
Triage-driven diagnosis for early
detection of oesophageal cancer

Marcel Gehrung

Supervisor: Dr. Florian Markowetz

Advisor: Prof. Rebecca Fitzgerald

Cancer Research UK Cambridge Institute

University of Cambridge

This dissertation is submitted for the degree of

Doctor of Philosophy

Homerton College September 2020





Declaration

This thesis is the result of my own work and includes nothing which is the outcome of work
done in collaboration except as declared in the Preface and specified in the text. It is not
substantially the same as any that I have submitted, or, is being concurrently submitted
for a degree or diploma or other qualification at the University of Cambridge or any other
University or similar institution except as declared in the Preface and specified in the text.
I further state that no substantial part of my thesis has already been submitted, or, is being
concurrently submitted for any such degree, diploma or other qualification at the University
of Cambridge or any other University or similar institution except as declared in the Preface
and specified in the text. It does not exceed the prescribed word limit for the relevant Degree
Committee.

Marcel Gehrung
September 2020





Abstract
Triage-driven diagnosis for early detection

of oesophageal cancer

Marcel Gehrung

In this thesis I present my work to advance the early detection of oesophageal adenocarcinoma
by investigating translational aspects of a minimally invasive oesophageal cell sampling
technology for the detection of Barrett oesophagus.

Most oesophageal adenocarcinoma patients present with advanced disease, requiring
treatment with chemotherapy with or without radiotherapy, followed by surgery to remove
the oesophagus, and even then the overall five-year survival is less than 20%. However, if
the cancer can be diagnosed at an early, superficial stage then treatment can be performed
endoscopically and over 80% of patients survive beyond 5 years. The disease has a clear pre-
cancer stage called Barrett oesophagus, making early detection feasible. A novel test called
Cytosponge for diagnosing Barrett by cell collection coupled with an immunohistochemical
test (Trefoil factor 3 / TFF3) has been developed.

I have investigated two distinct topics, which are key to implement the Cytosponge-TFF3
test in primary and secondary care. First, I analysed and interpreted data of a pragmatic,
prospective, multicentre, randomised controlled trial (BEST3) in order to evaluate the use
of Cytosponge in primary care. The study aim was to investigate whether offering this test
to patients on medication for gastro-oesophageal reflux disease (GERD) would increase the
detection of Barrett oesophagus compared with usual care. We were able to show that in
patients with GERD the offer of Cytosponge-TFF3 testing results in improved detection (in
excess of 10-fold) of Barrett oesophagus.

Second, I devised and implemented a machine learning framework applied to Cytosponge
samples with the objective to reduce the pathologists’ screening time. I trained and indepen-
dently validated the framework on data from two clinical trials, analysing a combined total
of 4,662 pathology slides from 2,331 patients. The approach exploits screening patterns of
expert gastrointestinal pathologists and established decision pathways to define eight triage
classes of varying priority for manual expert review. By substitution of manual review with
automated review in low-priority classes, I can reduce pathologist workload by 57% while
matching the diagnostic performance of expert pathologists.
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Introduction

1.1 Early detection of cancer

Cancer is the second most common cause of death globally and is expected to become the
leading cause of death in the coming decades [1]. As a disease, it has severe impacts on
quality and quantity of life and is a major inhibiting factor for increasing life expectancy [2].
Although some of this increase may be attributed to increased case notification, exposure
to key risk factors as well as aging and growth of the population, particularly in developing
countries, are driving the growth of cancer-related incidence and mortality worldwide [3].

A main characteristic for cancer is abnormal proliferation by any type of cell present in
the body [4]. As a consequence, there are manifold types and sub-types of cancers and it
is possible to develop cancers in any organ of the human body. Tumours, a mass or lump
of tissue, are characterised as either benign or malignant. The differences between the two
types is of significant importance in cancer pathology due to their implications for health
and clinical care: Benign tumours, such as warts, are non-invasive and cannot spread to
distant sites from their site of origin [5]. Malignant tumours can invade their surrounding
tissue and by means of metastasis spread throughout the body. A general rule is that the
nomenclature of cancer usually refers to malignant tumours which can spread within the
body and often complicate curative treatment. Cancers are classified according to the kind of
cell from which they arise and the site of origin within the body. The three primary groups
based on the kind of cells are carcinomas, leukemias/lymphomas, and sarcomas: Carcinomas
arise from epithelial cells. Leukemias or lymphomas arise from immune or blood-forming
cells. Sarcomas are solid tumours of connective tissues such as cartilage, muscle or fibrous
tissue [4].

The development of cancer usually occurs as a multi-step process in which the initial
progenitor cell does not suddenly acquire all features of a cancer cell [6]. Therefore, an
initially acquired characteristic does not necessarily initiate a tumour but is potentially the
beginning of a process comprising a series of alterations. Eventually, if a cell undergoes a
number of alterations that promote abnormal proliferation and forms a malignant tumour
which might cause symptoms, a cancer forms that has the potential to invade surrounding
tissue and form metastases [7]. The main consequence for this concept of progress is that
cancers mostly develop later in life.

The physiological mechanisms driving cancer development are complex and include a
range of driving factors such as deregulated cellular metabolism [8], immune evasion [9],
genome instability and mutation [10], tumour-promoting inflammation [11], and mechanical
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1.1 Early detection of cancer

tissue stress [12]. Similarly there are factors constraining cancer development which include
immune destruction [4], damage repair mechanisms [13], metabolism-promoting homeostasis
[14], and structural integrity of tissue [15]. These factors are summarised in fig. 1.1 where
they are presented together with different stages of cancer development. Given the stage-wise
progression, there is a potential in detecting cancer at an earlier stage where there is limited
invasiveness as well as lack of metastasis.

Cell with
mutation

Deregulating cellular metabolism; avoiding immune destruction;
genome instability and mutation; tumour-promoting inflammation; mechanical stress

Immune destruction; damage repair mechanisms; metabolism-promoting homeostasis;
structural integrity of tissue

Driving factors of cancer development

Constraining factors of cancer development

Locally invasive or
metastatic cancerHyperplasia Dysplasia In situ cancer

Fig. 1.1 Factors constraining and driving cancer development. Tumours usually start
with a mutation in a single cell and can continue to develop through stages of hyperplasia,
dysplasia, and in situ cancer to locally invasive or metastic cancer. If a lesion is detected
early in the development (blue shaded area) there is possibility for treatment of the precursor
in order to avoid progression.

Early detection of cancer is one of the three key areas in cancer management and is
positioned between cancer prevention and cancer treatment. In recent years, early cancer
detection has become a priority in policy as well as the general public [16] with a resulting
desire to develop novel biomarkers to support diagnosis in a range of healthcare settings. With
respect to the patient cohorts in these settings, the concept of early detection is applicable
to both healthy and high-risk populations where it may lead to a decrease in morbidity
and improved long-term survival [17]. Furthermore, the applicability of early detection
biomarkers ideally extends to a stage prior to onset of symptoms, however, for certain cancer
types this is not always achievable. In addition, treatment of precursor lesions or early-stage
cancers can often be performed in a surgical and potentially minimally invasive way, without
the need for radio- or chemotherapy [18] as often required in late-stage cancers. Implications
of treatment at an early vs late stage are reduced harm and/or side effects for the patient
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Introduction

and associated health economics (i.e. treatment cost and duration with a resulting gain of
quality-adjusted life years).

From an epidemiological perspective, early detection can be sub-divided into three
different fields: Primary prevention aims to prevent disease (i.e. cancer) before it ever occurs
[19]. Secondary prevention, also called screening, is the use of a test among a population
with a higher risk of developing cancer in order to detect it sooner [19]. Tertiary prevention
can be used to prevent complications in patients who already have been diagnosed with
cancer with the aim of reducing morbidity and disability in these patients [20].

Primary and secondary prevention have become a topic of public debate and a variety of
diagnostic approaches have been implemented in healthcare systems [21]: for cervical cancer,
the Papanicolaou (Pap) test can detect abnormal cellular changes which might develop into
cancer [22]. Human papillomavirus (HPV) testing further enables the detection of a viral
infection that can cause these cellular changes [23]. The fecal immunochemical test can
be used to detect occult blood in the stool which might be indicative for colorecal cancer
[24]. Colonoscopy for image-based polyp detection is also recommended for certain risk
groups [25]. Additional examples for image-based detection of early tissue changes are
mammography for breast cancer [26] and low-dose computed tomography for lung cancer
[27], particularly in populations with a history of heavy smoking. The tests listed above have
been shown to reduce deaths from those cancers in numerous studies. Other cancer types
with limited or developing evidence for early detection are pancreatic, ovarian, oesophageal,
prostate, testicular, thyroid, bladder, skin, and oral cancer.

A new, emerging class of early detection tests are blood-based liquid biopsies [28]. These
tests are still under development and have not been implemented at scale yet. In brief, blood
is sampled from patients and the extracted cell-free, circulating DNA, RNA or proteins can
be used to screen for mutations, changes in methylation and other molecular characteristics.
This type of test is particularly interesting as it enables simultaneous screening for different
cancers and tumour types, including tumours where the primary site is not easily accessible
for sampling or imaging. Notable mentions for liquid biopsy tests under development and
clinical evaluation are: Galleri (GRAIL) [29], CancerSEEK (Thrive) [30], and Guardant360
(Guardant Health) [31]. While some of these tests might enable the determination of
the tissue-of-origin for certain cancers, they will most likely develop into pre-screening,
complementary tools for any organ-specific targeted sampling test.

All diagnostic (or screening) methods for early cancer detection need to fulfil a number
of conditions in order for the pathway change to be considered efficacious [32]:
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1.2 Oesophageal cancer

• It needs to be a safe and acceptable test with evidence of its ability to detect early-stage
disease.

• The cancer should have a recognisable latent (or early) asymptomatic stage.

• The natural history of the cancer and its potential pre-malignant condition needs to be
well understood.

• If no early intervention is applied, most cases will progress from a preclinical to a
clinical phase.

• Safe and effective treatment for early-stage disease must be available.

• The test should provide health economic benefit.

Aside from the considerations above, awareness for the three key biases which are
encountered in screening is also required: First, one of the most common biases is lead-time
bias in which a condition might be diagnosed earlier but there is no effect on the date of
the patient’s death [33]. Second, length-biased sampling which states that cancer screening
tests are more effective at identifying slower-growing lesions than fast-growing ones. This
causes that screening tests may select for cancers with a potentially favourable outcome [33].
Third, overdiagnosis occurs when indolent lesions are diagnosed that would never cause
a health problem for the patient in the future. This third bias is in violation of one of the
considerations mentioned above that screening tests will only be considered efficacious if the
cancer they target progresses from a pre-clinical to a clinical phase [33].

The combination of these conditions and biases therefore demand a clear understanding
of the cancer-of-interest in order to develop an appropriate screening test. One of the deadliest
cancers with a need of earlier intervention which also has a targetable pre-malignant lesion is
oesophageal cancer.

1.2 Oesophageal cancer

Oesophageal cancer is a cancer arising from the tissue within the oesophagus. On a global
scale, it is the sixth most common cause for cancer related deaths with over 570,000 new
cases and 510,000 resulting deaths in 2018 [1]. Depending on the location and staging of
the cancer, patients presenting with this disease often show symptoms such as dysphagia
and weight loss. In the majority of patients, oesophageal cancer is diagnosed at a late stage
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Introduction

and a 5-year overall survival rate of 13% is observed [34]. Oesophageal cancer can be
divided into two distinct pathological sub-types: oesophageal adenocarcinoma (OAC) and
oesophageal squamous cell carcinoma (OSCC). Both of these sub-types have a divergent
profile with respect to epidemiology and risk factors, with OAC being the predomininant type
in the western (Europe, US), and OSCC the predominant type in the eastern world (Africa,
Asia) [35]. Risk factors for OSCC include tobacco smoking and chewing [36, 37], alcohol
consumption [38, 37], low fruit/vegetable intake [39], recurrent thermal injury [40], and
HPV infection [41]. Risk factors for OAC include gasto-oesophageal reflux disease (GERD),
central visceral obesity, tobacco smoking, male sex, red meat intake, and low fruit/vegetable
intake [42]. Epidemiologically, the global prevalence is skewed towards OSCC, which has
an eight times higher global incidence rate when compared with OAC.

However, while OSCC has shown a slight decrease in incidence over the last decades,
OAC incidence has persistently increased over the past four decades in the western world [43],
particularly for white males [44]. Both main sub-types can arise from dysplastic precursor
lesions which can be detected using endoscopy.

Squamous
epithelium of the
oesophagus

Non-dysplastic
Barrett oesophagus

Barrett oesophagus
with low-grade
dysplasia

Progression

Barrett oesophagus
with high-grade
dysplasia

Oesophageal
adenocarcinoma

Fig. 1.2 Progression through several (non-)dysplastic precursor lesions until the even-
tual manifestation of an adenocarcinoma. All images are licensed under CC BY-SA
4.0.

If these precursor lesions undergo local endoscopic treatment, patient prognosis dra-
matically improves resulting in better long-term outcomes. For OAC in particular, this
precursor lesion is called Barrett oesophagus (BE) as shown in fig. 1.2. Histologically, BE is
a change containing intestinal metaplasia (IM) in which the stratified squamous epithelial
lining localised in the lower oesophagus is replaced with columnar epithelium containing
goblet cells. In the context of cancer development, BE progresses to OAC through a number
of different mechanisms: The exposure of the oesophageal mucosa to stomach acid or bile
(GERD), due to reactive oxygen species and nitric oxide, results in DNA damage and a
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1.2 Oesophageal cancer

mutational profile of A-to-C transversions [45–47]. These profiles are commonly observed
in BE and OAC and, together with the persistent oesophageal exposure to damaging agents,
hypothesised to be a primary driver in pathogenesis of BE and dysplastic lesions [48, 49].
Furthermore, as a result of the mucosal injury, BE often contains genetic, somatic mutations
that predispose the lesion to cancer development [50]. Genomic characterisations of BE have
shed light on several mechanisms that play a key role in progression to OAC [51]: First,
step-wise loss of tumour supressor genes (CDKN2A and TP53) paired with mutations in
SMAD4 and the disruption of chromatin-modifying events but in the observed absence of
whole-genome duplications. Second, significant chromosomal instability in association with
aneuploidy. This is the primary consequence of the loss of p53 regulation [52], caused by
loss of heterozygosity of chromosome arm 17p [53, 54]. Third, chromothrypsis and kataegis
may cause additional chromosal instability [55]. Fourth, greater clonal diversity has been
shown to be associated with increased risk of progression. Lastly, epigenetic alterations and
specifically hypermethylation of CDKN2A is often observed and further contributes to risk
of progression [56].

If a BE lesion has progressed and shows signs of dysplasia, patients usually undergo
endoscopic treatment involving musocal resection and epithelial ablation (e.g. radiofrequency
ablation / RFA) according to respective guidelines [57, 58]. To detect BE in the first
instance, diagnosis usually occurs during an invasive, endoscopic procedure of the upper
gastrointestinal tract (oesophago-gastro-duodenoscopy / OGD). However, OGD is only
performed on few patients as there is no endoscopic routine screening programme for
patients with heartburn symptoms (10 to 15% of the adult population [59]). Given the
economic burden and patient discomfort of such a procedure, this indicates a clear need for
minimally invasive approaches for the diagnosis of BE and therefore secondary prevention
of OAC.

BE can be diagnosed using various approaches which are either in practice, research
or under evaluation [60]: endoscopy (including capsule [61], transnasal [62], narrow band
imaging, and chromo- and confocal laser endoscopy [63]), electronic nose [64], oral micro-
biome [65], targeted minimally invasive sampling (e.g. balloon-based [66], sponge-on-string
[67]) and liquid biopsy [68]. Endoscopic procedures tend to be more expensive and associ-
ated with a risk of complications which reduces the clinical utility for first-time diagnosis,
particularly in patient populations with mild to moderate symptoms. Approaches such as
the electronic nose or oral microbiome [64, 65] have demonstrated promising data, however,
the technologies are early stage and factors like accuracy, feasibility and health economics
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are yet to be determined. Liquid biopsy based on circulating microRNAs [68] has shown
encouraging results but current markers have insufficient sensitivity and specificity to be
considered for clinical use. Balloon-based sampling paired with methylation biomarkers
[66] also yielded promising results and was considered as well tolerated by patients. One
additional promising technology for the targeted minimally invasive detection of BE which
has emerged over the last decade is the Cytosponge technology [69].

1.3 Cytosponge™

The Cytosponge™ is a non-endoscopic diagnostic modality for BE. It is a cell collection
device, consisting of a mesh sphere on a string inside a gelatine capsule (fig. 1.3), coupled
with an immunohistochemical biomarker called Trefoil Factor 3 (TFF3) to screen for IM.
TFF3 is overexpressed in mucin-producing goblet cells and is thought to function as a
protector of the mucosa from insults, stabilizer of the mucus layer and promoter for healing
of the epithelium [70].

Fig. 1.3 Cytosponge™ mesh sphere in a gelatine capsule (left) and expanded (right).
Source: University of Cambridge.

The capsule is swallowed by the patient, and the gelatine dissolves in the stomach
allowing the mesh sphere to expand to a diameter of 3 cm. After 5 to 71

2 minutes, the sponge
is withdrawn from the stomach by the attached string, sampling superficial epithelial cells
from the top of the stomach, the oesophagus, and the oropharynx. The removed device is
placed in a container with preservative solution (such as BD SurePath [71] or CytoRich
Red [72]) and processed in a laboratory for (immuno)histochemical staining with TFF3
and Hematoxylin & Eosin (H&E) (fig. 1.4). The stained pathology slides are screened
by a pathologist for IM and other potential diagnoses such as eosinophilic oesophagitis,
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candida infections, squamous atypia, herpes, and ulcers. A diagnosis of IM is indicated if a
columnar-shaped cell which secretes a component of mucus is present in the sample. Usually,
these goblet cells are only present in other epithelia (intestines, respiratory tract). However,
the presence of columnar epithelium of intestinal type (with goblet cells) in the squamous
oesophagus is abnormal and a strong indication for BE or possibly indicative of IM of the
gastric cardia, which is also considered a pre-cancerous change. Patients with IM-indicating
findings can then be referred for an upper gastrointestinal endoscopy to confirm the diagnosis
and receive potential treatment.

A number of previous studies [74, 75] have shown a consistent sensitivity (73.3 % and
79.9 %) and specificity (93.8 % and 92.4 %) for the diagnosis of BE using the Cytosponge
coupled with the TFF3 biomarker. A systematic review analysing a number of different
Cytosponge studies reported a pooled sensitivity and specificity of 81% and 91%, respectively,
for the diagnosis of BE [76]. In the major case-control study for the technology, sensitivity
improved with longer BE segments [75]. In all of these studies, the gold standard was OGD
with biopsies with an asssumed sensitivity and specificity of 100%.

Another publication performed a patient-level review of five studies with a focus on
safety and acceptability of the Cytosponge test [69]. While three studies were focused on
patients with GERD and the detection of BE as a primary endpoint, the BEST-RFA study
(unpublished) had the objective of detecting BE after RFA treatment and one study focused
on the detection of eosinophilic oesophagitis [77]. An overview of the included studies is
presented in table 1.1. The review did not intend to assess efficacy of the technology, but
rather safety and acceptability of the test as all studies included prospective measurements of
these variables. A visual analogue scale (VAS) from 0 to 10 was used to assess acceptability
(higher score = more acceptable). Safety was captured by the number of attempts or failures
of swallowing and number as well as type of adverse events. Key findings for acceptability
from the review [69] included: 134 (5.5%) out of 2,418 patients were either unable to
swallow the device or were withdrawn from the study by the clinician. The remaining 2,284
patients completed the VAS, however, only 1,221 had a follow-up endoscopy with an impact
on comparative scoring. Cytosponge was significantly more acceptable (p<0.001 for each
comparison) to patients undergoing endoscopy without sedation (Cytosponge: median VAS
of 6 (IQR 5 to 8), endoscopy with sedation: 8 (IQR 5 to 9), endoscopy without sedation:
5 (IQR 3 to 7)). Men provided higher median VAS scores than women for Cytosponge
administration (men: 7 (IQR 5 to 8), women: 6 (IQR 5 to 8), p=0.003). Primary care patients
gave higher median VAS scores compared with secondary care patients (primary care: 7
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Fig. 1.4 Schematic outlining the steps of the Cytosponge-TFF3 assay. 1) The sponge is
swallowed, the coating dissolves in the stomach and the sponge deploys. The Cytosponge is
then withdrawn using the attached string collecting cells from the gastroesophageal junction
and the length of the oesophagus. 2) The sampled cells are retrieved from the sponge by
a series of washing steps, then a cell pellet is made by centrifugation. Plasma-thrombin is
added to the cell pellet, making a cell clot. 3) The cell clot is fixed in formalin and processed
into a paraffin block using standard laboratory protocols. 4) Sections are cut from the paraffin
block and stained for assessment by a pathologist. Figure created by me with adapted caption
from source: [73].
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(IQR 5 to 8), secondary care: 6 (IQR 5 to 8), p<0.001). Patients in secondary care were
more likely to fail to swallow the Cytosponge (odds ratio: 5.13, 95% CI 1.48 to 17.79,
p<0.01) and patients with BE (5.7%) were more than twice as common to show failure of
swallow vs GERD patients (2.1%). 12 serious adverse events (AEs) were recorded in the
studies while only two of them were due to the Cytosponge device. The two related events
were one detachment of the sponge, which was recovered through endoscopy and one minor
pharyngeal, that resolved spontaneously. Other AEs were related to the OGD procedure after
Cytosponge administration.

In summary, the Cytosponge device technology is considered as safe with a low risk of
adverse events and favourable acceptability ratings when compared to endoscopy without
sedation.

In addition to a quantitative assessment of acceptability of the Cytosponge test, a quali-
tative thematic analysis was prepared in a sample of UK residents living with GERD [78].
33 participants (17 men and 16 women, median age of 57, range 50 to 69) either had a
one-to-one interview (n=10) or participated in one of four focus groups (n=23). 45% had
an endoscopy before and none of the participants had a Cytosponge test in the past. There
were several concerns highlighted by the participants, based on the anticipated experience:
Swallowing of the string, possibility of the Cytosponge getting stuck, vomitting and gagging
during the swallow procedure. Participants with prior experience of an endoscopy suggested
that Cytosponge will be preferable for practical and economical reasons. It was also noted
that the test could be performed at their local primary care practice and did not require
sedation.

Additionally, as mentioned in section 1.1, in order to assess whether the technology is
beneficial for the patient and payer in the respective healthcare system, health economic
evidence needs to be assessed.

Two studies have previously been published that utilise microsimulation models to assess
the cost effectiveness of Cytosponge when compared to endoscopy [79, 80]. The first study
by Benaglia et al. [79], which was designed for the UK/NHS healthcare market was based
on a cohort of men at the age of 50 with a history of GERD. Modelling for every individual
was performed for 50 years or until death. The approach assessed three different strategies:
Cytosponge test followed by endoscopy in TFF3-positive patients, endoscopy screening, and
no screening.
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1.3 Cytosponge™

Key model parameters were the prevalence of BE (8%), presence of non-dysplastic
disease in BE patients (86%), low-grade dysplasia in BE patients (10%), high-grade dysplasia
in BE patients (2%), and intramucosal cancer in BE patients (2%). Other parameters such
as costs, utilities and transition rates were derived from NICE guidelines and can be found
in the full manuscript [79]. The microsimulation results demonstrated that a Cytosponge
test followed by endoscopy in TFF3-positive patients or endoscopy screening alone are
cost-effective when compared to no screening at all. The Cytosponge screening would cost
less than endoscopy screening.

The second study by Heberle et al. [80] was based on US data and was calibrated for
United States Surveillance, Epidemiology and End Results data. The model was based on
a birth cohort (1950) of US males starting from age 20 and followed the cohort until the
age of 100 or death. One difference when compared to the study above was that at the age
of 60 the population was restricted to patients displaying GERD symptoms which have not
yet been diagnosed with OAC. The approach assessed the same three screening strategies
as Benaglia et al. [79]. Key model parameters were derived from the EACMo from the
Massachusets General Hospital or the Microsimulation Screening Analysis model from
Erasmus University Medical Center and University of Washington. Cost parameters were
based on Medicare reimbursement catalogues and manufacturer discussions. Similar to the
previous results [79], this study found that no screening resulted in the poorest outcomes.
Endoscopy screening offered the largest health economic benefit with the highest costs.
Cytosponge-TFF3 screening with endoscopy in TFF3-positive patients fell between the two
other strategies.

Both studies concluded that the use of Cytosponge-TFF3 for screening of patients with
GERD would most likely provide more health economic benefit (i.e. more QALYs) as well
as a higher rate of cancer detection when compared to no screening, and a lower cost when
compared to endoscopic screening.

This summary on safety, efficacy, acceptability, and health economics provides a robust
foundation for the implementation of Cytosponge as a targeted screening tool in primary
and secondary care. Over the recent years, other novel technologies for pan-oesophageal
cell sampling have also emerged, with varying levels of evidence: EsoCheck paired with
EsoGuard (Lucid Diagnostics) is a swalloable balloon-based device with subsequent analysis
of the samples by using DNA methylation markers [66]. The technology requires a clinician
for administration, is well-tolerated with promising sensitivity as well as specificity. Another
minimally invasive sponge-on-string device is EsophaCap (Capnostics) which was also paired
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with DNA methylation markers [67]. There is limited data available but the biomarker panel
has shown its potential to discriminate BE with high accuracy. The panel also has been tested
on whole oesophageal brushings with good accuracies for detecting BE (AUC 0.84 to 0.94).
DNA methylation markers can also be applied to the Cytosponge technology as an alternative
to TFF3 [81]. Last, the WATS3d brush is a wide-area, transepithelial, tissue sampler which
can be used to obtain large tissue area samples during endoscopy. In a number of studies,
this technology has demonstrated its clinical effiacy and superiority to the conventional OGD
biopsy protocol [82–84].

In the context of the Cytosponge technology, the remaining shortcoming with respect
to clinical evidence is the lack of randomised, controlled trial evidence of the Cytosponge
intervention in comparison to standard of care. Another consideration for widespread
Cytosponge adoption is the scalability of the technology which is essential for providing
access of the test to the relevant patient populations. In particular, the screening of Cytosponge
pathology slides is a laborious process. It initially comprises several repetitive tasks such as
checking the amount of sampled material (sample adequacy) and the presence of columnar
epithelium of gastric type to confirm that the capsule reached the stomach. Cells sampled
on withdrawal of the sponge are mainly squamous cells, gastric columnar epithelium, and
respiratory epithelium (and sometimes there is a minor inflammatory component such as
inflammatory tissue) (fig. 1.5). After successful quality control, the pathologist performs a
diagnostic screen for columnar epithelium with goblet cells by using a combination of the
H&E and TFF3 stains. Both of these steps, quality control and diagnosis, are crucial for
screening throughput and heavily time consuming.

An idealised clinical setting would entail allocation of as much time as possible for
the pathologist to investigate cases which require more detailed screening. These are most
likely cases with few columnar epithelium and/or ambiguous presence of goblet cells with
uncertainty of epithelial type (gastric / respiratory) or atypical, potentially dysplastic cells.
This gives rise to a need for an automated stratification system of samples to support and
accelerate clinical decision-making by the pathologist.

1.4 Computational pathology & machine learning

Computational pathology incorporates different sources of raw data (e.g. images, ‘-omics’
and patient demographics), building mathematical models, and inferring diagnostic informa-
tion based on these data [85]. Systems utilising computational pathology rely on digitised
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Fig. 1.5 Normal cellular components of a Cytosponge sample. All images at 10× magni-
fication. A, Squamous epithelial cells from the oesophagus and oropharynx. B, Gastric-type
columnar epithelium from the stomach and/or a hiatus hernia. C, Mixed inflammatory cells,
which, provided that they are separate from epithelial cell groups, are not considered to
indicate clinically significant oesophagitis. D, Strips of respiratory epithelium recognised
by their terminal bars and cilia. E, Tonsillar sampling characterised by keratinous material
and actinomyces organisms. F, Fungal spores and occasional hyphae (arrow) with appear-
ances consistent with Candida. As there is no associated significant acute inflammation they
are considered to represent commensal organisms rather than being suggestive of Candida
oesophagitis. Figure created by me from source: [73].15



Introduction

images of cytological or histological specimens on microscopy slides. They represent a cross-
section of relevant biological material which yields information about spatial arrangement in
tissue architecture as well as morphological information on a cellular level. This is usually
combined with (immuno)histochemical stains which enable screening for morphological or
functional information in these samples.

Traditionally, pathologists assess each case individually and subjectively. Therefore,
consistency of screening results is not always guaranteed, resulting in suboptimal inter-
observer agreement [86, 87], particulary for difficult cases. This is corroborated by the
high workload, necessitating rapid screening of individual cases which introduces potential
diagnostic errors. [88].

To overcome these issues and allow pathologists to dedicate more time to difficult cases,
a framework to assist pathologists in screening is required. Such a framework must integrate
the different data available and enable the pathologist to perform processes such as automated
quality control or aggregation of diagnostically relevant information.

The excellent pattern recognition ability of the human brain enables rapid classification
of labelled and unlabelled images. For pathologists, this classification is learned during
specialist pathology training, refined by experience, journal reading, update courses, and
peer review. Pathologists generalise well with few images and can apply this knowledge
to new situations, even if confounding elements such as stain variation affect the image
assessment. When trying to use machine learning to replicate a simple task performed by a
pathologist, it is important to consider the choice of training data as well as the type of model.
As labelled data are usually available, but limited by the time of pathologists to provide
these labels, learning from such examples is achieved by employing supervised learning
methods. In brief, a pathologist or expert provides labels for certain images of different
tissue types; these examples are then fed into a classifier which is subsequently optimised to
produce robust inferences for future images with unknown tissue types. The discrimination of
different type-defining characteristics relies on appropriate feature extraction and subsequent
classification of these features [89]. Approaches to build such processes have evolved over
the last decade, ranging from conventional parametric texture extraction and classification to
end-to-end learning using deep convolutional neural networks (CNN) [90]. The latter, a kind
of deep learning architecture, have shown outstanding performance when compared to gold
standard methods [91] (fig. 1.6a).

Deep learning is a field within machine learning that has grown to prominence in the last
several years with the increasing availability of computational capability. In machine learning,
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Fig. 1.6 Overview of general concepts for computational pathology a A deep convolu-
tional neural network can learn patterns in pathology images and subsequently apply learned
classification heuristics on new data. b Whole-slide images consist of multiple magnification
levels stacked in a pyramidal arrangement. c Whole-slide images often have artefacts which
need to be accounted for during training. This ranges from pen markings, tissue folds, and
slide backgroundd to cover slip boundaries as well as trapped air bubbles. d Most approaches
in computational pathology rely on distinct partitions of a dataset for model development
(e.g. training, validation/development, test). A test set, either internal or external is usually
set aside for evaluation of the model to test generalisability and reliability.

17



Introduction

input data are transformed into an output not according to deterministic, human-defined rules,
but instead, the algorithm learns a mapping between input and output from a collection of
ground-truth examples provided to it [92].

In traditional machine learning, prior to training, input data are simplified into a set of
features which have been hand-selected by a human in order to reduce the data representation
in a way that the learning algorithm will be able to discover patterns to complete the input-
output mapping [93]. In deep learning, however, the raw data themselves are fed into the
algorithm directly, without any feature-wise simplification [92]. The deep learning algorithm
then learns a representation of the data suitable to completing the mapping internally, without
any human intervention between raw data and output. This is possible because deep learning
algorithms include successive layers of weights with a non-linearity function between them
such that increasingly abstract representations of the input data are learned, until a suitable
decision boundary can be found to divide the data into the output space. Learning is completed
by computing a loss comparing the algorithm’s output for a training example with the ground
truth of that example, and then performing an algorithm called backpropagation to adjust the
weights throughout the network according to that loss [94]. Typically, at least several passes
through the full training dataset (called epochs) are needed before the algorithm converges
on an optimal set of internal weights for the training set [95].

Due to their large number of layers and weights, deep learning models are able to learn
complex relationships between input and output. Deep learning has proven to outperform
traditional machine learning and even human performance across many important tasks [96].
However, deep learning models tend to rely on very large training datasets to be successful,
so that the model does not overfit to the training data. If model generation is conducted in a
proper way and sufficient data are available, the major advantage of not relying on a human to
select relevant features for training can significantly improve predictive performance. Hence,
deep learning has grown in relevance and popularity enormously across various fields [92].

There are a number of underlying decisions to be made for the generation of a deep
learning model, which are known as hyperparameters. Selecting the most appropriate
hyperparameters for a training task is a major part of the success of a deep learning system
[89, 97]. These include the choice of the receptive field, how to sample from imbalanced
classes during training, and selection of the proper performance metric. For example in the
case of tissue images, the receptive field is particularly important as it defines the scale at
which features are extracted (fig. 1.6b). Furthermore, hyperparameters associated with data
augmentation may help to build a robust model applicable on extended datasets. For images,
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this particularly includes different spatial and colour distortions which can be introduced
during training.

Deep neural networks adapted to image data have proven to match or surpass human
performance in many histopathological tasks that previously required an expert pathologist
[85, 98]. This includes a range of tasks such as tissue segmentation [99], sample classification
[100], survival prediction [101], and genomic/transcriptomic data prediction [102, 103].
Despite major advances in the field in recent years, many approaches still lack considerations
for practical implementation in clinical and/or research environments. In a standard clinical
workflow, these computational pathology systems need to fulfil three criteria: First, they must
provide an interface enabling the pathologist to interact with the data. Second, diagnostic
inferences made by the system need to be transparent to allow interpretability. And third,
incorporated algorithms and models need to be validated and robust in order to ensure
reliability on both tissue and patient level (fig. 1.6c, fig. 1.6d). It remains an open question
how clinical decision support systems based on digital pathology can be integrated into the
clinical pathway for binary diagnostic tests while fulfilling the three key criteria above.
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1.5 Thesis aims

A clear need for early detection of oesophageal cancer has been identified and demands
for a novel approach to allow targeted screening of at-risk populations for its precursor
lesion Barrett Oesophagus. One of the minimally invasive approaches to detect Barrett, and
therefore allow treatment of potentially dysplastic lesions, is the Cytosponge technology
in combination with the immunohistochemical marker TFF3. The evidence base for the
technology has so far been restricted to a cohort study (BEST1 [74]) and a case-control study
(BEST2 [75]). In order to enable adoption and encourage consideration by major public
bodies for the development of implementation strategies, randomised controlled evidence is
required.

Furthermore, the implication of scale in the context of the Cytosponge technology raises
questions around required pathologist capacity for the analysis of samples. Primarily, a
significant amount of time is spent by the pathologist to screen clearly negative cases. An
automated or semi-automated approach with a minimal false negative rate when compared to
a human pathologist would add significant value to enable triaging of pathology slides with
the sampled oesophageal cells.

The work presented in this thesis intends to address both of these limitations through:

1. The analysis and evaluation of a pragmatic, randomised controlled trial for Cytosponge-
TFF3 in primary care (BEST3) (chapter 2).

2. The development and validation of a deep learning-based tool to enable high-throughput
analysis of oesophageal cell samples collected with the Cytosponge technology (chap-
ter 3).
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Chapter 2

A pragmatic, randomised controlled trial
for Cytosponge-TFF3

Attribution

The text in this chapter was derived from the following publication with changes:
Cytosponge-trefoil factor 3 versus usual care to identify Barrett’s oesophagus in a pri-
mary care setting: a multicentre, pragmatic, randomised controlled trial
Authors: Fitzgerald RC, Di Pietro M, O’Donovan M, Maroni R, Muldrew B, Debiram-
Beecham I, Gehrung M, [...], Sasieni P. The Lancet 2020

Personal contributions

This chapter covers the BEST3 study for the evaluation of Cytosponge-TFF3 in primary care.
The study was a highly collaborative effort with a large number of individuals involved. My
specific contributions to key aspects were:

• Definition and implications for methodology of primary endpoint coding and associated
statistical analysis.

• Definition, clinical considerations, and implementation of secondary endpoint assess-
ments.

• Cleaning of data on the basis of raw case report form inputs.
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• Statistical analysis of data for assessment of primary endpoint as well as secondary
endpoints. (Source code: https://github.com/9xg/phd-thesis-chap2)

• Interpretation of statistical results and development of an understanding regarding
clinical implications.

• Aggregation and calculation of statistics and preparation of visual elements for presen-
tation in figures and tables. (figs. 2.1 and 2.2 and tables 2.1, 2.3, 2.4 and 2.8).

A number of these points involved significant discussions between various contributors
and multiple iterations. In order to conform to the strict requirements of the Clinical Trials
Unit (Director Peter Sasieni) and the Trial Regulations, the statistical analysis was performed
by me and Roberta Maroni (Lead Trial Statistician) with supervision from Peter Sasieni.
Detailed discussions resolved any discrepancies. An independent trial monitoring committee
signed off on the data prior to publication. The Statistical Analysis Plan has been published
with the main manuscript [104].
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Abstract

The aim of this chapter was the analysis and evaluation of a pragmatic, randomised controlled
trial for Cytosponge-TFF3 in primary care. I particularly focused on investigating a diagnostic
strategy for the detection of BE, dysplasia, and early cancer. Treatment of dysplastic BE or
early cancer has been shown to prevent progression to oesophageal adenocarcinoma.

We conducted a multi-site randomised controlled trial in primary care to evaluate whether
offering a Cytosponge-TFF3 test to patients (age �50 years) on acid-suppressant medication
for reflux symptoms increases the rate of BE diagnosis and results in earlier cancer detection.
Individuals were randomised 1:1 to receive the Cytosponge-TFF3 test or standard manage-
ment of reflux. TFF3 positive cases underwent endoscopy. Endpoint data were from coded
diagnoses to ensure equity across the arms.

13,657 patients were randomised from socio-demographically diverse GP practices in
England. Of 6,832 patients in the intervention arm, 2,679 (39%) expressed interest and 1,750
attended for a Cytosponge examination. 1,654 (99%) patients successfully swallowed the
device with a male to female ratio of 48:52 and a median age of 69 years (range 50-96).
There were 140 Barrett diagnoses in the Intervention arm (ITT) compared to 13 in usual care
giving a rate ratio of 10.2 (95% CI 5.8-18.1), and 10.6 (95% CI 6.0-18.8) when adjusted for
cluster randomisation (p<0.0001). There were 9 individuals with dysplastic Barrett or stage I
oesophago-gastric cancer in the intervention arm and none in the control arm. Overall, 8% of
those who undertook a Cytosponge exam had BE and 59% of those endoscoped for a positive
Cytosponge-TFF3 result had BE, dysplasia or early cancer.

We were able to show that in patients with reflux the offer of Cytosponge-TFF3 testing
results in improved detection of BE and earlier stage cancer compared with usual care.

23



A pragmatic, randomised controlled trial for Cytosponge-TFF3

2.1 Introduction

Heartburn symptoms caused by gastro-oesophageal reflux disease are common, affecting
up to 20% of adults in northwest Europe, North America, Australia, and New Zealand
and leading to enormous annual healthcare costs [105, 106]. Most of these individuals
do not have a diagnosis and are treated over many years with acidsuppressant medication
therapy. Symptoms of heartburn are important when one considers the link between heartburn
and oesophago-gastric cancer [107]. It is estimated that 3–6% of individuals with gastro-
oesophageal refluxpredominant symptoms could have the precursor lesion to oesophageal
adenocarcinoma, known as Barrett oesophagus. However, only around 20% of patients with
Barrett oesophagus are diagnosed. Therefore, most cases of oesophageal adenocarcinoma
are diagnosed de novo, without the opportunity to prevent progression [108–110].

The incidence of oesophageal adenocarcinoma is six times higher than it was in the
1990s. Oesophageal adenocarcinoma also has a dismal prognosis due to late presentation,
with an overall 5-year survival of less than 20%, despite advances in neoadjuvant therapy
and surgery [111, 34]. Clinical guidelines recommend urgent referral for an endoscopy in
patients with warning symptoms, such as dysphagia and weight loss, and routine referral
for an endoscopy in those with symptoms of gastro-oesophageal reflux that persist despite
recommended lifestyle and pharmacological management strategies, and those with multiple
additional risk factors for the disease [112, 113, 57, 114]. Nevertheless, the proportion of
patients referred for an endoscopy from general practice clinics varies widely, and the referral
rates per practice correlate with the stage at diagnosis [115].

A modelling study [116] using data from the USA estimated that the burden of oe-
sophageal adenocarcinoma could be reduced by up to 50% through implementing strategies
for the systematic screening and early diagnosis of individuals with gastro-oesophageal
reflux, who would otherwise not have been referred for an endoscopy. Early detection needs
to be combined with effective interventions to be clinically beneficial. There have been
important advances in outpatient-based endoscopic therapies, which are now recommended
for low-grade and high-grade dysplasia in Barrett oesophagus, with low rates of recurrence
[117–119]. Patients with intramucosal stage I cancers have a survival of more than 90% and
can be treated endoscopically, thus mitigating the risks of and side-effects from systemic ther-
apy and an oesophagectomy, which is often required for more advanced disease [120, 121].
In view of the scale of gastro-oesophageal reflux disease, and the costs (both psychological
and financial) of investigation, any new clinical strategy needs to be carefully evaluated.
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We have developed a test for Barrett oesophagus that is suitable for use in the primary
care setting. The test comprises a non-endoscopic cell collection device coupled with
an in vitro test for the specific biomarker, TFF3, that identifies intestinal metaplasia (the
histopathological hallmark of Barrett oesophagus [73]; fig. 2.1). So far, two clinical studies
[74, 75] of this new clinical strategy, termed the Cytosponge-TFF3 procedure, have been
done in over 2000 patients, with promising data on safety, acceptability, accuracy, and
cost-effectiveness [79, 80, 69].

We did this pragmatic, randomised controlled trial, involving patients with recurrent
symptoms of gastrooesophageal reflux who had been taking acid-suppressant medication
prescribed by their general practitioner, to investigate whether the Cytosponge-TFF3 test,
administered in the community setting, leads to the identification of more patients with
Barrett oesophagus than does usual clinical practice for endoscopy referral in England. The
findings of this trial will lay the foundation for adoption of the Cytosponge-TFF3 test in
order to develop real-world implementation strategies. The generated results will also be
essential for future health economic analyses assessing the cost effectiveness of the test in
primary care in line with requirements for diagnostic or screening methods (chapter 1).

2.2 Methods

2.2.1 Study design and participants

This multi-centre, pragmatic, randomised controlled trial took place in 109 sociodemographi-
cally diverse general practice clinics in England.

Patients were eligible for inclusion if they were aged 50 years or older and had records
of having been prescribed acid-suppressant therapy (proton-pump inhibitor or histamine-2
receptor antagonists) for at least 6 months in the previous year. Patients with records of
having been prescribed non-steroidal anti-inflammatory drugs together with acid-suppressant
therapy, suggesting that their reflux symptoms were not the primary basis for the proton-
pump inhibitor prescription, and patients who had undergone an endoscopy in the previous 5
years or with a previous diagnosis of Barrett oesophagus, were excluded from the study. All
potential participants received an introductory letter to the study and were given 14 days to
opt out, after which point they were enrolled in the trial.

The study protocol, which was approved by a central ethics committee, has been made
publicly available [122]. Aggregated data were collected from participating primary care
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Fig. 2.1 Comparison of the Cytosponge-TFF3 procedure with the endoscopy procedure.
a) Administration and passage of the Cytosponge-TFF3 device to obtain a sample of oe-
sophageal epithelial cells. d) Administration and passage of an endoscope to visualise the
oesophagus. The Cytosponge-TFF3 sample is processed to a paraffin block and stained with
an antibody against b) TFF3 and with c) haematoxylin and eosin (magnification ×200). e) En-
doscopic white light view of Barrett oesophagus in deep red compared with surrounding light
pink squamous epithelium. f) One or more endoscopic biopsies are taken and the tissues are
stained with haematoxylin and eosin for histopathological assessment (magnification ×200).
a) and d) were drawn by Campbell Medical Illustration (Glasgow, Scotland). TFF3=trefoil
factor 3.
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clinics for all potential participants who did not opt out. Written informed consent was
obtained before collecting any individual-level patient data and before any clinical procedure
was done.

2.2.2 Randomisation and masking

Initially, general practice clinics (ie, clusters) were randomly assigned (1:1) to either the
usual care group, in which eligible patients with gastro-oesophageal reflux under the care
of these clinics received standard management of their symptoms and were only referred
for an endoscopy if required, or the intervention group, in which eligible patients received
standard management and were offered the Cytosponge-TFF3 procedure, with a subsequent
endoscopy if the procedure identified TFF3-positive cells.

Approximately two-thirds of the way through recruitment, the trial switched to an
individual patient-level randomisation approach, which was approved by an independent
trial steering committee, the research ethics committee, and the Medicines and Healthcare
products Regulatory Agency (MHRA). Cluster randomisation was initially chosen in order to
remove selection bias by general practitioners; however, in the trial, all patients were selected
by use of the prescribing database, so selection bias was not an issue. After recommendation
by the trial steering committee, we switched to individual randomisation during the study,
which substantially increased the statistical power and also satisfied patient and clinician
demand for the Cytosponge procedure to be available in all clinics. Data from both the cluster
and individual randomisations were analysed separately before they were combined, having
established that their results were consistent, as required by an independent data monitoring
committee and the MHRA.

The trial statistician did the cluster randomisation of general practice clinics by randomly
sorting practices within strata (using computer-generated random number sequences) and
then allocating alternately. Clinics were not randomly assigned until they had agreed to
participate. Individual patient-level randomisation was done by the general practice clinics
directly using the BEST3 app, which used a computer-generated random number sequence.
Potential participants in both the clinic-level and the patient-level randomisations were
informed about the research and given the option to opt out of participation (including data
collection) before knowing which group they would be assigned to. All patients who were
randomly assigned were followed passively for a weighted overall average of approximately
12 months (range 8–18 months).
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The chief investigator (Rebecca Fitzgerald) and the lead statistician (Peter Sasieni) were
masked to the aggregated results by group until follow-up was complete. Pathologists
analysing endoscopic biopsies for Barrett oesophagus did not know whether the patient had
undergone a Cytosponge-TFF3 procedure.

2.2.3 Procedures

Participants randomly assigned to the usual care group received standard care, in which they
received prescriptions for acid-suppressant medication and their general practitioner might
have provided lifestyle advice or referral for an endoscopy, depending on the severity of their
symptoms. Participants randomly assigned to the intervention group received a letter inviting
them to undergo a Cytosponge-TFF3 test and, if they expressed interest, were subsequently
screened by a nurse via a telephone interview. Sometimes patients were not contactable by
telephone or they changed their mind in the intervening period. The telephone screening
interview included a symptom screen to ascertain whether participants were taking acid-
suppressant therapy for heartburn-predominant symptoms and to exclude any participants
who were not deemed to be suitable for the Cytosponge-TFF3 procedure.

Participants were not offered a Cytosponge-TFF3 test if they had dysphagia (as the
capsule might not reach the distal oesophagus) or if they were at an increased risk of bleeding
because of known cirrhosis or varices, or if they were unable to stop taking anticoagulants.
Such participants were still included in the intention-to-treat analysis.

The Cytosponge device was administered by a general practice clinic nurse or a Clinical
Research Network nurse, following a training seminar and one-to-one training with an
experienced practitioner (Irene Debiram-Beecham), until they were signed off as competent.
Samples collected from the Cytosponge procedure were processed centrally and assessed
for the presence of Barrett oesophagus by use of haematoxylin and eosin staining and
immunohistochemical staining for TFF3 (Ventana Medical Systems, Tuscon, AZ, USA), as
described previously [73].

TFF3 staining was evaluated by experienced upper gastrointestinal pathologists, and
consensus agreement from two or three pathologists was used in any cases of uncertainty. A
sample in which no glandular cells were present was deemed to provide a low-confidence
result, as the device might not have reached the stomach and a diagnosis of distal Barrett
oesophagus might have therefore been missed. Any sample with glandular groups of cells
(indicating that the device had reached the stomach), and that did not have equivocal TFF3

28



2.2 Methods

staining, was considered a high-confidence result. Patients with low-confidence or equivocal
results, and any with processing failure, were offered a repeat Cytosponge-TFF3 test. All
patients with a positive TFF3 test result were offered an endoscopy to confirm the diagnosis
of Barrett oesophagus and inform treatment.

After completion of trial follow-up, a random sample of participants from each study
group were invited to undergo a research endoscopy procedure. The results of these research
endoscopies will be presented elsewhere. All endoscopy samples (both in the usual care
group and in the intervention group) were analysed by the local pathologist. Participants with
Barrett oesophagus diagnosed by use of the Cytosponge-TFF3 test also had their endoscopic
biopsies centrally reviewed to confirm that intestinal metaplasia was present and to identify
any dysplasia or cancer (by H&E staining).

A census date 8–18 months after randomisation was set for each general practice clinic.
Passive follow-up of all participants, irrespective of study group or whether they had under-
gone a Cytosponge-TFF3 procedure, was done up to the census date. Census dates were
chosen independently of the randomisation, so as to have a weighted average follow-up of 12
months.

The endpoint data collected were coded diagnoses of Barrett metaplasia, Barrett dysplasia,
or oesophago-gastric adenocarcinoma, ascertained by at least one of the following three
methods: (1) an electronic search of general practice clinic records for new diagnoses
of Barrett oesophagus or oesophageal adenocarcinoma, new referrals to gastroenterology
departments, or new referrals for oesophagogastroduodenoscopy procedures within the
study period, followed by a manual search of the clinical records for those patients with a
potential diagnosis of Barrett oesophagus or oesophagogastric adenocarcinoma identified by
the electronic search; (2) a full manual search of the general practice clinic records for all
participants registered with that clinic; and (3) secure anonymous record linkage between
participating general practice clinics and participating endoscopy units to identify individuals
who were both study participants and who had been diagnosed with Barrett oesophagus or
oesophago-gastric adenocarcinoma during the study period.

2.2.4 Outcomes

The primary outcome was the diagnosis of Barrett oesophagus at 12 months after enrolment,
expressed as rate per 1000 person-years, in all participants in the intervention group (regard-
less of whether they had accepted the offer of the Cytosponge-TFF3 procedure) compared
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with all participants in the usual care group. The secondary outcomes were as follows:
uptake of the Cytosponge-TFF3 procedure; the number of cases of Barrett oesophagus with
dysplasia and intestinal metaplasia-associated cancer, by stage at diagnosis; the positive
predictive value of the Cytosponge-TFF3 test, measured in the subset of patients who had a
subsequent endoscopy after testing positive for TFF3; and the acceptability and safety of the
Cytosponge-TFF3 test.

2.2.5 Statistical analysis

By use of a series of key assumptions (see Statistical Analysis Plan [104]) about the preva-
lence of Barrett oesophagus, the proportion of endoscopy referrals, and the sensitivity and
uptake of the Cytosponge-TFF3 procedure, the expected proportions of Barrett oesophagus
diagnoses over 12 months were calculated as 1.38% in the intervention group and 0.60%
in the usual care group. On the basis of these assumptions, we calculated that a sample
size of 6764 patients was required to achieve a power of 90% and a significance level of
5% if randomisation was done at the individual patient level. To account for the cluster-
randomisation design, a variance inflation factor was estimated by strata (defined by number
of patients from each clinic who were randomly assigned; 48–65, 66–90, 91–125, 126–175 or
176–198 patients) for the cluster-randomised group, assuming that the intra-class correlation
coefficient of the proportion of patients with Barrett oesophagus was 0.025. The actual
numbers of participants in each strata were divided by the variance inflation factor to yield
the equivalent numbers of individually-randomised patients.

Throughout the trial, we ensured that the projected sum of the equivalent size of the
cluster-randomised group and the size of the individual patient-level randomised group was
at least 6764 participants. The primary endpoint of Barrett oesophagus diagnoses (excluding
cancer diagnoses) in both groups at 12 months after enrolment, was analysed by use of
a random-effects log-linear model. The number of Barrett oesophagus diagnoses was the
Poisson-distributed outcome, with a fixed effect for the strata, a random effect for each
clinic, and an offset for the number of person-years of follow-up. We assumed two different
treatment effects (fixed rate ratios / RRs) for the intervention group (one in the first 4 months
and the second thereafter) that were eventually combined at a weight ratio of 1:2. In the
usual care group, the treatment effect was assumed to be constant over time.

The analysis was first done for the cluster-randomised group, then for the individual
patient-randomised group (with no cluster effect), and finally for the whole dataset. When
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analysing the whole dataset, the individual patient-randomised group was assigned to a
separate stratum. This method was approved by the MHRA.

As only aggregated data about age and sex were available, and we only had access
to individual-level data on age, sex, and medication history for patients who successfully
swallowed the Cytosponge, no adjustment was made for these factors in the analysis of the
primary outcome. Statistical significance was based on a two-sided test with an alpha-value
of 5%. The uptake of the Cytosponge-TFF3 procedure was assessed as the number of patients
who successfully swallowed the capsule, expressed as a proportion of the patients who were
offered the procedure. The number of patients with Barrett oesophagus, Barrett oesophagus
with dysplasia, or Barrett oesophagus and cancer is reported by study group and also by the
number of participants who underwent the Cytosponge-TFF3 procedure in the intervention
group. The positive predictive value of the Cytosponge-TFF3 procedure was calculated from
the proportion of patients who underwent the procedure, in whom the subsequent endoscopy
and pathological assessment confirmed the diagnosis of Barrett oesophagus, Barrett dysplasia,
or cancer (gold standard).

The acceptability of the Cytosponge-TFF3 procedure was estimated from a questionnaire,
in which participants rated the procedure using an 11-point visual analogue scale (from 0 to
10); the median and IQR are reported, together with the proportion of participants who scored
5 or more (indicating that the test was somewhat acceptable). The safety of the Cytosponge-
TFF3 procedure was assessed by recording any adverse events and serious adverse events
that had occurred within 7–14 days of undergoing the procedure. This assessment was done
proactively by a nurse via a telephone call with patients. The proportion of patients who
had an adverse event, and the type and severity of adverse event, is reported. The adverse
events were only collected for participants undergoing the Cytosponge-TFF3 procedure.
Since endoscopy is standard of care, no adverse event data was collected in relation to this
procedure.

Statistical analyses were done in Stata version 15 (StataCorp LLC, College Station, TX,
USA). Pseudorandom numbers for all randomisations were generated in R (R Core Team
[2019]). An independent data monitoring committee and a trial steering committee, which
included two lay members who provided a patient’s perspective, oversaw the trial. The trial
is registered with the ISRCTN registry, number ISRCTN68382401.
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2.3 Results

2.3.1 Study enrolment, randomisation, demographics, and exclusion
of patients

Between March 20, 2017, and March 21, 2019, 113 general practice clinics located in
socio-demographically diverse regions in England were enrolled, but four clinics dropped
out shortly after being randomly assigned (three in the usual care group and one in the
intervention group), leaving 109 clinics, comprising 13,657 patients. These patients were
sent an introductory letter and given 14 days to opt out of the study. 143 of these patients opted
out before individual patient-level randomisation, leaving 13 514 patients to be randomly
assigned. After randomisation, 136 patients in the usual care group and 122 patients in
the intervention group withdrew. Additionally, 17 patients (ten in the intervention group
and seven in the usual care group) were excluded because they had either died or had
been diagnosed with Barrett oesophagus before randomisation, and 17 patients (all in the
intervention group) were excluded because their contact details were absent. Of the remaining
13,222 enrolled patients, 7,839 patients from 75 clinics were cluster-randomised, and 5,383
patients from 34 clinics were individually randomised. Overall, 6,388 participants were
randomly assigned to the usual care group and 6,834 participants to the intervention group
(fig. 2.2).

The demographics of the 13,222 participants included in the final analysis are summarised
(table 2.1). The age distribution of participants who successfully swallowed the Cytosponge
was similar to that of all participants. The randomly assigned clinics represented all ten deciles
of the Index of Multiple Deprivation (data not shown). The median decile of deprivation
among participants was seven (with one being the most deprived and ten the least deprived)
and the lower quartile was four.
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2.3 Results

Fig. 2.2 Trial profile. *202 (12%) of these 1,654 participants had a repeat Cytosponge test,
as the first sample yielded a low-confidence result (defined as the absence of glandular cells
in the sample) and a diagnosis of Barrett oesophagus could have therefore been missed;
patients with equivocal results, or technical or processing failures, were also invited for a
repeat test. 33
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2.3 Results

2.3.2 Interest, uptake and results of Cytosponge-TFF3 test

Following a written invitation, 2679 (39%) of 6834 patients in the intervention group re-
sponded and expressed an interest in taking part in the Cytosponge-TFF3 procedure. Of
these, 2,096 (78%) participants were eligible following the telephone assessment, and 1,750
(65%) provided consent and underwent the procedure. 1654 (95%) of these participants
(and 24% of all 6,834 participants in the intervention group) successfully swallowed the
device, including 796 men (48%) and 858 (52%) women, with a median age of 69 years
(IQR 61–74; table 2.1). 311 (19%) of the 1654 participants who had successfully swallowed
the device had a low-confidence negative or equivocal test result, and depending on local
capacity, were invited for a repeat Cytosponge-TFF3 test. 202 (65%) of these participants
attended the repeat appointment, 190 (94%) of whom successfully swallowed the device,
leading to a further 140 patients producing a high-confidence (positive or negative) result.
Overall, after the repeat test, 150 (9%) of the 1,654 patients who successfully swallowed the
Cytosponge-TFF3 still produced a low-confidence negative result (fig. 2.2). Apart from the
eight participants who were found, on review, to have pre-existing Barrett oesophagus, all
participants who were invited for the Cytosponge-TFF3 procedure were included in the final
intention-to-treat analysis, regardless of whether or not they accepted the invitation.

2.3.3 Offer of Cytosponge-TFF3 results in increased number of Bar-
rett diagnoses when compared to usual care

Barrett oesophagus diagnoses in both groups had to be identified from records of clinical
coded diagnoses at all general practice clinics included in the study, the electronic records of
local referral hospitals, or both, to ensure equity across the usual care and intervention groups
(otherwise, diagnoses from the intervention group would have been more easily ascertained).
One diagnosis of Barrett oesophagus in a patient who had a positive Cytosponge-TFF3 test
result was omitted from the results, as a coded diagnosis was not identified by any of these
data collection methods.

We identified 140 Barrett oesophagus diagnoses in the intervention group (127 in patients
who underwent the Cytosponge-TFF3 procedure, and 13 in patients who did not undergo the
Cytosponge-TFF3 procedure) compared with 13 diagnoses in the usual care group (table 2.2,
table 2.3; see table 2.5 and table 2.7 for the corresponding tables for randomisation groups and
a breakdown of the length of Barrett oesophagus detected). 87 (69%) of the 127 participants
who were diagnosed with Barrett oesophagus from the Cytosponge-TFF3 procedure were
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male. As the results of the cluster-level randomisation and patient-level randomisation both
favoured the intervention group, an overall RR was calculated (table 2.2). The estimated
cumulative rate of Barrett oesophagus at 12 months was 20.2 per 1,000 person-years in the
intervention group and 2.0 per 1,000 person-years in the usual care group (RR adjusted for
cluster randomisation 10.6 [95% CI 6.0–18.8], p<0.0001; table 2.2).
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2.3.4 Cytosponge-TFF3 can detect Barrett oesophagus with a high
positive predictive value

Of 1,654 participants in the intervention group who successfully swallowed the Cytosponge
device, 221 (13%) with a positive TFF3 result had a subsequent confirmatory endoscopy.
127 (57%) of these participants were diagnosed with Barrett oesophagus (one of whom had
low-grade dysplasia, and three of whom had high-grade dysplasia), and four (2%) participants
were diagnosed with stage I oesophago-gastric cancer. Therefore, the Cytosponge-TFF3
procedure had a positive predictive value of 59% (131 of 221 confirmatory endoscopies
in patients with a positive Cytosponge-TFF3 result) for Barrett oesophagus, dysplasia, or
oesophago-gastric cancer (table 2.2, table 2.3). Of those 90 participants who received a
confirmatory endoscopy that did not result in a diagnosis of Barrett oesophagus, dysplasia,
or cancer, a further 33 (37%) participants had intestinal metaplasia, identified from a single
biopsy taken from the cardia or at the gastrooesophageal junction. Using the available data,
we calculated the empirical intraclass correlation coefficient of the proportion of patients with
Barrett oesophagus, and found that this value was similar to the expected empirical intraclass
correlation coefficient (approximately 0.025). For the secondary endpoints, we compared the
number of endoscopic diagnoses of dysplasia and cancer in participants who were offered
the Cytosponge-TFF3 procedure with the number of these diagnoses in participants in the
usual care group (intention-to-treat analysis).

2.3.5 Cytosponge-TFF3 can detect dysplasia and
oesophago-gastric cancer

Nine (<1%) of 6,834 participants were diagnosed with dysplastic Barrett oesophagus (n=4)
or stage I oesophago-gastric cancer (n=5) in the intervention group, whereas no participants
were diagnosed with dysplastic Barrett oesophagus or stage I oesophagogastric cancer in the
usual care group (table 2.3). Of these nine participants in the intervention group, eight were
detected as a result of a positive Cytosponge-TFF3 test and a subsequent endoscopy and have
all undergone a curative intervention (seven participants underwent endoscopic therapies,
and one participant underwent an oesophagectomy for a stage IB cancer involving the first
layer of the submucosa; table 2.8). Among those who were offered the Cytosponge-TFF3
procedure but did not have the test (n=5,084), one participant, who initially expressed interest
in the procedure, but was referred for an endoscopy before it could be done, was diagnosed
with early-stage cancer. Of all 6,388 participants in the usual care group included in the
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2.3 Results

final analysis, three participants were diagnosed with cancer, of whom two participants were
palliative at presentation and died during the study period (table 2.8). In the intervention
group, two participants who did not undergo the Cytosponge-TFF3 test were diagnosed with
stage IV oesophago-gastric cancer.
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2.4 Discussion

2.3.6 Acceptability of the Cytosponge-TFF3 is consistent high combined
with a small number of adverse events

In the intervention group, an acceptability score for the Cytosponge-TFF3 procedure was
provided by 1,464 (89%) of 1,654 participants approximately 1 week after they underwent
the procedure. The median acceptability score was 9 (IQR 8–10), with 10 being completely
acceptable, and 1,427 (97%) of 1,464 participants gave a score of 5 or higher (table 2.9).

In the intervention group, one serious adverse event associated with the Cytosponge-TFF3
procedure was reported (detachment of the sponge from the thread requiring endoscopy to
retrieve the expanded sponge with no adverse sequelae), and three serious adverse events
unrelated to the procedure were reported (table 2.4). Of 1,654 participants who successfully
swallowed the Cytosponge device, 142 (9%) participants reported an adverse event, including
63 (4%) participants who had a sore throat that required medication or that interfered with
eating (table 2.4).

2.4 Discussion

Summary

The results in this chapter directly address the identified need to generate randomised clinical
evidence for the Cytosponge-TFF3 test as elaborated in chapter 1. In this multicentre,
pragmatic, randomised controlled trial we found that an invitation to have a Cytosponge-
TFF3 test led to increased diagnosis of Barrett oesophagus when compared with usual care by
general practitioners. This comparison was made in patients identified as being high-risk for
this condition, on the basis of a systematic search of electronic patient records for anti-gastro-
oesophageal reflux medication. With regard to the secondary endpoint of the proportion
of cancer diagnoses, although the numbers were small, we found that all participants in
the intervention group who had dysplasia and cancer identified by the Cytosponge-TFF3
procedure were suitable for curative therapy, whereas the cancers detected in the usual care
group, and among participants who did not undergo a Cytosponge-TFF3 procedure, had
more advanced disease (four of six participants had stage III and IV cancer) and two of these
were palliative at presentation and died during the study period. For a device to be suitable
for use in general practice clinics, its uptake, safety, and acceptability are key.
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Adverse event severity (n=142) Total (n=142)
Low
(n=112)

Moderate
(n=23)

High
(n=7)

Adverse event
Sore throat 57 (51%) 5 (22%) 1 (14%) 63 (44%)
Dyspepsia indigestion reflux 16 (14%) 3 (13%) 0 19 (13%)
Oesophageal or gastric pain 11 (10%) 2 (9%) 2 (29%) 15 (11%)
Feeling non-specifically unwell 6 (5%) 3 (13%) 0 9 (6%)
Nausea or vomiting 5 (4%) 3 (13%) 0 8 (6%)
Voice disturbance 3 (3%) 1 (4%) 0 4 (3%)
Diarrhoea or an upset stomach 4 (4%) 1 (4%) 0 5 (4%)
Chest pain or discomfort 2 (2%) 0 0 2 (1%)
Allergic reaction 1 (1%) 0 0 1 (1%)
Anxiety 1 (1%) 0 0 1 (1%)
Bad taste 1 (1%) 0 0 1 (1%)
Paroxysmal positional vertigo 1 (1%) 0 0 1 (1%)
Blood clot excretion 1 (1%) 0 0 1 (1%)
Vasovagal attack 1 (1%) 0 0 1 (1%)
Nosebleed 1 (1%) 0 0 1 (1%)
Headache 1 (1%) 1 (4%) 0 2 (1%)
Bloodshot eye 0 1 (4%) 0 1 (1%)
Chest infection 0 1 (4%) 0 1 (1%)
Abrasion 0 1 (4%) 0 1 (1%)
Fall 0 1 (4%) 0 1 (1%)
Serious adverse event
Unconscious after minor accident 0 0 1 (14%) 1 (1%)
Detachment of the sponge on
day of the procedure 0 0 1 (14%) 1 (1%)

Hernia* 0 0 1 (14%) 1 (1%)
Myocardial infarction † 0 0 1 (14%) 1 (1%)

Table 2.4 Adverse events in participants who underwent the Cytosponge-TFF3 proce-
dure. Data are n (%). All percentages calculated with the total number of participants in that
column who had an adverse event as the denominator. The severity of adverse events was
classified as low, moderate, or high by the nurse during the proactive follow-up telephone
call with the patient. Serious adverse events were those classified according to the regulatory
requirement for a device trial. * Hernia was repaired 5 days after the procedure. † Occurred
3 days after the procedure.
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2.4 Discussion

Acceptability and safety of Cytosponge-TFF3

The acceptability data obtained in our study are encouraging, with a median acceptability
score of 9 out of 10, consistent with our previous trials [74, 75]. In this pragmatic trial done
across a wide range of demographic areas across England, the proportion of all participants
in the intervention group (n=6,834) who expressed an interest in the Cytosponge-TFF3
procedure was 39% (n=2,679), and 24% (n=1,654) of participants had the procedure and
successfully swallowed the device, after accounting for inclusion and exclusion criteria and
scheduling limitations.

Since we anticipate the Cytosponge-TFF3 procedure being offered by a patient’s general
practice clinician during a consultation for symptoms of gastro-oesophageal reflux or for
a repeat prescription of acid-suppressant medication, as opposed to an unexpected written
invitation, and since we will now be able to provide information regarding the efficacy of this
procedure from this trial, we predict that the uptake of the Cytosponge-TFF3 procedure will
increase substantially compared with that observed in this trial. This hypothesis will require
further evaluation in future studies or in clinical implementation research.

The safety of the Cytosponge-TFF3 device has been evaluated previously in a systematic
review [69] of 2,672 procedures done across four different studies in the UK, the USA,
and Australia. In this review [69], 2,334 (97%) of 2,418 patients swallowed the device
successfully and there were two adverse events associated with the device; one was a
detachment and one was a self-limiting pharyngeal bleed. These results are similar to those
of our trial. The proactive telephone call to patients 7–14 days after they underwent the
procedure also allowed us to collect data on side-effects. We found that 63 (4%) of 1,654
participants had a sore throat after the procedure, indicating that patients should be told that
they might experience this adverse event after the procedure.

Implications of Cytosponge-TFF3 findings in the context of
clinical guidelines

The prevalence of Barrett oesophagus or cancer in the 221 participants who received an
endoscopy after testing positive for TFF3 was 59% (n=131). We also identified intestinal
metaplasia of the gastro-oesophageal junction and gastric cardia, which was extensive
throughout the stomach in some cases, in 33 (15%) of 221 patients. These findings were
not included in the primary endpoint, as intestinal metaplasia without visible columnar
epithelium is not Barrett oesophagus.
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The guidelines for gastric intestinal metaplasia including the cardia were recently re-
viewed (2019), and UK and US societies suggest that, although the evidence is more scarce
than it is for Barrett oesophagus, surveillance endoscopy should be considered when the gas-
tric intestinal metaplasia is extensive or when there are other factors indicating an increased
risk of gastric cancer, such as a family history [123, 124].

Overdiagnosis of cancer is a matter of much debate in the screening community, together
with whether short segments (1 cm or less) of Barrett oesophagus should be considered as
such. The TFF3 test is sensitive and detects some short segments of Barrett oesophagus.

Additionally, since this was a pragmatic trial that relied on a coded diagnosis of Barrett
oesophagus, we also identified patients in the usual care group who had short segments of
Barrett oesophagus (1 cm or less in length) and were diagnosed as having the condition,
reflecting the variable practice in UK hospitals. We expect that these patients can be reassured
and probably do not require surveillance. This expectation is consistent with the clinical
guidelines, which suggest that patients with over 1 cm of salmon-coloured epithelium
containing intestinal metaplasia should be monitored [57, 125].

With regard to the primary endpoint analysis, if we use a stringent criterion to diagnose
the most clinically significant cases of Barrett oesophagus (i.e. those 3 cm or more in length;
table 2.7), four (<1%) of 6,388 participants would be diagnosed with Barrett oesophagus
in the usual care group and 46 (1%) of 6,834 participants would be diagnosed with Barrett
oesophagus in the intervention group. This result would still show a positive effect of
introducing the Cytosponge-TFF3 procedure into clinical care, with a RR of 10.6 (95% CI
6.0-18.8), after accounting for clustering.

Further guidance will be required to tailor the follow-up of patients diagnosed via the
Cytosponge-TFF3 procedure, depending on their degree of risk of progressing to dysplasia
or cancer according to the clinical surveillance guidelines.

Future biomarkers and target population of Cytosponge-TFF3 testing

In the future, we expect that additional biomarkers will distinguish indolent Barrett oe-
sophagus from Barrett oesophagus at high risk of progression, so that many patients can
be followed up with the Cytosponge-TFF3 procedure, and endoscopy can be reserved for
those at a high risk who are likely to require intervention. Identification of risk stratification
biomarkers is an ongoing area of research [126].
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In this trial, patients were offered the Cytosponge-TFF3 procedure if they required
medication for heartburn symptoms. In many health-care systems, a one-off endoscopy
would be considered for these patients given that many require long-term medication (i.e.,
for 3 years or more). The sensitivity and specificity of the Cytosponge-TFF3 procedure
have been evaluated previously [75], and our trial was not designed to re-evaluate these
aspects. However, based on the number who had an endoscopy following a Cytosponge-TFF3
procedure but did not have Barrett oesophagus or cancer (n=90), and on the number who
successfully swallowed the Cytosponge-TFF3 but did not have Barrett oesophagus or cancer
(n=1,523), we estimated the specificity of the Cytosponge-TFF3 procedure to detect Barrett
oesophagus, dysplasia or cancer to be 94%.

Setting of this trial and capturing of endpoint data

In the future, consideration should be given to the ideal enrichment criteria, which might
include a different age cutoff for men compared with women because of the difference in
incidence (ie. 87 [69%] of 127 Barrett oesophagus diagnoses in patients who successfully
swallowed the Cytosponge were male), and also the inclusion of other risk factors, such as
bodymass index.

Among the strengths of our trial is the real-world implementation of the Cytosponge-
TFF3 procedure, including the administration of the device by a nurse in the community
setting. The TFF3 test was done in a clinically certified laboratory, and the results were
communicated in real time. The use of coding to ascertain diagnoses of Barrett oesophagus,
dysplasia, and cancer ensured equity across both study groups. Since informed consent
from individual patients was obtained only for those who underwent the Cytosponge-TFF3
procedure, the use of coding was the only way to ascertain the diagnoses for participants
in the usual care group and those in the intervention group who declined the invitation to
undergo the Cytosponge-TFF3 procedure.

Limitations of trial methodology

This trial has some limitations. First, those participants who agreed to undergo the Cytosponge-
TFF3 procedure might have had more problematic symptoms than those who did not accept
the offer of the procedure. We eliminated this bias by analysing the data of the whole
trial as an intention-to-treat analysis. Second, 150 (9%) of 1,654 participants still had a
low-confidence result after the offer of a repeat test. Work is ongoing to find out how to
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reduce this outcome. Third, there were slightly more women than men agreeing to undergo
the Cytosponge-TFF3 procedure, even though Barrett oesophagus is more prevalent in men
than in women. In future, strategies to encourage men to attend the procedure, and whether
to alter the threshold for testing men versus women, should be considered. Finally, variation
in the quality of endoscopies was apparent across the 24 hospitals that took part in the study
[127].

Massimiliano di Pietro did a central review of video images and liaised with hospitals
to ensure consistency in reporting. Currently, the TFF3 test requires manual reading by a
pathologist trained in analysing these specimens, which are much larger and more cytological
in nature than endoscopic biopsies. In chapter 3 I am presenting an extensive framework
to (semi-)automate quality control and diagnosis of Cytosponge-TFF3 samples and assist
pathologists in screening of specimens.

Conclusion

For patients with heartburn-predominant symptoms requiring acid-suppressant therapy for at
least 6 months, the Cytosponge-TFF3 procedure is a feasible, safe, and generally acceptable
test to administer in the general practice clinic setting. This procedure results in improved
detection of Barrett oesophagus, thus enabling a more proactive approach for the identification
and minimally invasive treatment of dysplasia and early cancer. An economic evaluation will
establish the effect of this strategy, taking into account the additional number of endoscopies
required as a result of the Cytosponge-TFF3 procedure. In order to enable implementation of
the technology at scale, a need for improved sample analysis workflows has been identified.
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A pragmatic, randomised controlled trial for Cytosponge-TFF3

Acceptability score* Participants who successfully
swallowed the Cytosponge (n = 1654)

0 1 (<0·1%)
1 2 (0·1%)
2 5 (0·3%)
3 13 (0·9%)
4 16 (1·1%)
5 92 (6·2%)
6 63 (4·3%)
7 103 (7·0%)
8 247 (16·9%)
9 317 (21·7%)
10 605 (41·3%)
Total number of patients
filling in the questionnaire 1464 (100·0%)

Table 2.9 Cytosponge-TFF3 acceptability scores. Data are n (%). *11-point visual ana-
logue scale: 0 = unacceptable, 10 = completely acceptable.
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Chapter 3

Triage-driven diagnosis of Barrett
Oesophagus using deep learning

Attribution

The text in this chapter was derived from the following publication for which I am the first
author and main person responsible for the manuscript:
Triage-driven diagnosis for early detection of oesophageal cancer using deep learning
Authors: Gehrung M, Crispin-Ortuzar M, Berman AG, O’Donovan M, Fitzgerald RC,
Markowetz F. In revision at Nature Medicine / available on BioRxiv
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The work in this chapter was carried out by me in its entirety. All code was written by me.
Adam Berman has contributed to some aspects of the code development for the Grad-CAM
saliency map visualisation.
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Triage-driven diagnosis of Barrett Oesophagus using deep learning

Abstract

The aim of this chapter was the design, implementation, and validation of a deep learning
method to reduce the pathologists’ workload for the analysis of Cytosponge-TFF3 specimens.
I particularly focused on investigating an approach that would not replace the pathologist but
instead leverage deep learning models to stratify equivocal and unequivocal patient samples.

Deep learning methods have been shown to achieve excellent performance on diagnostic
tasks, but it is still an open challenge how to optimally combine them with expert knowledge
and existing clinical decision pathways. This question is particularly important for the early
detection of cancer, where high volume workflows might potentially benefit substantially
from automated analysis.

Here, I present a deep learning framework to analyse samples of the Cytosponge-TFF3
test, a minimally invasive alternative to endoscopy, for detecting Barrett oesophagus, the main
precursor of oesophageal cancer. I trained and independently validated the framework on
data from two clinical trials, analysing a combined total of 4,662 pathology slides from 2,331
patients. My approach exploits screening patterns of expert gastrointestinal pathologists and
established decision pathways to define eight triage classes of varying priority for manual
expert review. By substituting manual review with automated review in low-priority classes,
I can reduce pathologist workload by 57% while matching the diagnostic performance of
expert pathologists. These results lay the foundation for tailored, semi-automated decision
support systems embedded in clinical workflows.

3.1 Introduction

Early detection of cancer often leads to better survival [128], because pre-malignant lesions
and early stage tumours can be more effectively treated [17]. Most pre-malignant lesions
amenable to early detection rely on targeted sampling and show only minor tissue changes
on pathology assessment [22, 129, 130]. In addition, pathology procedures often involve
laborious and time-consuming steps which can lead to errors and adversely affect patient
care [131]. Recent developments in Artificial Intelligence (AI) have achieved excellent
performance on diagnostic tasks [95, 91, 96]. However, understanding how these techniques
can be integrated into clinical workflows most efficiently and to assess the actual benefits they
bring remains a challenge. The design of a clinical decision support system needs to balance
its performance against workload reduction and potential economic impact. Replacing
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3.1 Introduction

pathologists entirely could lead to substantial workload reduction, but such an approach
would only be viable if performance remains comparable to that of human experts. Between
a fully automated approach and the status quo of fully manual review lies a semi-automated
approach, which uses computational methods to triage patients and only presents pathologists
with difficult cases. A semi-automated approach will not reduce workload as much as a
fully automated approach, but its performance benefits from existing expert knowledge and
heuristics. Here I present such a semi-automated triage system using deep learning for the
early detection of oesophageal cancer.

Oesophageal cancer is the sixth most common cause for cancer related deaths [1]. Patients
usually present at an advanced stage with dysphagia and weight loss, and the 5-year overall
survival of oesophageal adenocarcinoma (OAC), one of two pathological subtypes, is 13%
[34]. OAC can arise from a precursor lesion called Barrett oesophagus (BE) [51, 35],
providing an effective starting point for early detection. BE occurs in patients with GERD, a
digestive disorder where acid and bile from the stomach return into the oesophagus leading to
heartburn symptoms. In Western countries, 10 to 15% of the adult population are affected by
GERD [59] and, therefore, at an increased risk of having BE. The pathognomonic feature of
BE is intestinal metaplasia (IM), a process whereby the stratified squamous epithelial lining
localized in the lower oesophagus is replaced with columnar epithelium containing goblet
cells [125, 132]. The conventional diagnosis of BE requires an invasive endoscopic procedure
of the upper gastrointestinal tract. However, there is no routine endoscopic screening of the
GERD population and thus the vast majority of BE patients are undiagnosed [59].

Cytosponge-TFF3 is a non-endoscopic, minimally invasive diagnostic test for BE [74,
75, 78]. It is a cell collection device consisting of a compressed sponge on a string inside
a gelatin capsule. The capsule is swallowed by the patient and the gelatin dissolves in the
stomach after a few minutes, allowing the sponge to expand. The sponge is then withdrawn
from the stomach by the attached string, sampling superficial epithelial cells from the top
of the stomach, the oesophagus, and the oropharynx (fig. 3.1a). Therefore, the cellular
composition of the sample is dominated by squamous cells, gastric columnar epithelium,
and respiratory epithelium as well as any Barrett cells, if present. Following removal, the
device is placed in a container with preservative solution and the sampled cells are processed,
embedded in paraffin and stained with H&E as well as immunohistochemically stained with
TFF3 [73]. H&E stains allow the identification and quantification of cellular phenotypes,
which is critical for quality control. TFF3 is over-expressed in mucin-producing goblet cells
which are a key feature of BE. TFF3 also functions as a protector of the mucosa from insults,
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Fig. 3.1 Cytosponge procedure with conceptual patient triage scheme and data sum-
mary. a During withdrawal the sponge samples superficial epithelial cells from the top of the
stomach and the oesophagus. These cells are processed into a cell block, then sectioned and
stained with H&E and TFF3. b Convolutional neural networks, trained on an independent
training dataset, are used for inference of H&E and TFF3 stains. The resulting tile maps are
analysed for relevant regions (columnar epithelium on H&E and goblet cells on TFF3 stain)
and aggregated into quality control and diagnostic classes based on tile detections. c Quality
and diagnostic classes are mapped to a conceptualised pathway for sample stratification.
The review layer (bottom) describes to what extent a human pathologist has to review the
microscopy slides. (Pos = Positive, Neg = Negative) d Overview of data used in this study.
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stabilizes the mucus layer, and promotes healing of the epithelium [70]. TFF3 stains allow
the identification and quantification of goblet cells, which are indicative of IM. Therefore,
TFF3 is the key diagnostic biomarker for BE [73].

The Cytosponge-TFF3 approach has profound and well-tested clinical significance. It
offers, with substantial clinical trial data underpinning its efficacy, a long-awaited diagnostic
alternative to endoscopy (BEST1 [74], BEST2 [75], BEST3 [104]). The BEST3 study,
covered in chapter 2, found that the Cytosponge-TFF3 test had in excess of a 10-fold increase
in detection of Barrett compared to usual clinical care in which patients with heartburn
receive medication and an endoscopy if deemed necessary. This performance makes the
Cytosponge a major advance in patient management. The BEST3 study also concluded that
the pathology assessment is a major bottleneck for scaling the test to large patient populations.
Since the analysis of Cytosponge-TFF3 pathology slides is a very laborious process due to
the large amount of sampled cellular material. It comprises several time-consuming tasks
such as assessing the amount of sampled material and checking the presence of gastric-type
columnar epithelium to confirm that the capsule reached the stomach, followed by assessment
for the presence of goblet cells indicative of BE. Though effective, the laboriousness of this
process gives rise to a major opportunity for a clinical decision support system to improve
analysis and scalability of the Cytosponge-TFF3 test.

Here, I use a deep learning approach for quality control and diagnosis of pathology
slides for the Cytosponge-TFF3 test (fig. 3.1b). I propose a triage-driven approach, which
retains diagnostic accuracy by leveraging the decision-making rules of expert gastrointestinal
pathologists (fig. 3.1c). I train, calibrate, and internally validate my approach on data of the
BEST2 multi-centre clinical trial [75] and externally validate it in an independent cohort from
the recent BEST3 multi-centre trial [104] (fig. 3.1d). Additionally, I explore in a simulation
study how well my results generalise to more general populations.

3.2 Methods

3.2.1 Study design and dataset

The multicentre Barrett Oesophagus Screening Trial 2 (BEST2) [75] case-control study (study
registration: ISRCTN12730505) investigates the automated analysis of Cytosponge-TFF3
samples as a secondary objective. Ethics approval was obtained from the East of England
- Cambridge Central Research Ethics Committee (number 10/H0308/71) and registered in

57
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the UK Clinical Research Network Study Portfolio (9461). Patients enrolled underwent a
Cytosponge procedure followed by an endoscopy with biopsies where required. The objective
of this work was the comparison of: fully manual review of Cytosponge-TFF3 pathology
slides by human experts, fully automated review of Cytosponge-TFF3 pathology slides by a
deep learning-based method, and triage-driven, semi-automated review of Cytosponge-TFF3
pathology by a hybrid method relying on deep learning methods and human experts.

812 patients were randomly selected from the entire BEST2 cohort (from 11 hospitals in
the UK) for digitisation of their respective H&E and TFF3 pathology slides (1624 in total)
on an Aperio AT2 digital whole-slide scanner (Leica Biosystems Nussloch GmbH, Germany)
at 40x magnification.

BEST2 patients were randomly partitioned into three distinct subsets: 100 patients for
training/development (labels unblinded for training purposes), 187 patients for calibration
(labels unblinded for calibration), and 525 patients as an internal validation set (labels
unblinded after validation). The distribution of patients with or without Barrett oesophagus
(BE) for each partition is shown in fig. 3.1d.

For independent external validation I used data from the Barrett Oesophagus Screening
Trial 3 (BEST3) [104] randomised controlled trial (study registration: ISRCTN68382401).
Ethics approval was obtained from the East of England - Cambridge Central Research Ethics
Committee (number 16/EE/0546). Patients enrolled either were invited to a Cytosponge
procedure or received standard of care. Both arms were followed up after 8 to 18 months
(weighted overall average of approx. 12 months). Only patients who underwent a Cytosponge
procedures or were referred as part of usual care received an endoscopy. A patient was
considered as positive for Barrett Oesophagus if they either had a diagnosis at endoscopy or
as a result of a coded search in records from the primary care site.

1,519 patients were randomly selected from the entire BEST3 cohort (from 109 primary
care sites in the UK) for digitisation of their respective H&E and TFF3 pathology slides
(1638 in total) on Hamamatsu S60 and S210 whole-slide scanners (Hamamatsu, Japan) at
40x magnification. For each patient, the repeat test was used if one as performed due to
inadquace of the baseline test.

All BEST3 patients were processed using the fully automated and triage-driven, semi-
automated approach presented in this work. Labels were unblinded after validation.

Confidence intervals in this work were defined as the 2.5th and 97.5th percentiles on
distributions of 500 samples (with replacement) of the respective dataset size.
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Cytosponge-TFF3 procedure

The Cytosponge-TFF3 technology has been introduced in chapter 1.

Endoscopy procedure

Esophago-gastroduodenoscopies were carried out by an endoscopist after the Cytosponge test.
BE was defined as endoscopically visible columnar-lined oesophagus that measured at least 1
cm circumferentially or at least 3 cm in non-circumferential tongues according to the Prague
criteria (�C1 or �M3 [133]). An additional criterion for BE was histopathological evidence
of intestinal metaplasia (IM) on at least one endoscopy biopsy. For cases with suspected
BE, diagnostic biopsies were collected following the recommended Seattle surveillance
protocol [134]. When reviewing the biopsy data, all of the pathologists were blinded to the
result of the Cytosponge-TFF3 test.

3.2.2 Annotation and pre-processing of whole-slide images

Whole-slide image annotation for training

One H&E- and one TFF3-stained slide for each of the 100 BEST2 patients from the training
set were manually annotated and reviewed by an expert pathologist (Maria O’Donovan) using
the ASAP software [135]. Regions of interest (ROIs) were selected in the digitised pathology
slides at a magnification of 40x. Each of these ROIs was labeled with a class for training.
For the H&E-based quality control model, four different classes were identified: gastric-
type columnar epithelium, respiratory-type columnar epithelium, intestinal metaplasia, and
background (including other cellular material such as squamous cells and slide artefacts).
Gastric-type columnar epithelial cells were considered as the marker for quality control, as
their presence confirms that the Cytosponge has reached the stomach. For the TFF3-based
diagnostic model, three classes were identified: TFF3-positive regions (darkly stained goblet
cells), TFF3-equivocal regions (regions of ambiguous staining that may be goblet cells),
and background. TFF3-positive cells were considered as the marker for the presence of
IM, as they indicate that the patient might have BE. All slides were annotated using the
existing patient-level ground truth data for comparison. I aimed for a representative fraction
of available material on each slide to be labelled.
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Tesselation of whole-slide images for training

Tesselation, or tiling, of whole-slide images was performed in order to prepare data prior to
model training. A custom tiling method was developed to optimise the yield and coverage of
annotated cellular material in the images. Whereas packing problems of squares in polygons
can be neglected for large annotations, optimal coverage for tiles in combination with small
annotation sizes is not straightforward and requires a tailored solution. Annotations with an
area of 1.5⇤ tile area or larger were cropped into tiles by taking the top-left coordinate of
the enveloping bounding box and iterating tiles along the x- and y-axis of the image. Tiles
with an intersection of less than 0.33 (for H&E) or 0.66 (for TFF3) with their corresponding
annotation were rejected. Annotations with an area smaller than 1.5⇤ tile area were treated
as single examples and a tile was placed in the center-of-mass of the respective annotation.
Tiles with sufficient annotation coverage (determined by intersection) were extracted and
labelled according to the class of their parent annotation. For this work, a tile size of 400-
by-400 pixels (corresponding to 200-by-200 µm at a magnification of 40x) was selected in
accordance with sizes of relevant tissue features. Tiles were extracted from whole-slide
images as JPEG images with minimal compression.

Model training using deep learning

I implemented two different deep learning frameworks: one for performing quality control
on H&E-stained slides, and a second one for performing automated BE diagnosis from
the TFF3-stained slide images. Both deep learning frameworks for quality control and
diagnosis were created by comparative transfer learning of multiple convolutional neural
network architectures: AlexNet [136], DenseNet [137], Inception v3 [138], ResNet-18 [139],
SqueezeNet [140], and VGG-16 [141]. All architectures were initialised with the best param-
eter set that was achieved on the ImageNet competition. Training tile images were resized
as required for the individual architectures, resulting in a change of effective magnification
from 22x to 30x. I then unfroze all layers to enable fine-tuning of the entire network. For all
models, training continued on two NVIDIA GTX 1080Ti graphics cards for 25 epochs with
an architecture-specific batch size (ResNet-18: 128, VGG-16: 48, Inception v3: 48, AlexNet:
64, SqueezeNet: 256, DenseNet: 84) and a learning rate that decayed by a factor of 0.1 every
7 epochs. All models used cross-entropy loss. To account for slight variations in the training
data, random vertical/horizontal flip, random rotation, and random color jitter (variation in
hue, contrast, brightness, and saturation) were introduced for data augmentation. Differences
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in tile class sizes were accounted for by using a modified imbalanced dataset sampler, a
function which oversamples from minority classes and undersamples from majority classes.
The parameter set of epoch with the highest accuracy on the development subset was selected
for further use. All models were trained using the PyTorch deep learning framework [142].
Final model versions used a split of 85:15 patients for training and development subset. I
further investigated the effect of increased training set sizes by incrementally increasing the
training subset while fixing the development subset size (fig. 3.2).

3.2.3 Evaluation and visualisation of tile-level models

Evaluation of tile-level performance

In order to compare the performance of all six deep learning architectures, I calculated
class-specific performance in the quality control and diagnosis frameworks (table 3.1). To
obtain these numbers, I selected the epochs with the best weighted accuracy score on the
development subset for each training run. I then calculated precision and recall of all four
classes in the H&E-based model and all three classes in the TFF3-based model in the
selected epoch. For visual comparison, I also created 2D inference maps of samples which
where classified as positive or negative by a pathologist for quality control and diagnosis,
respectively. Tile-level results were not used to select architectures for the fully automated
or semi-automated, triage-driven approach. The best performing architectures according to
relevant class precision and recall on tile level for quality control and diagnosis were selected
for saliency map generation.

Generation of saliency maps using Grad-CAM

Gradient-weighted Class Activation Mapping (Grad-CAM) class localisation maps are
created by visualising the gradients flowing into the final convolutional layer of the network,
just before the fully-connected layers [143]. Since convolutional layers contain class-specific
spatial information from the input image which is lost in the fully connected layers, this is the
optimal point for map generation. Unlike conventional class-activation maps (CAMs), Grad-
CAM has the benefit of not requiring any modifications to the existing model architecture, nor
does it require any retraining of the model [143]. In order to create the class-specific Grad-
CAM localisation map for class c, Lc

Grad-CAM, it is first necessary to compute the gradient
∂yc

∂Ak of the score yc for class c with respect to the feature map Ak of the final convolutional
layer [143]. Once ∂yc

∂Ak has been computed for each feature map k, these backward-flowing
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gradients are global-average-pooled across the width and height of the network (indexed by i
and j) to yield ac

k , the weights of neuron importance for each of the feature maps k [143]:

ac
k =

1
Z Â

i
Â

j

∂yc

∂Ak
i j

ac
k , the neuron-importance weights for each feature map k, therefore estimate the salience

of each feature map to the prediction of class c [143]. Note that Z corresponds to the number
of pixels in the respective feature map. Finally, to get class c-specific Grad-CAM localisation
map Lc

Grad-CAM, I take the ReLU of the weighted sum of the feature maps Ak, where each
feature map k’s weight is ac

k [143]:

Lc
Grad-CAM = ReLU

 

Â
k

ac
k Ak

!
(3.1)

Note that the ReLU operation is used to retain only the features which have a positive
influence on the prediction of class c, and that the resulting localisation map will be the same
size as the feature maps of the last convolutional layer [143].

I generated saliency maps for both models trained on H&E and TFF3, respectively. The
target layer from the VGG-16 architecture was the last feature layer (no. 30) before several
stacked fully connected layers. Tiles were randomly selected from the development subset.
For qualitative comparison between saliency maps and manual landmarks, I asked one
expert pathologist (Maria O’Donovan) to highlight important areas. Areas highlighted by the
pathologist provide a representation of features which a human observer uses for classification
of tile images. To investigate qualitative agreement of landmarks by the pathologist with
generated saliency maps, a side-by-side comparison of tile images and respective saliency
maps was prepared (fig. 3.4).

3.2.4 Calibration and evaluation of fully-automated, patient-level mod-
els for BE detection

Model inference on calibration and validation cohort

All six deep learning architectures trained separately for quality control and diagnosis tasks
were applied to pathology slides randomised to calibration and validation cohort. Whole-slide
images were tesselated on the fly as described above. Detection of tissue was achieved by
luminance thresholding of tile values in the LAB colour space. Tiles were forward-passed
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through the trained deep learning architectures and softmax probabilities were aggregated for
each tile position.

Aggregation of classifications on tile level to the patient level

I explored two different aggregation approaches based on propagation of the individual
tile-level classifications to patient-level classifications for quality control and diagnosis:
a fully automated approach which operates on the basis of a single operating point, and
a semi-automated, triage-driven approach which leverages two operating points. For the
former approach, performance was assessed using sensitivity and specificity; for the latter,
performance was assessed using an incremental substitution scheme with simultaneous
analysis of sensitivity and specificity. For both approaches, tile-level probabilities had to be
thresholded to obtain the number of positive tiles per slide for quality control and diagnosis.
In the following section, I describe how tile-level probabilities were thresholded and how
the operating points on the resulting numbers of positive tiles (quality control and diagnosis)
were then calibrated and evaluated as part of each approach.

Determination of tile-level probability thresholds

In order to generalise the tile-level probabilities to the number of positive tiles per patient,
I determined thresholds for each model and endpoint (quality control and diagnosis). The
probability threshold of individual tiles for quality control and diagnosis had to be determined,
then, the resulting number of positive tiles per threshold was assessed against the best ROC-
AUC on the calibration cohort (fig. 3.6, table 3.2).

To achieve the best-performing threshold for individual tile probabilities and subsequent
aggregation, I iterated over a range of tile thresholds on a fine grid from 0 to 1 (in 0.005 steps
and inclusive of 0.999, 0.9999, and 0.99999). For the quality control model on H&E, the
relevant class was gastric-type columnar epithelium. For the diagnosis model on TFF3, the
relevant class was TFF3-positive goblet cells.

In order to determine the resulting number of positive tiles per threshold, probability
thresholds for quality control were compared (ROC-AUC) to the pathologist ground truth
of H&E slide analysis. Probability thresholds for diagnosis were compared (ROC-AUC)
to endoscopy (confirmation of BE presence by endoscopist and IM on endoscopy biopsy
by pathologist) ground truth. This step was required to determine the optimal threshold for
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individual tile classification. This threshold was then used in the calibration and validation of
the fully automated and semi-automated, triage-driven model as described in the next section.

Calibration of fully automated model

All six deep learning architectures trained for quality control and diagnosis were applied to
the whole-slide images from the calibration cohort (see Model inference). The number of
positive tiles per sample for quality control and diagnosis was determined as described above.
To determine an adequate operating point for the fully automated patient-level model, ROC
analysis was performed on the number of detected tiles (quality control and diagnosis) per
patient. On the same set of patients, I calculated the performance by an expert pathologist. In
order to determine the ideal cut-off for number of detected tiles, I fixed the specificity of each
model to the performance of an expert pathologist on the calibration cohort. The resulting
operating point was then chosen for validation of the fully automated model in the validation
cohort. Tile-level thresholds which yielded the best sensitivity on the calibration cohort were
used for evaluating all approaches on the validation cohort. The best-performing architecture
(assessed by sensitivity) on the calibration cohort was considered the representative model
for application on the validation cohort. However, due to the simplicity of operating point
determination, the performance of all other architectures on the validation cohort was also
investigated.

Evaluation of fully automated model using ROC analysis

All six deep learning architectures trained for quality control and diagnosis were applied to
the whole-slide images from the validation cohort (see Model inference). The number of
positive tiles per sample for quality control and diagnosis was determined as described above.
Subsequently, the previously determined operating point (calibration) for each of the deep
learning architectures was applied. The binary results were then compared against ground
truth of the quality control and diagnosis models. For quality control on H&E, the results
were compared to the ground truth of the pathologist who was reading the H&E slide of the
Cytosponge test. For diagnosis on TFF3, the results were compared with endoscopy ground
truth (with confirmation of BE presence by endoscopist and IM on endoscopy biopsy by
pathologist). Sensitivities and specificities on the validation cohort were calculated for all
models with an additional presentation of ROCs for visualisation (table 3.3, fig. 3.7). For
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comparison with other approaches, performance metrics of the architecture selected during
calibration of the fully automated model were used.

3.2.5 Calibration and evaluation of semi-automated, patient-level mod-
els for BE detection

Calibration of triage-driven, semi-automated model

All six deep learning architectures trained for quality control and diagnosis were applied to
the whole-slide images from the calibration cohort (see Model inference). For calibration,
only the best model (according to ROC-AUC) was presented to two expert observers to
determine operating points. The number of positive tiles per sample for quality control and
diagnosis was determined as described above (fig. 3.9). The objective of this approach was a
more granular classification of patients into three classes for quality control and diagnosis
and subsequent stratification by different class combinations. Therefore, two operating points
were determined for each model, instead of one.

Both observers were presented with the number of detected tiles and relevant ground
truth (Cytosponge pathology and endoscopy) for quality control and diagnosis models. They
were instructed to choose two operating points for each task: First, an operating point which
optimises sensitivity with a low number of false positives. Second, an operating point which
separates the intermediate region of the first and second operating point from samples with
optimised specificity and a low number of false negatives. The resulting operating points
were then chosen for validation of the semi-automated, triage-driven model in the validation
cohort (fig. 3.8).

The two operating points for quality control and diagnosis resulted in three tiers per
framework and were labelled as follows: for quality control, samples above the first operating
point were to be considered as high confidence, samples between the first and second
operating point as low confidence, and samples below the second operating point as no
confidence. For diagnosis, samples above the first operating point were to be considered
as high confidence positive, samples between the first and second operating points as low
confidence equivocal, and samples below the second operating point as high confidence
negative. Eight triage classes (number 1 to 8) were composed by all possible combinations
of quality control and diagnosis classes. The combination (no confidence in quality and high
confidence in diagnosis) is likely artifactual and was therefore merged (with no confidence
in quality and equivocal in diagnosis) to form triage class 4. Two expert observers then
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ranked all eight classes from lowest to highest likelihood for patients having BE. They further
assigned a qualitative rank for priority of manual review based on the subjective difficulty to
review samples that are part of specific triage classes.

Evaluation of triage-driven model on internal validation cohort

The triage-driven, semi-automated model was evaluated by applying a cumulative substitution
scheme on the internal validation cohort. The base scenario for all cumulative substitutions
was the performance of the pathologists on the entire validation cohort. At every substitution,
the pathologists’ Cytosponge-TFF3 results were substituted with automated review in the
respective triage classes. Then, sensitivity, specificity, and proportion of patients substituted
with automated review were calculated and compared against the previous substitution steps.
The substitution scheme was applied starting from both ends of the triage class list. First,
class 1 was substituted with automated review, then classes 1 and 2, then classes 1, 2, and
3, and so on. Second, class 8 was substituted with automated review, then classes 8 and 7,
then classes 8, 7, and 6, and so on. I then analysed the sensitivity and specificity curves
for deviations from their previous values for each step in both applications of the scheme.
Classes which caused a drop in sensitivity or specificity on substitution were considered as
‘difficult’ and I retained manual review by a pathologist for associated samples. For each
of the difficult classes I then summed up the number of patients that fell into these classes
and divided by the total number of patient in the validation cohort. This ratio was to be
considered as the potential workload reduction which this substitution scheme could achieve
without notable loss in performance.

Simulation of cohort variation and impact on workload reduction

In order to assess workload reduction in cohorts with different compositions, I simulated
the distribution of patients within triage classes with varying BE prevalences and sample
confidences. Let P be a set of all patients with two subsets: Q ✓ P contains all patients
with BE and its complement R = P \Q contains all patients without BE. I count the pro-
portions of patients in each triage class in each of the sets P, Q, R as vectors cP, cQ and
cR, respectively. My simulation consists in re-weighting these vectors to reflect different
BE prevalences and sample confidences. For each element of a range of BE prevalences
(sprev = {0.00,0.01, ...,0.55}) I multiply cQ by s 2 sprev and cR by 1� s. At the same time,
for each element of a range of relative sample confidences (tconf = {�0.25,�0.24, ...,0.25})
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I shift proportions of cP between triage classes {1,3,4,5,6,7} and {2,8} by adding t 2 tconf

to one set of classes and subtracting it from the other. Reduction of workload (W ) at every
simulation step was defined as cP for classes 4, 5, and 6 over classes 1, 2, 3, 7, and 8:

W =
cP

4 + cP
5 + cP

6
cP

1 + cP
2 + cP

3 + cP
7 + cP

8

Evaluation of triage-driven model on external validation cohort

The triage-driven, semi-automated model was further evaluated applying it with frozen
model parameters on the external validation cohort. Processing of images was performed
as described on the internal validation cohort above. The trial from the data originates was
investigating real-world implementation of the Cytosponge device technology. Therefore,
endoscopy data endoscopy data was only available for positive Cytosponge patients and
those who had Barrett diagnosed at follow-up as a result of standard of care. This resulted in
a difference of available data as the study was designed for PPV instead of sensitivity and
specificity. The NPV was also calculated by using aggregated findings from the primary
trial endpoint. An analysis according to the presented substitution scheme was additionally
performed (fig. 3.12)

3.3 Results

3.3.1 Deep learning models achieve high performance for tile-level clas-
sifications

The first step of my approach is based on the tile-level detection of different classes of cells
relevant for quality control and diagnosis of BE. For model development and internal vali-
dation, I used 812 Cytosponge-TFF3 patient samples with paired pathology and endoscopy
data from the BEST2 clinical case-control study [75]. Samples were randomly divided
into training/development (n=100), calibration (n=187) and internal validation (n=525) sets
(fig. 3.1d). An additional independent dataset (n=1,519) from the BEST3 study was used for
external validation of the developed approach.

Training sets of larger size did not improve tile-level accuracy (fig. 3.2). Training,
calibration, and validation sets were kept separate. Endoscopic as well as Cytosponge
pathology diagnoses were only unblinded after tile-wise tissue classification models were
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Fig. 3.2 Differential increase of training partition size for ResNet-18. Training subset
refers to the relative proportion of the training partition used in the model training phase.
Development subset refers to the relative proportion of the training partition used in the model
development phase. The peak development weighted recall (a) and precision (b) correspond
to the best performing cohort for each training run. The size of the development set was fixed
at 15 patients. For each patient, an average of 3,500 tiles was used. For both H&E and TFF3
no substantial increase in performance metrics could be observed after a training subset size
of 50 patients. H&E benefited more from an increased number of patients than the TFF3
model. This difference is associated with the increased complexity of detecting different
tissue morphologies on H&E vs. brown goblet cells on TFF3.
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calibrated and validated, respectively. All training slides were tessellated prior to training:
For H&E I derived 193,734 tiles from 100 slides and for TFF3 I derived 235,932 tiles from
100 slides (based on the size of annotated areas, see Methods). All tiles were 200-by-200 µm
and all labels were taken from expert slide annotations.

For both quality control (H&E) and diagnostic (TFF3) tasks, I trained several state-of-
the-art networks (AlexNet [136], DenseNet [137], Inception v3 [138], ResNet-18 [139],
SqueezeNet [140], and VGG-16 [141]) and evaluated their performance on the development
datatset. Using individual tiles, I compared tile-level precision and recall for classifying
columnar epithelium using the presence of gastric-type cells (on H&E) and positive goblet
cells (on TFF3) (table 3.1, description in Methods): For gastric-type columnar epithelium,
VGG-16, DenseNet and Inception v3 achieved the highest recalls (0.950, 0.947, 0.940,
respectively) with consistent precisions (0.843, 0.865, 0.857). For goblet cells, VGG-16,
Inception v3, and ResNet-18 achieved the highest recalls (0.919, 0.919, 0.912) with consistent
precisions (0.856, 0.856, 0.827). Examples for whole slide images classified positive and
negative for quality control and diagnosis are shown in section 3.3.1a.

3.3.2 Saliency maps agree with pathologist criteria for classification of
tissue tiles

To understand which characteristics of the tile images were relevant to my models’ clas-
sifications, I generated saliency maps using Gradient-weighted Class Activation Mapping
(Grad-CAM) [143]. These maps highlight the local regions of an image most relevant to
a model’s identification of a particular class. I generated saliency maps for classes in one
H&E-based model (VGG-16) and one TFF3-based model (VGG-16) (section 3.3.1b). For the
gastric-type columnar epithelium class of the H&E-based model, the saliency maps highlight
gastric cells by both the linear organisation of their nuclei as well as the presence of a straight
border between the cells and the lumen. For the positive class of the TFF3-based model, I
found that the saliency maps highlighted the mucin-containing goblet cells that characterise
IM with high precision. In addition to the three representative examples in section 3.3.1b,
I compared landmarks selected by an expert pathologist with tile images and respective
saliency maps (fig. 3.4). The saliency maps confirm that the models learned features are
similar to those used by pathologists to identify different tissue classes.
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Hematoxylin & Eosin
Squamous cells Columnar epithelium

Trefoil factor 3

Pathology
tile image

Saliency
map

Overlay

positive goblet cells

Fig. 3.4 Comparison of pathologist landmarks with saliency maps extracted from VGG-
16 architectures. Additional examples of saliency maps for Hematoxylin & Eosin stain
(squamous cells and columnar epithelium) and Trefoil factor 3 (positive goblet cells). Land-
marks selected by an expert pathologist are shown as overlays with red borders on pathology
tile images. For all classes, there was visual agreement between highlighted areas by the
pathologist and saliency map activations.
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3.3.3 Fully automated approach shows suboptimal performance

Tile-level classifications were aggregated into patient-level classifications using tile counts
above thresholds determined by the specificity of expert pathologists on the calibration cohort
(Methods, table 3.2, fig. 3.5).

I then performed ROC analysis with matched Cytosponge pathology and endoscopy
ground truth on the internal validation cohort (section 3.3.1c-e).

First, the patient-level scores were compared against the binary Cytosponge-TFF3 ground
truth by the pathologist on the internal validation set. For quality control, VGG-16 ranked
highest for detecting columnar epithelium in H&E stains (ROC-AUC: 0.99 (CI 95%: 0.98
- 0.99)). SqueezeNet, the least complex architecture I trained, ranked lowest (ROC-AUC:
0.97 (CI 95%: 0.95 - 0.98), section 3.3.1c). For diagnosis, VGG-16 ranked highest for
detecting goblet cells in TFF3 stains (ROC-AUC: 0.97 (CI 95%: 0.96 - 0.99), section 3.3.1d).
Again, SqueezeNet ranked lowest (ROC-AUC: 0.94 (CI 95%: 0.92 - 0.96)). Confidence
intervals were derived by bootstrapping (Methods). Results for all architectures are presented
in table 3.3, and fig. 3.7a/b.

In summary, for both quality control and diagnosis in comparison to Cytosponge-TFF3
pathology ground truth, VGG-16 provided the highest performance, and SqueezeNet the
lowest.

Next, patient-level counts were compared to endoscopy ground truth for detecting BE
on the internal validation set (Methods). This ground truth was defined according to the
Prague criteria (Methods) with confirmed IM on endoscopy biopsies [57]. To calculate
sensitivity and specificity for the fully automated method on the internal validation cohort,
I used operating points determined on the calibration cohort (table 3.2). VGG-16 ranked
highest for detecting patients with BE from TFF3 stains (ROC-AUC: 0.88 (CI 95%: 0.85
- 0.91), Sensitivity: 72.62% (CI: 67.42% - 78.21%), Specificity: (93.13% (CI: 90.04% -
96.13%)), section 3.3.1e). SqueezeNet ranked lowest for detecting patients with BE from
TFF3 stains (ROC-AUC: 0.85 (CI 95%: 0.81 - 0.88), Sensitivity: 69.58% (CI: 63.92% -
75.52%), Specificity: 92.37% (88.47% - 95.52%), section 3.3.1e). For comparison, the
pathologists achieve a sensitivity of 81.7% (CI 95%: 77.4% - 86.5%) and a specificity of
92.7% (CI 95%: 89.6% - 95.6%). Performances of all architectures are presented in table 3.3,
and fig. 3.7c. In summary, results for the fully automated approach on the internal validation
cohort showed a loss of sensitivity of 9.1% for BE detection when compared to an expert
pathologist.
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Fig. 3.5 Performance of all deep learning architectures on the calibration cohort. (a)
ROC analysis of number of tiles containing columnnar epithelium on H&E compared with
pathologist ground truth from Cytosponge (b) ROC analysis of number of tiles containing
positive goblet cells on TFF3 compared with pathologist ground truth from Cytosponge (c)
ROC analysis of number of tiles containing positive goblet cells on TFF3 compared with
endoscopy (with confirmed IM) ground truth. A weak AUC dependency on architecture
complexity can be observed.
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Fig. 3.6 Determination of probability thresholds in order to obtain number of tiles.
Both plots show the AUC-ROC for individual probability thresholds (after softmax) which
are used to decide whether a tile falls into the relevant class. (a) AUC-ROC for quality control
(QC) ground truth determined by the pathologist compared with number of tiles containing
columnar epithelium at individual probability thresholds. (b) AUC-ROC for diagnosis ground
truth determined by the endoscopy (with confirmed IM on pathology) compared with number
of tiles containing positive goblet cells at individual probability thresholds.

3.3.4 Triage-driven approach selects patients for manual review

I then explored whether a different modelling approach based on established decision path-
ways could boost performance. I developed a triage-driven, semi-automated approach as
an alternative to the fully automated approach described above. Both approaches use the
same patient-level aggregations as input, but their outputs are different: the fully automated
approach tries to directly mimic pathology assessment by classifying patients as positive
or negative for BE. In contrast, the triage approach defines different quality and diagnostic
confidence classes to select challenging patient samples for manual review. Although it
cannot reduce workload as much as a fully automated approach, a triage approach keeps
sample stratification more interpretable and transparent.

I first selected deep learning architectures and defined cut-offs for different quality and
diagnostic confidence classes based on thresholds determined by two expert observers on the
calibration cohort (fig. 3.9, Methods).

For quality confidence classes, pathologists conclude that the sponge reached the stomach
if they observe columnar epithelial groups [73, 75]. I encoded these subjective metrics in a
quantitative scheme where the number of tiles detected with gastric-type columnar epithelium
on H&E were classified as no confidence, low confidence, or high confidence (fig. 3.9a,
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Fig. 3.7 Performance of all deep learning architectures on the validation cohort. (a)
ROC analysis of number of tiles containing columnnar epithelium on H&E compared with
pathologist ground truth from Cytosponge (b) ROC analysis of number of tiles containing
positive goblet cells on TFF3 compared with pathologist ground truth from Cytosponge (c)
ROC analysis of number of tiles containing positive goblet cells on TFF3 compared with
endoscopy (with confirmed IM) ground truth. As in the calibration cohort, a weak AUC
dependency on architecture complexity can be observed.
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Fig. 3.8 Application of quality control and diagnostic confidence class scheme to in-
ternal validation cohort. a Quality ground truth by pathologist from Cytosponge (top)
compared with number of detected columnar epithelium (CE) tiles on H&E detected by
VGG-16 (bottom). b Diagnosis ground truth by pathologist from Cytosponge (top), En-
doscopy (with confirmed IM on biopsy) ground truth (middle) compared with number of
detected TFF3-positive tiles on TFF3 detected by ResNet-18 (bottom) / eqv. = equivocal.
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Fig. 3.9 Application of quality control and diagnostic confidence class scheme to cali-
bration cohort. a Quality ground truth by pathologist from Cytosponge (top) compared with
number of detected columnar epithelium (CE) tiles on H&E detected by VGG-16 (bottom).
b Diagnosis ground truth by pathologist from Cytosponge (top), Endoscopy (with confirmed
IM on biopsy) ground truth (middle) compared with number of detected TFF3-positive tiles
on TFF3 detected by ResNet-18 (bottom) / eqv. = equivocal.
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table 3.4). For diagnostic confidence classes, the number of tiles detected with TFF3-positive
goblet cells were classified as high confidence negative, low confidence equivocal, or high
confidence positive (fig. 3.9b, table 3.4). On the internal validation cohort, I observed a visual
agreement between these confidence classes and pathology and endoscopy ground truths
(fig. 3.8, table 3.5).

I then combined the quality and diagnostic classes into eight triage classes of varying
priority for manual review (fig. 3.10a). The relative priority of each class was determined
by expert pathologists: Cases with low confidence in sample quality (none or few columnar
epithelium detected on H&E) or low confidence in diagnosis (few goblet cells detected on
TFF3) should be prioritised for human expert assessment over cases with high-confidence
positive or negative evidence. In my internal validation cohort, I find that only 13.0% of
patients fall into the triage classes with high priority (4 and 5), while 87.0% fall into the other
six classes (fig. 3.10a).

I next asked which classes can be substituted by automated review while retaining the
accuracy of full manual review by a human pathologist (sensitivity: 81.7%; specificity:
92.7%). I applied a cumulative substitution scheme and started by substituting class 1
with automated review, then classes 1 and 2, then classes 1, 2, and 3, and so on. In the
validation cohort, I found that sensitivity and specificity remain stable if classes 1, 2, and 3
are substituted, but decrease with the substitution of class 4, 5, and 6 (fig. 3.10b). Repeating
this procedure starting with class 8 shows that sensitivity and specificity are stable if classes 8
or 7 are substituted, but decrease with the substitution of classes 6, 5, and 4 (fig. 3.10c). These
results show that five of the eight classes (1, 2, 3, 7, 8) can be substituted by automated review
while three classes (4, 5, 6) should be manually reviewed by a pathologist. This substitution
scheme would result in similar performance (sensitivity: 82.5% (CI 95%: 77.3% - 87.2%);
specificity: 92.7% (CI 95%: 89.6% - 95.9%)) as fully manual review by a pathologist. These
classes cover the majority of patients (66.3% (CI 95%: 62.7% - 70.1%) in validation cohort)
and triage-driven, semi automated review would thus save 66% of the pathologists’ workload
(Methods) by enabling them to focus on difficult cases while leaving easy cases for automated
review.
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Priority for
manual review No. Quality control Diagnosis Automated result Validation

1 No confidence High confidence negative Negative 33 (6.1%)

2 High confidence High confidence negative Negative 59 (11.2%)

3 Low confidence High confidence negative Negative 54 (10.3%)

4 No confidence Low confidence equivocal* Positive 23 (4.4%)

5 Low confidence Low confidence equivocal Positive 45 (8.6%)

6 High confidence Low confidence equivocal Positive 109 (20.8%)

7 Low confidence High confidence positive Positive 17 (3.2%)

8 High confidence High confidence positive Positive 186 (35.4%)

525 in total

Fully manual review
by pathologist

Fully manual review
by pathologist

Fully automated review

1 1, 2 1, 2, 3 1, 2, 3, 4 1, 2, 3, 4, 5 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6, 7 1, 2, 3, 4, 5, 6, 7, 8

8 8,7 8, 7, 6 8, 7, 6, 5 8, 7, 6, 5, 4 8, 7, 6, 5, 4, 3 8, 7, 6, 5, 4, 3, 2 8, 7, 6, 5, 4, 3, 2, 1

Cumulative substitution of classes with automated review

Fully automated reviewCumulative substitution of classes with automated review

Fig. 3.10 Triage-driven approach with incremental triage class substitution scheme on
internal validation set. a Table of quality control and diagnosis classes. Each class has
been assigned a qualitative priority for manual review. Column ‘Automated result’ refers to
the label a sample would be assigned if all samples of this class were automatically reviewed.
Asterisk (*): includes combination of no confidence (quality control) and high confidence
positive (diagnosis) despite minimal likelihood of occurrence. b Cumulative substitution
scheme starting with fully manual review, followed by substitution with automated review of
class no. 1, then 1 and 2, etc. Red rectangle indicates a drop of performance at substitution
stage. c Cumulative substitution scheme starting with fully manual review, followed by
substitution with automated review of class no. 8, then 8 and 7, etc. Red rectangle indicates
a drop of performance at substitution stage.
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3.3.5 Simulation of varying cohort composition corroborates reduc-
tion in expected workload

My case-control cohort is not representative of a real-world population eligible for Cytosponge-
TFF3 testing. In my internal validation set I observed a disease prevalence of 50.0%, while
the prevalence expected in a real-world population with GERD symptoms ranges from 3.0%
to 7.5% [74, 144–146]. Additionally, the allocation of samples to triage classes depends di-
rectly on the amount of sampled cellular material and the resulting sample confidence, which
can vary widely and might improve with future refinements of the device administration
procedure.

To understand how my results generalize, I devised a simulation approach to vary how
many samples have BE and how many samples are allocated to high/low confidence triage
classes (Methods). To simulate the change in workload over a range of possible prevalences
of BE, I first determined the proportion of patients with and without BE in each triage class
and then weighted each vector of proportions by a new prevalence ranging from 0 to 55%. To
simulate the effect that relative changes in overall sample confidence have on the workload, I
first determined the proportion of patients in triage classes with highest sample confidence
(determined by quality control and diagnostic class: 2 and 8) and lower sample confidence
(1, 3, 4, 5, 6, and 7). I then modified the proportion of high confidence samples and inversely
adapted the proportion of lower confidence samples within a range from -25% to 25%.

Over a fine grid of varying disease prevalence and changes in sample confidence, I
observed a negative impact of decreasing cohort BE prevalence and a positive impact of
sample confidence on the potential workload reduction (fig. 3.11a). According to this
simulation, in a realistic cohort with a BE prevalence of 7%, I would still be able to reduce
the pathology workload by 57%. In order to retain the same workload reduction I observed
in the validation cohort, the proportion of samples with high confidence in a realistic cohort
would need to be increased by 15%.

3.3.6 External validation of triage-driven approach

Finally, I tested the validity of my results and the extrapolation in the simulation study in an
independent test set of 3,038 slides from 1,519 patients from from 109 primary care sites in
the UK (BEST3 trial) [104]. All slides were processed in the same way and with the same
model parameters as the BEST2 validation cohort (fig. 3.12, table 3.6). Following the method
described in the previous section, I used manual pathologist reviews for samples that fell into
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Fig. 3.11 Triage model applied to external validation cohort and simulation of cohort
variation. Simulation of changes in cohort prevalence of BE and sample confidence with
impact on workload reduction. Every contour line (blue) represents the same level of
workload reduction as indicated by the percentages. Solid black lines indicate the workload
reduction of the validation cohort. The dotted yellow line illustrates the workload reduction
of a realistic primary care referral cohort (with 7% prevalence) with no change in sample
confidence classes (lower yellow marker) and the confidence change required to match the
same amount of workload reduction as in the validation cohort (upper yellow marker). The
results from the external validation cohort are shown in red.
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triage classes 4, 5 and 6. In the BEST3 trial, endoscopy data was only available for positive
Cytosponge patients and those who had Barrett diagnosed at follow-up as a result of standard
of care. In addition, the trial was not designed to investigate sensitivity or specificity but
positive predictive value (PPV) instead. I also calculated the negative predictive value (NPV)
based on findings aggregated through the primary endpoint analysis (coded BE diagnosis
in patient records). For this external validation cohort, fully manual review by pathologists
resulted in a PPV of 56.08% and NPV of 99.02%. After application of the triage-driven,
semi-automated approach the PPV of the overall cohort was 53.37% and the NPV 99.39%
(fig. 3.12).
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Fig. 3.12 Performance of semi-automated, triage-driven model on external validation
cohort. a Cumulative substitution scheme starting with fully manual review, followed by
substitution with automated review of class no. 1, then 1 and 2, etc. b Cumulative substitution
scheme starting with fully manual review, followed by substitution with automated review of
class no. 8, then 8 and 7, etc.

Using this approach in a realistic primary care setting would have resulted in the following
key results: In total 872 patients out of 1,519 patients (57.41%) would have been reviewed
automatically while 42.59% would have had to be reviewed manually. This agrees with the
simulated, expected value (fig. 3.11) of workload reduction given the prevalence (7.8%) of
BE in this external validation cohort. Six additional patients would have been diagnosed
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with BE while being missed by the pathologist at the cost of 19 additional endoscopies when
compared to fully manual review. One patient would have received an automated negative
diagnosis even though the pathologist scored it as positive with BE finding at endoscopy.
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3.4 Discussion

Summary

I have presented a triage-driven approach that analyses samples of the Cytosponge-TFF3 test
using deep learning for the early detection of oesophageal cancer. My approach combines
quality control and diagnostic metrics of pathology slides to stratify patients into 8 triage
classes which determine whether a patient sample requires manual or if automated review
would suffice.

Benefits of the semi-automated, triage-driven approach

For the analysis of Cytosponge-TFF3 samples, my triaging approach has several benefits: I
am able to substantially reduce workload and match the sensitivity and specificity of expert
pathologists. In my internal validation cohort, fully manual review by a pathologist achieves
81.7% sensitivity and 92.7% specificity. In a fully automated approach, I observed a sensi-
tivity of 72.6% and a specificity of 93.1%. With my triage-driven approach, I demonstrate
that up to 66% of cases can be reviewed automatically while achieving a sensitivity of 82.5%
and specificity of 92.7%, a performance marginally superior to fully manual review by
pathologists. Further, in an external validation cohort from a large randomised controlled
trial I observed a PPV of 53.37% and NPV of 99.39%. For comparison, pathologist review
resulted in very similar values with a PPV of 56.08% and NPV of 99.02%. While a small
number of additional endoscopies would have been triggered, they would have also yielded
more positive diagnoses. In this more realistic cohort, 57.41% workload for the pathologists
would have been reduced. These results (fig. 3.11) have several implications: First, a fully
automated review would reduce sensitivity (at fixed specificity) and therefore suffer from a
loss of clinical utility. Second, while a triage-driven approach is not able to reduce workload
as much as a fully automated approach, the described triage classes provide a logical way for
stage-wise clinical adoption and performance testing in routine practice.

Another benefit of my approach is that I was able to directly adopt heuristics applied by
pathologists familiar with Cytosponge-TFF3 samples in my algorithmic design process. As a
result, my approach demonstrates traceability and interpretability [91]: First, I mimicked the
screening process of samples observed by expert pathologists by replicating their decision-
making scheme (fig. 3.1c). Second, the saliency maps I generated from deep learning models
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to visualize learned features in the pathology images show strong agreement with manual
landmarks placed by pathologists (fig. 3.4).

As a further benefit, my triage approach achieves strong performance from only 287
samples for training and calibration by incorporating informative prior knowledge about
biological and clinical test characteristics, followed by rigorous testing in independent
cohorts. This performance compares favorably to previous fully automated approaches
reporting expert-level performance that relied on very large datasets with training set sizes
ranging from 10,000 to more than 100,000 examples [100, 147] - dataset sizes that cannot be
expected for most applications.

Finally, a quantitative analysis of workload reduction across varying disease prevalences
and sample confidences shows that my approach is expected to generalize well to a real-world
population. A more general population would have a lower disease prevalence than a case-
control study, which would cause a larger workload due to the distribution of BE/non-BE
patients within the individual triage classes. I was further able to confirm this simulation with
an external validation cohort. These findings provide realistic expectations of how clinical
decision-making systems are affected by bias in cohort composition.

Limitations of the methodology and technical considerations

My approach has several limitations: First, while samples used in this work were generated
at multiple centres they were processed at only a single site (Addenbrookes Hospital, Cam-
bridge, UK). Thus, my data might not fully reflect the variation in histology sectioning and
staining across different laboratories [148]. I compensated for this limitation through data
augmentation by spatial and color profile distortion. Additionally, my data are not too far
from future real-world applications, because for large-scale rollout of the Cytosponge test a
centralised laboratory is envisaged to ensure processing as well as analysis with proper quality
assurance. In future work, I plan to test whether the superiority of the triage-driven approach
over fully manual pathologist review will generalize by incorporating multi-centre data from
ongoing and future Cytosponge-TFF3 studies to evaluate this effect more extensively.

Second, the underlying machine learning model could be further optimized. For example,
instead of using a transfer learning model based on pre-training with a primary dataset,
one could train a model from scratch, which has proven to improve results in some CNN
applications [149]. In addition, the tile size needs further investigation because it determines
the receptive field in which the CNNs build feature representations of images. My tile size
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was chosen by expert pathologists to capture relevant structures like columnar epithelium and
goblet cells. Although good performance was observed, a refined multi-scale classification
with several magnifications might be necessary to achieve better classification of tissue types.
Further improvements might be realised from using attention-based models to reduce the
laborious annotation steps required for expanding the training data [101] or aggregating tiles
to patient level with more sophisticated approaches based on sequence models [100].

Third, a major determinant of workload reduction is the quality and therefore diagnostic
confidence attributed to a sample. However, what determines the amount of columnar material
sampled is unknown. One hypothesis is that the strength of oesophageal peristalsis, which
can be influenced by variations in device ingestion, may be associated with the likelihood of
the Cytosponge reaching the stomach. We plan to investigate determinants of sample quality
by comparing the data generated by the trained deep learning models with patient and device
administrator profiles.

Conclusion

In summary, my triage approach differs from previous applications of deep learning to
medical images [95, 100] which used fully automated approaches on extremely large datasets.
I show that for a modest dataset size, leveraging existing heuristics of pathologist decision-
making in a triage-based approach is a powerful alternative to fully automated classification
models, which generalises well to an independent validation cohort. These results lay the
foundation for tailored, semi-automated decision support systems embedded in clinical
workflows.
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3.5 Supplementary tables

AlexNet DenseNet Inception ResNet SqueezeNet VGG
H&E

Overall accuracy 0.977 0.990 0.989 0.984 0.959 0.988
Precision

Background 0.999 0.999 0.999 0.999 0.999 0.999
CE (gastric type) 0.791 0.865 0.857 0.807 0.763 0.843

CE (respiratory type) 0.389 0.750 0.895 0.667 0.241 0.741
Intestinal Metaplasia 0.393 0.688 0.609 0.518 0.215 0.640

Recall
Background 0.984 0.995 0.996 0.991 0.963 0.995

CE (gastric type) 0.893 0.947 0.940 0.921 0.935 0.950
CE (respiratory type) 0.802 0.779 0.588 0.794 0.832 0.634
Intestinal Metaplasia 0.606 0.610 0.629 0.606 0.643 0.568
TFF3

Overall accuracy 0.996 0.999 0.998 0.998 0.999 0.998
Precision

Positive 0.752 0.903 0.856 0.827 0.589 0.856
Equivocal 0.233 0.513 0.533 0.385 0.133 0.404
Negative 1.000 1.000 1.000 1.000 1.000 1.000

Recall
Positive 0.912 0.890 0.919 0.912 0.897 0.919

Equivocal 0.465 0.465 0.372 0.465 0.767 0.442
Negative 0.997 1.000 1.000 0.999 0.991 0.999

Table 3.1 Tile-level precision and recall for all classes from H&E and TFF3 models.
This data is derived from the tiles in the development set. (DenseNet = DenseNet-121,
Inception = Inception v3, ResNet = ResNet-18, VGG = VGG-16). The highest value(s) per
row is/are highlighted in bold.

87



Triage-driven diagnosis of Barrett Oesophagus using deep learning

AlexNet DenseNet Inception ResNet SqueezeNet VGG
Quality control
Probability threshold 0.97 0.96 0.995 0.96 0.85 0.99

AUC 0.985 0.984 0.986 0.986 0.980 0.988
Diagnosis
Probability threshold 0.9999 0.87 0.655 0.93 0.99999 0.93

AUC 0.80 0.82 0.83 0.83 0.80 0.83
Sensitivity at fixed

specificity (91.57%) 63.4% 62.5% 61.5% 63.5% 60.6% 64.4%

Tile number threshold 3 8 10 9 4 6
Table 3.2 Individual probability threshold calibration with associated performance
based on differential ROC analysis for quality control and diagnosis. The AUC for
quality control relates to the performance on the calibration cohort at the given probability
threshold for individual tiles containing columnar epithelium on H&E. The AUC for diagno-
sis relates to the performance on the calibration cohort at the given probability threshold for
individual tiles containing positive goblet cells on TFF3. Sensitivity is based on a fixed value
of specificity derived from the pathologist performance on the calibration cohort. The tile
number threshold is the resulting cutoff from the fixed specificity.
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AUC (CI 95%)
vs. pathologist

AUC (CI 95%)
vs. endoscopy

Sensitivity
(CI 95%)

Specificity

(CI 95%)
Quality control

AlexNet 0.98 (0.97-0.99) n/a n/a n/a
DenseNet 0.98 (0.97-0.99) n/a n/a n/a

Inception v3 0.98 (0.97-0.99) n/a n/a n/a
ResNet-18 0.97 (0.96-0.99) n/a n/a n/a

SqueezeNet 0.97 (0.95-0.98) n/a n/a n/a
VGG-16 0.99 (0.98-0.99) n/a n/a n/a

Diagnosis

Pathologist n/a n/a 81.75%
(76.67%-85.92%)

92.75%
(89.37%-95.51%)

AlexNet 0.96 (0.94-0.98) 0.86 (0.83-0.89) 72.24%
(66.98%-77.37%)

89.70%
(85.80%-92.97%)

DenseNet 0.97 (0.96-0.99) 0.89 (0.86-0.91) 70.34%
(64.84%-76.24%)

92.75%
(89.84%-95.85%)

Inception v3 0.97 (0.96-0.99) 0.88 (0.85-0.91) 69.96%
(64.71%-75.65%)

93.13%
(89.74%-96.03%)

ResNet-18 0.97 (0.95-0.98) 0.88 (0.85-0.91) 72.24%
(66.67%-77.18%)

91.22%
(87.72%-94.64%)

SqueezeNet 0.94 (0.92-0.96) 0.85 (0.82-0.88) 69.58%
(63.59%-74.54%)

92.37%
(88.85%-95.42%)

VGG-16 0.97 (0.96-0.99) 0.88 (0.85-0.91) 72.62%
(66.72%-77.64%)

93.13%
(89.75%-96.05%)

Table 3.3 Performance of all architectures after application on the validation cohort.
Quality control models relied on pathologist calls on sample quality. Sensitivities or specifici-
ties were not determined due to irrelevance in the fully automated model approach. Diagnosis
models relied on thresholds determined on the calibration cohort.
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Quality classes No confidence Low confidence High confidence
No. of patients 22 27 138

Proportion 11.8% 14.4% 73.8%
QC positive (path) 0 9 137
QC negative (path) 22 18 1

Diagnostic classes High conf. negative Low conf. equivocal High conf. positive
No. of patients 56 59 72

Proportion 30.0% 31.5% 38.5%
TFF3 positive (path) 1 10 71
TFF3 negative (path) 55 49 1

Barrett oesophagus 12 26 66
No Barrett oesophagus 44 33 6

Table 3.4 Characteristics of patients in quality control and diagnosis classes from cali-
bration cohort. For each of the three quality control and diagnosis classes, the number of
patients within the class and the paired ground truth is shown.

Quality classes No confidence Low confidence High confidence
No. of patients 55 116 354

Proportion 10.5% 22.1% 67.4
QC positive (path) 0 35 350
QC negative (path) 55 81 4

Diagnostic classes High conf. negative Low conf. equivocal High conf. positive
No. of patients 145 177 203

Proportion 27.6% 33.7% 38.7%
TFF3 positive (path) 4 33 197
TFF3 negative (path) 141 144 6

Barrett oesophagus 18 61 184
No Barrett oesophagus 127 116 19

Table 3.5 Characteristics of patients in quality control and diagnosis classes from vali-
dation cohort. For each of the three quality control and diagnosis classes, the number of
patients within the class and the paired ground truth is shown.

90



3.5 Supplementary tables

Quality classes No confidence Low confidence High confidence
No. of patients 107 912 500

Proportion 7.1% 60.0% 32.9
QC positive (path) 38 733 350
QC negative (path) 69 179 4

Diagnostic classes High conf. negative Low conf. equivocal High conf. positive
No. of patients 747 646 126
Proportion 49.2% 42.5% 8.3%
TFF3 positive (path) 1 83 105
TFF3 negative (path) 746 563 21
Barrett oesophagus 5 38 76
No Barrett oesophagus 742 608 50

Table 3.6 Characteristics of patients in quality control and diagnosis classes from ex-
ternal validation cohort. For each of the three quality control and diagnosis classes, the
number of patients within the class and the paired ground truth is shown.
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Chapter 4

Discussion

The two main objectives of my PhD were to investigate clinical and technical aspects of
the Cytosponge-TFF3 test with a focus on requirements for translating the technology into
clinical practice. The Cytosponge-TFF3 technology provides a tool for the early detection of
Barrett oesophagus, a precursor lesion for oesophageal adenocarcinoma. To better understand
the efficacy of the diagnostic test I investigated its performance compared to usual care in
a large randomised controlled trial in primary care (chapter 2). Furthermore, I identified,
conceptualised, and developed an approach to support the scalability of the technology by
using machine learning (chapter 3). This triage-driven approach enables equivocal samples
to be presented to a pathologist for review while unequivocal samples only need to undergo
automated review.

4.1 Approaches for early detection of oesophageal cancer

Early detection of cancer has developed into an important field in oncology over the last
decades [150]. These developments particularly apply to healthy and high-risk patient popu-
lations where earlier detection of cancer or pre-malignant lesions comes with an opportunity
for treatment with curative intent (section 1.1). A common theme amongst cancers with
implemented screening programmes is that they are usually characterised by a high incidence
and/or prevalence. They also have a particular tumour biology that enables early interven-
tion due to the presence of pre-malignant or gradually progressing lesions. A significant
implication of these early interventions is the health economic benefit which comes from
reducing the burden on the healthcare system by lowering the prevalence of late-stage disease.
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In recent decades, a number of technologies were developed which are geared towards the
earlier detection of cancer (section 1.1).

For oesophageal cancer in particular, minimally invasive sampling gained significant
traction with the development of balloon-based sampling and sponge-on-string devices
(sections 1.2 and 1.3). The sponge-on-string device with the most advanced level of evidence
is Cytosponge-TFF3. Notable studies include BEST1 (cohort study) and BEST2 (case-
control study). Both of these studies have a particular focus on diagnostic performance,
safety, and acceptability with a direct comparison to OGD as gold standard. A key question
raised by promising results of these two studies was whether, in a real-world setting, the
detection of BE can be increased by offering a Cytosponge test to eligible patients with
GERD in primary care. The direct comparator would be usual care which, for patients
with GERD, refers to the prescription of proton pump inhibitors (PPI), lifestyle monitoring
and potential endoscopy referral. This was assessed as a primary endpoint in BEST3, a
multicentre, pragmatic, randomised controlled trial (chapter 2).

4.2 Clinical evidence base for Cytosponge-TFF3

The BEST3 study found that an offer of Cytosponge-TFF3 to patients on anti-GERD medi-
cation can increase the rate of detection in excess of 10-fold when compared to usual care.
We further observed a stage shift in which multiple patients in the intervention arm were
diagnosed with dysplasia or cancer and were treatable with curative intent. In the usual care
arm, detected cancers were more advanced with a prognosis generally involving palliative
care. Out of 6,834 patients in the intervention arm of the trial, 2,679 (39%) expressed interest,
and 1,654 (24%) underwent the procedure. The low uptake is hypothesised to be related to
how patients were invited into the study. Patients received invitation by letter which could
have potentially discouraged them from participating when compared to a direct, personal
invitation by their GP. This uptake-determining factor is now being investigated as part of the
DELTA project [151], a publicly funded project with a consortium of academic and industry
partners which conducts real-world implementation pilot studies for Cytosponge-TFF3.

Side effects of the Cytosponge-TFF3 procedure were limited to a small number of patients
(63 out of 1,654, 4%) indicating they had a sore throat post procedure. Other side effects
included dyspepsia and oesophageal/gastric pain and were in line with findings in previous
studies [69]. Patients rated the Cytosponge test as acceptable with a median score of 9 out of
10.
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The PPV of patients being diagnosed with Barrett oesophagus (of any length) after a
positive Cytosponge-TFF3 test was 59% (121 out of 221 patients). This is a remarkable
improvement in performance when compared to a simulated PPV of 24.3% on the basis of 3%
BE prevalence from a previous study [75]. The difference with respect to the simulated PPV
is the slightly higher BE prevalence in the BEST3 patient population but also an increased
sensitivity due to the BEST2 study relying on an ITT analysis where repeat tests were not
included. Additionally, we diagnosed intestinal metaplasia of the gastro-oesophageal junction
and/or gastric cardia in 33 (15%) out of the 221 patients. Recently reviewed guidelines
suggest that there might be clinical significance of gastric IM for development of gastric
cancer, however, further evidence is needed to conclude whether patients wit limited extent
of IM should undergo regular surveillance. A more extensive discussion of this matter can be
found in chapter 2, section 2.4.

Comparability to other minimally invasive sampling technologies on the basis of the
BEST3 results is limited due to the type of studies conducted for these technologies so far.
Relevant trials which will provide diagnostic accuracy in larger patient populations are ongo-
ing and likely to conclude in 2022 (EsoGuard, ClinicalTrials.gov Identifier: NCT04293458)
and 2025 (EsophaCap, ClinicalTrials.gov Identifier: NCT04214119). Despite the capability
of Cytosponge-TFF3 to pick up short and long BE segments, a resulting question is how
these patients should be followed up if diagnosed. Risk stratification biomarkers for BE
have been explored to identify patients at higher risk of progression to dysplasia or cancer
[126, 152, 153]. These biomarkers will aid to identify BE lesions with a higher risk of
progression so these patients can be prioritised for subsequent endoscopy.

At time of submission of this thesis, this is of particular relevance as the COVID-19
pandemic has put severe pressure on endoscopy services with an over 30% reduction in diag-
nostic endoscopies for the first quarter of 2020 in England, UK [154]. As a response to this
crisis, a refined biomarker panel based on atypia screening and p53 immunohistochemistry
similar to Ross-Innes et al. [126] was used by di Pietro et al. [154] to prioritise patients on
waiting lists for upper GI endoscopies. The results are encouraging and are currently being
validated in a nested case-control study to generate further evidence. However, the patient
population for the implementation of such approaches needs to be strictly monitored in order
to avoid application of the technology outside its current evidence base. This particularly
applies to patients who present with moderate to severe symptoms of dysphagia where an
urgent endoscopy should be prioritised over a Cytosponge-TFF3 test.
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In the BEST3 study, the selection of the ideal target population for Cytosponge-TFF3
testing was limited to the following characteristics: age of 50 years or older, on acid-
suppressant for more than 6 months, and no endoscopy procedure within the past 5 years.
For future refinements of this population, it should be considered to include other risk factors
such as gender, BMI, extended prescription history, and other potential risk factors. Various
approaches to enriching the population for testing are currently explored in collaboration
with the University of Oxford as part of the DELTA project [151].

An important limitation of the Cytosponge test is that in a small fraction of patients the
Cytosponge capsule fails to reach the stomach and therefore the sample contains few or no
gastric columnar epithelium. The consequence is a low-confidence result which was the
case in 150 (9%) out of 1,654 patients. A correlation between the instructions for the device
administrator and the sample quality has been observed with multiple reports indicating
that the way in which the capsule is swallowed (larger vs smaller sips of water) impacts the
oesophageal peristalsis of the patient and therefore the passage into the stomach. A re-test in
these patients results in additional cost and work is underway to investigate means to reduce
the observed low-confidence rate and reduce potential distress for the patient.

In summary, I have identified important performance characteristics of the Cytosponge-
TFF3 technology for clinical implementation and aspects for improvements of the tech-
nology’s status quo which are now being investigated as part of the DELTA real-world
implementation study [151].

4.3 Pathology assessment of oesophageal cells samples

In a population with a low prevalence of BE, most patients are expected to have a TFF3-
negative test result. Therefore, most samples will have no significant clinical finding while
they will consume a substantial amount of time for pathologist review whereas a number
of patients will produce a positive test which will require confirmation via endoscopy. In
addition, a smaller number of patients will have an equivoical test results for which the
pathologist requires additional time to inspect the H&E and TFF3 sections.

The BEST3 study, just like previous studies, was based on centralised testing of the
oesophageal cell samples which enabled pragmatic quality assurance of the laboratory
process and pathologist screening. Unpublished evidence from commercial studies (CASE1
and CASE2) have shown that lack of consistent sample preparation and interpretation of
the Cytosponge-TFF3 test can lead to highly discrepant results with a significant effect on
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diagnostic performance. The primary cause for these results is that both of these studies
relied on testing in individual or multiple laboratories without adequate quality assurance
procedures in place. Given the laboratory procedure for clot generation and the pathologist
review which requires training and regular quality assurance, a centralised approach for
testing is envisaged in order to ensure maximal clinical utility for patients undergoing the
Cytosponge test.

At present, the Cytosponge-TFF3 test relies on review by a pathologist of microscopy
slides with H&E and TFF3 stains. While the diagnostic concordance was shown to be high
in a previous study [75] and double reporting will not be required for most samples, the
anticipated adoption of the test technology demands for more scalable approaches due to the
limited number and capacity of available GI pathologists. This is further exacerbated by the
fact that, in comparison to endoscopic biopsies, Cytosponge sections are significantly larger
and therefore require more screening time. Additional aspects of the screening procedure
is the careful analysis for the presence of gastric-type columnar epithelium as referred to
in section 4.2. While the presence of gastric-type columnar epithelium indicates that the
Cytosponge has reached the stomach, respiratory-type columnar epithelium can also be
present in the cell samples. Especially during screening of TFF3-positive samples, it has to
be confirmed that the TFF3 overexpression does not come from respiratory-type columnar
epithelium as occasionally observed in normal and inflamed airways. If TFF3 overexpression
is observed, it is recommended to carefully inspect the adjacent H&E section in order to
classify the morphology of the columnar epithelium as gastric or respiratory type [73].
Overcalling of Cytosponge-TFF3 samples is important to monitor as it would severely impair
the specificity of the test which is essential for its use as a targeted screening tool.

The pattern in the distribution of diagnostic results forms the basis of a key test character-
istic which can be exploited for accelerating the screening process. As introduced in chapter 1,
section 1.3, I have identified a clear need for high-throughput approaches which can support
the screening of Cytosponge-TFF3 by leveraging the associated screening heuristic.

4.4 High-throughput approaches for Cytosponge-TFF3

In order to tackle the need of a pathology assessment tool for workload reduction, I developed
a comprehensive approach to (semi-)automate the analysis of Cytosponge-TFF3 samples. In
this work, two methods have been presented: First, an automated approach which substitutes
the pathologist by generating automated results for all samples. Second, a semi-automated
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approach which combines quality control and diagnostic metrics of individual samples into
a triage class which determines whether a sample should be reviewed by a pathologist or
can be scored in an automated way. This approach enables pathologists to focus only on
equivocal cases, substantially reducing their overall workload.

It is important to highlight that a loss of sensitivity, as demonstrated by the fully-
automated model, would have a substantial impact on the clinical utility of the diagnostic
test. This particularly applies to a targeted screening test such as Cytosponge-TFF3 which
will likely be applied to large patient populations. A fully automated approach in this setting
would result in reduced health economic benefit. The shortcomings of the fully-automated
model can be resolved by the semi-automated model which avoids the automated scoring
of equivocal patient samples and flags them for pathologist review. Due to the internal
structure of the triage-driven, semi-automated model it would also be possible to pursue
clinical implementation by initially only substituting a lower number of triage classes with
automated review. A key advantage of such an approach would be the opportunity to closely
audit the technical behaviour and clinical consequences of the model in an applied setting.

The key finding of chapter 3 was the semi-automated, triage-driven model as it resulted
in superior sensitivity and specificity than the fully-automated model. The fully automated
model showed a reduced sensitivity of 9.1% (at fixed specificity) on the internal validation
cohort whereas the semi-automated model demonstrated a marginal increase in sensitivity
(0.8%) when compared to pathologists while reducing their workload by 66%. The triage-
driven model was applied to an external validation cohort (BEST3) with a small loss of
2.71% in PPV and 0.37% in NPV. Due to the variation in cohort composition (i.e. difference
in BE prevalence), the workload for the pathologist would have been reduced by 57%.

The triage-driven, semi-automated model was developed with direct involvement of ex-
perienced cytopathologists. This is essential for the development of clinical decision support
systems as the lack of human involvement often causes issues in addressing the appropriate
clinical questions which results in implementation failures [155]. Key characteristics of my
system were determined by close observation of pathologists carrying out the screening of
Cytosponge samples. This process enabled the identification of the distinct quality control
and diagnostic processes which were then developed into a metric on which the triage classes
are based. However, as a consequence of the close pathologist involvement, it was clear that
the developed models have to be interpretable to build confidence with prospective imple-
mentation stakeholders. By using Grad-CAM, an established and well-tested method for
visualisation of model focus on tissue morphology or architecture, it was possible to enable a
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better understanding of the internal decision processes of the trained deep learning models.
As most machine learning models for digital pathology will involve a human pathologist for
the foreseeable future, transparency and interpretability has been recognised as key feature
of deep learning models for medical applications [156–158].

The method presented in this work was based on two large datasets (BEST2 [75] and
BEST3 [104]; chapter 2) which were partitioned in order to enable training, calibration,
and validation of the models. It is important to highlight that the deep learning model
itself relied on tile images of only 100 patients for training, with a further 187 patients for
calibration of various operating points. The resulting performance on the validation data sets
is particularly impressive as the underlying origin of the external validation set was different
and another antibody for TFF3 staining was used. A consequence of this observation might
be that the training and calibration dataset were heterogenous enough to train the models
to generalise and anticipate potential domain shifts with respect to age of pathology slides,
fading of stains etc. Another finding in this work is that the recognition of IM-positive
staining pattern becomes difficult when focusing on a particular region rather than the entire
slide. When compared to analysis by a pathologist, the automated scoring will have the
benefit to objectively score these regions one after the other without any biases involved.
This obviously excludes biases which might have been introduced by the initial training data.
Given the results from the validation set, it can be concluded that the training data introduced
a minimal bias into the model which can be accounted for to some extent by the ability to
triage equivocal cases for pathologist review. The triage-driven, semi-automated approach
has been demonstrated to be an effective tool to mitigate issues which could be introduced
by fully-automated models or other underlying biases by avoiding automated classification
of equivocal patient samples.

Deep learning models for pathology applications are particularly susceptible to failure
after a domain shift. Such a shift occurs, for example, due to experimental variations such as
(immuno)histochemical stain intensity, or when applying the model on data from a different
study, or on images acquired using different scanners. Data augmentation, where different
spatial and colour distortions are introduced during training, may help to build a robust
model applicable to extended datasets with respect to relevant clinical endpoints. For the
analysis of Cytosponge-TFF3 samples I observed limited variability, which is confounded
as all samples have been processed in the tissue bank at Cambridge University Hospital.
The models were made robust to these variables by augmenting the training data. Ongoing
development and implementation studies in the DELTA project [151] will rely on centralised
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processing in a new laboratory and performance will be assessed and reported once these
data are available. Further technical optimisation of the developed deep learning models is
currently being performed with a focus on two main areas: Attention-based models [101]
as they could potentially eliminate the laborious annotation step required for expanding the
training data and might increase test specificity further. Aggregation of tiles to patient level
by means of a more sophisticated approach [100] which is relying on sequence models to
potentially reduce false positive rate of TFF3 images.

I also devised and implemented a simulation study based on a simple prevalence and qual-
ity model to critically assess the model performances by investigating the cohort composition
bias of the validation data sets. The visualisation of the simulation enables a quick estimate
of how effective the semi-automated model might perform depending on the identified key
characteristics (i.e. BE prevalence and sample quality). Whereas BE prevalence is an intuitive
variable in a certain patient population and depends on the selection criteria, sample quality
and its influences are currently under investigation (chapter 4, section 4.2) The simulation is
an approach which can easily be extended to other variables and, particularly for dichotomous
diagnostic problems, may prove useful to understand how decision support systems impact
clinical pathways and identify confounding factors that influence performance.

4.5 Real-world implementation of Cytosponge-TFF3

The combined outcome of both areas investigated in chapter 2 and chapter 3 provides
additional relevant evidence for the Cytosponge-TFF3 technology, further enabling the
implementation of a diagnostic test in clinical care. Pilot implementations to investigate
clinical utility of Cytosponge-TFF3 in the National Health Service and abroad are underway.
Furthermore, projects backed by commercial and public funding have been initiated that
expand on the concept of the triage-driven computational pathology approach [151]. Another
important outcome of the work presented in this thesis is the spin-out company Cyted
which I co-founded and am leading as the Chief Executive Officer. Since late 2019, we
raised £8.7M in equity and grant funding and the team size has recently exceeded 20
employees. At Cyted, we are working on various commercial projects with a key focus on
implementation of Cytosponge in clinical care and the development of digital diagnostic
infrastructure for histo/cytopathology as well as molecular diagnostic tests. The ongoing
real-world implementation pilots which are supported by Cyted can be divided into four
distinct pathways:
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1. Patients presenting to their GP with reflux symptoms and especially those with in-
creased risk for Barrett and oesophageal cancer (Male, > 50 years, BMI > 30). The GP
may be unsure whether to refer for endoscopy and whether they need long term PPI;

2. Patients on repeat prescriptions for reflux disease who have not had an endoscopy in
the last 5 years;

3. Routine referrals to secondary care with heartburn or reflux predominant symptoms
and no alarm symptoms (e.g. no anaemia, dysphagia, weight loss etc). This may
be especially relevant during the COVID-19 pandemic when endoscopy services are
resctricted and waiting lists are long. The BEST2 control arm [75] was representative
of patients in this group with no Barrett diagnosed. Further data will be audited for
this patient group.

4. Routine endoscopy, including for surveillance, is severely curtailed during the COVID-
19 pandemic. Therefore, Cytosponge can also be considered for patients with known
Barrett who would usually have endoscopic surveillance. For these individuals in-
formation on their risk will be provided through use of additional biomarkers (p53
staining and pathological assessment for atypia, as in Ross-Innes et al. [126]). This
information can be used to help prioritise patients for endoscopy.

The success of sustainable implementation in healthcare systems of the individual path-
ways will be monitored and reported in the future.

4.6 Future outlook

Early detection of oesophageal cancer will undergo a radical change in the next decade.
Areas of ongoing development and innovation can be divided into three distinct groups:

First, non-endoscopic detection of oesophageal diseases. The Cytosponge-TFF3 tech-
nology is one of several technologies which has been developed in recent years. Other
sponge-on-string devices (e.g. EsophaCap) have been developed in conjunction with various
types of biomarkers including cytopathology and epigenetic testing [159, 160]. Whether
cytopathology or molecular tests will prove to be more accurate is, based on previous studies
across different devices, debatable and there remain open questions with respect to feasibility
and scalability. Balloon-based devices (e.g. EsoCheck) might enable more targeted sam-
pling with promising results based on methylation testing [66]. Clinical adoption of these
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technologies will depend on the clinical evidence and performance in randomised trials and
real-world settings which are underway for some of the above.

Second, advanced endoscopic interventions for detection and sampling of (pre-)malignant
tissue. Endoscopy relying on new imaging technologies such as hyperspectral imaging [161]
and deep learning [162] will improve detection of dysplastic and cancerous lesions. These
imaging-based technologies will potentially be used after patients have been identified to
undergo endoscopy by a prior non-endoscopic testing procedure. Advanced approaches for
tissue sampling will remove the need of unnecessary biopsies by enabling brush-based tissue
collection [84] for laboratory analysis.

Last, biomarker development for more advanced patient stratification. The determination
of progression risk has become an area of importance in the recent years. Multiple research
studies relying on histopathological or genomic tests have shown that it is possible to stratify
patients into those at risk of progressing from BE to dysplasia or cancer and those who
will likely have indolent lesions [126, 163–165]. The integration of such tests with non-
endoscopic sampling techniques has been previously demonstrated [126] but gives rise to a
need for additional advanced clinical evidence. Enriched tissue-of-interest sampling by using
techniques like biopsies or brushes will likely benefit first of any new biomarkers that rely on
high signal-to-background ratios. Application to non-endoscopic tissue/cell sampling devices
will follow in due course as and when cellular enrichment techniques will be established.

Combined, these advancements in the early detection of oesophageal cancer will substan-
tially increase quality and quantity of life for affected patients. Challenges of implementing
early detection technologies at scale have to be considered for the transformation of research
methods into clinical services. These considerations include the importance of diagnostics
in precision medicine to ensure minimisation of overdiagnosis and overtreatment. This
thesis addresses a number of implementation challenges for a specific technology, considers
characteristics of the associated clinical pathway, and highlights translational technological
aspects that will enable earlier detection of oesophageal cancer.
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Chapter 5

Publications

5.1 Manuscripts

This is a list of all publications as a result of my PhD between April 2018 and September
2020.
Cytosponge-trefoil factor 3 versus usual care to identify Barrett’s oesophagus in a pri-
mary care setting: a multicentre, pragmatic, randomised controlled trial
Authors: Fitzgerald RC, Di Pietro M, O’Donovan M, Maroni R , Muldrew B, Debiram-
Beecham I, Gehrung M, [...], Sasieni P. The Lancet 2020

Triage-driven diagnosis for early detection of esophageal cancer using deep learning
Authors: Gehrung M, Crispin-Ortuzar M, Berman AG, O’Donovan M, Fitzgerald RC,
Markowetz F. In revision at Nature Medicine

Role of TFF3 as an adjunct in the diagnosis of Barrett’s esophagus using a minimally
invasive esophageal sampling device — The CytospongeTM

Authors: Paterson AL, Gehrung M, Fitzgerald RC, O’Donovan M. Diagnostic Cytopathology
2020

A guide to deep learning on whole slide images
Authors: Berman A, Gehrung M, Markowetz F. manuscript in preparation
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Three-Dimensional Printed Molds for Image-Guided Surgical Biopsies: An Open Source
Computational Platform
Authors: Crispin-Ortuzar M*, Gehrung M*, Ursprung S*, [...] Steward GD, Sala E,
Markowetz F. JCO Clinical Cancer Informatics 2020 / * equal contribution

Data integration for biomarker validation using miRNA and computational pathology
from non-endoscopic oesophageal cell samples
Authors: Masque-Soler N, Gehrung M, Kosmidou C, Markowetz F, Fitzgerald R. validation
experiments ongoing / manuscript in preparation

5.2 Patents

Patent application GB2009208.6: Automated Assessment of Pathology Samples. Applica-
tion filed in 2020 by Cancer Research Technologies Ltd.

5.3 Software packages

PathML (under development) - https://github.com/9xg/pathml
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