the case of the 1 + 2-dimensional Minkowski space by Rauch and Reed [39]. The
references [3,24,34,35,40] have results of similar nature. The use of non-linear interac-
tions in the context of inverse problems was initiated in [29], where the wave front set
resulting from the interaction of four singular waves was studied. The same approach
was used for the Einstein equations in [28], and subsequently in [32,46], in some ways
the closest previous results to ours. For a review of this approach, see [30]. We observed
in our above mentioned work [7] that it is sufficient to consider interactions of three
singular waves, simplifying the analysis. Three-fold interactions are used in the present
paper.

Non-linearities allow solving inverse problems that are open for the corresponding
linearized equations. In particular, the inverse problem for the linearized Yang–Mills
equation, see e.g. (32) below (where some lower order terms are discarded), is open.
The only known results are in the case G = U (1), see [12,41], and these results impose
convexity assumptions not satisfied by the geometric setting of Figure 1. The same is
true for recovery zeroth order terms, solved with and without convexity assumptions for
certain scalar linear [43] and non-linear wave equations [14], respectively.

We mention that non-linear interactions have also been used to recover non-linear
terms for scalar wave equations [33], scalar elliptic equations [13,31], and scalar real
principal type equations [38]. In these four works, non-linear terms do not contain any
derivatives, contrary to the Einstein and Yang–Mills equations. Non-linear interactions
involving derivatives have also been studied in the context of scalar wave equations [47]
and elastodynamics [10]. In addition, inverse problems have been studied for various
non-linear equations using methods originally developed in the context of linear elliptic
equations. In particular, the method of complex geometrical optics originating from
[45], and importantly extended by [27,37], was first applied to an inverse coefficient
determination problem for a non-linear parabolic equation [21] and subsequently to
several other inverse problems [2,5,22,23,25,42,44].

There are numerous analogies between the problem studied here and that of the
Einstein equations considered in [28]. For starters, both problems have gauges: in the
Einstein case the gauge group is the diffeomorphism group. The role of the relative
Lorenz gauge is played by wave coordinates and one could also say that the Fermi
coordinates used in [28] are the analogue of the temporal gauge. Both problems have
a compatibility condition for the sources: the Einstein tensor has zero divergence and
Yang–Mills has d∗

Ad∗
A FA = 0.

However, there are important differences and we want to stress those, since they
are essential in resolving the inverse problem in the different contexts. After suitable
gauge fixing and linearization, both the Einstein and Yang–Mills equations reduce to
a linear wave equation. The unknown Lorentzian metric appears in the leading order
terms of the equation in the former case while the background gauge field A features
at the subprincipal level in the latter case. The Lorentzian metric affects the Lagrangian
geometry of the parametrix for the wave equation but the effect of A is visible only in the
principal symbol of the parametrix. Thus the need for a symbol calculation in the present
paper that takes into consideration the structure of the Lie algebra g. Finally, the two
inverse problems reduce to very different purely geometric problems. In our case,we read
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the broken non-abelian light ray transform from certain principal symbols, whereas in
the Einstein case, the so-called light observation sets are obtained by analysing the wave
front sets of suitable solutions, see [17,29] for the corresponding geometric problem.

1.5. Outline of the paper. Section 2 introduces parallel transport in both the principal
and the adjoint representation and reduces Theorem 1 to inversion of the broken non-
abelian light ray transform via [7, Proposition 2] in the case that G has finite centre.
Section 3 discusses the Yang–Mills equations with a source. Section 4 introduces the
relative Lorenz gauge and the temporal gauge, thus setting up the scence for the source-
to-solution map. The latter is discussed in Section 5 where the important Proposition 4
is proved. Section 6 computes the equations for the triple cross-derivative when three
sources are introduced. Section 7 supplies the necessary tools from microlocal analysis
needed to compute the symbol of the triple interaction and the latter is computed in
Section 8. Section 9 proves a result about the structure of Lie algebras with trivial
centre, and completes the proof of Theorem 1 in the case that G has finite centre. The
final Section 10 contains the proof of Theorem 1 in the general case.

There are three appendices, first of which derives explicit formulas in coordinates,
for example, for d∗

A FA. The second appendix discusses the direct problem for the Yang–
Mills equations, and the last one gives an elementary alternative to the result in Section 9
in the case that g = su(n) with n ≥ 2.

2. Parallel Transport

Wewill explain in Section 10 how the case of an arbitrary compact, connected Lie group
G can be reduced to the case that G has finite centre, that is, the set

Z(G) = {z ∈ G : zh = hz for all h ∈ G}
is finite. In this case, the proof of Theorem 1 will ultimately boil down to inversion of a
non-abelian broken light ray transform. This transform is the composition of two parallel
transports, and we begin by defining the parallel transport used in the paper.

For the moment we may let (M, g) be any Lorentzian manifold, and G any compact
matrix Lie group with Lie algebra g. However, we will work with trivial bundles for
simplicity. Let A ∈ �1(M; g) be a connection and let us first define the parallel transport
on the principal bundle M ×G with respect to A: the parallel transport UA

γ along a curve

γ : [0, T ] → M is given by UA
γ = U (T ) where U is the solution of the ordinary

differential equation
{

U̇ + 〈A, γ̇ (t)〉 U = 0, t ∈ [0, T ],
U (0) = id .

(6)

Here 〈·, ·〉 is the pairing between covectors and vectors.
In general, if V is a vector space and ρ : G → GL(V) is a linear representation, the

parallel transport on the associated vector bundle M × V is defined by PA,ρ
γ = ρ(UA

γ ).
Two representations will be of importance to us. First, when G ⊂ GL(Cn) and V = C

n

we have the representation given by ρ = id. In other words, PA,id
γ v = UA

γ v for v ∈ V.
We call this the principal representation.



X. Chen et al.

Second, when V = g we have the adjoint representation ρ = Ad where Ad(h),
h ∈ G, is typically written Adh and defined by Adh b = hbh−1 for b ∈ g. We have

PA,Ad
γ b = AdUA

γ
b = UA

γ b(UA
γ )

−1, b ∈ g.

It is straightforward to verify that W (t) = U (t)bU−1(t) solves
{

Ẇ + [〈A, γ̇ (t)〉 , W ] = 0, t ∈ [0, T ],
W (0) = V,

(7)

where U is the solution of (6).
When M is a convex subset of Minkowski space R

1+3 and x, y ∈ M , there is a
unique geodesic γ from x to y, up to reparametrization. The parallel transport UA

γ does

not depend on the parametrization of γ , and we write simply PA,ρ
y←x = PA,ρ

γ in this case.
We are now ready to define the non-abelian broken light ray transforms used in the

proof of Theorem 1. We write

L = {(x, y) ∈ D
2 : there is a lightlike geodesic joining x and y},

S
+(�) = {(x, y, z) ∈ D

3 : (x, y), (y, z) ∈ L, x < y < z, x, z ∈ �, y /∈ �}, (8)

where x < y means that there is a future pointing causal curve from x to y. (For
(x, y) ∈ L, we have x < y if and only if the time coordinate of y − x is strictly positive.)
Define

SA,ρ
z←y←x = PA,ρ

z←yPA,ρ
y←x , (x, y, z) ∈ S

+(�).

We will reduce the transform SA,Ad
z←y←x to SA,id

z←y←x as follows:

Lemma 1. Suppose that a compact, connected matrix Lie group G has finite centre and
let A, B ∈ �1(D; g). If SA,Ad

z←y←x = SB,Ad
z←y←x for all (x, y, z) ∈ S

+(�) then SA,id
z←y←x =

SB,id
z←y←x for all (x, y, z) ∈ S

+(�).

Proof. Let (x, y, z) ∈ S
+(�) and b ∈ g. Then ub = bu where

u = (UB
z←yUB

y←x )
−1UA

z←yUA
y←x = UB

x←yUB
y←zUA

z←yUA
y←x .

As this holds for all b ∈ g we see that u is in the centre Z(G). For the convenience of
the reader we recall the proof of this well-known fact. Let h ∈ G. As G is connected,
there is a path H : [0, 1] → G satisfying H(0) = id and H(1) = h. Define the path
F(t) = uH(t)u−1H−1(t) in G. Then F(0) = id and

Ḟ = uḢu−1H−1 − uHu−1H−1 Ḣ H−1 = uH H−1 Ḣu−1H−1 − uHu−1H−1 Ḣ H−1 = 0,

where we used the fact that b = H−1 Ḣ ∈ g commutes with u−1. We conclude that
uhu−1h−1 = F(1) = id.

Now u ∈ Z(G) depends continuously on x , y and z, and u → id when y → x and
z → x . As Z(G) is finite, we have u = id, and therefore

UA
z←yUA

y←x = UB
z←yUB

y←x .

��
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We have previously inverted the transform SA,id
z←y←x in the case of the unitary group

G = U(n), see Proposition 2 of [7], where slightly different choice of � and D is used.
However, the proof works for any matrix Lie group, and also for the present choice of �

and D. Moreover, the gauge u defined in Lemma 3 of [7] is smooth up to ∂D whenever
the two connections A and B are smooth up to ∂D.

Until treating the case of an arbitrary compact, connected Lie group in Section 10,
we will focus on proving:

Proposition 1. Suppose that G has finite centre. If A and B are as in Theorem 1 and if

DA = DB, then there are Ã ∼ A and B̃ ∼ B in D such that S Ã,Ad
z←y←x = SB̃,Ad

z←y←x for
all (x, y, z) ∈ S

+(�).

Under the additional assumption that G has finite centre, Theorem 1 follows then
from Proposition 1, Lemma 1 and the proof of Proposition 2 in [7].

3. Yang–Mills Equations with a Source

In this section we let (M, g) be any oriented Lorentzian manifold, and consider the
Yang–Mills equations with a source

d∗
V FV = J (9)

on M . Here the source J cannot be arbitrarily chosen but must obey the compatibility
condition

d∗
V J = 0 (10)

due to the following well-known lemma. We give a proof for the convenience of the
reader.

Lemma 2. Let V ∈ C3(M; T ∗M ⊗ g). Then d∗
V d∗

V FV = 0, and the Yang–Mills equa-
tions with a source (9) imply the compatibility condition (10).

Proof. Since d∗
V = ± � dV � we see that given any ω ∈ �k(M; g) we have

(d∗
V )

2ω = ± � dV � �dV � ω = ± � d2
V � ω = ± � [FV , �ω].

So it is enough to prove that [FV , �FV ] = 0. But this is a purely algebraic fact that holds
for any ω ∈ �2(M; g), that is,

[ω, �ω] = 0, ω ∈ �2(M; g).
This is equivalent with

ω ∧ �ω − �ω ∧ ω = 0. (11)

To check this, write ω = ωi j dxi ∧ dx j and note that

dxi ∧ dx j ∧ �(dxk ∧ dxl) �= 0

if and only if i = k, j = l, i �= j and k �= l. Thus

ω ∧ �ω = (ωi j )
2dxi ∧ dx j ∧ �(dxi ∧ dx j )

and since

dxi ∧ dx j ∧ �(dxi ∧ dx j ) = �(dxi ∧ dx j ) ∧ dxi ∧ dx j

�ω ∧ ω has the same expression and (11) holds. ��
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The next lemma, proven again for convenience, implies that the source in (9) changes
toU−1 JUwhen a gauge transformationU ∈ C∞(M, G) acts onV .Weuse the shorthand
notation B = U · A for (2).

Lemma 3. B = U · A implies

d∗
B FB = U−1d∗

A FAU. (12)

Proof. By assumption

B = U−1dU + U−1AU.

A direct calculation from the definitions shows that

dBω = U−1dA(UωU−1)U, ω ∈ �p. (13)

Using d∗
A = �dA� and (13) we see that

d∗
B FB = U−1d∗

A FAU

since FB = U−1FAU. ��

4. Gauge Fixing

Gauge fixing is a mathematical procedure for coping with redundant degrees of freedom
in field variables. Our work uses two gauges, namely the temporal gauge and the relative
Lorenz gauge.While these are typical gauge choices, wewill give below a self-contained
presentation of certain, perhaps less commonly used, properties of these gauges.

4.1. Temporal gauge. In this section we write (x0, x1, x2, x3) = (t, x) ∈ R
1+3 for the

Cartesian coordinates. The signature convention (− + ++) is chosen for the Minkowski
metric. A connection A ∈ �1(M; g), with M ⊂ R

1+3, is said to be in the temporal gauge
if A0 = 0 where A = Aαdxα .

For a connection V ∈ �1(D; g) we define a connection T (V ) in temporal gauge by

T (V ) = U · V, where

{
∂t U = −V0U,

U|t=ψ(x) = id,
(14)

and ψ(x) = |x | − 1. Observe that {(t, x) ∈ D : t = ψ(x)} = ∂−
D and U ∈ G0(D, p).

Therefore T (V ) ∼ V in D.
We shall prove the following uniqueness result:

Proposition 2. Let A, B ∈ C3(D; T ∗
D ⊗ g) solve the Yang–Mills equations (1) in the

set D \ �. Suppose that d∗
A FA = d∗

B FB in � and that there is U ∈ C∞(D; G) such that
A = U · B near ∂−

D and that U = id in � near ∂−
D. Suppose, furthermore, that both

A and B are in the temporal gauge. Then U does not depend on t, and A = U · B in D.
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4.1.1. Reduced equations We follow a reduction given in [9]. Suppose that a connection
A ∈ �1(M; g) is in temporal gauge and write d∗

A FA = J . For the convenience of the
reader, we give a proof of the following formula, see Lemma 12 in Appendix Appendix
A,

d∗
A FA = (∂β(∂α Aα) − ∂α∂α Aβ − [∂α Aα, Aβ ]

−2[Aα, ∂α Aβ ] + [Aα, ∂β Aα] − [Aα, [Aα, Aβ ]]) dxβ.

Here, and throughout the paper, indices are raised and lowered by using the Minkowski
metric. Taking β = 0 we get the constraint equation

∂0(∂
a Aa) + [Aa, ∂0Aa] = J0, (15)

with a = 1, 2, 3, and taking β = j = 1, 2, 3 we get

∂ j (∂
a Aa) − ∂α∂α A j + Ñ j (A, ∂x A) = J j . (16)

Here ∂x A = (∂1A, ∂2A, ∂3A) and Ñ j contains the terms that are of order one and zero,

Ñ j (A, ∂x A) = −[∂a Aa, A j ] − 2[Aa, ∂a A j ] + [Aa, ∂ j Aa] − [Aa, [Aa, A j ]].
In the remainder of this section, we will use systematically Greek letters for indices over
0, 1, 2, 3 and Latin letters for 1, 2, 3.

We differentiate (15) using ∂ j and (16) using ∂0, to obtain

∂ j∂0(∂
a Aa) = −[∂ j Aa, ∂0Aa] − [Aa, ∂ j∂0Aa] + ∂ j J0

∂ j∂0(∂
a Aa) − ∂α∂α∂0A j + ∂0 Ñ j (A, ∂x A) = ∂0 J j .

Substituting the first equation to the second one gives

�∂t A j + N j (A, ∂x A, ∂t A, ∂x∂t A) = ∂t J j − ∂ j J0, (17)

where we have written

� = −∂α∂α = ∂2t − ∂2x1 − ∂2x2 − ∂2x3, (18)

and

N j (A, ∂x A, ∂t A, ∂x∂t A) = −[∂ j Aa, ∂0Aa] − [Aa, ∂ j∂0Aa] + ∂0 Ñ j (A, ∂x A).

We call (17) the reduced Yang–Mills equations.

4.1.2. Pseudolinearization Observe that for bilinear and trilinear forms b and m,

b(A, A) − b( Ã, Ã) = b(A − Ã, A) + b( Ã, A − Ã),

m(A, A, A) − m( Ã, Ã, Ã) = m(A − Ã, A, A) + m( Ã, A − Ã, A) + m( Ã, Ã, A − Ã).

Hence if A and Ã satisfy (17) with the same J , then the difference A − Ã satisfies a
linear equation of the form

�∂t (A − Ã) + X1∂t (A − Ã) + X2(A − Ã) = 0 (19)

where X j , j = 1, 2, are first order differential operators in the x1, x2 and x3 variables,
with coefficients that depend on A and Ã, and whence also on the x0 variable. Writing
u = A − Ã, Y1 = −1 and Y2 = 0, the system (19) is equivalent to (65), with f1 = 0
and f2 = 0, studied in Appendix Appendix B.
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4.1.3. Proof of Proposition 2 A0 = 0 = B0 implies that U−1∂t U = 0, that is, ∂t U = 0.
Due to its time-independence, U is well-defined and smooth in whole D and U = id in
�. We define Ã = U · B and proceed to show that A = Ã in D.

As Ã is gauge equivalent to B, the Yang–Mills equations dÃ FÃ = 0 hold in D \ �.
As U = id in �, we have Ã = B in �. Therefore dÃ FÃ = dA FA in �. As U does
not depend on t , we see that Ã0 = 0. Hence A and Ã are two solutions to the reduced
Yang–Mills equations (17), with the same J , and the difference A − Ã satisfies (19). As
they also coincide near ∂−

D, Lemma 14 in Appendix Appendix B implies that A = Ã
in D.

4.2. Relative Lorenz gauge. For amomentwemay let (M, g) be any orientedLorentzian
manifold of even dimension. Consider two connections A and V on M solving theYang–
Mills equations without (1) and with (9) a source, respectively. That is, d∗

A FA = 0 and
d∗

V FV = J . We will rewrite the latter equation in terms of the difference W = V − A.
Directly from the definition of curvature

FV = d(W + A) +
1

2
[W + A, W + A] = FA + dW + [A, W ] + [W, W ]/2

and thus
FV = FA + dAW + [W, W ]/2. (20)

Since d∗
A = �dA� it follows that d∗

V = d∗
A + �[W, �·]. Combining this with (20) and

d∗
A FA = 0, we see that d∗

V FV = J is equivalent with

d∗
AdAW + �[W, �FA] +N (W ) = J, (21)

where the non-linear part reads

N (W ) = 1

2
d∗

A[W, W ] + �[W, �dAW ] + 1

2
� [W, �[W, W ]]. (22)

We say that V ∈ �1(M; g) is in the Lorenz gauge relative to a background connection
A ∈ �1(M; g) if d∗

AV = d∗
A A. In this case (21) is equivalent with

�AW + �[W, �FA] +N (W ) = J, (23)

where �A = dAd∗
A + d∗

AdA is the connection wave operator.
The semilinear wave equation (23), together with suitable initial conditions, is solv-

able when the source J is small and smooth enough, see, for example, (the proof of)
Theorem 6 in [26]. However, its solution W solves the actual Yang–Mills equations (21)
if and only if dAd∗

AW = 0. Recall also that if W solves (21), or equivalently (9), then J
satisfies the compatibility condition (10). We will therefore study the system combining
(10) and (23). Observe that (10) is equivalent with

∂t J0 + [A0, J0] + [W0, J0] = ∂ j J j + [A j , J j ] + [W j , J j ], (24)

where j = 1, 2, 3. This can be viewed as an ordinary differential equation for J0.
We begin with an uniqueness result that is similar to Proposition 2. For r > 0 and

x ∈ R
1+3 we define the rescaled and translated diamond

D(x, r) = {r y + x : y ∈ D}.
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Lemma 4. Let r > 0 and x ∈ R
1+3 and write D̃ = D(x, r). Let A ∈ �1(D̃, g) and

suppose that W(�), J(�) ∈ C2(D̃; T ∗
D̃ ⊗ g) solve

{
�AW + �[W, �FA] +N (W ) = J,
d∗

A J + �[W, �J ] = 0,

in D̃ for � = 1, 2. Suppose, furthermore, that W(�), J(�), � = 1, 2, vanish near ∂−
D̃

and that the spatial parts of J(1) and J(2) of coincide on D̃, that is, J(1), j = J(2), j for
j = 1, 2, 3. Then W(1) = W(2) and J(1) = J(2) in D̃.

Proof. Pseudolinearization analogous to that in Section 4.1.2 shows that the difference
(W(1)−W(2), J(1)− J(2)) solves a system of the form (65) in Appendix Appendix Bwith
f1 = 0 and f2 = 0. The coefficients of this system depend on W(�), J(�) and they satisfy
the assumptions of Lemma 14 in Appendix Appendix B. Lemma 14 is formulated for
D rather than for D̃, however, the form of the system (65) is invariant under a rescaling
and translation. Therefore Lemma 14 holds also for D̃ and we conclude by applying
it. ��

We will now turn to existence of solutions to the Yang–Mills equations. It is conve-
nient to work in the cylinder M = (−2, 2) × R

3 containing the diamond D, rather than
in D. Let us consider again the system combining (10) and (23),

⎧⎪⎨
⎪⎩

�AW + �[W, �FA] +N (W ) = J, t ≥ −1,
d∗

A J + �[W, �J ] = 0, t ≥ −1,
W = 0, J = 0, t ≤ −1.

(25)

Lemma 5. Let A ∈ �1(M; g) and suppose that W, J ∈ C3(M; T ∗M ⊗ g) solve (25).
Suppose moreover that A solves (1) in D and that supp(J j ), j = 1, 2, 3, is contained in
the interior of D. Then W solves (21) in D, with J on the right-hand side.

Proof. The equations (21) and (23) differ by the term dAd∗
AW on the left-hand side.

Hence it is enough to verify that H = 0 in D where H = d∗
AW . We write V = W + A.

As A solves (1) in D, d∗
V FV coincides with the left-hand side of (21) in D, and the first

equation in (25), in other words (23), implies that d∗
V FV + dA H = J in D. Applying d∗

V
to this equation, we have used Lemma 2 and the second equation in (25) that d∗

V dA H = 0
in D. This is a linear wave equation for H . We will show below that W vanishes near
∂−

D. Hence also H vanishes near ∂−
D, and as it satisfies the linear wave equation,

it vanishes in the whole D. This type of finite speed of propagation result is of course
standard, and it follows also from Lemma 14 Appendix Appendix B.

Let us now show that W vanishes near ∂−
D. There is r ∈ (0, 1) such that supp(J j ) ⊂

D(0, r) for j = 1, 2, 3. Let D̃ in Lemma 4 satisfy D̃∩D(0, r) = ∅ and ∂−
D̃ ⊂ {t < −1}.

Lemma 4 implies that W = 0 in D̃ by comparison with the trivial solution. By varying
D̃ we see that W vanishes in {t ≤ 0} \ D(0, r), and also near ∂D∩ {t = 0}. In particular,
W vanishes near ∂−

D. ��
Remark 1. As the second equation in (25) is equivalent with the ordinary differential
equation (24), we see that if supp(J j ) ⊂ (0, T ) × K , j = 1, 2, 3, for some K ⊂ R

3,
then also supp(J0) ⊂ (0, T ) × K for a solution of (25).

We prove the following result in Appendix Appendix B.
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Proposition 3. Suppose that A ∈ �1(M; g) is bounded, together with all its derivatives,
and let k ≥ 4. Then there is a neighbourhood H of the zero function in Hk+2(M; g) such
that for all J j ∈ H, j = 1, 2, 3, there is a unique solution

W ∈ Hk+1(M; T ∗M ⊗ g), J0 ∈ Hk+1(M; g)

of (25) with J = J0dx0 + · · · + J3dx3. Moreover, the map (J1, J2, J3) �→ (W, J0) is
smooth from H3 to Hk+1(M; T ∗M ⊗ g ⊕ g).

5. Source-to-Solution Map

We begin with a lemma, that will be used only once, and that highlights the difference
between the pointed gauge group G0(D, p) and the full gauge group G(D).

Lemma 6. Suppose that Ã ∼ A near ∂−
D and consider the modified data set

D̃A = {V ′ ∈ DA : V ′ = Ã in � near ∂−
D}.

Let V ′ ∈ D̃A. Then there are U ∈ G0(D, p) and V ∈ C3(D; T ∗
D ⊗ g) such that

V ′ = V |�, V = U · Ã near ∂−
D, and U = id in � near ∂−

D.

Proof. It follows immediately from the definitions of the sets DA and D̃A that there are
U ∈ G0(D, p) and V ∈ C3(D; T ∗

D ⊗ g) such that V ′ = V |�, V = U · Ã near ∂−
D,

and V = Ã in � near ∂−
D. Then U satisfies

U · Ã = Ã (26)

in � near ∂−
D. As (26) is equivalent with the differential equation dU = [ Ã,U], and

U(p) = id, it follows that U = id in � near ∂−
D. ��

If we used gauge equivalence with respect to G(D) in the definition DA, then (26)
would still hold in a neighbourhood U ⊂ � of ∂−

D ∩ �, however, this simply says that
U|U is in the stabilizer subgroup {U ∈ C∞(U; G) : U · Ã = Ã} with respect to Ã|U . In
general, the stabilizer subgroup may be non-trivial.

Recall that the temporal gauge version T (V ) of a connection V is defined by (14).
Recall, furthermore, that the system (25) of Yang–Mills equations in relative Lorenz
gauge with the compatibility condition is posed on M = (−2, 2) × R

3.

Proposition 4. Suppose that A ∈ �1(D; g) satisfies (1) in D. Then there is a connection
Ã ∈ �1(D; g) such that Ã ∼ A in D, Ã|� is in temporal gauge, and the following
holds: for all x ∈ � there are a neighbourhood �0 ⊂ � of x and a neighbourhood H of
the zero function in H7

0 (�0; g) such that DA determines Ã|� and the source-to-solution
map

L(J1, J2, J3) = T (V )|�, J j ∈ H, j = 1, 2, 3,

where V = W + Ã and (W, J0) is the solution of (25) with J = J0dx0 + · · · + J3dx3

and with A replaced by an arbitrary smooth, compactly supported extension of Ã to M.
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Proof. Let Ã′ ∈ DA be in the temporal gauge and satisfy d∗
Ã′ FÃ′ = 0 in �. Such Ã′

exists, for example, Ã′ = T (A)|� is a possible choice. There is Ã such that Ã′ = Ã|�,
d∗

Ã
FÃ = 0 in D and Ã ∼ A near ∂−

D. Proposition 10 in Appendix Appendix B implies

that Ã ∼ A in D. Choose a smooth, compactly supported extension of Ã in M , still
denoted by Ã.

For x ∈ � we choose ε > 0 small enough so that D(x, ε) ⊂ � and let �0 be the
interior ofD(x, ε). Let t0 be the time coordinate of x . Let J j ∈ H7

0 (�0; g), j = 1, 2, 3, be
small, and consider the solution (W, J0) of the system (25) with A = Ã in (−1, t0)×R

3.
This solution vanishes outside�0 and near ∂−

D(x, ε), and it does not depend on Ã away
from �0. The vanishing of (W, J0) outside �0 and near ∂−

D(x, ε) is shown similarly to
the vanishing of W near ∂−

D in the proof of Lemma 5, and we omit this argument. To
see that (W, J0) does not depend on Ã away from �0, we consider two solutions to (25)
with different backgrounds A in (−1, t0 +ε)×R

3. Both the backgrounds are assumed to
coincide with Ã in �0. As both the solutions vanish near ∂−

D(x, ε), Lemma 4 implies
that they are identical in D(x, ε).

Extending (W, J0) by zero we get a solution in the set �− = � ∩ {t < t0}. To
summarize, the solution (W, J0) in �− is determined by Ã′ and our choice of J j ,
j = 1, 2, 3. Defining a connection V̂ = V̂ (J1, J2, J3) on �− by V̂ = W + Ã we
have d∗

V̂
FV̂ = J in �− where J = J0dx0 + · · · + J3dx3. We write �+ = � ∩ {t > t0},

and consider the set

L = L(J1, J2, J3) = {T (V ′) : V ′ ∈ D̃A, V ′ = V̂ in �−,
and the spatial part of| d∗

V ′ FV ′ vanishes in �+}.
HereT is defined by (14) with |x | < ε0, cf. (3). No confusion should arise from our use
ofT for temporal gauge both in � and in D sinceT (V |�) = T (V )|� for a connection
V on D.

As V̂ is determined by DA (and the choice of Ã′), also L is determined by DA.
Moreover, T (V )|� ∈ L where V = W + Ã and (W, J0) is the solution of (25) in M
with J j , j = 1, 2, 3, as above and A = Ã. The solution (W, J0) in M is an extension
of the solution (W, J0) in (0, t0) × R

3, which justifies our reuse of symbols. Observe
that Proposition 3, together with the Sobolev embedding theorem, guarantees that W ∈
C3(D; T ∗

D ⊗ g), and that Remark 1 guarantees that supp(J0) ⊂ �.
To conclude the proof, it remains to show thatL consists of a single element. Suppose

that W ′, W̃ ′ ∈ L. By Lemma 6 there are connections V , Ṽ and gauges u, ũ satisfying
W ′ = T (V )|�, W̃ ′ = T (Ṽ )|�, d∗

V FV = 0 = d∗
Ṽ

FṼ inD\�, V = u · Ã and Ṽ = ũ · Ã

near ∂−
D, and u = id = ũ in � near ∂−

D. We define
{
∂t U = −V0U,

U|t=ψ(|x |) = id,

{
∂t Ũ = −Ṽ0Ũ,

Ũ|t=ψ(|x |) = id,

and set W = U · V and W̃ = Ũ · Ṽ . Then W0 = 0 = W̃0 in D. Moreover, it follows
from the definition of T that W ′ = W |� and W̃ ′ = W̃ |�.

There holds V = Ã = Ṽ in � near ∂−
D. This implies U = Ũ and W = W̃ in � near

∂−
D. Writing U− = Uuũ−1Ũ−1, we have that W = U− · W̃ near ∂−

D and U− = id in
� near ∂−

D.
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In fact, as V = V̂ = Ṽ in �−, we have U = Ũ and W = W̃ in �−. Hence also
d∗

W FW = d∗
W̃

FW̃ in �−. The spatial parts of d∗
V FV and d∗

Ṽ
FṼ vanish in �+. As gauge

transformations act componentwise on d∗
W FW , see (12), also the spatial parts of d∗

W FW
and d∗

W̃
FW̃ vanish in �+. Writing J0 for the temporal part of d∗

W FW , the compatibility
condition d∗

W d∗
W FW = 0, see Lemma 2, together with W0 = 0, implies that ∂t J0 = 0 in

�+. The same holds for J̃0, the temporal part of d∗
W̃

FW̃ . But J0 = J̃0 on � ∩ {t = t0},
and hence J0 = J̃0 in �+. To summarize d∗

W FW = d∗
W̃

FW̃ in �. Proposition 2 implies

that W = W̃ in �. In other words W ′ = W̃ ′ and this is the only element in L. ��

6. Linearization of the Yang–Mills Equations in Lorenz Gauge

Let us study multiple-fold linearizations of (23). Consider a three-parameter family

(W, J ) = (W (ε), J (ε)), ε = (ε(1), ε(2), ε(3)),

of solutions to (23), vanishing for t ≤ 0, where ε is in a neighbourhood of the origin in
R
3. Assume that the source term is linear in the sense that J =∑3

k=1 ε(k) J(k) for some
J(k) ∈ �1(R1+3; g). Writing

Y(k) = ∂W

∂ε(k)

∣∣∣∣
ε=0

, Y(kl) = ∂2W

∂ε(k)∂ε(l)

∣∣∣∣
ε=0

, Y(123) = ∂3W

∂ε(1)∂ε(2)∂ε(3)

∣∣∣∣
ε=0

, (27)

and differentiating (23) in ε gives the following system of linear wave equations
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�AY(k) + �[Y(k), �FA] = J(k), t ≥ 0,
�AY(kl) + �[Y(kl), �FA] + N (2) = 0, t ≥ 0,
�AY(123) + �[Y(123), �FA] + N (3) = 0, t ≥ 0,
Y(k) = Y(kl) = Y(123) = 0, t ≤ 0,

(28)

where the nonlinear terms read

N (2) = 1

2
d∗

A[Y(k),Y(l)] + 1

2
d∗

A[Y(l),Y(k)] + �[Y(k), �dAY(l)] + �[Y(l), �dAY(k)],

and, writing S3 for the set of permutations on {1, 2, 3},

N (3) = 1

2

∑
π∈S3

(
1

2
d∗

A[Y(π(1)π(2)),Y(π(3))] + 1

2
d∗

A[Y(π(1)),Y(π(2)π(3))]

+ �[Y(π(1)π(2)), �dAY(π(3))] + �[Y(π(1)), �dAY(π(2)π(3))]
+ 2 � [Y(π(1)), �[Y(π(2)),Y(π(3))]]

)
.

Now we continue the calculation in Cartesian coordinates in Minkowski space R
1+3,

and use the formulas

d∗
A[X, Z ] = [d∗

A X, Z ] − [X, d∗
A Z ]

+ [∂α Xβ + [Aα, Xβ ], Zα]dxβ − [Xα, ∂
α Zβ + [Aα, Zβ ]]dxβ, (29)
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�[X, �dA Z ] = −[Xα, ∂α Zβ + [Aα, Zβ ]]dxβ + [Xα, ∂β Zα + [Aβ, Zα]]dxβ, (30)

�[X, �[Y, Z ]] = −[Xα, [Yα, Zβ ]]dxβ + [Xα, [Yβ, Zα]]dxβ. (31)

These formulas are derived in Appendix Appendix A. Using (29)–(31) and the Lorenz
gauge condition d∗

AW = 0, we rewrite the first three equations in (28), modulo lower
order terms, as follows

�AY(k) = J(k), (32)

�AY(kl) = Ñ (2), (33)

�AY(123) = Ñ (3), (34)

where the components of the right-hand sides of the last two equations read

Ñβ(2) = 2[Y α
(k), ∂αY(l),β ] − [Y α

(k), ∂βY(l),α] + 2[Y α
(l), ∂αY(k),β ] − [Y α

(l), ∂βY(k),α],
Ñβ(3) = 1

2

∑
π∈S3

(
2[Y α

(π(1)π(2)), ∂α(Y(π(3)),β)] − [Y α
(π(1)π(2)), ∂β(Y(π(3)),α)]

+ 2[Y α
(π(1)), ∂α(Y(π(2)π(3)),β)] − [Y α

(π(1)), ∂β(Y(π(2)π(3)),α)]
+ 4[Y α

(π(1)), [Y(π(2)),α,Y(π(3)),β ]]
)
.

7. Preliminaries on Microlocal Analysis

7.1. Distributions associated to conormal bundles and two Lagrangians. The advantage
of working in the relative Lorenz gauge is that the Yang–Mills equations reduces to a
cubic nonlinear wave equationwith the linear part given by the connectionwave operator
�A, modulo zeroth order terms. The parametrix for �A is a distribution associated to an
intersecting pair of Lagrangians (shortly an IPL distribution), in the sense of [36], and
we use the product calculus of conormal distributions to study the non-linear part.

The proof of Proposition 1 in the next section relies solely on symbolic computations,
and we recall here only that conormal and IPL distributions have principal symbols and
that the corresponding symbol maps are isomorphisms, modulo lower order terms in a
suitable sense. We will not recall the definitions of these classes of distributions, them
being somewhat technical, instead we refer the reader to [7] for a review of the theory
that we use and that was originally developed in [11,18,36]. Even the precise definition
of spaces of symbols is not important for our present purposes, since we will consider
only symbols that are positively homogeneous in the fibre variable.

Recall that a pseudodifferential operator A on a manifold X with a homogeneous
principal symbol a is said to be elliptic at (x, ξ) ∈ T ∗ X \ 0 if a(x, ξ) �= 0. The
wavefront set WF(u) ⊂ T ∗ X \ 0 of a distribution u on X is the complement of its
regular set, whilst the regular set consists of such points (x, ξ) ∈ T ∗ X \ 0 that there
is a zeroth order pseudodifferential operator A that is elliptic at (x, ξ) and that satisfies
Au ∈ C∞(X). We denote by singsupp(u) the projection of WF(u) on X , and byWF(A)
the essential support of A, that is, the projection of WF(A ) ⊂ (T ∗ X \ 0)2 on the first
factor T ∗ X \ 0 where A is the Schwartz kernel of A. Moreover, we say that A is a
microlocal cutoff near (x, ξ) ∈ T ∗ X \0 if A is elliptic at (x, ξ) andWF(A) is contained
in a small neighbourhood of {(x, λξ) : λ > 0}.
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Let E be a complex smooth vector bundle over X and�1/2 the half density bundle. A
conormal distribution u ∈ I m(N∗Y ; E ⊗�1/2) of orderm ∈ R is a compactly supported
distribution taking values on the tensor bundle E ⊗ �1/2 with WF(u) contained in the
conormal bundle N∗Y of a submanifold Y of X . In addition, u is required to have certain
local structure on Y , see (2.4.1) in [18], precise form of which is not important for our
purposes. What is important is that the principal symbol σ [u] of u is a smooth section of
E ⊗�1/2, invariantly defined on N∗Y \ 0, and that the principal symbol map u �→ σ [u]
gives the short exact sequence,

0 → I m−1(N∗Y ; E ⊗ �1/2) ↪→ I m(N∗Y ; E ⊗ �1/2)

σ−→ Sm+n/4/Sm+n/4−1(N∗Y ; E ⊗ �1/2) → 0, (35)

see [18, Theorem 2.4.2] and [19, Theorem 18.2.11]. Here n is the dimension of X and
Sm(N∗Y ; E ⊗�1/2), with m ∈ R, is the space of symbols, see [19, Definition 18.2.10].
For our purposes it suffices to note that positively homogeneous sections of degree m are
in this space, and that if �1/2 is trivialized by choosing a nowhere vanishing positively
homogeneous section μ of degree r , then σ [u] is positively homogeneous of degree
m + r if

(μ−1σ [u])(x, λξ) = λm(μ−1σ [u])(x, ξ), for any λ > 0 and (x, ξ) ∈ N∗Y \ 0.
Since the half density is involved here, the given homogeneity looks a little different
from the classical definition in [19, p.67].

More generally, a Lagrangian distribution u ∈ I m(�; E ⊗ �1/2) is a compactly
supported distribution with WF(u) contained in a conical Lagrangian submanifold �

of T ∗ X \ 0, and certain local structure, see (3.2.14) in [18]. Its principal symbol is
invariantly defined on � as a smooth section of the bundle E ⊗ �1/2 ⊗ L , where L
is the Maslov bundle over �. Analogously to (35) the principal symbol map gives an
isomorphism

I m(�; E ⊗ �1/2) → Sm+n/4(�; E ⊗ �1/2 ⊗ L)

modulo lower order terms, see [18, Theorem 3.2.5]. We write also

I (�; E) =
⋃

m∈R

I m(�; E ⊗ �1/2).

The notion of Lagrangian distributions is insufficient to completely describe the
fundamental solution of wave equations as two Lagrangian manifolds are needed in
order to describe the propagating singularities and the singularities at the source. An
IPL distribution u ∈ I m(�0,�1; E ⊗ �1/2) is compactly supported distribution with
WF(u) contained in �0 ∪ �1, where (�0,�1) is a cleanly intersecting pair of conical
Lagrangian submanifolds of T ∗ X \ 0, and with certain local structure on �0 ∪ �1, see
[36]. Here �1 is a manifold with boundary, while �0 is a manifold without boundary,
and by cleanly intersecting, we mean

�0 ∩ �1 = ∂�1, Tλ(�0) ∩ Tλ(�1) = Tλ(∂�1).

Again what we really need in the present paper is the symbol map for such distribu-
tions. In this case the symbol map is an isomorphism, modulo lower order terms, from
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I m(�0,�1; E ⊗ �1/2) to the space⎧⎪⎪⎨
⎪⎪⎩
(a(1), a(0))

∣∣∣∣
a(0) ∈ Sm−1/2+n/4(�0 \ ∂�1; E ⊗ �1/2 ⊗ L),
a(1) ∈ Sm+n/4(�1; E ⊗ �1/2 ⊗ L),
a(1)|∂�1 = Ra(0),

ha(0) is smooth up to ∂�1 if h vanishes on ∂�1.

⎫⎪⎪⎬
⎪⎪⎭

.

Weremark thatRmaps the E⊗�1/2⊗L-valued symbols over�0 to the E⊗�1/2⊗L-
valued symbols over �1 and acts as a multiplication by a scalar on E .

If (x, ξ) ∈ � j \ ∂�1 for j = 0 or j = 1, then there is a microlocal cutoff χ near
(x, ξ) such thatχu ∈ I (� j ; E) for all u ∈ I m(�0,�1; E⊗�1/2). The only placewhere
we need the full picture of IPL distributions, instead of the above microlocal reduction
to Lagrangian distributions, is equation (39) giving an initial condition on ∂�1 for a
transport equation on �1. Moreover, apart from (39), we can also avoid the use of
Lagrangian distributions in favour of conormal distributions, since all the Lagrangian
manifolds �0 and �1 considered below will be conormal bundles away from ∂�1.

The principal symbol σ [�A] and the subprincipal symbol σsub[�A] read
σ [�A](x, ξ) = ξαξα, σsub[�A](x, ξ) = 2ı−1[ξα Aα, ·].

We denote by 
s , s ∈ R, the flow of the Hamilton vector field Hσ [�A] of σ [�A],
and define for a subset B of the characteristic set � of �A the future flowout of B by

{(y, η) ∈ �; (y, η) = 
s(x, ξ), s ∈ R, (x, ξ) ∈ B, y ≥ x}. (36)

As �A is of real principal type one can use the theory by Hörmander and Duister-
maat [11] to understand its parametrix. A completely symbolic parametrix construction,
based on IPL distributions, was given by Melrose and Uhlmann [36], and the following
adaptation of their construction in the vector valued case can be found in [7]:

Proposition 5. Let �0 be a conormal bundle such that Hσ [�A] is nowhere tangent to
�0. Denote by �1 the future flowout of �0 ∩ �. Consider the wave equation{

�Au = f, in R
1+3

u|t<0 = 0,
(37)

where f ∈ I (�0; E) and E = T ∗
R
1+3 ⊗ g. Then u ∈ ⋃m∈R

I m(�0,�1; E ⊗ �1/2)

and the corresponding principal symbols satisfy

(LHσ [�A ] + ıσsub[�A])σ [u] = 0 on �1 \ �0, (38)

σ [u] = R((σ [�A])−1σ [ f ]) on �1 ∩ �0. (39)

Here LHσ [�A ] denotes the Lie derivative with respect to Hσ [�A].
We will compute symbols related to the non-linear terms by using the following

result, implicitly contained in [15] and explicitly formulated for example in [7].

Proposition 6. Let K(1) and K(2) be two transversal submanifolds of X, let

(x, ξ) ∈ N∗(K(1) ∩ K(2)) \ (N∗K(1) ∪ N∗K(2)),

and let u( j) ∈ I (N∗K( j); E), j = 1, 2. If χ is a microlocal cutoff near (x, ξ) and μ is
a nowhere vanishing half density on X, then writing u(1)u(2) = μ(μ−1u(1))(μ

−1u(2)),
there holds χ(u(1)u(2)) ∈ I (N∗(K(1) ∩ K(2)); E) and

σ [χ(u(1)u(2))](x, ξ) = μ−1(x)σ [χ ](x, ξ)σ [u(1)](x, ξ1)σ [u(2)](x, ξ(2)), (40)

where ξ = ξ(1) + ξ(2) with ξ(1) ∈ N∗K(1) and ξ(2) ∈ N∗K(2).
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7.2. Parallel transport for the principal symbol. As in [7], the transport equation (38)
can be understood as a parallel transport equation as in Section 2,

∂s ûα + [〈A, γ̇ 〉 , ûα] = 0, ûα(s) = e�(s)(μ−1σ [uα])(β(s)), u = uαdxα.

Here μ is a nowhere vanishing half density on �1 \ �0, β(s) = (γ (s), γ̇ ∗(s)), with
γ̇ ∗ = γ̇αdxα , is the bicharacteristic curve emanating from β(0) ∈ �0 ∩ �1, and

�(s) =
∫ s

0
(μ−1LHσ [�A ]μ)(β(r))dr. (41)

Comparing with (7), we see that the 1-form components ûα satisfy the parallel transport
equation on M × g corresponding to the adjoint representation of G. In particular, if
x, y ∈ L and the singular support of f does not intersect the line segment from x to y,
then

e�(s)(μ−1σ [uα])[uα](y, ξ) = PA,Ad
y←x

(
(μ−1σ [uα])[uα](x, ξ)

)
, (42)

where ξ is the covector corresponding to the direction of the line segment, and β in (41)
satisfies β(0) = (x, ξ) and β(s) = (y, ξ).

We will also need the fact that positive homogeneity is preserved in (42) in the sense
of the following proposition, where we have fixed a nowhere vanishing half density μ

of degree 1/2 on �1 \ �0.

Proposition 7. Let u ∈ I (�0,�1; T ∗
R
1+3 ⊗ g ⊗ �1/2) be an IPL distribution solving

(37) and its symbol σ [u] positively homogeneous of degree q +1/2 on �1 \�0. Suppose
that �1 \ �0 = N∗K \ 0 for some K ⊂ R

1+3. Then for any (y, ξ) ∈ N∗K \ 0 with
(y, ξ) = 
s(x, ξ) for some s ∈ R, we have

e�(s)(μ−1σ [u])(y,±λξ) = λqPA,Ad
y←x ((μ

−1σ [u])(x,±ξ)), for any λ > 0. (43)

Recall that
s is the flow of the Hamilton vector field Hσ [�A]. For the proof, the reader
is referred to our work [7, Proposition 1].

8. Proof of Proposition 1

We follow the construction in [7], however, the analysis in the present paper is more
involved due to the non-linearity in Yang–Mills equations being more complicated than
the simple cubic non-linearity considered in [7], and also due to the gauge invariance of
the Yang–Mills equations. We will focus on the new features of the proof and refer to
[7] for technical details that are unchanged.

In order to apply themicrolocalmachinery in Section 7we need to consider theYang–
Mills equations on the tensor product bundle T ∗

R
1+3 ⊗ g ⊗ �1/2. This is achieved by

choosing a nowhere vanishing half densityμ onR
1+3 and by considering the conjugated

operator μ−1P(μW ) instead of P(W ) = �AW + �[W, �FA] +N (W ), cf. (23). In fact,
we choose μ so that μ = 1 identically in the Cartesian coordinates, and to simplify the
notation, we omit writingμ in what follows. However, wewarn the reader that additional
determinant factors appear in other coordinates. These can be included in the factors α̃(k)
in (51), and α(k), α(kl) and α in (53).
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Recall that S
+(�) is defined by (8). Let (x(1), y, z) ∈ S

+(�) and consider the line
segments γy←x(1) and γz←y from x(1) to y and from y to z, respectively. We write

η = γ̇ ∗
z←y(0), ξ(1) = γ̇ ∗

y←x(1) (�),

where � ∈ R satisfies γy←x(1) (�) = y and ·∗ : TyR
1+3 → T ∗

y R
1+3 denotes the tangent-

cotangent isomorphism given by the Minkowski metric. After rescaling η and ξ(1), and
after a rotation in R

3, we may assume that

η = (1,−a(r), r, 0), ξ(1) = (1, 1, 0, 0), (44)

where a(r) = √
1 − r2 and r ∈ (−1, 1). Then we let s > 0 be small and set

ξ(2) = (1, a(s), s, 0), ξ(3) = (1, a(s),−s, 0). (45)

The rationale behind this choice of ξ(k), k = 2, 3, is that now η can be written as the
linear combination

η = κ(1)ξ(1) + κ(2)ξ(2) + κ(3)ξ(3),

where the scalars κ(k) are given explicitly by

κ(1) = 1 − 1 + a(r)

1 − a(s)
, κ(2) = 1 + a(r)

2(1 − a(s))
+
1

2

r

s
, κ(3) = 1 + a(r)

2(1 − a(s))
− 1

2

r

s
. (46)

Writing γ (·; x, ξ) for the geodesic on R
1+3 with the initial conditions γ (0; x, ξ) = x

and γ̇ ∗(0; x, ξ) = ξ , we define

x(k) = γ (−�; y, ξ(k)), k = 2, 3.

Then x(2), x(3) ∈ � for small enough s > 0.
It turns out that in the coordinates satisfying (44)–(45) it is enough to use sources

with all but the dx2 component vanishing. Let b(k) ∈ g and set

J(k),2 = J(k),2(s) = b(k)χ(k)δx(k) , k = 1, 2, 3, (47)

where δx(k) is the Dirac delta distribution at x(k) and χ(k) is a microlocal cutoff near
(x(k),±ξ(k)). Here the sign is chosen to be that of κ(k), that is, − for k = 1 and + for
k = 2, 3. Moreover, χ(k) is chosen so that

(χ1) the principal symbol σ [χ(k)] is positively homogeneous of degree q;
(χ2) supp(J(k),2) ⊂ �(k) where �(k) ⊂ � is a neighbourhood of x(k), and for all
k �= l it holds that x(l) /∈ J +(�(k)) where

J +(�(k)) = {y ∈ R
1+3 : x < y or x = y for some x ∈ �(k)};

(χ3) �̂(k) ∩ �(l) = ∅ for all k �= l where

�̂(k) = {(t, x ′) ∈ R
1+3 : (t̃, x ′) ∈ �(k) for some t̃ ∈ R},

�(k) = {γ (t̃; x(k), ξ) : t̃ ∈ R, (x(k), ξ) ∈ WF(χ(k))}.
The degree q ∈ R is chosen negative enough so that J(k),2 ∈ H7

0 (�; g). The geometric
setting is shown in Figure 2.
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Fig. 2. Three line segments (in black) along the lightlike geodesics γy←x(k) from x(k) (in red) to y (in blue),

k = 1, 2, 3, in the hyperplane x3 = 0. Coordinates are chosen so that (44)–(45) hold and that x(1) is at the

origin. All three points x(k) are in the plane x0 = 0, and there exist neighbourhoods �(k) of x(k) so that

(χ2) holds. The set �̂(k) is a small neighbourhood of the dashed red line through x(k) (in particular, �̂(1) is

a neighbourhood of the x0-axis), and �(k) is a small neighbourhood of the black line through x(k), for small
�(k) and WF(χ(k)), hence (χ3) holds

Proposition 8. Let x(1), y, z and η, as well as, b(k) and J(k),2(s), with k = 1, 2, 3 and
small s > 0, be as above, and define for ε(k) ∈ R, k = 1, 2, 3,

J2(ε, s) = ε(1) J(1),2(s) + ε(2) J(2),2(s) + ε(3) J(3),2(s), ε = (ε(1), ε(2), ε(3)). (48)

Let Ã and L be as in Proposition 4. Suppose that r �= 0 in (44), b(2) = b(3). Then for
any s0 > 0, the following point values of symbols

σ [∂ε(1)∂ε(2)∂ε(3) L(0, J2(0, s), 0)](z, η), s ∈ (0, s0),

determine S Ã,Ad
z←y←x(1)[b(2), [b(1), b(2)]].

As (x(1), y, z) ∈ S
+(�) and b(1), b(2) ∈ g can be chosen arbitrarily apart from

the constraint r �= 0, Proposition 1 follows from Propositions 4 and 8 together with
Proposition 9 in Section 9 below. Here the case r = 0 follows by continuity.

For the convenience of readers who do not wish to enter into theory of Lie algebras,
we have included an elementary alternative to Proposition 9 in the case g = su(n), with
n ≥ 2, see Lemma 16 in Appendix Appendix C. This special case is interesting in view
of the SU(3) × SU(2) × U(1) gauge group of the standard model.

We will proceed to give a proof of Proposition 8 in Sections 8.1–8.3.

8.1. Microlocal reduction from (25) to (23). Let J(k),2, k = 1, 2, 3, be as in (47), and
write J2 = J2(ε, s) for the function defined by (48). To simplify the notation, we write
J j = J(k), j = 0 for k = 1, 2, 3 and j = 1, 3, and, for the remainder of this section,
somewhat abusively A = Ã where Ã is as in Proposition 4. Then we denote by

(W, J0) = (W (ε), J0(ε)), ε = (ε(1), ε(2), ε(3)), (49)
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the solution of (25) with J j , j = 1, 2, 3, as above and ε near the origin of R
3. The

derivatives of W with respect to ε are denoted by Y(k), Y(kl) and Y(123) as in (27), and
we write also

ρ(k) = ∂ J0
∂ε(k)

∣∣∣∣
ε=0

, ρ(kl) = ∂2 J0
∂ε(k)ε(l)

∣∣∣∣
ε=0

, ρ(123) = ∂3 J0
∂ε(1)ε(2)ε(3)

∣∣∣∣
ε=0

.

For notational convenience, we translate the origin in (25) so that the initial conditions
are given at t = 0 rather than at t = −1.

Recall that the second equation in (25) is equivalent with (24). Differentiating (24)
with respect to ε(k) for k = 1, 2, 3 gives

∂tρ(k) + [A0, ρ(k)] = ∂ j J(k), j + [A j , J(k), j ]. (50)

Writing

ξ = (τ, ξ ′) = (ξ0, ξ1, ξ2, ξ3) ∈ T ∗
x R

1+3, x = (t, x ′) = (x0, x1, x2, x3) ∈ R
1+3,

the operator ∂t is elliptic away from its characteristic set {τ = 0} ⊂ T ∗
R
1+3. The

wave front set of the right-hand side of (50) is contained in a small neighbouhood
of {(x(k), λξ(k)) : λ �= 0}, and therefore it is disjoint from {τ = 0}. It follows that
ρ(k) ∈ I (N∗{x(k)}; g) since the right-hand side of (50) is in this class. Recalling the
form of ξ(k), k = 1, 2, 3, see (44) and (45), symbol evaluation gives

σ [ρ(1)](x(1),−ξ(1)) = 0, σ [ρ(k)](x(k), ξ(k)) = (−1)ksσ [J(k),2](x(k), ξ(k)), k = 2, 3.

Hence Y(k) solves (32) with J(k) satisfying

J(k) ∈ I (N∗{x(k)}; T ∗
R
1+3 ⊗ g), σ [J(k)](x(k),±ξ(k)) = α̃(k)b(k)ω(k), (51)

where the sign is that of κ(k), α̃(k) = σ [χ(k)](x(k),±ξ(k)) �= 0, b(k) is as in (47), and

ω(1) = dx2, ω(k) = (−1)ksdx0 + dx2, k = 2, 3.

It follows that away from x(k),

Y(k) ∈ I (N∗K(k); T ∗
R
1+3 ⊗ g),

where N∗K(k) is the bicharacteristic flowout emanating from (x(k), ξ(k)). In other words,
writing x(k) = (t(k), x ′

(k)),

K(k) =
{
(t(k) + s, x ′

(k) + sθ) ∈ R
1+3 : |θ | = 1, s > 0

}
.

Moreover, singsupp(Y(k)) ⊂ �(k).
The second derivative of (24) in ε for distinct k, l = 1, 2, 3 reads

∂tρ(kl) + [A0, ρ(kl)] = −[Y(k),0, ρ(l)] − [Y(l),0, ρ(k)] + [Y j
(l), J(k), j ] + [Y j

(k), J(l), j ].
(52)

As supp(J(k), j ) ⊂ �(k) by (χ2), it follows from (50) and J0 = 0 for t ≤ 0 that
supp(ρ(k)) ⊂ �̂(k). We see that Y(k) is smooth in the support of ρ(l) for distinct k and
l, since �̂(k) ∩ �(l) = ∅ by (χ3). Moreover, Y(k) solves (32) with vanishing initial
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conditions and with the source satisfying supp(J(k)) ⊂ �̂(k) ⊂ J +(�(k)), whence
supp(Y(k)) ⊂ J +(�(k)) due to finite speed of propagation (as discussed in the proof of
Lemma 5 finite speed of propagation follows from Lemma 14 in Appendix Appendix
B). As singsupp(ρ(l)) = {x(l)}, it follows from (χ2) that ρ(l) is smooth in the support
of Y(k) for distinct k and l. Analogously, Y(k) is smooth in supp(J(l)) and J(l) is smooth
in supp(Y(k)) for k �= l. Therefore the right-hand side of (52) is smooth, and so is ρ(kl).
This again implies that Y(kl) satisfies (33) modulo smooth terms.

The third derivative of (24) in ε can be written as

∂tρ(123) + [A0, ρ(123)] = 1

2

∑
π∈S3

(
− [Y(π(1)π(2)),0, ρ(π(3))] − [Y(π(1)),0, ρ(π(2)π(3))]

+ [Y j
(π(1)π(2)), J(π(3)), j ]

)
.

It follows from [20, Th. 8.2.10] that, for distinct k and l, any (x, ξ) ∈ WF(Y(k)Y(l))with
lightlike ξ satisfies (x, ξ) ∈ WF(Y( j)) for j = k or j = l. Then (33) implies that

singsupp(Y(kl)) ⊂ singsupp(Y(k)) ∪ singsupp(Y(l)).

Similarly with the above, we see also that supp(Y(kl)) ⊂ J +(�(k)) ∪ J +(�(l)) and
supp(ρ(kl)) ⊂ �̂(k) ∪ �̂(l) for k �= l. As above, this implies that ρ(123) is smooth, and
that Y(123) satisfies (34) modulo smooth terms.

8.2. Principal symbols of interacting waves. The linearized equation (33) has source
Ñ (2) that consists of products of solutions Y(k), k = 1, 2, 3, to the linear wave equation
(32). These products can be viewed as the interactions of waves Y(k) and Y(l). Then
the solution Y(kl) to (33) describes the linear waves emanating from the source of such
interacting waves Y(k) and Y(l). Analogously the solution Y(123) to (34) describes waves
emanating from interaction of Y(1), Y(2) and Y(3).

As ξ(k), k = 1, 2, 3, are linearly independent, the submanifolds K(k), k = 1, 2, 3,
intersect transversally at y, and we may compute the principal symbols σ [Y(123)](y, η)
using the product formula (40). This requires using the direct sum decomposition

η = η(1) + η(2) + η(3) ∈ N∗
y K(1) ⊕ N∗

y K(2) ⊕ N∗
y K(3),

where η(k) = κ(k)ξ(k) and the scalars κ(k) are given by (46). We will omit below the
details related to the choices of the microlocal cutoff when applying (40). The same
choices as in [7] can be used, see (54) there and its proof.

By (43) the incoming principal symbols satisfy

σ [Y(k)](y, η(k)) = α(k)|κ(k)|q−1PA,Ad
y←x(k)b(k)ω(k),

where the scalar factors α(k) converge inC\0 as s → 0. The factors α(k) are independent
from A, and their precise form is not important for our purposes. We refer to [7] for
more detail on how to compute these factors. Let us point out, however, that typically
α(k) �= α̃(k), with α̃(k) as in (51), due to a contribution fromR and σ [�A]−1 in (39).

We use the shorthand notations

Ŷ( j) = (α( j))
−1|κ( j)|1−qσ [Y( j)](y, η( j)),



Inverse problem for the Yang–Mills equations

Ŷ(kl) = −ı(α(kl))
−1|κ(k)κ(l)|1−qσ [Y(kl)](y, η(kl)),

Ŷ(123) = −α−1|κ(1)κ(2)κ(2)|1−qσ [Y(123)](y, η), (53)

where η(kl) = η(k) + η(l), α(kl) = α(k)α(l), and α = ια(1)α(2)α(3). The constant ι ∈ C \ 0
comes from (39) and is independent from A. Then

Ŷ(kl),β = p−1(y, η(kl))
(
2η(l),α[Ŷ α

(k), Ŷ(l),β ] − η(l),β [Ŷ α
(k), (Ŷ(l),α)]

+ 2η(k),α[Ŷ α
(l), Ŷ(k),β ] − η(k),β [Ŷ α

(l), Ŷ(k),α]
)
,

where p(y, ξ) = −ξ20 + ξ21 + ξ22 + ξ23 . Writing

Ŷ(kl),β = c(kl),β p−1(y, η(kl))[b̃(k), b̃(l)], b̃( j) = PA,Ad
y←x( j)

b( j), (54)

we have

c(12),0 = κ(1) + 2κ(2)s
2 − κ(2), c(12),1 = κ(1) − a(s)κ(2), c(12),2 = 2κ(1)s + κ(2)s,

c(13),0 = κ(1) + 2κ(3)s
2 − κ(3), c(13),1 = κ(1) − a(s)κ(3), c(13),2 = −2κ(1)s − κ(3)s,

and

c(23),0 = −3κ(2)s
2 + κ(2) + 3κ(3)s

2 − κ(3),

c(23),1 = a(s)κ(2)s
2 + a(s)κ(2) − a(s)κ(3)s

2 − a(s)κ(3),

c(23),2 = κ(2)s
3 − 3κ(2)s + κ(3)s

3 − 3κ(3)s.

Moreover,

p(y, η(23)) = 2(a(r) + a(s))(κ(1) − 1), p(y, η(1k)) = 2(a(r) + a(s))κ(k), k = 2, 3.

For our purposes, it is enough to compute the leading order terms with respect to s,
in the limit s → 0, of the first two 1-form components of Ŷ(123). The cubic terms

[Ŷ α
(π(1)), [Ŷ(π(2)),α, Ŷ(π(3)),β ]], β = 0, 1,

are of order s. Indeed, if β = 1 then the last factor vanishes, and if β = 0 then the last
factor is of order s. Hence for β = 0, 1,

Ŷ(123),β = 1

2

∑
π∈S3

(
2η(π(3)),α[Ŷ α

(π(1)π(2)), Ŷ(π(3)),β ] − η(π(3)),β [Ŷ α
(π(1)π(2)), Ŷ(π(3)),α]

+ 2η(π(2)π(3)),α[Ŷ α
(π(1)), Ŷ(π(2)π(3)),β ] − η(π(2)π(3)),β [Ŷ α

(π(1)), Ŷ(π(2)π(3)),α]
)

+O(s).

It is in principle straightforward to express Ŷ(123),β in terms of b̃( j), analogously to (54).
We do not reproduce here the details of this long computation, however, we have verified
the below expression (55) using a computer algebra system, and our code is available
online [8]. There holds
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Ŷ(123),0 = Ŷ(123),1 = −6s−1[b̃(1), [b̃(2), b̃(3)]]
+

(
6s−1 +

3r

1 + a(r)

)
[b̃(2), [b̃(1), b̃(3)]]

+

(
−6s−1 +

3r

1 + a(r)

)
[b̃(3), [b̃(1), b̃(2)]] +O(s). (55)

The terms of order s−1 cancel out due to the Jacobi identity. Hence

lim
s→0

Ŷ(123),β = 3r

1 + a(r)
lim
s→0

(
[b̃(2), [b̃(1), b̃(3)]] + [b̃(3), [b̃(1), b̃(2)]]

)
, β = 0, 1.

Taking b(3) = b(2) yields

1 + a(r)

6r
lim
s→0

Ŷ(123),β = lim
s→0

[b̃(2), [b̃(1), b̃(2)]] = PA,Ad
y←x(1)[b(2), [b(1), b(2)]], β = 0, 1,

where we used the following simple consequence of the Jacobi identity

[PA,Ad
y←x b(1),PA,Ad

y←x b(2)] = PA,Ad
y←x [b(1), b(2)], b(1), b(2) ∈ g, x, y ∈ R

1+3. (56)

Indeed, let W j , j = 1, 2, be the solutions of (7) with V = Vj . Then the Jacobi identity
implies

∂t [W1, W2] = −[[〈A, γ̇ 〉 , W1], W2] − [W1, [〈A, γ̇ 〉 , W2]]
= [W2, [〈A, γ̇ 〉 , W1]] + [W1, [W2, 〈A, γ̇ 〉]] = −[〈A, γ̇ 〉 , [W1, W2]].

Thus [W1, W2] solves (7) with V = [V1, V2] and (56) follows.
We apply (43) to obtain

α−1
(0) lims→0

(
cσ [Y(123),β ](z, η)) = PA,Ad

z←y PA,Ad
y←x(1)[b(2), [b(1), b(2)]], β = 0, 1, (57)

where c = c(s) = −(1 + a(r))(6rα)−1|κ(1)κ(2)κ(2)|1−q and α(0) ∈ C \ 0 is independent
from A.

8.3. Principal symbol in temporal gauge. To finish the proof of Proposition 8, we show
that for β = 1, 2, 3,

σ [∂ε(1)∂ε(2)∂ε(3) Lβ(0, J2(0, s), 0)](z, η) = −ηβ

η0
σ [Y(123),0](z, η) + σ [Y(123),β ](z, η).

(58)

Indeed, Proposition 8 follows from (57) and (58) with β = 1.
Recall that L(0, J2(ε, s), 0) is defined by T (V )|� where V = W + A and W is as

in (49). To simplify the notation, we write

V(k) = ∂V

∂ε(k)

∣∣∣∣
ε=0

, V(kl) = ∂2V

∂ε(k)∂ε(l)

∣∣∣∣
ε=0

, V(123) = ∂3V

∂ε(1)∂ε(2)∂ε(3)

∣∣∣∣
ε=0

.

As A is smooth, σ [V(123)](z, η) = σ [Y(123)](z, η). It remains to study how the principal
symbol σ [V(123)] transforms under passing to the temporal gauge with T .
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Let U = U(ε) be as in (14) with V = V (ε), and write

U(k) = ∂U
∂ε(k)

∣∣∣∣
ε=0

, U(kl) = ∂2U
∂ε(k)∂ε(l)

∣∣∣∣
ε=0

, U(123) = ∂3U
∂ε(1)∂ε(2)∂ε(3)

∣∣∣∣
ε=0

.

Recall that we are using the notation A = Ã where Ã is as in Proposition 4. In particular,
A|� is in temporal gauge. This, together with V |ε=0 = A, implies that U|ε=0 = id in �.

We will consider V and U near the point z ∈ �. Recall that Y(k) is singular only in
�(k) and that Y(kl) is singular only in �(k) ∪ �(l). Therefore V(k) and V(kl) are smooth
near z. Moreover, as WF(V(k)) and WF(V(kl)) are disjoint from the characteristic set
{τ = 0} of ∂t , the ordinary differential equation in (14) implies that also U(k) and U(kl)
are smooth near z.

Writing

T = ∂3T (V )

∂ε(1)∂ε(2)∂ε(3)

∣∣∣∣
ε=0

,

and differentiating (14) in ε1, ε2 and ε3 at ε = 0 yields that

T = dU(123) + U−1
(123) A + AU(123) + V(123)

+
1

2

∑
π∈S3

(
U−1

(π(1)π(2))V(π(3)) + U−1
(π(1))V(π(2)π(3)) + V(π(1)π(2))U(π(3)) + V(π(1))U(π(2)π(3))

+U−1
(π(1)π(2))dU(π(3)) + U−1

(π(1))dU(π(2)π(3)) + U−1
(π(1)π(2)) AU(π(3)) + U−1

(π(1)) AU(π(2)π(3))

)
,

where U(123) solves

∂tU(123) = −V(123),0 − 1

2

∑
π∈S3

(
V(π(1)π(2)),0U(π(3)) + V(π(1)),0U(π(2)π(3))

)
.

In addition, U−1U = id implies

U−1
(123) +

1

2

∑
π∈S3

(
U−1

(π(1)π(2))U(π(3)) + U−1
(π(1))U(π(2)π(3))

)
+ U(123) = 0.

Therefore, modulo smooth terms, near z there holds

T = dU(123) − U(123)A + AU(123) + V(123), ∂tU(123) = −V(123),0. (59)

Near z it holds that V(123) is a conormal distribution associated to the future flowout
of N∗(K(1) ∩ K(2) ∩ K(3)) ∩ �, cf. (36). We refer to Appendix C of [7] for a precise
description of this flowout. As the flowout is contained in the characteristic set � of
�A, it is disjoint from the characteristic set {τ = 0} of ∂t . The second equation in (59)
implies that U(123) is a conormal distribution associated to the same flowout near z.

We write X̂ = σ [X ](z, η) where X = T, V(123),U(123). Then taking principal sym-
bols in (59) gives for β = 0, 1, 2, 3,

T̂β = iηβÛ(123) + V̂(123),β , iη0Û(123) = −V̂(123),0.

Solving for Û(123) in the second equation and substituting in the first one yields (58).
This finishes the proof of Proposition 8, and hence also Proposition 1 is proven.
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9. Lie Algebras with Trivial Centre

The material that follows is quite classical and can be found in many texbooks on Lie
algebras. We start by defining notations and recalling basic results following mainly the
exposition from [16, Chapter 7].

Let g be the Lie algebra of a compact connected Lie group of matrices G and let gC

be its complexification. An element Z ∈ gC can be uniquely written as Z = X + iY for
X,Y ∈ g, and we define Z∗ = −X + iY . Note that Z∗ is the usual conjugate transpose
of Z in the case g = u(n). There is an inner product on gC that is real-valued on g and
that satisfies, see [16, Proposition 7.4],

〈adZ (X),Y 〉 = 〈X, adZ∗(Y )〉, X,Y, Z ∈ gC.

If t is a maximal commutative subalgebra of g, then

h = t + it

is a Cartan subalgebra of gC and its dimension is called the rank of gC. The roots of gC

relative to h are those elements α ∈ h such that there is 0 �= X ∈ gC so that

[H, X ] = 〈α, H〉X, for all H ∈ h, (60)

where we use the convention that the inner product is linear in the second variable (and
anti-linear in the first one). We let� be the collection of roots. By [16, Proposition 7.15]
each root α belongs to it and that we can decompose gC as a direct sum

gC = h ⊕
⊕
α∈�

gα

where gα contains the eigenvectors associated to α, that is, the vectors X satisfying (60).
Moreover, see [16, Proposition 7.18, Theorems 7.19 and 7.23],

(1) each gα is 1-dimensional;
(2) if X ∈ gα with α ∈ �, then X∗ ∈ g−α;
(3) if gC has trivial center, the roots span h.

We can in fact pick linearly independent elements Xα ∈ gα , Yα = X∗
α ∈ g−α and

Hα ∈ h such that Hα is a multiple of α and such that [Xα,Yα] = Hα , [Hα, Xα] = 2Xα

and [Hα,Yα] = −2Yα . This generates an sl(2,C)-subalgebra inside gC and implies that
the elements

Eα
1 := i

2
Hα; Eα

2 = i

2
(Xα + Yα); Eα

3 = i

2
(Yα − Xα)

belong to g and span a Lie subalgebra isomorphic to su(2), see [16, Corollary 7.20]. Note
that the set {E1

α, E2
α, E3

α}α∈� spans g over the reals if g has trivial centre. The commuta-
tion relations of Pauli matrices imply that su(2) is spanned by the nested commutators
[X, [X,Y ]] with X,Y ∈ su(2). Hence the discussion above immediately implies:

Proposition 9. Let g be the Lie algebra of a compact connected Lie group of matrices.
Assume that g has trivial centre. Then g is the linear span of [X, [X,Y ]] for X,Y ∈ g.
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10. The Case of General Lie Group

Suppose now G is any compact connected Lie group. In what follows it is convenient
to express some previous notions in slightly more abstract form. Let ω ∈ �1(G, g)
be the (left) Maurer-Cartan 1-form of G. Given U ∈ G0(D, p) we express the gauge
equivalence between A, B ∈ �1(M, g) as

U∗ω + AdU−1(A) = B, (61)

where Ad : G → GL(g) is the usual Adjoint representation. For matrix Lie groups
ω = g−1dg and Adg(a) = gag−1 for a ∈ g and we recover the expression (2) for the
gauge equivalence between A and B that we have used so far.

Suppose now that p : G̃ → G is a coveringofG, then p is aLie grouphomomorphism
and p∗ωG = ωG̃ . Given U ∈ G0(D, p), there is a unique Ũ ∈ G̃0(D, p) such that
p ◦ Ũ = U. This is because the domain of U is simply connected and we are fixing the
value of U at p to be the identity. We deduce that (61) holds if and only if the following
equation holds

Ũ∗ωG̃ + AdŨ−1(A) = B.

In other words, A and B are gauge equivalent via a gauge in G0(D, p) if and only if they
are gauge equivalent via a gauge in G̃0(D, p). The same observation applies for gauges
defined near ∂−

D. One very useful consequence is that the data seta DA does not really
depend on the group G as long as it has Lie algebra g.

We are going to use this set up as follows. Every compact connected Lie group G
admits a finite cover of the form T

r × G1, where T
r is an r -torus and G1 is a compact

Lie group with finite centre [4, Theorem 8.1, p. 233]. At the level of the Lie algebra this
corresponds to an orthogonal splitting g = z⊕g1, where g1 is the Lie algebra of G1 and
it has no centre. Given A ∈ �1(M, g) we split uniquely

A = AZ + A1 ∈ z ⊕ g1.

Now we claim:

Lemma 7. Let A, B ∈ �1(M, g). Then DA = DB iff DAZ = DBZ and DA1 = DB1 .

Proof. Using that elements in the centre z commute with everything, a quick calculation
shows that given V ∈ C3(D; T ∗

D ⊗ g) with V = VZ + V1 we can write the curvature
of V as

FV = FV1 + dVZ

since dV = dV1 . Hence

d∗
V FV = d∗

V1
(FV1 + dVZ ) = d∗

V1
FV1 + d∗

V1
dVZ .

Again using commutativity, d∗
V1

dVZ = d∗dVZ since dVZ is also in the centre. Hence

d∗
V FV = d∗dVZ + d∗

V1
FV1 ∈ z ⊕ g1.

This implies that d∗
V FV = 0 inD \ � iff d∗dVZ = d∗

V1
FV1 = 0 inD \ � and the lemma

follows. ��
We can deal with the abelian component AZ directly by unique continuation.
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Lemma 8. If DAZ = DBZ , then there is u ∈ C∞(D; T
r ) with u(p) = id such that

BZ = AZ + u−1du.

Proof. It suffices to prove the claim for r = 1, i.e. in the case of the circle S1. To avoid
cluttering the notationwe drop the subscript “Z ′′ during the proof. If the group is abelian,
the Yang–Mills equations reduces to the Maxwell equation d∗FA = 0, where FA = d A.
Since d FA = 0, the curvature satisfies �FA = 0, where � = d∗d + dd∗. The gauges
u ∈ C∞(D; S1) all have the form u = eiφ for φ a real-valued function since D is simply
connected.

Since A ∈ DA = DB , there is V with d∗FV = 0 in D \ �, V ∼ B near ∂−
D and

A|� = V |�. Thus d∗FV = 0 inD. It follows that�(FA −FV ) = 0 inD and FA = FV in
� and by Holmgren’s unique continuation principle, FA = FV in D, i.e. d(A − V ) = 0.
Since D is simply connected, A and V are gauge equivalent in D. But since V ∼ B near
∂−

D, it follows that A and B are gauge equivalent near ∂−
D. Proposition 10 implies

now that A and B are gauge equivalent in the whole D. ��
We are now ready to prove our main result.

Proof of Theorem 1. We consider the finite cover T
r × G1 of G as above. By Lemma 7

we know that DAZ = DBZ and DA1 = DB1 . Let u be the gauge from Lemma 8. We
have already proven Theorem 1 in the case that G = G1, since it has finite centre.
Thus there is U ∈ G0

1(D, p) so that A1 and B1 are gauge equivalent via U. Finally,
p ◦ (u,U) ∈ G0(D, p) gives a gauge equivalence between A and B as desired. ��
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Appendix A. Elementary Computations

A.1. The Hodge star operator on Minkowski space R
1+3. In this section we use the

Cartesian coordinates x0, . . . , x3 on R
1+3 and write 〈·, ·〉 for the Minkowski metric with

the signature (− + ++). We define also vol = dx0 ∧ · · · ∧ dx3.

Definition 1. The Hodge star operator � for any forms ω and η of the same degree
is the linear map defined by ω ∧ (�η) = 〈ω, η〉 vol where 〈ω, η〉 = det(〈ω j , ηk〉) if
ω = ω1 ∧ · · · ∧ ωr and η = η1 ∧ · · · ∧ ηr for some 1-forms ω j and η j .

http://creativecommons.org/licenses/by/4.0/


Inverse problem for the Yang–Mills equations

In order to express theYang–Mills equations and their linearizations in local coordinates,
we will need the following lemma:

Lemma 9. Writing gαβ = 〈dxα, dxβ
〉

there holds

�(dxα ∧ �dxβ) = −gαβ, (62)

�(dx p ∧ �(dxα ∧ dxβ)) = g pβdxα − g pαdxβ. (63)

In (63) it is assumed that α �= β.

Proof. Taking ω = η = vol in Definition 1, we see that � vol = g00 · · · g33 = −1. Then
(62) follows immediately:

�(dxα ∧ �dxβ) = gαβ � vol = −gαβ.

Let us turn to (63). Let α �= β and choose indices j , k and a sign ε = ±1 so that

dxα ∧ dxβ ∧ dx j ∧ dxk = ε vol .

Now �(dxα ∧ dxβ) = cdx j ∧ dxk for a sign c = ±1 that satisfies

cε vol = c(dxα ∧ dxβ) ∧ (dx j ∧ dxk) = η vol .

where η = 〈
dxα ∧ dxβ, dxα ∧ dxβ

〉 = gααgββ . Both sides of (63) vanish if p �= α or
p �= β. Suppose now that p = α, the case p = β is analogous and we omit its proof.
There holds �(dxα ∧ dx j ∧ dxk) = c′dxβ for a sign c′ = ±1 that satisfies

c′ε vol = c′dxα ∧ dxβ ∧ dx j ∧ dxk = c′(dxα ∧ dx j ∧ dxk) ∧ dxβ = η′ vol,

where η′ = gααg j j gkk . Solving for c and c′ gives

cc′ = ε2ηη′ = gααgααgββg j j gkk = −gαα. ��

A.2. The adjoint d∗
A in coordinates. Using the formulas (62)–(63) we can easily find

expressions for d∗
A = �dA� in the Cartesian coordinates.

Lemma 10. If X = Xαdxα , then

d∗
A X = − (∂α Xα + [Aα, Xα]) .

If Y = Yαβdxα ∧ dxβ , then

d∗
AY = (∂αYβα + [Aα,Yβα]) dxβ − (∂αYαβ + [Aα,Yαβ ]) dxβ.

Proof. We have

d∗
A X = (∂α Xβ + [Aα, Xβ ]) � (dxα ∧ �dxβ) = −∂α Xα − [Aα, Xα],

and

d∗
AY = (∂pYαβ + [Ap,Yαβ ]) � (dx p ∧ �(dxα ∧ dxβ))

(∂βYαβ + [Aβ,Yαβ ])dxα − (∂αYαβ + [Aα,Yαβ ])dxβ.

��
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A.3. Proofs of (29)–(31). In some of our computations we encounter terms of the form
�[X, �Y ] ∈ �1 for X ∈ �1 and Y ∈ �2. The next elementary lemma computes this
term explicitly.

Lemma 11. If X = Xαdxα and Y = Yαβdxα ∧ dxβ then

�[X, �Y ] = [Xα,Yβα]dxβ − [Xα,Yαβ ]dxβ.

Proof. We have

�[X, �Y ] = [X p,Yαβ ] � (dx p ∧ �(dxα ∧ dxβ)) = [Xβ,Yαβ ]dxα − [Xα,Yαβ ]dxβ.

��
We are now ready to prove (30) that expands �[X, �dA Z ] for X, Z ∈ �1 in coordinates.
Using Lemma 11 with Yαβ = ∂α Zβ + [Aα, Zβ ], we obtain

�[X, �dA Z ] = −[Xα, ∂α Zβ + [Aα, Zβ ]]dxβ + [Xα, ∂β Zα + [Aβ, Zα]]dxβ.

WeapplyLemma11withYαβ replacedby [Yα, Zβ ], to establish (31), giving�[X, �[Y, Z ]]
for X,Y, Z ∈ �1 in coordinates as follows,

�[X, �[Y, Z ]] = −[Xα, [Yα, Zβ ]]dxβ + [Xα, [Yβ, Zα]]dxβ.

Proof of (29), giving analogous expansion of d∗
A[X, Z ] for X, Z ∈ �1, is more involved.

Let us consider first the terms in the βth component of

d∗
A[X, Z ] + [X, d∗

A Z ] − [d∗
A X, Z ] (64)

that contain derivatives. Using Lemma 10 these read

∂α[Xβ, Zα] − ∂α[Xα, Zβ ] − ([Xβ, ∂
α Zα] − [∂α Xα, Zβ ]) = [∂α Xβ, Zα] − [Xα, ∂

α Zβ ].

Similarly, the terms in the βth component of (64) that do not contain derivatives are

[Aα, [Xβ, Zα]] − [Aα, [Xα, Zβ ]] − ([Xβ, [Aα, Zα]] − [[Aα, Xα], Zβ ])
= −[Zα, [Aα, Xβ ]] + [Xα, [Zβ, Aα]].

We used here the Jacobi identity. Hence we obtain (29), that is,

d∗
A[X, Z ] = [d∗

A X, Z ] − [X, d∗
A Z ]

+
([∂α Xβ + [Aα, Xβ ], Zα] − [Xα, ∂

α Zβ + [Aα, Zβ ]]) dxβ.
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A.4. Yang–Mills equations in coordinates. For the convenience of the reader we prove
the following well-known lemma.

Lemma 12. If A = Aαdxα then the components of d∗
A FA are given by

∂α∂β Aα − ∂α∂α Aβ − [∂α Aα, Aβ ] − 2[Aα, ∂α Aβ ] + [Aα, ∂β Aα] − [Aα, [Aα, Aβ ]].

Proof. We apply Lemma 10 with Yαβ = ∂α Aβ + 1
2 [Aα, Aβ ], to see that the components

of d∗
A FA are

∂α∂β Aα +
1

2
∂α[Aβ, Aα] + [Aα, ∂β Aα] + 1

2
[Aα, [Aβ, Aα]]

− ∂α∂α Aβ − 1

2
∂α[Aα, Aβ ] − [Aα, ∂α Aβ ] − 1

2
[Aα, [Aα, Aβ ]],

and the claim follows after combining the terms with factors 1/2, and using

∂α[Aα, Aβ ] + [Aα, ∂α Aβ ] = [∂α Aα, Aβ ] + 2[Aα, ∂α Aβ ].

��

Appendix B. Direct Problem

B.1. An energy estimate. We write again (x0, x1, x2, x3) = (t, x) ∈ R
1+3 for the

Cartesian coordinates, and recall the sign convention (18) for the wave operator �.
We write also ∇u = (∂x1u, ∂x2u, ∂x3u) and denote by · the Euclidean inner product on
R
3.
Let X j , j = 1, 2, be first order and Y j , j = 1, 2, zeroth order differential operators

on R
1+3. Suppose, furthermore, that X2 is of zeroth order with respect to t variable. We

will consider the system

�v + X1v + X2u = f1,

∂t u + Y1v + Y2u = f2. (65)

Here v and u are allowed to take values on a Hermitian vector bundle, but we do not
emphasize this in the notation.
We prove an energy estimate for (65). Write B(r) = {x ∈ R

3 : |x | < r}. Let R > 0
and define r(t) = R − t . Consider the following local energy

E(t) = 1

2

∫
B(r(t))

E(t, x) dx, E = |∂tv|2 + |∇v|2 + |v|2 + |∇u|2 + |u|2,

and the norm of the source

F(t) =
∫

B(r(t))
F(t, x) dx, F = | f1|2 + | f2|2 + |∇ f2|2.
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Lemma 13. Let T > 0 and define the cut cone

C = {(t, x) ∈ R
1+3 : |x | < R − t, 0 < t < T }.

Suppose that v, u ∈ C2(C) satisfy (65) in C. Then for a constant C > 0 that depends
only on the L∞(C)-norm of the coefficients of X j and W 1,∞(C)-norm of the coefficients
of Y j , j = 1, 2,

E(t) ≤ eCt E(0) + C
∫ t

0
eC(t−s)F(s)ds, 0 < t < T . (66)

Proof. We differentiate the local energy

∂t E =
∫

B(r(t))
∂2t v∂tv + ∇v · ∇∂tv + v∂tv + ∇u · ∇∂t u + u∂t u dx − 1

2

∫
∂B(r(t))

Edx .

We write z1 = −X1v − X2u + v + f1 and z2 = −Y1v − Y2u + f2, apply integration by
parts to the second term in the first integral, and use (65) to obtain

∂t E =
∫

B(r(t))
z1∂tv + ∇u · ∇z2 + uz2 dx +

∫
∂B(r(t))

∂νv∂tv − 1

2
E dx .

We have |z j |2 ≤ C(E +F), j = 1, 2, and |∇z2|2 ≤ C(E +F), where the constant C > 0
depends only on the L∞(C)-norm of the coefficients of X j and W 1,∞(C)-norm of the
coefficients of Y j , j = 1, 2. Moreover,

2|∂νv∂tv| ≤ |∇v|2 + |∂tv|2 ≤ E,
and we obtain

∂t E ≤ C(E + F).

Now we can use Grönwall’s inequality, or simply notice that

eCt∂t (e
−Ct E) ≤ C F,

leading to the energy estimate (66). ��
The energy estimate (66) implies the following two uniqueness results.

Lemma 14. Suppose that v, u ∈ C2(D), that the coefficients of X j are in L∞(D) and
that the coefficients of Y j are in W 1,∞(D) for j = 1, 2. If (v, u) is a solution to (65)
with f1 = 0 and f2 = 0 and if (v, u) vanishes near ∂−

D, then (v, u) vanishes in D.

Proof. As (v, u) vanishes near ∂−
D, also the extension of (v, u) by zero to the cone

{(t, x) ∈ R
1+3 : |x | < 1 − t, t > −1},

solves (65) with f1 = 0 and f2 = 0. Therefore the energy estimate (66) implies that
(v, u) vanishes. ��
Proposition 10. Let A, B ∈ �1(D; g) solve (1) in D. Suppose that A ∼ B near ∂−

D.
Then A ∼ B in D.
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Proof. Wewrite Ã = T (A) and B̃ = T (B), see (14). As A ∼ B near ∂−
D also Ã ∼ B̃

there. That is, there is U ∈ G0(D, p) such that

Ã = U−1dU + U−1 B̃U, near ∂−
D.

As both Ã and B̃ are in the temporal gauge, U does not depend on time and we may
define V = U−1dU + U−1 B̃U in the whole D. Now both Ã and V satisfy the Yang–
Mills equations in D. They are also both in the temporal gauge and coincide near ∂−

D.
Pseudolinearization in Section 4.1.2, together with Lemma 14, implies that Ã = V in
D. Therefore Ã ∼ B̃ in D and hence also A ∼ B there. ��

B.2. Linearized Yang–Mills equations in relative Lorenz gauge. A linearization of (25)
can be solved using the following lemma. For notational convenience we translate the
origin in time so that the initial conditions are posed on t = 0.

Lemma 15. Let T > 0 and write M = (0, T ) × R
3. Let A ∈ �1(M, g) be as in

Proposition 3. Let f1 ∈ Hk(M; T ∗M ⊗ g) and f2 ∈ Hk+1(M; g). Then
⎧⎪⎨
⎪⎩

�AẆ + �[Ẇ , �FA] − J̇0dt = f1, t ≥ 0,
∂t J̇0 + [A0, J̇0] = f2, t ≥ 0,
Ẇ = 0, J̇0 = 0, t ≤ 0,

(67)

has a unique solution (Ẇ , J̇0) and the map S( f1, f2) = (Ẇ , J̇0) is continuous

S : Hk(M; T ∗M ⊗ g) × Hk+1(M; g) → Hk+1(M; M ⊗ g ⊕ g). (68)

The system (67) is of the form (65) with v = Ẇ and u = J̇0, and the coefficients of X j
and Y j , j = 1, 2, depend only on the background connection A and are smooth. Using
the energy estimate (66), it is straightforward to show that (67) has a unique solution.
However, we give a short proof based on the fact that the second equation in (67) is
independent from Ẇ .

Proof. Solving the second equation gives J̇0 ∈ Hk+1(M; g). Then Ẇ can be solved
from the linear wave equation

�AẆ + �[Ẇ , �FA] = f1 + J̇0dt,

where f1 + J̇0dt ∈ Hk(M; T ∗M ⊗ g). ��

B.3. Proof of Proposition 3. To simplify the notation in the proof, we write Hk(M)

also for Sobolev spaces of vector valued functions. As k ≥ 4, the Sobolev embedding
theorem implies that both Hk(M) and Hk+1(M) are Banach algebras, and also that
Hk+1(M) embeds in C2(M).
We define

Pu =
(

�AW + �[W, �FA] − J0dt
∂t J0 + [A0, J0]

)
,

K(u, J ′) =
( −N (W ) + J j dx j

−[W0, J0] − ∂ j J j + [A j , J j ] + [W j , J j ]
)
,
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where u = (W, J0), J ′ = (J1, J2, J3) and j = 1, 2, 3. Then (25) is equivalent to
{

Pu = K(u, J ′), t ≥ 0,
u = 0, t ≤ 0.

(69)

Consider the map 
(u, J ′) = u − SK(u, J ′) where S is as in (68). Observe that if

(u, J ′) = 0 then u = SK(u, J ′) solves (69). Let us show that


 : Hk+1(M) × Hk+2(M) → Hk+1(M). (70)

We haveN (W ) ∈ Hk(M) since W , the first component of u, is in Hk+1(M) and since
Hk(M) is a Banach algebra. Therefore the first component of K(u, J ′) is in Hk(M).
Similarly, using the fact that Hk+1(M) is a Banach algebra, we have that the second
component of K(u, J ′) is in Hk+1(M). The regularity (70) follows then from (68).
The map
 is a third order polynomial, and therefore it is smooth. Moreover,K(u, 0)

contains only monomials of order two and three, and it follows that ∂u
(0, 0) = id. The
implicit function theorem gives a neighbourhood H of the zero function in Hk+2(M)

and a smooth map J ′ �→ u from U to Hk+1(M) such that 
(u(J ′), J ′) = 0 for all
J ′ ∈ H.

Appendix C. Generation of su(n) Using Nested Commutators

We recall the definition of generalized Gell-Mann matrices. Denote by E jk the matrix
with 1 in the jk-th entry and 0 elsewhere. The three types of generalized Gell-Mann
matrices in C

n×n are as follows

symmetric type: for 1 ≤ j < k ≤ n let S jk = E jk + Ekj .
antisymmetric type: for 1 ≤ j < k ≤ n let A jk = −i E jk + i Ek j .
diagonal type: for 1 ≤ l ≤ n − 1 let Dl be the matrix with 1 in the j j-th entry for
1 ≤ j ≤ l, −l in the j j-th entry with j = l + 1, and 0 elsewhere.

The diagonal type matrices Dl are typically normalized by multiplying them with√
2

l(l+1) but this is irrelevant for our purposes. A basis of su(n) is given by the matrices

i S jk , i A jk and i Dl .
In the case n = 2, we obtain the Pauli matrices

S12 =
(
0 1
1 0

)
, A12 =

(
0 −i
i 0

)
, D1 =

(
1 0
0 −1

)
.

We define the nested commutator

c(A, B) = [A, [A, B]].
Lemma 16. su(n) with n ≥ 2 is the linear span of the set

{c(A, B) : A, B ∈ su(n)}.
Before giving the general proof, let us consider the case of su(2). A straightforward
computation shows that

S12 = 4c(A12, S12), A12 = 4c(S12, A12), D1 = 4c(S12, D1).

Therefore the lemma holds in the case n = 2.
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Proof. The computation in the case n = 2 generalizes immediately to

S jk = 4c(A jk, S jk), A jk = 4c(S jk, A jk).

Also D1 = 4c(S12, D1). We will show using an induction that Dl can be expressed as
a linear combination of the nested commutators. Denote the upper left m × m block of
a matrix A by A|m and the lower right m × m block by A|m . Then

A23|3 =
⎛
⎝0 0 0
0 0 −i
0 i 0

⎞
⎠ , D1|3 =

⎛
⎝1 0 0
0 −1 0
0 0 0

⎞
⎠ ,

and the rest of the entries of A23 and D1 are zero. Therefore

c(A23, D1)|3 =
⎛
⎝0 0 0
0 −2 0
0 0 2

⎞
⎠ ,

with the rest of the entries zero. It follows that

D2 = D1 − c(A23, D1) = 1

4
c(S12, D1) − c(A23, D1).

Analogously,

Al,l+1|l+1|2 =
(
0 −i
i 0

)
, Dl−1|l+1|2 =

(−(l − 1) 0
0 0

)
,

and hence

c(Al,l+1, Dl−1)|l+1|2 = 2

(−(l − 1) 0
0 l − 1

)
,

with the rest of the entries zero. Therefore

Dl = Dl−1 − l

2(l − 1)
c(Al,l+1, Dl−1).

If Dl−1 is a linear combination of the nested commutators, then so is Dl . ��

References

1. Alinhac, S.: Non-unicité du problème de Cauchy. Ann. Math. (2) 117(1), 77–108 (1983)
2. Assylbekov, Y.M., Zhou, T.: Direct and inverse problems for the nonlinear time-harmonic Maxwell

equations in Kerr-type media. Preprint, arXiv:1709.07767
3. Bony, J.-M.: Second microlocalization and propagation of singularities for semilinear hyperbolic equa-

tions. In: Hyperbolic Equations and Related Topics (Katata/Kyoto, 1984), pp. 11–49. Academic Press,
Boston (1986)

4. Bröcker, T., tom Dieck, T.: Representations of Compact Lie Groups, Graduate Texts in Mathematics, vol.
98. Springer, New York (1985)

5. Cârstea, C.I., Nakamura, G., Vashisth, M.: Reconstruction for the coefficients of a quasilinear elliptic
partial differential equation. Appl. Math. Lett. 98, 121–127 (2019)
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