JOHNSON MATTHEY TECHNOLOGY REVIEW

Johnson Matthey's international journal of research exploring science and technology in industrial applications

**********Accepted Manuscript*******

This article is an accepted manuscript

It has been peer reviewed and accepted for publication but has not yet been copyedited, house styled, proofread or typeset. The final published version may contain differences as a result of the above procedures

It will be published in the **JULY 2021** issue of the *Johnson Matthey Technology Review*

Please visit the website https://www.technology.matthey.com/ for Open Access to the article and the full issue once published

Editorial team

Manager Dan Carter
Editor Sara Coles
Editorial Assistant Yasmin Stephens
Senior Information Officer Elisabeth Riley

Johnson Matthey Technology Review Johnson Matthey Plc Orchard Road Royston SG8 5HE UK

Tel +44 (0)1763 253 000

Email tech.review@matthey.com

Reconciling the Sustainable Manufacturing of Commodity **Chemicals with Feasible Technoeconomic Outcomes**

Assessing the investment case for heat integrated aerobic gas fermentation Sarah Rodgers^{1*}, Alex Conradie^{1*}, Rebekah King¹, Stephen Poulston², Martin Hayes³, Rajesh Reddy Bommareddy⁴, Fanran Meng¹, Jon McKechnie^{1**}

- ¹ Sustainable Process Technologies Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, United Kingdom.
- ² Johnson Matthey, Blounts Ct Rd, Sonning Common, Reading RG4 9NH, United Kingdom.
- Johnson Matthey, 28 Cambridge Science Park, Milton Road, Cambridge, CB4 0FP, United Kingdom.
- ⁴ Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne, NE1 8ST, United Kingdom
- * Joint first authors

**Email: jon.mckechnie@nottingham.ac.uk

ABSTRACT

The manufacturing industry must diverge from a 'take, make and waste' linear production paradigm towards more circular economies. Truly sustainable, circular economies are intrinsically tied to renewable resource flows, where vast quantities need to be available at a central point of consumption. Abundant, renewable carbon feedstocks are often structurally complex and recalcitrant, requiring costly pretreatment to harness their potential fully. As such, the heat integration of supercritical water gasification and aerobic gas fermentation, unlocks the promise of renewable feedstocks such as lignin. This study models the techno-economics and life cycle assessment for the sustainable production of the commodity chemicals, isopropanol and acetone, from gasified Kraft black liquor. The investment case is underpinned by rigorous process modelling informed by published continuous gas fermentation

Johnson Matthey Technol. Rev., 2021, 65, (3), xxx-yyy

experimental data. Time series analyses support the price forecasts for the solvent products. Furthermore, a Monte Carlo simulation frames an uncertain boundary for the techno-economic model. The techno-economic analysis demonstrates that production of commodity chemicals priced at ~\$1000 per ton is within reach of aerobic gas fermentation. In addition, owed to the sequestration of biogenic carbon into the solvent products, negative greenhouse gas emissions are achieved within a cradle-to-gate life cycle assessment framework. As such, the heat integrated aerobic gas fermentation platform has promise as a best-in-class technology for the production of a broad spectrum of renewable commodity chemicals.

1. Introduction

The development of a sustainable chemical industry requires a transition from the use of finite fossil reserves to renewable carbon feedstocks. Second generation biochemical technologies utilise carbon feedstocks outside the food value chain. Such technologies allow agricultural, industrial, and organic municipal solid wastes to be used for chemical production (1). These carbon sources are inexpensive, abundant and renewable, contributing towards the development of a sustainable, circular economy (2). Lignocellulosic biomass typically consists of cellulose, hemicellulose, and lignin. However, owed to its recalcitrance, lignin cannot be utilised by conventional fermentation, which accounts for up to 40% of lignocellulosic biomass (3).

Black liquor is a co-product from Kraft paper and pulp mills, consisting of the residual lignin after recovery of the cellulosic pulp product. In Kraft mills approximately 10 tonnes of weak black liquor is produced per air dried tonne of pulp (4). The combustion of this lignin-rich co-product in Tomlinson boilers makes modern Kraft mills

self-sufficient in steam and electrical energy (4, 5). However, research into Kraft mill heat integration over the last two decades has highlighted the potential to reduce mill energy consumption by up to 40% (6, 7). Such projects would free up a portion of weak black liquor for alternative income generation. Additionally, in mills where the Tomlinson boiler is the bottle neck for the process, diverting a portion of black liquor away from the recovery boiler could allow mills to increase their capacity by 25% (8). Whilst the traditional use for the black liquor co-product is renewable electricity generation, gasification of this carbon-rich feedstock creates opportunities for biochemical production, expanding the product range of a Kraft mill.

Supercritical water gasification (SCWG) has emerged as a hydrothermal technology suited to the gasification of wet biomass feedstocks to produce syngas. SCWG is particularly advantageous for processing feedstocks with moisture contents >30%, where it energetically outcompetes the inherent drying required by conventional gasification (9). It is therefore capable of utilising streams such as black liquor, food waste, sewage sludge, and manure which are typically uneconomical as feedstocks for traditional gasification technologies (10). Furthermore, the dissolution of the carbon feedstock in water leads to low tar and coke production in comparison with conventional gasification (11), simplifying purification technologies. Upgrading syngas to fuels and chemicals using metal-based catalysts is an established technology for coal feedstocks. As such, these technologies have been applied to syngas derived from renewable feedstocks, where Johnson Matthey and BP recently licenced their Fischer Tropsch technology to Fulcrum Bioenergy (12). However, such technologies experience high capital and operating costs owed to: the utilisation of high operating temperatures and pressures, the prerequisite for specific CO/H2 ratios, and potential

catalyst poisoning from gas impurities (13). Moreover, low chemo-catalytic selectivity remains a challenge for converting syngas to commodity chemicals. Gas fermentation, on the other hand, circumvents these intrinsic challenges, notably through high selectivity bio-catalysis, and has emerged as an alternative technology for syngas upgrading (13). Gas fermentation exploits microbial cell factories able to utilise CO_2 and H_2 as a sole carbon and energy source to produce target chemicals through metabolic engineering (14).

The commercialisation of gas fermentation technology is dominated by anaerobic fermentation, where LanzaTech leads the way in the utilisation of carbon monoxide-rich steel mill off-gas to produce ethanol (15). Their Jintang plant has a 46 [kt/annum] operating capacity and uses their proprietary anaerobic acetogen, *Clostridium autoethanogenum*, as a microbial cell factory. This microorganism employs the Wood-Ljungdahl pathway, which is a thermodynamically efficient CO₂ fixation pathway compared to other biological C1 fixation pathways (16). However, such anaerobic CO₂ fixation presents energetic limitations which limit the product scope (17). Also, low value by-products are common, negatively impacting on the carbon efficiency of the desired product whilst complicating downstream processing (18).

Aerobic cell factories on the other hand, are energetically advantaged compared to anaerobic cell factories (19). Therefore, the use of aerobic bacteria allows for the production of more complex chemicals via energy-intensive biochemical pathways (18), broadening the renewable chemical spectrum. However, a disadvantage of aerobic gas fermentation is its reliance on the Calvin-Benson-Bassham Cycle. Whilst this cycle achieves favourable kinetics by investing appreciable energy into C1 fixation

(20), it is consequently thermodynamically inefficient compared to the Wood-

Ljungdahl pathway. Owed to the greater heat generation, aerobic bioreactors require the installation of substantial cooling capacity, translating to both capital and operating cost burden (19). In addition, compressors are required to satisfy the oxygen demand and the presence of oxygen necessitates the use of, more expensive, stainless steel reactors. Historically, aerobic fermentation has been used for high value, low volume products (21). However, for the production of higher volume commodity products, where utility costs dominate (22), aerobic fermentation has been hindered by process economics. This is a result of the aforementioned cooling requirements, associated air compression, and reduced economies of scale compared with anaerobic fermentation (23).

The difference between aerobic and anaerobic fermentation's process economics is highlighted in recent work by Dheskali et al. who developed an estimation tool for the Fixed Capital Investment (FCI) and utility consumption for large-scale biotransformation processes (24). Their model presented a ~20% increase in unitary FCI and a >1.5 times increase in energy requirement for aerobic fermentation over anaerobic, for a modest aeration rate. This was attributed to the capital and operating costs associated with the air compressors required for aerobic fermentation (24). Gunukula et al. also presented an almost 30% increase in the minimum selling price for commodity chemicals produced via aerobic compared to anaerobic fermentation (25). Similarly, in a series of Techno-Economic Analyses (TEA) for cellulosic ethanol production by the National Renewable Energy Laboratory (NREL), the fermentation area was found to be the primary cost for aerobic fermentation, with the fermentation compressors having the greatest power requirement (26). On the other hand, for

anaerobic fermentation, the pre-treatment section was found to be the largest cost driver with a less pronounced compressor duty (27).

The potential of aerobic fermentation can only be effectively realised by reducing these costs, notably through improved engineering design. This work evaluates the integration of aerobic gas fermentation with SCWG as a solution to economically feasible commodity chemical production as proposed by Bommareddy et al. (28). The integration of gas fermentation with SCWG via a heat pump allows for the low temperature heat released by gas fermentation to be utilised by the high temperature, endothermic SCWG process. This both removes the cooling water burden required by the bioreactors and reduces the fraction of H₂ that needs to be combusted to support the endothermic gasification process. Furthermore, the duty released by expanding the high-pressure gas product from SCWG is recovered using a turbo expander and subsequently used to power the air compression, negating the need for external power provision. This integration has the potential to overcome the barriers to cost effective, commercial scale, aerobic gas fermentation for commodity chemical production.

Cupriavidus necator (formerly, Alcaligenes eutrophus and Ralstonia eutropha) is employed as the microbial cell factory in this work. Cupriavidus necator is a chemolithoautotrophic bacterium capable of aerobic, autotrophic growth using CO₂ as the sole carbon source, H₂ as electron donor, and O₂ as the electron acceptor (29). This cell factory benefits from the kinetic advantage of the Calvin-Benson-Bassham Cycle and is strictly respiratory, which compared to anaerobic cell factories results in negligible synthesis of low value, fermentative by-products. Bommareddy et al. (28) details the continuous production of isopropanol and acetone using aerobic gas

Conradie_06a_SC.docx

ACCEPTED MANUSCRIPT

19/02/2021

fermentation. This first generation Cupriavidus necator cell factory produces acetone

as an overflow co-product from the engineered biochemical pathway to isopropanol,

which is subject to future optimisation of this carbon flux bottleneck. Further relevant

to the process design, this cell factory has not been adapted to be tolerant to

concentrations of isopropanol > 15 [g/L], necessitating a dilution strategy through an

engineering solution. Relying on the sustainable manufacturing paradigm in

Bommareddy et al. (28), this work presents the TEA and Life Cycle Assessment (LCA)

for a solvent plant, that exploits this first generation cell factory, producing isopropanol

and acetone via aerobic gas fermentation and purifying the solvents via a heat and

mass integrated separation train network.

2. Materials and Methods

2.1 Conceptual process

The proposed solvent plant is co-located with a Kraft paper and pulp mill in

China with throughput as defined in

Table 1. Figure 1 outlines the Kraft process, which conventionally directs weak

black liquor to multi-effect evaporators, producing strong black liquor which is

combusted in a Tomlinson boiler to produce steam (4). This steam makes the mill self-

sufficient in steam and electrical energy. Importantly, the cooking chemicals (NaOH

and Na₂S) are recovered and recycled to the pulping process.

As previously mentioned, investments in heat integration have freed up a

portion of the weak black liquor co-product for alternative uses. This study explores

the opportunity of utilising this excess co-product, taken as 25% of total production,

for isopropanol and acetone production through aerobic fermentation in an integrated solvent plant as outlined in Figure 1.

Given black liquor has no economic value as a product, it is costed at its utility value. This is calculated based on its conventional use for renewable electricity generation, requiring capital investment in increased steam turbine capacity. The foregone Net Present Value (NPV) associated with this conventional use is used as the utility value for the black liquor feedstock.

Table 1: Kraft mill plant capacity.

Parameter	Value	Unit	Reference
Pulp Mill Capacity	130	[Air dried t/h]	
Total weak black liquor production	1300	[t/h]	(4)
Black Liquor Solids Content	17.5	[%] (w/w)	(4)
Lignin Content in Solids	41.5	[%] (w/w)	(30)
Lignin Content in Black liquor	7.3	[%] (w/w)	

In the proposed solvent plant (Figure 1), weak liquor undergoes SCWG to CO₂ and H₂. A challenge, however, is the efficient recovery of the cooking chemicals from the SCWG reactor and their recycle to the pulp mill digestor. Loss of these salts would result in a significant cost to the pulp mill. Under supercritical conditions, the properties of water change from polar to apolar, where the solubility of inorganic salts is very low (31). Cao et al. described the precipitation of alkali sodium salts in SCWG, reporting a neutral pH for the reactor effluent, suggesting that under supercritical conditions the salts largely precipitate from the solution (32). However, this precipitation can cause issues with plugging and fouling within the reactor (33). In this study the salts are removed prior to entering the SCWG reactor, in a manner similar to supercritical water desalination (34, 35) and modelled for SCWG of black liquor in (33).

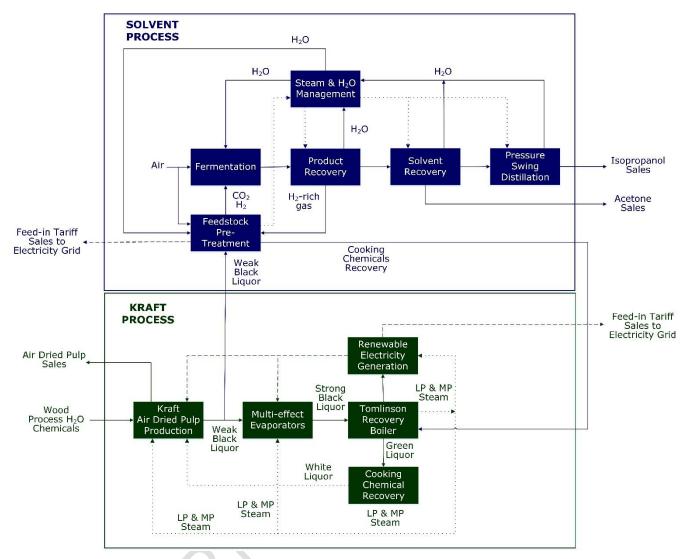


Figure 1: Conceptual solvent process integration with Kraft process, outlining materials (solid lines), power (dashed lines) and steam (dotted lines) flows. Excess weak black liquor is fed to the solvent process from the Kraft process and cooking chemicals are returned to the Tomlinson recovery boiler.

2.2 Process intensification, heat and mass integration

The solvent plant's mass and energy balance was informed by experimental data from continuous gas fermentation published in (28), and rigorous process

simulation using Aspen HYSYS v11. The lignin content in black liquor was modelled as guaiacol, a model compound for lignin (36), as principal feed to the solvent plant. The weak black liquor is further diluted prior to entering the SCWG reactor, as lower biomass concentrations promote superior thermal cracking and yields greater H_2 and CO_2 owed to the increased water concentration favouring the forward water-gas shift reaction (37).

The simplified flow diagram (Figure 1) outlines the six plant sections of the solvent plant, whilst Figure 2 presents a detailed process flow diagram and operating conditions for upstream and downstream processing. The unit operations included in each of the six plant sections are summarised in Table 2. Table 3 summarises the scale-up of the experimental gas fermentation data for the process simulation, which recognises the oxygen mass transfer limitations associated with the safety requirement to maintain non-flammable operating conditions. The heat integration between the low temperature exothermic gas fermentation and the high temperature endothermic SCWG is facilitated using a heat pump with isopentane as the working fluid, detailed in (28).

Isopropanol and acetone are produced in both the aqueous and vapour phase of the bioreactors. The solvents in the vapour phase are recovered via gas absorption through mass integration using internal process streams, i.e. the isopropanol product was utilised to recover acetone, and water to recover isopropanol. For the isopropanol in the aqueous phase, azeotropic distillation is required due to the homogeneous minimum boiling point azeotrope formed between isopropanol and water (38). Conventionally, this azeotrope is broken using an entrainer, historically benzene (39).

However, owed to its carcinogenic properties, alternative entrainers such as

Johnson Matthey Technol. Rev., 2021, **65**, (3), xxx-yyy

cyclohexane have been adopted (40). An alternative azeotropic separation technique is pressure swing distillation, taking advantage of the composition differences in the azeotrope at different pressures (41). In this work, pressure swing distillation was employed with the co-product acetone acting as an unconventional entrainer. Further detail of the separation train is presented in Figure 2.

A U-loop bioreactor, similar to the one used by Peterson et al., is used in this work (42). The benefit of a U-loop bioreactor is that high mass transfer coefficients can be achieved without the need for mechanical agitation, leading to greater oxygen transfer rate and a reduced power requirement compared to conventional stirred tank reactors (42). The O2 mass transfer coefficient calculation associated with the solvent plant's mass balance is presented in Table S13, falling at the lower end of the range of mass transfer coefficients reported by Peterson et al. (42). Details of the experimental gas fermentation data is presented in Table 3; a more detailed explanation of the experimental procedure can be found in Bommareddy et al. (28).

Significant heat integration makes the solvent plant self-sufficient in electricity and both low and medium pressure steam. Furthermore, process water recovered from distillation and the steam condensate is recycled to reduce the water make-up burden.

The process flow diagram for conventional renewable electricity generation, used to value the black liquor, is presented in Figure 3. An additional steam turbine is required to produce the renewable electricity for sale, relying upon the existing multi-effect evaporators, air compression and Tomlinson boiler. Superheated steam at 9,000 [KPa] and 480 [°C] is used in the steam turbine as outlined (43). The medium pressure steam exiting the turbine (10,000 [KPa]) is used in the multi-effect evaporators to concentrate the excess black liquor to 75% and to pre-heat the

auxiliary air supplied to the Tomlinson boiler. Similarly, the associated electricity demand for the air compressor and pump is provided by the electricity generated. Resultantly, through conventional renewable electricity generation, the excess black liquor produces 138 [GWh/annum] for sale to the grid.

Table 2: Solvent plant section unit operations.

Plant Section	Unit Operations	Thermodynamic model
Feedstock Pre-	SCWG Reactor, Combustion	Lee Kesler Plocker
treatment	Chamber, Combustion Turbine,	\bigcirc
	Isopentane Heat Pump Cycle	
Fermentation	Seed and Production bioreactors,	Lee Kesler Plocker
	Pumps, Centrifuge	
Product Recovery	Acetone Stripper, Water Stripper,	UNIQUAC
	Water Removal Columns	
Solvent Recovery	Acetone Separation and Purification	UNIQUAC
	Columns	
Isopropanol Pressure	Low- and High-Pressure Distillation	PSRV
Swing Distillation	Columns	
Steam and Water	Mechanical Vapour Compressor,	Lee Kesler Plocker
Management	Water and Steam Heat Exchangers	

Table 3: Summary of scale-up of experimental gas fermentation data for ASPEN HYSYS process simulation.

Sources and sinks	Unit	CO ₂ and H ₂ as sole energy and carbon source
Bioreactors		
Oxygen transfer coefficient	[1/h]	415
O ₂ concentration in off-gas ^a	[%] (mol/mol)	3.35
Vessel Volume	[m³]	500
Number of bioreactor trains	[-]	4
Gas uptake rates		
O ₂	[mmol/(L·h)]	230
CO ₂	[mmol/(L·h)]	125
H ₂	[mmol/(L·h)]	1006
Isopropanol		
Specific Productivity	[kg/(m³·h)]	1.46
Broth concentration ^b	[g/L]	12.4
Acetone		
Specific Productivity	[kg/(m³·h)]	0.38
Broth concentration	[g/L]	1.7
Biomass		
Growth rate	[h ⁻¹]	0.025
Dry Cell Weight with cell retention	[g/L]	21.5

^a Maintained to ensure oxygen concentration is below hydrogen's Limiting Oxygen Concentration of 4.6 [%] (mol/mol) (44). ^b Controlled via disc stack centrifugation, adding to the capital burden.

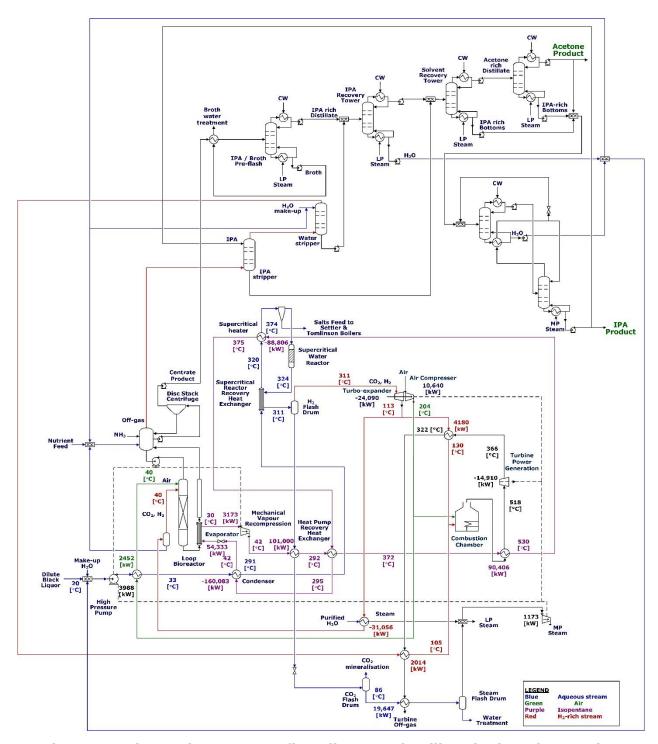


Figure 2: Solvent plant process flow diagram, detailing the heat integration between gas fermentation and SCWG via a heat pump. The heat and mass integrated separation train constitutes the downstream processing, including gas absorption and heat integrated distillation.

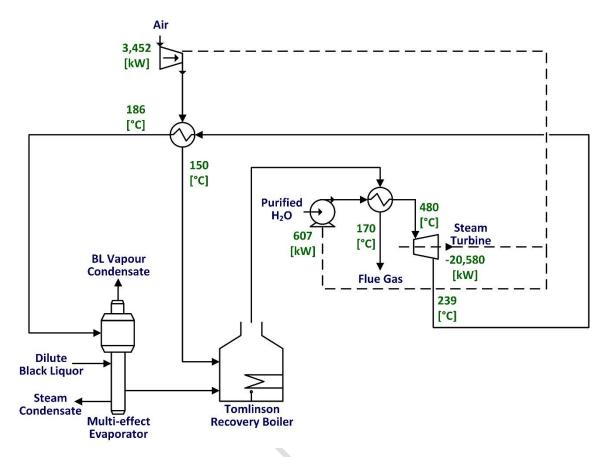


Figure 3: Process flow diagram for black liquor's conventional use, renewable electricity generation.

2.3 Costing models

The mass and energy balance associated with the rigorous process simulation informs the capital cost, fixed operating cost and variable operating cost estimation. For the capital cost estimation, major equipment purchase costs were estimated using the models from Seider et al. (45), with the exception of the turbo-expander taken from (46). Three different methods are used to calculate the FCI, owed to differences in the estimation methods. These three methods are designated as: the NREL method outlined in the 2011 NREL report (27), the Towler & Sinnott (TS) method taken from

Chemical Engineering Design (47), and the Hand method detailed in Sustainable Design Through Process Integration (48). The calculation basis of the three methods is presented in Table 4.

For all three methods, the calculated equipment purchase costs are multiplied by an installation factor to obtain the Inside Battery Limit (ISBL) installed costs. Both the NREL and Hand methods use installation factors dependant on the equipment type, whereas the TS method uses a universal multiplier. All installed equipment costs were adjusted to 2019 costs using the Chemical Engineering Plant Cost Index of 607.5 (49). A location factor of 0.51 was used for China (using indigenous materials), based on the 2003 location factor of 0.61 (47), updated to 2019 via the RMB/\$ exchange rate.

Table 4: Fixed Capital Cost Models.

	NREL	TS	Hand
Year Basis	2019		
Production Year		8110 hours ^a	
Installation Factor (Multiplied by equipment cost) – Inside Battery Limit (ISBL)	Table S1	Table S3	Table S4
Outside Battery Limit (OSBL)	Table S2	30% of ISBL	25% of ISBL
Contingency		10% of ISBL	
Commissioning Cost	5% of ISBL		5% of ISBL
Design and Engineering Cost		10% of ISBL	
Fixed Capital Investment	ISBL + OSBL +	ISBL + OSBL +	ISBL + OSBL +
(FCI)	Commissioning	Contingency + Design and Engineering	Commissioning
Working Capital	10% of FCI		
Total Capital Investment (TCI)	FCI + Working Capital		

^a Based on bioreactor cycle time.

Three methods were used to calculate the fixed operating costs as summarised in Table 5. As before, the NREL method (27) and the TS method (47) were employed. However, as the Hand method is solely for FCI, the third was the taken from Coulson & Richardson Volume 6 (50). Variable operating costs were estimated based on the costs detailed in Table 6, subject to annual inflation as outlined in Table 7.

Table 5: Fixed Operating Cost Models.

Parameters	NREL	TS	Coulson & Richardson
Operating Labour	Salary estimates in China obtained from salaryexpert.com (process operator, engineering and maintenance)a	Salary estimates in China obtained from salaryexpert.com 3 process operators per shift 4 shift teams	Salary estimates in China obtained from salaryexpert.com (process operator, engineering and maintenance)
Supervisory Labour		25% of Operating Labour	
Direct Salary Overhead	90% of Operating and Supervisory Labour	50% of Operating and Supervisory Labour	
Maintenance	3% of ISBL	3% of ISBL	5% of ISBL + OSBL (conventionally 5% FCI)
Property Taxes and Insurance	0.7% of FCI	1% of ISBL	2% of ISBL +OSBL (conventionally 2- 3% FCI)
Rent of Land		1% of FCI	
Royalties			0% of FCI (conventionally 1% FCI)
General Plant Overhead		65% of Total Labour and Maintenance	50% of Operating Labour
Allocated Environmental Charges		1% of FCI	

^a For a detailed breakdown of operating and supervisory labour for the NREL method see Supplementary Information (Table S5).

Table 6: Variable Operating Cost.

Raw Material	Cost	Unit	Reference	Comments
Ammonia	250	[\$/tonne]	(51)	Average price for 2019.
Cooling water	0.753	[\$/m³]	(52)	
Electricity	0.06	[\$/kWh]	(52)	
Nutrients	0.75	[\$/(m³ media water)]		Mineral salt media, containing no complex media or vitamins.
Process water	0.53	[\$/m³]	(47)	

2.4 Product Price Forecasting

Time series analysis was used to forecast the long-term average price of isopropanol and acetone. Takens' theorem was used as the basis for this analysis (53). Takens' theorem states that for a deterministic system, the underlying state variables that created the time series are embedded within the data. Using this theorem; a deterministic, dynamic system can be reconstructed based on the observed time series. Forecast models constructed using the embedded state variables assume that the market drivers underpinning the trajectory of the state variables in phase space remain largely unchanged. An embedding dimension of ten was used to reconstruct the isopropanol and acetone price models from monthly average price data obtained from the Intratec database (54). In this work, a Radial Basis Function Neural Network (RBFNN) containing 8 neurons was used as a model to predict the future commodity prices. The network was trained as a one step ahead predictor by minimising the mean square error of the difference between the actual and predicted prices. Once trained, the network was evaluated (tested) in free run mode, where successive predicted prices (outputs) become inputs to the RBFNN. The confidence limits corresponding to

the trained RBFNN were calculated as a reliability measure of the prediction as per the

work undertaken by Leonard, Kramer and Ungar (55). The benefit of using an RBFNN is that the resultant forecast price is an impartial product of the dataset's underlying state variables.

The long term average price for renewable electricity sales was taken as 0.109 [\$/kWh] as per the biomass subsidy in China (56). This is used to inform the renewable electricity project to value the black liquor and for the excess electricity generated by the solvent plant.

2.5 Investment Analyses

The cost models from section 2.3 and the product price forecast models from section 2.4 inform the investment analyses. The black liquor is costed at its utility value, calculated as the foregone NPV from generating renewable electricity. Resultantly, the NPV for the solvent plant is calculated by subtracting the NPV of renewable electricity generation. The investment analysis parameters used are detailed in Table 7.

Table 7: Investment analysis parameters.

Parameters	Value	Comments
Discounted Rate of Return	10%	In line with studies in the BETO
		Biofuels TEA Database (57).
Corporation Tax	25%	Corporation tax in China.
Annual Inflation	2%	
Plant Life	25 years	
Depreciation	10 years	Straight line.
Plant Salvage Value	No value	
Construction Period	2 years	

2.6 Sensitivity Analysis

A sensitivity analysis was conducted using a Monte Carlo simulation based on the cost parameters in Table 8, creating an uncertainty framework. The cost parameters were taken from (47), with the exception of renewable electricity sale price where the upper limit for the long term average price was capped at the current biomass subsidy in China, 0.109 [\$/kWh]. This limit was applied due to the decreasing trend in renewable electricity subsidies (58). In contrast, the long term average prices for isopropanol and acetone were varied ± 30 [%] from the forecast price. This provides a stochastic counter to the assumption used to determine the forecast prices; that the deterministic market drivers underpinning the trajectory of the state variables remain largely unchanged. However, given that market drivers are subject to change, the long-term average price may be banded with an equal likelihood of being higher or lower than the forecast price.

A uniform distribution for these parameters was used and varied for the solvent plant and conventional renewable electricity generation (used to value the black liquor). All the cost parameters in Table 8, other than labour and electricity, were varied independently. Two thousand simulations were run, stochastically varying the parameters within the defined lower and upper limits to produce a probability distribution of the solvent plant's NPV.

Table 8: Uncertainty framework for Monte Carlo simulation sensitivity analysis.

Monte Carlo Input Parameter	Lower Limit	Upper Limit
Product Long Term Average Pricing		
Isopropanol Price	0.7	1.3
Acetone Price	0.7	1.3
Renewable Electricity Price	0.7	1
Costing uncertainty factor		. ()
ISBL Capital Cost	0.8	1.3
OSBL Capital Cost	0.8	1.3
Labour Costs	0.8	1.3

2.7 Life Cycle Assessment

A cradle-to-gate LCA model was developed using the Ecoinvent 3.6 inventory database, following ISO Standards 14040 (59) and 14044 (60). Greenhouse gas (GHG) emissions were calculated based on the most recent Integrated Pollution Prevention and Control 100-year Global Warming Potential factors to quantify greenhouse gas (GHG) emissions in terms of CO₂ equivalents (CO₂eq) (61). Functional units were defined as 1 kg isopropanol, 1 kg acetone and 1 kWh of electricity. In line with the investment analysis, the LCA model considers the net electricity output of solvent plant by subtracting the foregone electricity from combustion of black liquor at the pulp mill. Life cycle environmental impacts are allocated between these three products using both economic and energy allocation. The GHG emission rate for the external process inputs; cooling water, process water and ammonia were taken from the Ecoinvent 3.6 inventory database using the allocation at the point of substitution system model (62), whereas electricity was taken as the 2018 China electricity mix (63). The bio-based solvents, isopropanol and acetone, sequester biogenic CO₂ and hence are credited with

 19/02/2021

ACCELLED LIVINGS CIGILL

a negative GHG emission based on their carbon content. Downstream activities,

including the use and end-of-life of isopropanol/acetone products are not considered.

These activities are assumed to be identical to those of conventional

isopropanol/acetone, given that they are chemically and functionally identical, and

therefore have no influence on the relative GHG emissions of renewable and

conventional solvent products.

3. Results and Discussion

The major equipment items were sized using the mass and energy balance from

the rigorous HYSYS simulation. The capital cost estimation for the solvent plant using

the three methods outlined in Table 4 is summarised in Figure 4. The underlying capital

cost estimation data is detailed in Table S1 - S4. Owed to the close agreement of the

NREL and Hand methods, \$64 MM and \$65 MM respectively (Figure 4), and the greater

simplicity of the Hand method, this method was used as the capital cost estimation

basis. Table S9 details the capital cost estimation for the conventional generation of

renewable electricity.

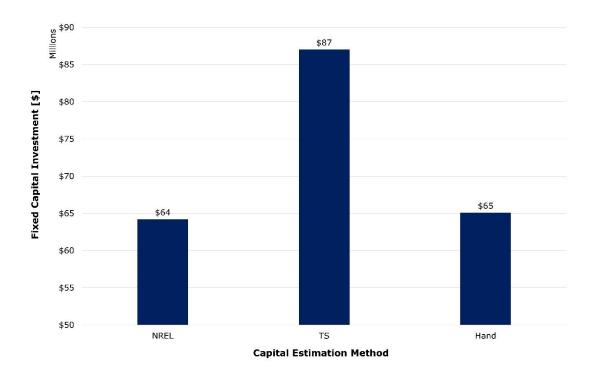


Figure 4: Comparison of three fixed capital investment estimates using the NREL, TS and Hand methods for the solvent plant. The NREL and Hand methods are in close agreement. The Hand method estimate was taken forward into the investment analyses.

Similarly, the three fixed operating cost methods (Table 5) are summarised in Figure 5, where the underlying fixed operating cost data is detailed in Table S5 – S7. Though sharing the same author, the TS and Coulson & Richardson methods have a dissimilar calculation method. However, the results of these two methods are in close agreement, \$4.62 MM and \$5.01 MM respectively (Figure 5). The substantially lower estimate by the NREL method (\$2.48 MM) was therefore set aside, and the TS method employed as the fixed operating cost basis. The fixed operating costs for the conventional generation of renewable electricity are detailed in Table S10.

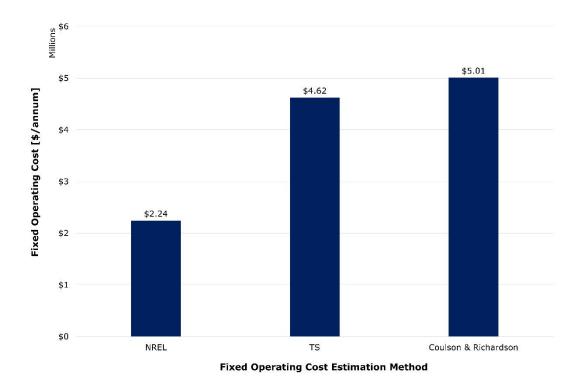


Figure 5: Comparison of three fixed operating cost estimates using the NREL, TS and Coulson & Richardson methods for the solvent plant. Though related, the TS and Coulson & Richardson methods are in close agreement. The TS method estimate was taken forward into the investment analysis.

Figure 6 compares the capital estimation, fixed and variable operating cost models for the solvent plant and conventional renewable electricity generation. The large difference between the capital investment highlights the greater complexity of the proposed solvent plant as an alternate opportunity to conventional renewable electricity generation.

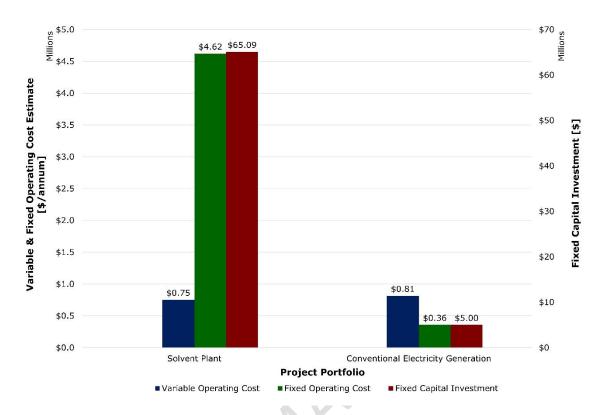


Figure 6: Comparison between production costs and fixed capital investment for the solvent plant and conventional renewable electricity generation.

The free-run forecasts for both isopropanol (Figure 7) and acetone (Figure 8) are shown to track the historical data within the confidence limits of the RBFNN, before settling on a forecast for the long-term average price. For comparative purposes the moving average for the previous ten prices is also plotted in Figures 7 and 8. The difference in the moving average and predicted forecast suggests that the RBFNN has identified pricing dynamics other than the time weighted average, i.e. the underlying state variables within the time series. As such, using this forecast price to inform the investment analysis ensures the nominal TEA inputs and sensitivity analysis are unbiased and centred upon market dynamics, opposed to an artefact of average pricing.

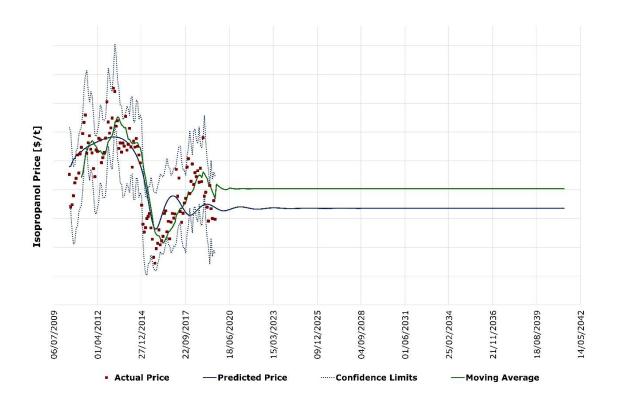


Figure 7: Isopropanol price forecast using a radial basis function time series analysis model in free-run mode. The free-run forecast tracks the historical data appreciably, remaining within the confidence limits for the original one step predictor model fit. The free run prediction settles to a long-term average forecast for isopropanol. The moving average is plotted for comparative purposes. The y-axis is obscured given copyright restrictions associated with the Intratec database.

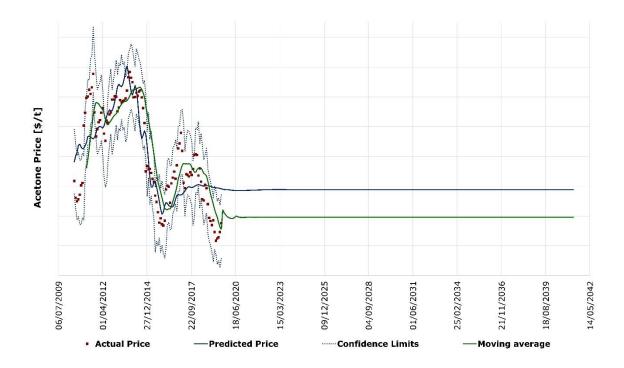


Figure 8: Acetone price forecast using a radial basis function time series analysis model in free-run mode. The free-run prediction tracks the historical data appreciably, remaining within the confidence limits for the original one step predictor model fit. The free run forecast settles to a long-term average forecast for acetone. The moving average is plotted for comparative purposes. The y-axis is obscured given copyright restrictions associated with the Intratec database.

3.1 Investment Analysis

The solvent plant (Figure 2) produces three products, summarised in Table 9.

The contribution of each product to the plant's income is also presented. Whilst isopropanol contributes to almost half the solvent plant income the renewable

electricity fraction is the second highest contributor, highlighting the significant amount of renewable electricity generated by the solvent plant.

Table 9: Solvent plant production summary.

Product	Production Rates		duct Production Rates Product Mass Purity		Contribution to Plant Income
	Value	Unit	Value	Unit	[%]
Isopropanol	13.8	[kt/annum]	99.8	[%] (w/w)	49
Acetone	2.8	[kt/annum]	99.2	[%] (w/w)	6
Total Renewable Electricity	146	[GWh/annum]			45

The investment analyses for the solvent plant and conventional renewable electricity generation are detailed in Table S8 and Table S11, as per the investment analysis parameters presented in Table 7. The NPV for conventional renewable electricity generation represents the utility value of the black liquor, valued at \$73 MM (Table S11). This is subtracted from the NPV of the solvent plant (\$115 MM) to produce the cumulative NPV presented in Figure 9. For the nominal TEA model inputs, the solvent plant's net cumulative NPV is \$42 MM.

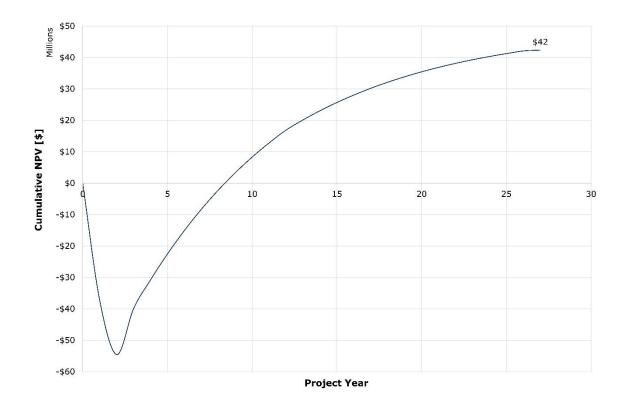


Figure 9: Investment Analysis for the solvent plant including the utility value for black liquor, taken as the NPV for conventional generation of renewable electricity. For the nominal TEA model inputs, the solvent plant presents a net cumulative NPV of \$42 MM.

Given the conceptual stage of the TEA, a Monte Carlo simulation was undertaken as per the uncertainty framework outlined in Table 8. The produced probability distribution in Figure 10 avoids making an investment decision based solely on nominal TEA inputs. The cumulative probability curve presents a 70 [%] probability that the solvent plant will achieve a net cumulative NPV between \$35 MM and \$85 MM, noting that no negative outcomes are predicted.

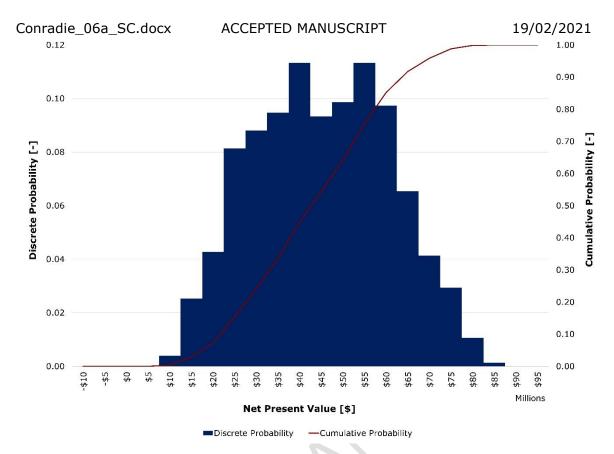


Figure 10: Monte Carlo simulation for the opportunity cost associated with the solvent plant. The cumulative probability curve indicates that the solvent plant has a 70 [%] probability of achieving \$35 MM < net cumulative NPV < \$85 MM.

3.2 Life Cycle Analysis

Figure 11 summarises the outcome of the cradle-to-gate LCA for the solvent plant, compared to the conventional fossil derived processes; using both economic and energy allocation for the isopropanol, acetone and renewable electricity products.

Both solvents achieve negative GHG emissions when produced via the solvent plant using economic and energy allocation. The GHG emission for the two allocation methods are comparable, indicating the price per unit energy [\$/MJ] is similar for all three products. The negative emissions are an intrinsic outcome of the cradle-to-gate

framework, which excludes the end use for the products. As the total GHG emissions of the solvent plant are lower than the overall biogenic carbon sequestered, negative GHG emissions are achieved for the solvent products.

The negative GHG emissions compare favourably to the conventional isopropanol (hydration of propene) and acetone (oxidation of cumene) processes. Additionally, the GHG emissions associated with the excess renewable electricity from the solvent plant also compare favourably to the electricity mix in China (2018). Furthermore, as the end use for the solvents remains the same regardless of the production method, the relative GHG emissions are valid beyond the cradle-to-gate framework.

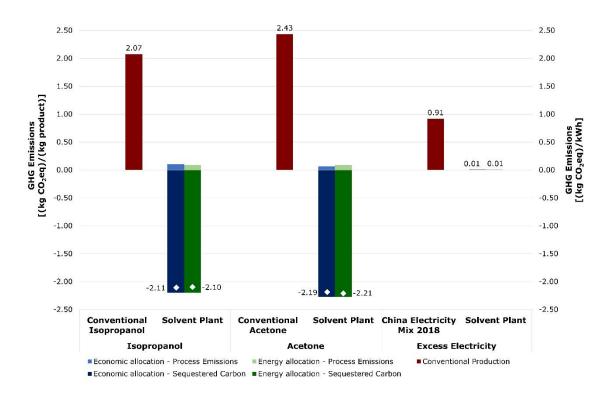


Figure 11: Greenhouse gas (GHG) emissions for the solvent plant compared to the conventional fossil derived processes within a cradle-to-gate life cycle assessment framework. The GHG for the 2018 Electricity Mix in China is also shown, contrasting against near zero net GHG emissions for renewable electricity generation from black liquor.

3.3 Comparison with Anaerobic Fermentation

As highlighted in the Introduction, the commercial implementation of gas fermentation is largely dominated by anaerobic fermentation. Therefore, it is important to compare the results to a best-in-class technology. In addition to successfully commercialising ethanol production via gas fermentation, LanzaTech have also investigated gas fermentation to produce acetone, a precursor to isopropanol (64). As such, LanzaTech's investigation undertaken for the Department of Energy, in

collaboration with Oak Ridge National Laboratory, is used as a benchmark anaerobic process (65).

As highlighted previously, the primary differences between anaerobic and aerobic fermentation technologies are inherent to the C1 fixation metabolic pathways. Strictly respiratory (aerobic) cell factories require air to be continuously fed into the bioreactor to facilitate carbon fixation. In addition, owed to the intrinsic thermodynamic inefficiency of the Calvin-Benson-Bassham Cycle employed by aerobic bacteria, an excess of low temperature heat is produced. As such, a conventional process flowsheet for aerobic fermentation employs operationally costly compressors and chillers. In contrast, for anaerobic fermentation there is a reduced chiller requirement and the compressor duty is less pronounced. Moreover, owed to the presence of oxygen, aerobic fermentations require the use of more costly stainless steel reactors and more complex process control systems. Whilst the latter is an intrinsic requirement of aerobic fermentations, in this work we have reconciled the increased utility demand of aerobic fermentation through the process integration outlined in (28). This integration employs a heat pump to utilise the low temperature heat generated by aerobic fermentation to heat the SCWG reactor feed, removing the cooling water burden required by the bioreactors. Additionally, the compressor duty is fully supplied through the electricity generated upon letting down the SCWG reactor's high-pressure gas product. As a result, the economic and LCA outcomes for the solvent plant should be comparable to anaerobic fermentation technology.

LanzaTech's anaerobic study achieved a combined selectivity of 94.7 [%] for ethanol and acetone, of which 57.3 [%] was acetone (65). LanzaTech disclosed that by selling acetone at market prices they are able to sell co-produced ethanol at or

below the Department of Energy's 2022 target of 3 [\$/GGE] (66). Therefore, in this study, the [\$/GGE] value for the solvent products as a biofuel mix was calculated, with renewable electricity sold at the current market price. A value of 2.87 [\$/GGE] (Figure 12) was obtained, below the DOE's target, highlighting the competitiveness of the heat integrated aerobic solvent plant. Notably, neither isopropanol nor acetone are typically used for their fuel value, highlighted by their higher market prices. As such, the solvent plant is profitable as either a biofuel or commodity chemical facility.

For LanzaTech's anaerobic process, the cradle-to-gate LCA using energy allocation produced a calculated GHG emission of -1.9 [(kg CO₂eq)/(kg acetone + ethanol)] for a heat integrated scenario (see Table S12 for calculation). In Figure 12, the LCA for the solvent plant is presented, indicating a net GHG emission of -2.04 [(kg CO₂eq)/(kg isopropanol + acetone)], which is in line with LanzaTech's study (Figure 12). Resultantly, from both the TEA and LCA results, the greater thermodynamic efficiency of the anaerobic Wood-Ljungdahl C1 fixation pathway over the aerobic Calvin-Benson-Bassham Cycle is not evident for the heat integrated solvent plant.

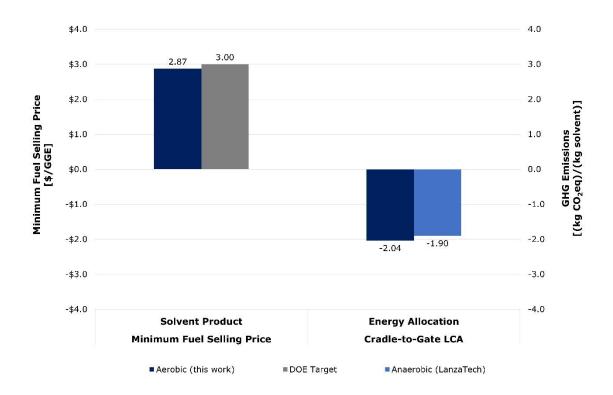


Figure 12: Minimum selling price for the solvent product mix on a [\$/GGE] basis and comparison between aerobic (this work) and anaerobic (LanzaTech) gas fermentation cradle-to-gate GHG emissions. The solvent product is below the DOE's 2022 target of 3 [\$/GGE] and the cradle-to-gate emissions are shown to be comparable to the anaerobic process.

4. Conclusions

In exploiting the available excess black liquor, the solvent plant TEA presents a net cumulative NPV of \$42 MM. The solvent plant demonstrates that the sustainable production of commodity chemicals priced near ~\$1000 per tonne is within reach of heat integrated aerobic gas fermentation, whilst achieving an appreciable reduction in GHG emissions compared to conventional production. Moreover, despite having a higher market value, a biofuel mix of the solvent product is able to meet the DOE's

2022 target of 3 [\$/GGE]. The heat integration between aerobic gas fermentation and SCWG produces an LCA comparable to a anaerobic gas fermentation technology. The TEA and LCA studies suggest that the intrinsic thermodynamic efficiency of anaerobic fermentation can be attained by aerobic fermentation through process engineering, albeit at a capital expense. Given aerobic cell factories can target a wider product spectrum, the heat integrated aerobic gas fermentation has promise as a best-in-class technology for renewable commodity chemical production.

Author Contributions

Conceptualisation: A.C. and R.R.B.; Methodology: S.R., A.C., R.K., F.M., J.M.; Software: S.R., A.C., R.K., F.M., J.M.; Formal Analysis: S.R., A.C., R.K., F.M., J.M.; Investigation: S.R., A.C., R.K., F.M., J.M.; Writing – Original Draft: S.R. and A.C.; Writing – Review & Editing: S.R., A.C., R.K., S.P., M.H., R.R.B., F.M., J.M.; Visualisation: S.R., A.C., F.M.; Supervision: A.C. and J.M.; Funding Acquisition: A.C. and J.M.

Nomenclature

Name	Abbreviation
Supercritical Water Gasification	SCWG
Fixed Capital Investment	FCI
Techno-Economic Assessment	TEA
National Renewable Energy Laboratory	NREL
Life Cycle Assessment	LCA
Net Present value	NPV
Towler and Sinnott	TS
Inside Battery Limit	ISBL
Outside battery Limit	OSBL
Total Capital Investment	TCI
Radial Basis Function Neural Network	RBFNN
Greenhouse Gas	GHG

Acknowledgments

This work was supported by an EPSRC DTP CASE studentship with Johnson Matthey and by Industrial Biotechnology (IB) Catalyst project ConBioChem funded by Innovate UK, BBSRC and EPSRC (grant BB/N023773/1). Furthermore, this work was supported by the Future Biomanufacturing Research Hub (grant EP/S01778X/1), funded by the Engineering and Physical Sciences Research Council (EPSRC) and Biotechnology and Biological Sciences Research Council (BBSRC) as part of UK Research and Innovation. Finally, the authors gratefully acknowledge support received from the University of Nottingham Research Beacon of Excellence: Green Chemicals.

References

- S. N. Naik, V. V. Goud, P. K. Rout and A. K. Dalai, Renew. Sustain. Energy Rev., 2010, 14, (2), 578 LINK https://doi.org/10.1016/j.rser.2009.10.003
- R. Liguori and V. Faraco, Bioresour. Technol., 2016, 215, 13 LINK https://doi.org/10.1016/j.biortech.2016.04.054
- Y. Sun and J. Cheng, Bioresour. Technol., 2002, 83, (1), 1 LINK https://doi.org/10.1016/S0960-8524(01)00212-7
- M. Naqvi, J. Yan and E. Dahlquist, Bioresour. Technol., 2010, 101, (21), 8001 LINK https://doi.org/10.1016/j.biortech.2010.05.013
- M. Suhr, G. Klein, I. Kourti, M. Rodrigo Gonzalo, G. Giner Santonja, S. Roudier and L. Delgado Sancho, 'Best Available Techniques (BAT) Reference Document for the Production of Pulp, Paper and Board', Luxembourg, 2015 LINK https://doi.org/10.2791/370629

- M. Keshtkar, R. Ammara, M. Perrier and J. Paris, J. Sci. Technol. For. Prod. Process.,
 2015,
 5,
 (1),
 24
 LINK
 https://www.paperadvance.com/images/stories/documents/technical-papers/J FOR+Vol5-No1-Thermal Energy Efficiency Analysis.pdf
- 7. E. Ahmetovi and I. E. Grossmann, 'A Review of Recent Developments of Water and Energy Optimisation Methods Applied to Kraft Pulp and Paper Mills', in '4th South East Eur. Conf. Sustain. Dev. Energy, Water Environ. Syst. (4th SEE SDEWES)', 2020 LINK http://egon.cheme.cmu.edu/Papers/Ahmetovic_et_al_2020_4th_SEE_SDEWES_S arajevo_B&H_Final_ Revision_Final.pdf
- 8. T. Berntsson, P. Axegard, B. Backlund, A. Samuelsson, N. Berglin and K. Lindgren,
 'Swedish Pulp Mill Biorefineries', , 2008 LINK
 https://www.osti.gov/etdeweb/servlets/purl/951488
- 9. Y. Yoshida, K. Dowaki, Y. Matsumura, R. Matsuhashi, D. Li, H. Ishitani and H. Komiyama, Biomass and Bioenergy, 2003, 25, (3), 257 LINK https://doi.org/10.1016/S0961-9534(03)00016-3
- M. Kumar, A. Olajire Oyedun and A. Kumar, Renew. Sustain. Energy Rev., 2018,
 81, (November 2016), 1742 LINK https://doi.org/10.1016/j.rser.2017.05.270
- 11. A. Kruse, J. Supercrit. Fluids, 2009, 47, (3), 391 LINK https://doi.org/10.1016/j.supflu.2008.10.009
- 12. BP, 'BP and Johnson Matthey License Innovative Waste-to-Fuels Technology to Biofuels Producer Fulcrum BioEnergy', BP News Insights, 2018, September LINK https://www.bp.com/en/global/corporate/news-and-insights/press-releases/bp-

- and-johnson-matthey-license-innovative-waste-to-fuels-technology-to-biofuels-producer-fulcrum-bioenergy.html
- 13. M. Mohammadi, G. D. Najafpour, H. Younesi, P. Lahijani, M. H. Uzir and A. R. Mohamed, Renew. Sustain. Energy Rev., 2011, 15, (9), 4255 LINK https://doi.org/10.1016/j.rser.2011.07.124
- 14. J. Daniell, M. Köpke and S. D. Simpson, 'Commercial Biomass Syngas Fermentation', 'Energies', Vol. 5, 2012 LINK https://doi.org/10.3390/en5125372
- LanzaTech, 'World's First Commercial Waste Gas to Ethanol Plant Starts Up' 2018
 https://www.lanzatech.com/2018/06/08/worlds-first-commercial-waste-gasethanol-plant-starts/ (Accessed on 9 June 2020)
- 16. A. G. Fast and E. T. Papoutsakis, Curr. Opin. Chem. Eng., 2012, 1, (4), 380 LINK https://doi.org/10.1016/j.coche.2012.07.005
- B. Molitor, E. Marcellin and L. T. Angenent, Curr. Opin. Chem. Biol., 2017, 41, 84
 LINK https://doi.org/10.1016/j.cbpa.2017.10.003
- 18. C. M. Humphreys and N. P. Minton, Curr. Opin. Biotechnol., 2018, 50, 174 LINK https://doi.org/10.1016/j.copbio.2017.12.023
- R. Takors, M. Kopf, J. Mampel, W. Bluemke, B. Blombach, B. Eikmanns, F. R. Bengelsdorf, D. Weuster-Botz and P. Dürre, Microb. Biotechnol., 2018, 11, (4), 606
 LINK https://doi.org/10.1111/1751-7915.13270
- A. Bar-Even, A. Flamholz, E. Noor and R. Milo, Biochim. Biophys. Acta Bioenerg.,
 2012, 1817, (9), 1646 LINK https://doi.org/10.1016/j.bbabio.2012.05.002
- 21. D. Humbird, R. Davis and J. D. McMillan, Biochem. Eng. J., 2017, 127, 161 LINK https://doi.org/10.1016/j.bej.2017.08.006

- 22. J. Van Brunt, Nat. Biotechnolgy, 1986, 4, 395 LINK https://doi.org/10.1038/nbt0586-395
- 23. J. D. McMillan and G. T. Beckham, Microb. Biotechnol., 2016, 10, (1), 40 LINK https://doi.org/10.1111/1751-7915.12471
- 24. E. Dheskali, A. A. Koutinas and I. K. Kookos, Biochem. Eng. J., 2020, 154, LINK https://doi.org/10.1016/j.bej.2019.107462
- 25. S. Gunukula, T. Runge and R. Anex, ACS Sustain. Chem. Eng., 2017, 5, (9), 8119
 LINK https://doi.org/10.1021/acssuschemeng.7b01729
- 26. R. Davis, L. Tao, E. C. D. Tan, M. J. Biddy, G. T. Beckham, C. Scarlata, J. Jacobson, K. Cafferty, J. Ross, J. Lukas, D. Knorr and P. Schoen, 'Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons', , 2013 LINK https://doi.org/10.2172/1107470
- 27. D. Humbird, R. Davis, L. Tao, C. Kinchin, D. Hsu, A. Aden, P. Schoen, J. Lukas, B. Olthof, M. Worley, D. Sexton and D. Dudgeon, 'Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover', , 2011 LINK https://doi.org/10.2172/1013269
- 28. R. R. Bommareddy, Y. Wang, N. Pearcy, M. Hayes, E. Lester, N. P. Minton and A. V. Conradie, iScience, 2020, 23, (6), 1 LINK https://doi.org/10.1016/j.isci.2020.101218
- 29. P. Dürre and B. J. Eikmanns, Curr. Opin. Biotechnol., 2015, 35, 63 LINK https://doi.org/10.1016/j.copbio.2015.03.008

- 30. M. Cardoso, É. D. de Oliveira and M. L. Passos, Fuel, 2009, 88, (4), 756 LINK https://doi.org/10.1016/j.fuel.2008.10.016
- 31. M. Schubert, J. W. Regler and F. Vogel, J. Supercrit. Fluids, 2010, 52, (1), 99 LINK https://doi.org/10.1016/j.supflu.2009.10.002
- C. Cao, L. Guo, H. Jin, S. Guo, Y. Lu and X. Zhang, Int. J. Hydrogen Energy, 2013,
 (30), 13293 LINK https://doi.org/10.1016/j.ijhydene.2013.07.068
- 33. M. Magdeldin and M. Järvinen, Appl. Energy, 2020, 262, LINK https://doi.org/10.1016/j.apenergy.2020.114558
- 34. S. O. Odu, A. G. J. Van Der Ham, S. Metz and S. R. A. Kersten, Ind. Eng. Chem. Res., 2015, 54, (20), 5527 LINK https://doi.org/10.1021/acs.iecr.5b00826
- 35. S. van Wyk, A. G. J. van der Ham and S. R. A. Kersten, Desalination, 2020, 474, LINK https://doi.org/10.1016/j.desal.2019.114189
- Y. Hu, M. Gong, X. Xing, H. Wang, Y. Zeng and C. C. Xu, Renew. Sustain. Energy Rev., 2020, 118, 1 LINK https://doi.org/10.1016/j.rser.2019.109529
- 37. J. A. Okolie, R. Rana, S. Nanda, A. K. Dalai and J. A. Kozinski, Sustain. Energy Fuels, 2019, 3, (3), 578 LINK https://doi.org/10.1039/c8se00565f
- 38. J. Gmehling, J. Menke, J. Krafczyk, K. Fischer, J.-C. Fontaine and H. V. Kehiaian, 'Azeotropic Data For Binary Mixtures', in 'CRC Handb. Chem. Phys.', ed. J. R. Rumble, 101st (Int., CRC Press/Taylor & Francis, Boca Raton, FL LINK http://www.hbcponline.com/faces/documents/06_35/06_35_0001.xhtml
- C. Pienaar, C. E. Schwarz, J. H. Knoetze and A. J. Burger, J. Chem. Eng. Data,
 2013, 58, (3), 537 LINK https://doi.org/10.1021/je300847v

- 40. W. L. Luyben and I.-L. Chien, 'ISOPROPANOL WATER (CYCLOHEXANE AS THE ENTRAINER)', in 'Des. Control Distill. Syst. Separating Azeotropes', John Wiley & Sons, Ltd, 2010 LINK https://doi.org/10.1002/9780470575802.ch8
- 41. Y. Cui, X. Shi, C. Guang, Z. Zhang, C. Wang and C. Wang, Process Saf. Environ. Prot., 2019, 122, 1 LINK https://doi.org/10.1016/j.psep.2018.11.017
- 42. L. A. H. Petersen, J. Villadsen, S. B. Jørgensen and K. V. Gernaey, Biotechnol. Bioeng., 2017, 114, (2), 344 LINK https://doi.org/10.1002/bit.26084
- 43. E. D. Larson, S. Consonni, R. E. Katofsky, K. Iisa and W. J. Frederick, 'A Cost-Benefit Assessment of Gasification-Based Biorefining in the Kraft Pulp and Paper 2006 LINK https://acee.princeton.edu/wp-Industry', Vol. 1, content/uploads/2016/10/Princeton-Biorefinery-Study-Final-Report-Vol.-1.pdf
- 44. I. A. Zlochower and G. M. Green, J. Loss Prev. Process Ind., 2009, 22, (4), 499 LINK https://doi.org/10.1016/j.jlp.2009.03.006
- 45. W. D. Seider, D. R. Lewin, J. D. Seader, S. Widago, R. Gani and K. Ming Ng, 'Cost Accounting and Capital Cost Estimation', in 'Prod. Process Des. Princ. Synth. Anal. Eval.', Fourth Edi., John Wiley & Sons Inc., 2017, New York, 2017
- 46. R. G.P, 'Multi-Objective Optimization Techniques and Applications in Chemical Engineering', World Scientific Publishing Co. Pte. Ltd, Singapore, 2009
- 47. G. Towler and R. K. Sinnott, 'Chemical Engineering Design Principles, Practice and Economics of Plant and Process Design', 2nd Ed., Elsevier, 2013 LINK https://app.knovel.com/hotlink/toc/id:kpCEDPPEP4/chemicalengineering/chemical-engineering
- 48. M. M. El-Halwagi, 'Sustainable Design Through Process Integration: Fundamentals and Applications to Industrial Pollution Prevention, Resource Conservation, and Johnson Matthey Technol. Rev., 2021, 65, (3), xxx-yyy

- Profitability Enhancement', 2nd Ed., Elsevier, 2017 LINK https://www.elsevier.com/books/sustainable-design-through-process-integration/el-halwagi/978-0-12-809823-3
- 49. S. Jenkins, '2019 CHEMICAL ENGINEERING PLANT COST INDEX ANNUAL AVERAGE', Chemical Engineering Online 2020 : https://www.chemengonline.com/2019-chemical-engineering-plant-cost-index-annual-average/ (Accessed on 2 July 2020)
- 50. S. R.k., 'Coulson and Richardson's Chemical Engineering Volume 6 Chemical Engineering Design', 4th Ed., Elsevier, 2005
- 51. ICIS, 'Ammonia Prices, Markets & Analysis' 2020 :

 https://www.icis.com/explore/commodities/chemicals/ammonia/ (Accessed on 1

 June 2020)
- 52. D. C. Y. Foo, N. Chemmangattuvalappil, D. K. S. Ng, R. Elyas, C.-L. Chen, R. D. Elms, H.-Y. Lee, I.-L. Chien, S. Chong and C. H. Chong, 'Chemical Engineering Process Simulation', Elsevier, 2017
- 53. F. Takens, Lect. Notes Math., 1981, 898, LINK https://doi.org/10.1007/bfb0091924
- 54. Intratec, 'Petrochemical Prices' 2020

 https://www.intratec.us/products/commodities-prices/petrochemicals-prices

 (Accessed on 1 June 2020)
- J. A. Leonard, M. A. Kramer and L. H. Ungar, Comput. Chem. Eng., 1992, 16, (9),
 819 LINK https://doi.org/10.1016/0098-1354(92)80035-8
- Z. Ming, L. Ximei, L. Na and X. Song, Renew. Sustain. Energy Rev., 2013, 25, 260
 LINK https://doi.org/10.1016/j.rser.2013.04.026

- 57. C. M. Kinchin, 'BETO Biofuels TEA Database' 2019 :

 https://bioenergykdf.net/content/beto-biofuels-tea-database (Accessed on 4

 December 2020)
- 58. Reuters, 'China to Cut Subsidies for Renewable Power by 30 per Cent to US\$807

 Million in 2020', South China Morning Post, 2019, November LINK

 https://www.scmp.com/news/china/society/article/3038591/china-cut-subsidiesrenewable-power-30-cent-us807-million-2020
- 59. International Organization for Standardization, 'ISO 14040:2006: Environmental Management Life Cycle Assessment Principles and Framework', Vol. 3, London, 2006 LINK https://www.iso.org/standard/37456.html
- 60. International Organization for Standardization, 'ISO 14044:2006 Environmental Management Life Cycle Assessment Requirements and Guidelines', London, 2006 LINK https://www.iso.org/standard/38498.html
- 61. IPCC Working Group I, T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley, 'Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change', Cambridge University Press, 2014 LINK https://doi.org/10.1017/CBO9781107415324
- 62. G. Wernet, C. Bauer, B. Steubing, J. Reinhard, E. Moreno-Ruiz and B. Weidema, Int. J. Life Cycle Assess., 2016, 21, (9), 1218 LINK https://doi.org/10.1007/s11367-016-1087-8
- X. Sun, F. Meng, J. Liu, J. McKechnie and J. Yang, J. Clean. Prod., 2019, 220, 1
 LINK https://doi.org/10.1016/j.jclepro.2019.01.225

- 64. LanzaTech, 'Development of a Sustainable Green Chemistry Platform for Production of Acetone and Downstream Drop-in Fuel and Commodity Products Directly from Biomass Syngas via a Novel Energy Conserving Route in Engineered Acetogenic Bacteria'

 2017

 LINK https://www.energy.gov/sites/prod/files/2017/05/f34/Development of a Sustainable Green Chemistry Platform for Production of Acetone and downstream drop-in fuel and commodity products directly from Biomass Syngas.pdf
- 65. S. D. Simpson, T. Abdalla, S. D. Brown, C. Canter, R. Conrado, J. Daniell, A. Dassanayke, A. Gao, R. O. Jensenm, M. Kopke, C. Leand, F. Liew, S. Nagaraju, R. Nogle, R. Tappel, L. Tran, P. Charania, N. Engle, R. Giannone, R. Hettich, D. Klingeman, S. Poudel, T. Tschaplinski and Z. Yang, 'Development of a Sustainable Green Chemistry Platform for Production of Acetone and Downstream Drop-in Fuel and Commodity Products Directly from Biomass Syngas via a Novel Energy Conserving Route in Engineered Acetogenic Bacteria', 'OSTI.GOV', , 2019 LINK https://doi.org/10.2172/1599328
- 66. U.S Department of Energy, 'Bioenergy Technologies Office: Multi-Year Program Plan', Washington, D.C, 2016 LINK https://www.energy.gov/sites/prod/files/2016/03/f30/mypp_beto_march2016_2. pdf

The Authors

Sarah Rodgers has a MEng in Chemical Engineering with Industrial Experience from the University of Nottingham (2019). Her year in industry was spent in the Process Technology Team with AkzoNobel (2017). She is currently undertaking an Industrial CASE funded PhD with Johnson Matthey and the University of Nottingham. Her project is investigating the technical and financial viability of using C1 gases for chemical production.

Alex Conradie was appointed as Chair of Sustainable Chemical Processing at the University of Nottingham in 2016, having worked in the biotech industry for two decades as a technology integrator between science and engineering encompassing metabolic engineering, fermentation and downstream processing. He has held engineering science leadership positions in both the industrial biotechnology and biopharmaceutical industries, leading multi-disciplinary teams in process development, scale-up and technology transfer.

Rebekah King is studying her MEng in Chemical Engineering at the University of Nottingham. Her previous research experience includes, investigating the feasibility of a sustainable microorganism feed for livestock and establishing the feasibility of a novel exoelectrogenic bioreactor design. As a placement student at Fujifilm Diosynth Biotechnologies, she's led an investigation into the economic viability of transitioning to high throughput automated technologies.


Stephen Poulston is a research chemist at Johnson Matthey in Sonning Common. He has experience of catalytic processes for a range of thermochemical conversions involving syn-gas to chemicals using both fossil fuel and bio feedstocks.

Martin Hayes is the Biotechnology Lead at Johnson Matthey plc. He has extensive experience (>20 years) in the development and operation of catalysts and catalytic technologies in the chemical industry. A chemist by training, he is now particularly interested in the role of biotechnology to enable the chemical industry to achieve its net zero ambitions. Biotechnology can support the transition from linear to circular processes so that waste is minimised and/or upgraded to valuable products.

Rajesh Reddy Bommareddy is a Vice Chancellor's Fellow at Northumbria University in Newcastle. He is a part of 'Building Metabolism' research theme within the Hub for Biotechnology in the Built Environment (HBBE) funded by Research England. His research focusses on Industrial Biotechnology with expertise in Metabolic engineering and Fermentation technology.

Fanran Meng is Research Fellow in the Faculty of Engineering at the University of Nottingham. His current research focuses on resource efficiency and life cycle sustainability. His expertise is in the application of whole systems analysis approaches including life cycle assessment and techno-economic analysis to sustainable materials and technologies.

Jon McKechnie is Associate Professor in Mechanical Engineering at the University of Nottingham. His research focuses on the development and application of life cycle assessment and techno-economic analysis methodologies. Application areas include industrial biotechnology, renewable and low carbon fuels, transportation systems and emerging materials.

Reconciling the Sustainable Manufacturing of Commodity Chemicals with Feasible Technoeconomic Outcomes: Supplementary Information

Sarah Rodgers^{1*}, Alex Conradie^{1*}, Rebekah King¹, Stephen Poulston², Martin Hayes³, Rajesh Reddy Bommareddy⁴, Fanran Meng¹, Jon McKechnie^{1**}

- ¹ Sustainable Process Technologies Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, United Kingdom.
- ² Johnson Matthey, Blounts Ct Rd, Sonning Common, Reading RG4 9NH, United Kingdom.
- ³ Johnson Matthey, 28 Cambridge Science Park, Milton Road, Cambridge, CB4 0FP, United Kingdom.
- ⁴ Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne, NE1 8ST, United Kingdom

List of Tables

Table S1	Capital cost estimation for the solvent plant using the NREL method.
Table S2	Additional capital cost for the solvent plant associated with the NREL
	method.
Table S3	Capital cost estimation for the solvent plant using the TS method.
Table S4	Capital cost estimation for the solvent plant using the Hand method.
Table S5	Fixed Operating Cost for the solvent plant using the NREL method.
Table S6	Fixed Operating Cost for the solvent plant using the TS method.
Table S7	Fixed Operating Cost for the solvent plant using the Coulson &
	Richardson method.
Table S8	Investment Analysis for the solvent plant using the Hand method for
	capital estimation and the TS method for fixed operating cost
	estimation.
Table S9	Capital cost estimation for conventional renewable electricity
	generation using the Hand method.
Table S10	Fixed operating cost estimation for conventional renewable electricity generation using the TS method.
Table S11	Investment Analysis for conventional renewable electricity
	generation using the Hand method for capital estimation and the TS
	method for fixed operating cost estimation.
Table S12	Calculation of greenhouse gas emissions on Cradle-to-Gate basis for
	LanzaTech's anaerobic gas fermentation technology, producing
	acetone and ethanol.
Table S13	Typical calculation for calculation of required oxygen mass transfer
	coefficient (kLA) based on Aspen HYSYS mass and energy balance.

Table S1: Capital cost estimation for the solvent plant using the NREL method.

Part Section Page			I										
High Pressure Pump	Plant section	Major ISBL Equipment item	Quantity		Cost	(2006)	adjustment		Installed				
##SP PRESSURE NUTS ##SP PRESSURE NUTS ##SP PROJECT ##SP P						[\$]	to 2019 [\$]		ουστ [φ]				
Heel Fund Condenser	-	Hi-la Duanassa Duana				100.450	242.242	1	122.260				
Heat Funny Compressor	-							841,325					
SCWG Recovery HE													
SCUIG Flug Flow Reactor	-							1		1			
Vapour Heater													
Femiliation	-	<u> </u>						1		1			
Peedstook Peel treatment 1 33,243 2,20 73,135 88,859 45,235 102,881	-							0.51		1			
Superritical Harter	Feedstock Pre-												
Fundamental 1 3,717,523 1,80 6,691,541 7,7231,174 9,908 9,908 1,100,100			1							21,548,182			
Air Compression After Cooler			1					1		1			
H. Combustion Feed Heater 1 26,928 2,20 59,242 71,979 36,643		Air Compression After Cooler	1		2.20		19,462						
H. Combustion Feed Heater 1 25,678 2,20 59,242 71,979 0,51 30,792 20,00 49,781 60,0487 0,51 20,07820 20,00 49,781 60,0487 0,51 20,07820 20,00 49,781 60,0487 0,51 20,07820 20,00 20,		H ₂ Bioreactor Cooler	1	241,164	2.20	530,561	644,631		328,163				
Bioreactor Off-gas Combustion Feed Heater 1 22,029 2.79 49,783 60,487 0.51 30,792 20,000 20													
Combustion Chamber			1	26,928	2.20	59,242	71,979		36,643				
Combustion Chamber 1								0.51					
Seed fermenters	_							0.51					
Seed fermenteres		Combustion Turbine	1			16,707,353	20,299,434		10,333,834				
Seed fermenter Redicculation Pumps	_	9.16				070 607	450.000	1					
Fermentation Ferm	_												
Production fermenters	_							0.51					
Production fermenters		Seed fermenter Heat Exchangers	1			58,887	/1,548	1	36,423	6 400 240			
Production Fermeter Recirculation Pumps	Fermentation	Deadustian formantara	1 4			E 157 704	6 266 707	1	2 100 102	6,109,348			
Product Production Fermenter HE	-							1		1			
Centriuge	-							0.51		1			
Action Stripper Tower 1 125,436 2.40 301,047 365,772 0.51 186,204				,			, , , , , , ,						
Acctone Stripper Tower		centinage				1,307,303	1,300,092	1	000,733				
Mater Stripper Fower 1 106,657 2.40 255,977 31,10.12 0.51 158,327	-	Acetone Stripper Tower	1			301.047	365.772		186.204	1			
Pre-flash Bottoms Recovery Heater 1 S8,79 2,20 129,354 157,166 80,008 11,153 70,000 129,354 157,166 80,008 11,153 11,15			1					0.51		1			
Product Recovery Heater 1 58,797 2.20 129,354 157,166 151,165 161,065			Isopro			/-	011/012	I	100/02/				
Recovery from Ter-lisal recovery feature 1 8,199 2,220 16,031 21,098 11,153 16,965		Pre-flash Bottoms Recovery Heater	1	58,797	2.20	129,354	157,166		80,008	1,853,509			
Tower		Pre-flash Condensate Recovery Heater	1	8,196	2.20	18,031	21,908		11,153				
Aqueous & Resolute 1 12,496 2.20 27,429 33,260 16,965 16,965 16,965 11,153 11,15		Tower	1	206,398	2.40	495,355	601,857	0.51	306,387				
Variable		Reboiler	1	12,468	2.20	27,429	33,326		16,965				
Column Feed Heater		Condenser	1	8,196	2.20	18,031	21,908		11,153				
Tower	_												
Reboiler										ļ l			
Reboiler	_							0.51					
Tower	_												
Tower 1 180,458 2.40 433,099 526,216 Reboiler 1 9,772 2.20 21,498 26,120 0.51 13,297 13,297 19,193 10,771 10,000 10,185 10,771 10,000 10,185 10,000 10,185 10,000 10,185 10,000 10,185 10,000 10,185 10,000 10,185 10,000 10,185 10,000 10,185 10,000 10,185 10,000 10,00		Condenser					30,213	l	15,530				
Reboiler 1 9,772 2.20 21,498 26,120 0.51 13,297 9,767	_						F26 246	1	267.004				
Condenser 1 7,177 2,20 15,790 19,185 9,767 685,795								0.51					
Solvent Recovery Pre-heater								0.51					
Pre-heater	Solvent	Condenser	1			15,790	19,185	1	9,767	605 705			
Tower 1 245,120 2.40 588,287 714,769 Reboiler 1 7,225 2.20 15,895 19,313 11,381	Recovery	Pro-heater	1			15 707	10 103	1	0.771	063,793			
Reboiler 1 7,225 2.20 15,895 19,313 0.51 9,832													
Condenser 1 8,364 2.20 18,400 22,356 11,381								0.51					
Steam & Water Management Seed Condenser 1 1,000 1,000 1,100 1,	-							1		1			
Feed Condenser 1 7,901 2.20 17,383 21,120 801,389 10,752 801,389 15,709 10,709		contained					22,330	1	11,501				
Tower 1 539,856 2.40 1,295,655 1,574,221 0.51 801,389 9,769 9,769 15,780		Feed Condenser					21.120		10.752				
Reboiler 1 7,179 2.20 15,794 19,190 0.51 9,769 15,780 1													
Condenser 1 11,597 2.20 25,513 30,998 15,780 1,539,261	Isonronanol	Reboiler	1					0.51					
Swing First Pre-heater 1 7,917 2.20 17,417 21,162 10,773 10,773 10,773 10,773 10,773 10,773 10,773 10,773 10,773 10,773 10,773 10,774 10,774 10,775			1					1		4 500 044			
Second Pre-heater 1 7,400 2.20 16,280 19,780 0.51 10,070	Swing		Hi	gh Pressure	Swing Distillati					1,539,261			
Second Pre-heater 1 7,400 2.20 16,280 19,780 0.51 10,070 664,444 1,305,211 1,305,21 1,305,211 1,305,		First Pre-heater					21,162		10,773]			
Tower 1	Ī	Second Pre-heater		7,400		16,280		0.51	10,070]			
Steam & Water Steam & Water Water Steam & Water Steam & Water Steam & Water Steam & Water Steam Mechanical Vapour Compressors 1			1	447,603	2.40	1,074,247	1,305,211	0.51	664,444	<u> </u>			
Steam & Water Management CO2 flash drum steam heater 1 33,438 2.20 73,564 89,380 45,501 Water Recycle to Fermentation Cooler 1 706,707 1.60 1,130,732 1,373,839 699,380 Water Recycle to Fermentation Cooler 1 11,040 2.20 24,287 29,509 0.51 15,022 Water Recycle to SCWG Gasification 1 11,227 2.20 24,700 30,011 15,278													
Steam & Water Management Steam Mechanical Vapour Compressors 1 706,707 1.60 1,130,732 1,373,839 699,380 785,217 Water Recycle to Fermentation Cooler 1 11,040 2.20 24,287 29,509 0.51 15,022 Water Recycle to SCWG Gasification 1 11,227 2.20 24,700 30,011 15,278]			
Water Management Water Recycle to Fermentation Cooler 1 10,040 1.00 1,130,732 1,373,839 699,360 785,217 Water Recycle to SCWG Gasification 1 11,040 2.20 24,287 29,509 0.51 15,022 Water Recycle to SCWG Gasification 1 11,227 2.20 24,700 30,011 15,278	Stoom 9								45,501]			
Management Water Recycle to Fermentation Cooler 1 11,040 2.20 24,287 29,509 0.51 15,022 Water Recycle to SCWG Gasification 1 11,227 2.20 24,700 30,011 15,278								1		785,217			
Water Recycle to SCWG Gasification 1 11,227 2.20 24,700 30,011 15,278								0.51					
IPA Cooler to Absorber 1 7,376 2.20 16,227 19,716 10,037								1					
		IPA Cooler to Absorber	1	7,376	2.20	16,227	19,716	1	10,037				

Table S2: Additional capital cost for the solvent plant associated with the NREL method.

	Ad	ditional Costs for Det	ermining Total Cap	pital Investment (TCI)
Item	Description	Unit (Basis)	Annual cost [\$/annum]	Comments
		Add	litional Direct Cost	ts
		[% of installed cost	1,300,852	
Warehouse	4	of ISBL equipment]		On-site storage of equipment and supplies.
Site		「% of installed cost	2,926,918	Includes fencing, curbing, parking lot, roads, well drainage, rail system, soil borings, and general paving. This factor allows for minimum site development assuming a clear site with no unusual problems such as right-of-way, difficult land
Development	9	of ISBL equipment]		clearing, or unusual environmental problems.
Additional piping	5	[% of installed cost of ISBL equipment]	1,463,459	To connect ISBL equipment to storage and utilities outside the battery limits.
			Indirect Costs	
Pro-rateable				This includes fringe benefits, burdens, and insurance
costs	10	[% of TDC]	3,821,254	of the construction contractor.
Field expenses	10	[% of TDC]	3,821,254	Consumables, small tool and equipment rental, field services, temporary construction facilities, and field construction supervision.
Home office	10	[70 01 100]	3,021,234	construction supervision.
and construction	20	[% of TDC]	7,642,508	Engineering plus incidentals, purchasing, and construction.
Project contingency	10	[% of TDC]	3,821,254	Extra cash on hand for unforeseen issues during construction.
				Start-up and commissioning costs. Land, rights-of- way, permits, surveys, and fees. Piling, soil compaction/dewatering, unusual foundations. Sales, use, and other taxes. Freight, insurance in transit, and import duties on equipment, piping, steel, instrumentation, etc. Overtime pay during construction. Field insurance. Project team. Transportation equipment, bulk shipping containers,
Other costs	10	[% of TDC]	3,821,254	plant vehicles, etc.
	TOTAL	ADDITIONAL COSTS	28,618,754	

Table S3: Capital cost estimation for the solvent plant using the TS method.

Pant section Major ISBL Equipment Rem					ı						
Mast Num Condenser 1 85,721 228,130 2477,000 1,77,008	Plant section	Major ISBL Equipment item	Quantity		Installed Cost	cost	adjustmen		Installed		
Histo Pressure funds							[\$]				
Hotel Pump Cantimener					i Cycle	T			T		
Heat Pump Compressor											
SCANG Recovery TE								- - -			
SCORE Flag Flow Reactors											
Variable Variable											
Hels Num Recovery NE	_										
Product Recovery Face Store	_				3.3			0.51			
Second From trees		. ,									
Turbe-espander										38,484,617	
Air Compression After Cooler	treatment										
His Bioreactor Cooler	-				4						
H. Combustion Feed Heater	_				1						
H. Combustion Feed Heater 1 20,928 88,863 107,969 0,51 46,188 10,000	-	nz bioreactor Cooler	1		ustion	795,641	900,947		492,244		
Bioreactor Off-gas Combustion Feed Heater 1 22,629 3.3 74,075 90,730 0.51 37,30,55 0.70		Ha Combustion Feed Heater	1		ustion	88 863	107 969		54.064		
Combustion Chamber	-										
Combustion Turbine	-				3.3			0.51			
Seed Fermenters					1						
Seed fermenters		Combastion rarbine			rmenters	30,030,140	37,213,029		10,943,302		
Seed fermenter Recirculation Pumps	-	Seed fermenters	1		Intenters	616 501	749 048		381 318		
Seed fermenter leaf Exchangers 1 26,767 88,331 107,322 \$4,655	_			/	3 3			0.51		1	
Production fermenters	-				3.5			0.51			
Production fermenters 4 2,578,892 8,510,344 10,340,067 5,263,819 1,053,872 1,053,872 1,053,872 1,053,872 1,053,872 1,053,872 1,053,872 1,053,872 1,053,872 1,053,872 1,053,872 1,053,872 1,053,872 1,068,058 1,053,872 1,068,058 1,053,872 1,068,058 1,053,872 1,068,058 1,053,872 1,068,058 1,053,872 1,068,058 1,053,872 1,053,872 1,068,058 1,053,872	Fermentation	Seed refinencer frede Exertangers			Fermenters	00,331	107,322		34,033	10 081 936	
Product forementer Recirculation Pumps	Cimentation	Production fermenters	4		- Crimenters	8 510 344	10 340 067		5 263 819	10,001,550	
Production Fermether HE	-				1			1			
Centrifuge	-				3.3			0.51		1 I	
Action Stripper Tower											
Accton Stripper Tower		continued.			rption	2,050,055	3,270,077		1,000,030		
Water Stripper Tower		Acetone Stripper Tower	1			415,498	504.830		256,994		
Product Recovery Product Recovery Product Recovery Fre-flash Bottoms Recovery Heater 1 8,196 27,047 32,862 421,322 421,322 421,322 421,322 421,322 421,322 421,322 421,322 421,322 421,322 421,322 421,322 421,323 421,322					3.3			0.51			
Pre-flash Condensate Recovery Heater 1 8,196 3.3 681,113 827,553 827,553 41,1282 7,568,914											
Pre-flash Condensate Recovery Heater 1 8,196 3.3 681,113 827,553 827,553 41,1282 7,568,914		Pre-flash Bottoms Recovery Heater	1	58,797		194,032	235,748		120,012		
Tower	Product Recovery	Pre-flash Condensate Recovery Heater	1	8,196			32,862	0.51	16,729	2,568,914	
Reboiler 1 1,498 41,144 49,990 25,448 16,729 16,72		Tower	1	206,398	3.3	681,113	827,553				
Solvent Recovery Solvent Rec	Aqueous &	Reboiler	1	12,468		41,144	49,990		25,448		
Column Feed Heater	Vapour	Condenser	1	8,196		27,047	32,862		16,729		
Tower											
Reboiler											
Reboiler 1 9,4/6 31,2/2 37,995 19,342 23,295					3 3			0.51			
Solvent Recovery Solvent Distillation Solvent Distillation	_			,	3.3		,	0.51			
Tower 1 180,458 595,512 723,546 368,336 19,945 14,650 14,		Condenser				37,663	45,760		23,295		
Reboiler 1 9,772 3.3 32,247 39,180 0.51 19,945 14,650 1					uct Distillation	T			T		
Condenser 1 7,177 23,686 28,778 14,650 28,789 14,650 28,789 14,650 23,695 28,789 28,7											
Solvent Recovery Pre-heater					3.3			0.51			
Pre-heater		Condenser	1			23,686	28,778		14,650		
Tower 1 245,120 3.3 808,895 982,807 0.51 500,318 14,747	Solvent Recovery				Distillation		22 722			949,723	
Reboiler 1 7,225 3.3 23,843 28,969 0.51 14,747 17,071	_										
Condenser 1 8,364 27,600 33,534 17,071	_				3.3			0.51			
Feed Condenser 1 7,901 26,074 31,680 16,127 1,011,910 1,011,91	_										
Feed Condenser 1 7,901 31,680 1,781,526 2,164,554 1,781,526 2,164,554 1,781,526 2,164,554 1,781,526 2,164,554 1,781,526 2,164,554 1,781,526 2,164,554 1,781,526 2,164,554 1,781,526 2,164,554 1,781,526 2,164,554 1,854		Condenser			L		33,534		1/,0/1	ļ <u></u>	
Tower 1 539,856 Reboiler 1 7,179 3.3 1,781,526 2,164,554 0.51 1,101,910 14,654 23,670		Food Condonsor			wing Distiliatio		21 (00		16 127	 	
Reboiler 1 7,179 3.3 23,691 28,785 0.51 14,654 23,670					1					 	
Condenser Cond					3.3			0.51		 	
First Pre-heater	Isopropanol				1					 	
First Pre-heater 1 7,917 24,420 29,671 24,420 29,671 15,104 913,610 24,428 Second Pre-heater 1 447,603 Reboiler 1 11,968 Steam & Water Management Steam Mechanical Vapour Compressors 1 706,707 Water Recycle to SCWG Gasification 1 11,227 37,051 45,016 16,159 15,104 913,610 24,428		Condenser			wing Distillation		40,497		23,070	2 125 662	
Second Pre-heater 1 7,400 3.3 24,420 29,671 0.51 15,104 913,610 1447,090 1,794,665 24,428 27,671 1,477,090 1,794,665 24,428 27,428	Distillation	First Pre-heater					31 7/12		16 1E0	2,123,002	
Tower 1 447,603 3.3 1,477,090 1,794,665 913,610 913,610 24,428 39,494 47,985 24,428					1					1	
Reboiler 1 11,968 39,494 47,985 24,428					3.3			0.51		1	
Steam & Water Management CO₂ flash drum steam heater 1 33,438 110,346 134,070 68,251 Steam & Water Management Steam Mechanical Vapour Compressors 1 706,707 2,332,134 2,833,543 1,442,472 Water Recycle to Fermentation Cooler 1 11,040 3.3 36,430 44,263 0.51 22,533 Water Recycle to SCWG Gasification 1 11,227 37,051 45,016 22,916					1						
CO₂ flash drum steam heater 1 33,438 110,346 134,070 68,251 Steam & Water Management Steam Mechanical Vapour Compressors 1 706,707 2,332,134 2,833,543 1,442,472 Water Recycle to Fermentation Cooler 1 11,040 3.3 36,430 44,263 0.51 22,533 Water Recycle to SCWG Gasification 1 11,227 37,051 45,016 22,916	+	Reporter			r Management		77,303		47,74U		
Steam & Water Management Steam Mechanical Vapour Compressors 1 706,707 2,332,134 2,833,543 1,442,472 1,571,228 Water Recycle to Fermentation Cooler 1 11,040 3.3 36,430 44,263 0.51 22,533 Water Recycle to SCWG Gasification 1 11,227 37,051 45,016 22,916	 	CO2 flash drum steam heater			ianagement		134 070		68,251	1,571,228	
Management Water Recycle to Fermentation Cooler 1 11,040 3.3 36,430 44,263 0.51 22,533 Water Recycle to SCWG Gasification 1 11,227 37,051 45,016 22,916	Steam & Water				1						
Water Recycle to SCWG Gasification 1 11,227 37,051 45,016 22,916					3 3			0.51			
	. idilageillelit							0.51			
27 COURT to ADSCRIPCT 1 17/10 27/17 13/033								\dashv			
		2. 7. Cooler to Absorber	<u> </u>	,,5,0	I	21,571	25,577	1	10,000		

Table S4: Capital cost estimation for the solvent plant using the Hand method.

Plant section	Major ISBL Equipment item	Quantity	Purchase cost [\$]	ISBL Installed Cost Hand factor	Installed cost (2006) [\$]	CE cost Index adjustment to 2019 [\$]	Location Factor	Total Installed Cost [\$]	Total Plant section [\$]			
			SCW	G Cycle	I .	[4]						
	High Pressure Pump	1	86,721	4.00	346,885	421,465		214,555				
	Heat Pump Condenser	1	618,283	3.50	2,163,991	2,629,249		1,338,472				
	Heat Pump Compressor	1	1,566,961	2.50	3,917,404	4,759,645		2,422,993				
	SCWG Recovery HE	1	602,795	3.50	2,109,781	2,563,384		1,304,942				
	SCWG Plug Flow Reactor	1	417,687	4.00	1,670,749	2,029,961		1,033,392				
	Vapour Heater	1	235,313	3.50	823,597	1,000,670		509,411				
	Heat Pump Recovery HE	1	272,464	3.50	953,623	1,158,653	0.51	589,835				
Feedstock Pre-	Combustion Heater	1	33,243	3.50	116,351	141,367		71,966				
treatment	Supercritical Heater	1	75,606	3.50	264,622	321,516		163,674	30,378,659			
	Turbo-expander	1	3,717,523	2.50	9,293,807	10,746,075		5,470,505				
	Air Compression After Cooler	1	7,281	3.50	25,484	30,962		15,762				
	H ₂ Bioreactor Cooler 1 241,164 3.50 844,074 1,025,550 522,077											
	112 Didireactor Cooler 1 241,104 3.50 044,074 1,023,330 322,077 Combustion 3.50 044,074 1,023,330 322,077											
	H ₂ Combustion Feed Heater 1 26,928 3.50 94,249 114,513 58,299											
	Bioreactor Off-gas Combustion Feed Heater	1	22,629	3.50	79,201	96,229		48,987				
	Fired Heater	1	2,072,893	2.00	4,145,786	4,441,914	0.51	2,261,245				
	Combustion Turbine	1	9,281,863	2.50	23,204,657	28,193,659		14,352,547				
	Compaction Furbine	_		ermenters	23/201/037	20/150/005	I	11/552/51/				
	Seed fermenters	1	186,818	4.00	747,274	907.937		462,204				
	Seed fermenter Recirculation Pumps	1	24,809	4.00	99,236	120,571	0.51	61,379				
	Seed fermenter Heat Exchangers	1	26,767	3.50	93,684	113,827	0.51	57,946				
Fermentation	Seed Territorial Treat Exchangers			Fermenters	33,001	113,027	I	37,310	11,210,164			
rementation	Production fermenters	4	644,723	4.00	10,315,568	12,533,415		6,380,386	11,210,104			
-	Production fermenter Recirculation Pumps	4	129,080	4.00	2,065,285	2,509,321		1,277,420 1,707,148				
	Production Fermenter HE	4	197,147	3.50	2,760,053	3,353,465	0.51		[
	Centrifuge	4	204,307	2.50	2,043,071	2,482,331		1,263,680				
	Centinage			orption	2,043,071	2,402,331	l	1,203,000				
	Acetone Stripper Tower	1	125,909	4.00	503,634	611,916		311,508				
	Water Stripper Tower	1	106,671	4.00	426,684	518,421	0.51	263,913				
	Isopropanol Pre-flash Distillation Tower											
	Pre-flash Bottoms Recovery Heater 1 58,797 3.50 205,791 250,036 127,286											
Product	Pre-flash Condensate Recovery Heater	1	8,196	3.50	28,686	34,854		17,743				
Recovery from	Tower	1	206,398	4.00	825,592	1,003,094	0.51	510,645	3,076,854			
Bioreactor	Reboiler	1	12,468	3.50	43,637	53,019	0.51	26,991				
Aqueous &	Condenser	1	8,196	3.50	28,686	34,854		17,743				
Vapour		Isopropan		Concentration D		3 1/00 1	I	27/7.13				
	Column Feed Heater	1	11,033	3.50	38,616	46,918		23,885				
	Tower	1	700,026	4.00	2,800,103	3,402,125		1,731,920				
	Reboiler	1	9,476	3.50	33,167	40,298	0.51	20,514				
	Condenser	1	11,413	3.50	39,946	48,534		24,707				
	Condition			luct Distillation	33/3 .0	.0,55	I	2.77.07				
	Tower	1	180,458	4.00	721,832	877,026		446,468				
	Reboiler	1	9,772	3.50	34,201	41,555	0.51	21,154				
	Condenser	1	7,177	3.50	25,121	30,522	0.51	15,538				
Solvent	Contactical			Distillation	25/121	30/322	I	10/000	1,138,897			
Recovery	Pre-heater	1	7,180	3.50	25,131	30,534		15,544	1,130,037			
	Tower	1	245,120	4.00	980,479	1,191,282		606,446				
-	Reboiler	1	7,225	3.50	25,288	30,725	0.51	15,641				
	Condenser	1	8,364	3.50	29,272	35,566		18,106				
	Condenser	10		Swing Distillation		33,300	l	10,100				
-	Feed Condenser	1	7,901	3.50	27,655	33,600		17,105				
-	Tower	1	539,856	4.00	2,159,425	2,623,702		1,335,648				
	Reboiler	1	7,179	3.50	25,127	30,530	0.51	15,542				
Isopropanol Pressure	Condenser	1	11,597	3.50	40,589	49,315		25,105				
Swing	Condense			Swing Distillatio		42,313	I	23,103	2,559,872			
Distillation	First Pre-heater	1 1	7,917	3.50	27,709	33,666	l	17,139	1			
	Second Pre-heater	1	7,917	3.50	25,900	31,469	1	16,020	1			
-	Tower	1	447,603	4.00	1,790,412	2,175,351	0.51	1,107,406				
 	Reboiler	1	11,968	3.50	41,887	50,893		25,908	1			
	1 11,968 3.50 41,887 50,893 25,908 Steam & Water Management											
 	CO ₂ flash drum steam heater	1	33,438	3.50	117,033	142,195		72,387	-			
Steam &	Steam Mechanical Vapour Compressors	1	706,707	2.50	1,766,768	2,146,623			1			
Water	Water Recycle to Fermentation Cooler	1	11,040	3.50	38,638	46,946	0.51	23,899	1,092,782 1,229,341			
Management	,						0.51		1			
	Water Recycle to SCWG Gasification	1	11,227	3.50	39,296	47,745		24,305	4			
	IPA Cooler to Absorber 1 7,376 3.50 25,816 31,367 15,968											

Table S5: Fixed Operating Cost for the solvent plant using the NREL method.

Labour & Supervision	Salary [\$] (2020)	Number of personnel	Annual cost [\$/annum]
Plant manager	29,591	1	29,591
Plant engineer	29,977	1	29,977
Maintenance supervisor	20,406	1	20,406
Maintenance technician	14,968	3	44,903
Lab manager	21,569	1	21,569
Lab technician	14,619	1	14,619
Shift supervisor	15,267	4	61,067
Shift operators	13,373	12	160,470
Yard employees	6,184	4	24,735
Clerks and secretaries	11,488	3	34,464
		TOTAL SALARIES	441,800
Labour burden	90 [%] c	of Total Salaries	397,620
		TOTAL LABOUR COST	839,421
Oti		Annual cost [\$/annum]	
Maintenance	3 [9	%] of ISBL	975,639
Property insurance	0.7	[%] of FCI	427,980
	TOTAL F	IXED OPERATING COST	2,243,040

Table S6: Fixed Operating Cost for the solvent plant using the TS method.

	FIXED OPERATING	COST		
Fixed Operational Consideration	Assessment Basis	Unit (Basis)	Annual cost [\$/annum]	
Operating Labour	Wage & Salary Cost for shift team members (excl. supervision)	[13,373 [\$/operator], 4 shift teams with 3 operators each]	160,470	
Supervisory Labour	25	[% of Operating labour]	40,118	
Direct Salary Overhead	50	[% of Operating + Supervisory]	100,294	
Maintenance	3	[% of ISBL]	1,673,462	
Property taxes & insurance	1	[% of ISBL]	557,821	
Rent of land/buildings	1	[% of FCI]	725,167	
General plant overhead	65	[% of total labour + maintenance]	1,218,132	
Allocated environmental charges	1	[% of FCI]	725,167	
Interest charges (capital)	0	[% of total capital investment]	0	
	то	TAL FIXED OPERATING COST	5,200,631	

Table S7: Fixed Operating Cost for the solvent plant using the Coulson & Richardson method.

Labour & Supervision	Salary [\$] (2020)	Number of personnel	Annual cost [\$/annum]
Plant manager	29,591	1	29,591
Plant engineer	29,977	1	29,977
Maintenance supervisor	20,406	1	20,406
Maintenance technician	14,968	3	44,903
Lab manager	21,569	1	21,569
Lab technician	14,619	1	14,619
Shift supervisor	15,267	4	61,067
Shift operators	13,373	12	160,470
Yard employees	6,184	4	24,735
Clerks and secretaries	11,488	3	34,464
TOTAL	OPERATING AND SU	PERVISORY LABOUR COSTS	441,800

	FIXED (COSTS	
Fixed Operational Consideration	Assessment Basis	Unit (Basis)	Annual cost [\$/annum]
Maintenance	5	[% of FCI]	3,099,612
Operating Labour			274,703
Laboratory Costs	20	[% Operating Labour]	54,941
Supervisory Labour	20	[% Operating Labour]	167,097
Plant overhead	50	[% Operating Labour]	137,352
Capital charges	10	[% of FCI]	0
Insurance	1	[% of FCI]	619,922
Local taxes	1	[% of FCI]	619,922
Royalties	1	[% of FCI]	0
		FIXED COSTS	4,973,549
Sales expense			
General Overheads	20	[% of Direct Production Costs]	34,464
Research & Development		_	·
	ТОТ	AL FIXED OPERATING COSTS	5,008,013

Table S8: Investment Analysis for the solvent plant using the Hand method for capital estimation and the TS method for fixed operating cost estimation.

Year	Project Life	Detailed design	Fixed Capital Investment	Working Capital	Fixed OPEX	Variable OPEX	Plant Income	Depreciation	Corporation Tax	Total Cash Flow	NPV	Cumulative NPV	Comments
		[\$]	[\$]	[\$]	[\$]	[\$]	[\$]	[\$]	[\$]	[\$]	[\$]	[\$]	
2019	0	-250,000	0	0	0	0	0	0	0	-250,000	-250,000	-250,000	
2020	1	0	-44,262,454	0	0	0	0	0	0	-44,262,454	-40,238,595	-40,488,595	Plant construction &
2021	2	0	-22,573,852	0	0	0	0	0	0	-22,573,852	-18,656,076	-59,144,670	commissioning.
2022	3	0	0	6,578,665	-4,904,838	-798,965	35,292,066	-6,683,631	-5,726,158	30,440,770	22,870,601	-36,274,069	Year 0 for plant operation.
2023	4	0	0	0	-5,002,935	-814,945	35,292,066	-6,683,631	-5,697,639	23,776,548	16,239,702	-20,034,367	
2024	5	0	0	0	-5,102,993	-831,243	35,292,066	-6,683,631	-5,668,550	23,689,280	14,709,179	-5,325,188	
2025	6	0	0	0	-5,205,053	-847,868	35,292,066	-6,683,631	-5,638,879	23,600,266	13,321,735	7,996,547	
2026	7	0	0	0	-5,309,154	-864,826	35,292,066	-6,683,631	-5,608,614	23,509,472	12,064,077	20,060,624	
2027	8	0	0	0	-5,415,337	-882,122	35,292,066	-6,683,631	-5,577,744	23,416,863	10,924,139	30,984,763	
2028	9	0	0	0	-5,523,644	-899,765	35,292,066	-6,683,631	-5,546,257	23,322,401	9,890,975	40,875,738	
2029	10	0	0	0	-5,634,117	-917,760	35,292,066	-6,683,631	-5,514,140	23,226,050	8,954,648	49,830,385	
2030	11	0	0	0	-5,746,799	-936,115	35,292,066	-6,683,631	-5,481,380	23,127,771	8,106,143	57,936,528	
2031	12	0	0	0	-5,861,735	-954,837	35,292,066	-6,683,631	-5,447,966	23,027,528	7,337,280	65,273,808	
2032	13	0	0	0	-5,978,970	-973,934	35,292,066	0	-7,084,791	21,254,372	6,156,634	71,430,442	
2033	14	0	0	0	-6,098,549	-993,413	35,292,066	0	-7,050,026	21,150,078	5,569,477	76,999,919	
2034	15	0	0	0	-6,220,520	-1,013,281	35,292,066	0	-7,014,566	21,043,699	5,037,694	82,037,613	
2035	16	0	0	0	-6,344,931	-1,033,547	35,292,066	0	-6,978,397	20,935,192	4,556,108	86,593,721	
2036	17	0	0	0	-6,471,829	-1,054,218	35,292,066	0	-6,941,505	20,824,514	4,120,019	90,713,740	
2037	18	0	0	0	-6,601,266	-1,075,302	35,292,066	0	-6,903,875	20,711,624	3,725,168	94,438,907	
2038	19	0	0	0	-6,733,291	-1,096,808	35,292,066	0	-6,865,492	20,596,475	3,367,688	97,806,596	
2039	20	0	0	0	-6,867,957	-1,118,744	35,292,066	0	-6,826,341	20,479,024	3,044,076	100,850,672	
2040	21	0	0	0	-7,005,316	-1,141,119	35,292,066	0	-6,786,408	20,359,223	2,751,153	103,601,825	
2041	22	0	0	0	-7,145,422	-1,163,942	35,292,066	0	-6,745,676	20,237,027	2,486,037	106,087,863	
2042	23	0	0	0	-7,288,331	-1,187,220	35,292,066	0	-6,704,129	20,112,386	2,246,114	108,333,977	
2043	24	0	0	0	-7,434,097	-1,210,965	35,292,066	0	-6,661,751	19,985,253	2,029,015	110,362,992	
2044	25	0	0	0	-7,582,779	-1,235,184	35,292,066	0	-6,618,526	19,855,577	1,832,590	112,195,582	
2045	26	0	0	0	-7,734,435	-1,259,888	35,292,066	0	-6,574,436	19,723,307	1,654,893	113,850,475	
2046	27	0	0	-6,578,665	-7,889,124	-1,285,086	35,292,066	0	-6,529,464	13,009,727	992,352	114,842,827	

Table S9: Capital cost estimation for conventional renewable electricity generation using the Hand method.

Plant section	Major ISBL Equipment item	Quantity	Purchase cost [\$]	ISBL Installed Cost Hand factor	Installed cost (2006) [\$]	CE cost Index adjustment to 2019 [\$]	Location Factor	Total Installed Cost [\$]	Total Plant section [\$]
Electricity Generation	Steam Turbine	3	2,791,955	2.50	6,979,888	7,478,452	0.51	3,807,056	3,807,056

Table S10: Fixed operating cost estimation for conventional renewable electricity generation using the TS method.

FIXED OPERATING COST							
Fixed Operational Consideration	Assessment Basis	Unit (Basis)	Annual cost [\$/annum]				
Operating Labour	Wage & Salary Cost for shift team members (excl. supervision)	[13,373 [\$/operator], 4 shift teams with 3 operators each]	13,373				
Supervisory Labour	25	[% of Operating labour]	3,343				
Direct Salary Overhead	50	[% of Operating + Supervisory]	8,358				
Maintenance	3	[% of ISBL]	114,212				
Property taxes & insurance	1	[% of ISBL]	38,071				
Rent of land/buildings	1	[% of FCI]	47,588				
General plant overhead	65	[% of total labour + maintenance]	85,103				
Allocated environmental charges	1	[% of FCI]	47,588				
Interest charges (capital)	0	[% of total capital investment]	0				
TOTAL FIXED OPERATING COST 357,0							

Table S11: Investment Analysis for conventional renewable electricity generation using the Hand method for capital estimation and the TS method for fixed operating cost estimation.

Year	Project Life	Detailed design	Fixed Capital	Working Capital	Fixed OPEX	Variable OPEX	Plant Income	Depreciation	Corporation Tax	Total Cash Flow	NPV	Cumulative NPV	Comments
		[\$]	[\$]	[\$]	[\$]	[\$]	[\$]	[\$]	[\$]	[\$]	[\$]	[\$]	
2019	0	-25,000	0	0	0	0	0	0	0	-25,000	-25,000	-25,000	
2020	1	0	-3,397,797	0	0	0	0	0	0	-3,397,797	-3,088,907	-3,113,907	Plant construction &
2021	2	0	-1,732,877	0	0	0	0	0	0	-1,732,877	-1,432,129	-4,546,036	commissioning.
2022	3	0	0	505,010	-379,526	-864,501	14,972,100	-513,067	-3,303,751	10,929,331	8,211,368	3,665,332	Year 0 for plant operation.
2023	4	0	0	0	-387,117	-881,791	14,972,100	-513,067	-3,297,531	10,405,661	7,107,206	10,772,538	
2024	5	0	0	0	-394,859	-899,427	14,972,100	-513,067	-3,291,187	10,386,627	6,449,278	17,221,817	
2025	6	0	0	0	-402,756	-917,415	14,972,100	-513,067	-3,284,715	10,367,213	5,852,021	23,073,838	
2026	7	0	0	0	-410,812	-935,763	14,972,100	-513,067	-3,278,114	10,347,410	5,309,858	28,383,696	
2027	8	0	0	0	-419,028	-954,479	14,972,100	-513,067	-3,271,381	10,327,212	4,817,720	33,201,416	
2028	9	0	0	0	-427,408	-973,568	14,972,100	-513,067	-3,264,514	10,306,609	4,371,008	37,572,425	
2029	10	0	0	0	-435,956	-993,040	14,972,100	-513,067	-3,257,509	10,285,594	3,965,542	41,537,967	
2030	11	0	0	0	-444,676	-1,012,900	14,972,100	-513,067	-3,250,364	10,264,160	3,597,525	45,135,492	
2031	12	0	0	0	-453,569	-1,033,158	14,972,100	-513,067	-3,243,076	10,242,296	3,263,511	48,399,003	
2032	13	0	0	0	-462,640	-1,053,822	14,972,100	0	-3,363,909	10,091,728	2,923,214	51,322,217	
2033	14	0	0	0	-471,893	-1,074,898	14,972,100	0	-3,356,327	10,068,981	2,651,477	53,973,695	
2034	15	0	0	0	-481,331	-1,096,396	14,972,100	0	-3,348,593	10,045,779	2,404,880	56,378,574	
2035	16	0	0	0	-490,958	-1,118,324	14,972,100	0	-3,340,704	10,022,113	2,181,104	58,559,678	
2036	17	0	0	0	-500,777	-1,140,690	14,972,100	0	-3,332,658	9,997,974	1,978,046	60,537,724	
2037	18	0	0	0	-510,792	-1,163,504	14,972,100	0	-3,324,451	9,973,352	1,793,795	62,331,519	
2038	19	0	0	0	-521,008	-1,186,774	14,972,100	0	-3,316,079	9,948,238	1,626,616	63,958,135	
2039	20	0	0	0	-531,428	-1,210,510	14,972,100	0	-3,307,540	9,922,621	1,474,934	65,433,070	
2040	21	0	0	0	-542,057	-1,234,720	14,972,100	0	-3,298,831	9,896,492	1,337,319	66,770,388	
2041	22	0	0	0	-552,898	-1,259,414	14,972,100	0	-3,289,947	9,869,840	1,212,470	67,982,859	
2042	23	0	0	0	-563,956	-1,284,603	14,972,100	0	-3,280,885	9,842,656	1,099,210	69,082,068	
2043	24	0	0	0	-575,235	-1,310,295	14,972,100	0	-3,271,642	9,814,927	996,466	70,078,535	
2044	25	0	0	0	-586,740	-1,336,501	14,972,100	0	-3,262,215	9,786,644	903,268	70,981,803	
2045	26	0	0	0	-598,475	-1,363,231	14,972,100	0	-3,252,599	9,757,796	818,732	71,800,535	
2046	27	0	0	-505,010	-610,444	-1,390,495	14,972,100	0	-3,242,790	9,223,360	703,537	72,504,072	

Table S12: Calculation of greenhouse gas emissions on Cradle-to-Gate basis for LanzaTech's anaerobic gas fermentation technology, producing acetone and ethanol.

Parameter	Value	Unit	Comment		
Lower Heating Value for ethanol	26.70	[MJ/(kg ethanol)]	Lower Heating Value (LHV).		
Reported ethanol greenhouse gas (GHG) emissions	8.10	[(g CO ₂ eq)/(MJ ethanol)]	Cradle-to-Grave emissions.		
Cradle-to-Grave ethanol GHG emissions	0.22	[(kg CO ₂ eq)/(kg ethanol)]			
Cradle-to-Gate ethanol GHG emissions	-1.69	[(kg CO ₂ eq)/(kg ethanol)]	Stoichiometry of ethanol combustion in excess O ₂ , forming two moles of CO ₂ .		
Reported acetone GHG emissions	-2.07	[(kg CO ₂ eq)/(kg acetone)]	Case A.		
Cradle-to-Gate GHG emissions for reported solvent mix.	-1.91	[(kg CO ₂ eq)/(kg solvent)]	Reported solvent mix, i.e. 57.3 [%] acetone with balance ethanol on a mass basis.		

Table S13: Typical calculation for calculation of required oxygen mass transfer coefficient (k_{LA}) based on Aspen HYSYS mass and energy balance.

Parameter		Unit	Comments
Bioreactor Outlet O ₂ concentration, C _{g,off-gas}	3.35	[%] (mol/mol)	
Design O ₂ uptake rate, <i>OUR</i>	230	[(mmol O_2)/(L·h)]	
Bioreactor headspace back-pressure, Pb	4	[bar] (a)	
Loop reactor downcomer hydrostatic pressure, <i>P_h</i>		[bar]	Assumes a working volume of 80 [%] (v/v) and a gas hold-up of 25 [%] (v/v).
Inlet O ₂ concentration, <i>Cg,air</i>	21	[%] (mol/mol)	
Inlet O ₂ saturation in aqueous phase, C _{L,air}	1.00	[(mmol O ₂)/L]	Estimated using the Lee Kesler Plocker equation of state.
Outlet O ₂ concentration, C _{g,off-gas}	3.35	[%] (mol/mol)	
Outlet O ₂ saturation in aqueous phase, C _{L,off-gas}	0.26	[(mmol O ₂)/L]	Estimated using the Lee Kesler Plocker equation of state.
Broth dissolved O ₂ concentration, DO	0	[(mmol O ₂)/L]	Micro-aerobic conditions.
Log mean concentration difference, LMCD	0.552	[(mmol O ₂)/L]	$\frac{\left(C_{L,air} - D0\right) - \left(C_{L,off-gas} - D0\right)}{\ln \frac{\left(C_{L,air} - D0\right)}{\left(C_{L,off-gas} - D0\right)}}$
Required O ₂ mass transfer coefficient, k_{LA}	415	[1/h]	OUR LMCD
Total ungassed broth volume, V	298	[m³]	
Air Volumetric Flow Rate, Q	2927	[m³/h]	Actual temperature and pressure.
Air superficial gas velocity, u_g	0.075	[m/s]	
Power input to achieve required, k_{LA} (1)		[kW]	$\left(\frac{V}{1000}\right) \left(\frac{k_{LA}}{103 \cdot u_g^{0.824}}\right)^{\frac{1}{0.482}}$

References

1. L. A. H. Petersen, J. Villadsen, S. B. Jørgensen and K. V. Gernaey, *Biotechnol.*

Bioeng., 2017, **114**, (2), 344 LINK https://doi.org/10.1002/bit.26084