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ABSTRACT
Deep learning has revolutionized the way sensor data are
analyzed and interpreted. The accuracy gains these ap-
proaches o↵er make them attractive for the next genera-
tion of mobile, wearable and embedded sensory applica-
tions. However, state-of-the-art deep learning algorithms
typically require a significant amount of device and pro-
cessor resources, even just for the inference stages that are
used to discriminate high-level classes from low-level data.
The limited availability of memory, computation, and en-
ergy on mobile and embedded platforms thus pose a signif-
icant challenge to the adoption of these powerful learning
techniques. In this paper, we propose SparseSep, a new ap-
proach that leverages the sparsification of fully connected
layers and separation of convolutional kernels to reduce the
resource requirements of popular deep learning algorithms.
As a result, SparseSep allows large-scale DNNs and CNNs to
run e�ciently on mobile and embedded hardware with only
minimal impact on inference accuracy. We experiment using
SparseSep across a variety of common processors such as the
Qualcomm Snapdragon 400, ARM Cortex M0 and M3, and
Nvidia Tegra K1, and show that it allows inference for vari-
ous deep models to execute more e�ciently; for example, on
average requiring 11.3 times less memory and running 13.3
times faster on these representative platforms.
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1. INTRODUCTION
Recognizing contextual signals and the everyday activity
of users from raw sensor data is a core enabler for mobile
and wearable applications. By monitoring user actions (via
speech, ambient audio, motion) and context using a variety
of sensing modalities, mobile developers are able to provide
both enhanced, and brand new, application features. While
sensor-related applications and systems are still maturing,
and are highly diverse, a notable characteristic is their re-
liance on making a wide-variety of sensor inferences.

Accurately extracting context and activity information from
noisy mobile sensor data remains an unsolved problem. Be-
cause the real world is highly complex, unpredictable and
constantly changing, it often causes confusion to the ma-
chine learning and signal processing algorithms used by mo-

bile devices. One of the most promising directions today
in overcoming such challenges is deep learning [1, 2]. De-
velopments in this particular field of machine learning have
caused the approaches and algorithms used in even mature
sensing tasks to be completely changed (e.g., speech [3] and
face [4] recognition). The study of deep learning usage for
mobile applications is in its early stages (e.g., [5, 6, 7, 8]),
but with promising initial results.

While deep learning o↵ers important benefits to robust mod-
eling, its integration into mobiles and wearables is compli-
cated by the sizable system resource requirements these algo-
rithms introduce. Barriers exist in the form of memory, com-
putation and energy; these collectively prevent most deep
models from executing directly on mobile hardware. Conse-
quently, existing examples of deep learning for smartphones
(e.g., speech recognition) remain largely cloud-assisted. A
number of negative side-e↵ects of this: first, inference ex-
ecution becomes coupled to fluctuating and unpredictable
network quality (e.g., latency, throughput); but more im-
portantly it exposes users to privacy dangers [9] as sensitive
data (e.g., audio) is processed o↵-device by a third party.

Allowing broader device-centric deep learning classification
and prediction will need the development of brand-new tech-
niques for optimized resource sensitive execution. Up to this
point, the machine learning community has made excellent
progress in training-time optimizations and is only now be-
ginning to consider how these ideas transfer to inference-
time. Currently, most knowledge of deep learning algo-
rithm behavior on constrained devices is largely limited to
one-o↵ task-specific experiences (e.g., [10, 11]). These sys-
tems are limited however is providing examples and evidence
that local execution is feasible, although they do provide
some insights for ways forward. What is required however
is a deeper study of these issues with an aim towards the
development of techniques like o↵-line model optimization
and runtime execution environments to match the resources
(e.g., memory, computation and energy) present on edge de-
vices like wearables and mobile phones.

In this work, we make an significant progress into the de-
velopment of such algorithms and software by developing
a sparse coding- and convolution kernel separation-based
approach to optimizing deep learning model layers. This
framework – SparseSep – includes: (1) a compiler, Layer
Compression Compiler (LCC), in which unchanged deep mod-
els are inserted and then optimized; (2) a runtime frame-
work, Sparse Inference Runtime (SIR), that is able to exploit
the transformation of the model and realize radical reduc-
tions in computation, energy and memory usage; and (3) a
separator, Convolution Separation Runtime (CSR), that sig-
nificantly reduces convolution operations. SparseSep tech-
niques can allow a developer to adopt existing o↵-the-shelf



deep models and scale their processor behavior such as, ac-
ceptable accuracy reduction and device limits, e.g., memory
and necessary execution time.

The core concept of this work is the hypothesis that compu-
tational and space complexity of the deep learning models
can be significantly improved through the sparse representa-
tion of key layers and separation of convolution layers. Deep
models often have millions of parameters spread throughout
a number of hidden layers that capture the robust represen-
tations of the data. By using theory from sparse dictionary
learning we investigate how the originally complex synap-
tic weight matrix can be captured in much smaller matri-
ces that require less computational and memory resources.
Critically, such theory a↵ords the ability of these sparsified
layers to be faithful to the originals with theoretical bounds
on important aspects such as, reconstruction error. This is
the first time this approach has been used.

Our experiments include both DNNs and CNNs, the most
popular forms of deep learning today. Tests span both au-
dio classification tasks (ambient scene analysis and speaker
identification) that are common in the mobile sensing sys-
tems; along with image tasks (object recognition) seen in
mobile vision devices like Google Glass. We find that across
a range of experiments and devices SparseSep can allow deep
models to execute using (on an average) only 26% of the orig-
inal energy while only sacrificing approximately up to 5% of
the accuracy of these models. Specific examples include the
Snapdragon 400 processor running a deep learning model for
speaker identification with a 4.1 times improvement in exe-
cution time, and a 17.6 times reduction in memory. Further-
more, we benchmark this deep learning version of speaker
identification and find, as expected, that the deep model is
much more robust than models conventionally used (such
as random forests). Most important of all, we examine de-
vice restrictions found on other common processors like the
Cortex M3 equipped with 32 KB of RAM. Not surprisingly
we find these processors can not support any form of deep
learning model tested (due to restrictions to computation
and/or memory) – until we apply the SparseSep process.

The key scientific contributions of this research are:

• We propose, for the first time, a sparse coding-based
approach to the optimization of deep learning inference
execution. We propose the use of convolution kernel sep-
aration technique to minimize overall computations of
CNNs on resource constrained platforms.

• To our knowledge, this work is the first to demonstrate
very deep learning models (many layer DNNs and CNNs)
executing on severely constrained wearable hardware with
acceptable levels of performance (energy e�ciency, com-
putation times).

• We design and implement a prototype that realizes our
approach to sparse dictionary learning and kernel sepa-
ration into deep learning model representation and infer-
ence execution. We implement necessary runtime com-
ponents for 4 embedded and mobile processor platforms.

• We experiment with four di↵erent CNN and DNN mod-
els under large audio and image datasets. We demon-
strate gains of the order of 11.3⇥ improvements in mem-
ory and 13.3⇥ in execution time under multiple exper-
iment configurations, while only su↵ering accuracy loss
of ⇡ 5%.
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Figure 1: A CNN mixes convolutional and feed-forward layers

2. BACKGROUND
Popular deep learning architectures, such as Restricted Bo-
ltzmann Machines and Deep Belief Networks, share a com-
mon architecture. Often, they are collectively referred to as
Deep Neural Networks. Typically, a DNN contains a num-
ber of fully-connected layers, where each layer is composed
of a collection of nodes. Sensor measurements (e.g., audio,
images) are fed to the first layer (the input layer). The fi-
nal layer, also known as the output layer, corresponds to
inference classes with nodes capturing individual inference
categories (e.g., music or cat). Layers in between the input
and the output layer are referred to as hidden layers. The
degree of influence of units between layers vary on a pair-
wise basis determined by a weight value. Together with the
synaptic connections and inherent non-linearity, the hidden
layers transform raw data applied to the input layer into the
prediction classes captured in the output layer.

DNN-based inferencing follows a feed-forward algorithm that
operates on sensor data segments in isolation. The algorithm
starts at the input layer and moves layer wise sequentially,
while updating the activation states of all nodes one by one.
The process finishes at the output layer when all nodes have
been updated. Finally, the inferred class is identified as the
class corresponding to the output layer node with the great-
est state value.

CNNs are another popular class of deep models that share
architectural similarities to DNNs. As presented in Fig-
ure 1, a CNN model contains one or more convolutional
layers, pooling or sub-sampling layers, and fully connected
layers (equivalent to those used in DNNs). The objective of
these layers is to extract simple representations from the in-
put data, and then converting the representation into more
complex representations at much coarser resolutions within
the subsequent layers. For instance, first convolutional fil-
ters (with small kernel width) are applied to the input data
to capture local data properties. Next, max or min pooling
is applied to make the representations invariant to transla-
tions. Pooling operations can also be seen as a form of di-
mensionality reduction. Lastly, fully connected layers (i.e.,
a DNN) help a CNN to make predictions.

A CNN follows a sequential approach, as in DNNs, to gener-
ate isolated prediction at a time. Often in CNN-based pre-
dictions, sensor data is first vectorized into two dimensions.
Next, data is passed through a series of convolution, pooling
and non-linear layers. The purpose of the convolution and
pooling layers can be viewed as that of feature extractor be-
fore the fully connected layers are engaged. Inference then
proceeds exactly as previously described for DNNs until ul-
timately a classification is reached.

Contrary to the shallow learning-based models, deep learn-
ing models are usually big an often contains more than mil-
lion parameters. High parameter space improves the capac-
ity of these models and they often outperform prior shallow
models in terms of model generalization performances. How-
ever, the accuracy gains come at the expense of high energy



and memory costs. Although, high end wearables contain-
ing GPU, e.g., NVIDIA Tegra K1, can e�ciently run deep
models [12], the high resource demands make deep learning
models unattractive for low end wearables. In this paper we
explore sparse factorizations and convolutional kernel sep-
arations to optimize the resource demands of deep models,
while maintaining the functional properties of the models.

3. DESIGN AND OPERATION
Beginning with this section, and spanning the following two,
we detail the design and algorithms of SparseSep.

3.1 Design Goals
SparseSep is shaped on the following objectives.

• No Re-training. The training of a large deep model is
the most time consuming and computationally demand-
ing task. For example, a large model such as GoogleNet
is trained using thousands of CPU cores [13], which is
beyond the current capabilities of a single wearable de-
vice. In this work, we mainly focus on the inference
cycle of a deep model and perform no training on the
resource-constrained devices. The training process also
requires a very large training dataset, often inaccessible
to the developers [14]. Thus new techniques are needed
to compress popular cloud-scale deep learning models to
run on wearable and IoT grade hardware gracefully.

• No Cloud O✏oading. As noted in §1, o✏oading
the execution of portions of deep models can result in
leaking sensitive sensor data. By keeping inference com-
pletely local, user and applications have greater privacy
protection as the data or any intermediate results never
leave the device.

• Target Low-resource Platforms. Even high-end
mobile processors (such as the Tegra K1 [15]) still require
careful resource use, when executing deep learning mod-
els. But in this class of processors, the gap in resources
is closing. However, for low-energy highly portable wear-
able processors that lack GPUs or have only a few MBs
of RAM (e.g., ARM Cortex M3 [16]), local execution of
deep models remains impractical. For this reason, Spars-
eSep turns to new ideas like the use of sparsification of
weights and kernel separation, in search of the leaps in
resource e�ciency required to make these low-end pro-
cessors viable.

• Minimize Model Changes. Deep models must un-
dergo some degree of change to enable their operation
on wearable hardware. However, a core tenet of Spars-
eSep is to minimize the extent of such modifications
and remain functionally faithful to the initial model ar-
chitecture. For this reason, we frame the problem as
one of deep model compression (originally formulated by
the machine learning community), where model layer ar-
rangements remain unchanged and only per-layer con-
nections are changed through the insertion of additional
summarizing layers. Thus, the degree of changes made
by SparseSep is a key metric that is minimized during
model processing.

• Adopt Principled Approaches. Ad-hoc methods
to alter a deep model – such as ‘specializing ’ a model to
recognize a smaller set of activities/contexts, or chang-
ing layer/unit parameters to generate a desired resource

consumption profile – are dangerous as they violate the
domain experience of the modeling experts. Methods like
sparse coding [17] and model compression [18] are sup-
ported by theoretical analysis [19]. Assessing if a model
can be altered solely by changes in the accuracy metric
can be dangerous and can potentially hurt, for example,
its ability to generalize.

3.2 Overview
We now briefly outline the core approach of SparseSep to
optimize the architecture of large deep learning models so
that they meet the constraints of target wearable devices.
In §4 we provide the necessary theory and algorithms of this
process, but we begin here with the key ideas.

The inference pipeline of a deep learning model is domi-
nated by a series of matrix computations, especially multi-
plications, and convolutions. Attempts have been made to
optimize the total number of computations by low-rank fac-
torizing of the weight matrix or decomposing convolutional
kernels into separable filters in an ad-hoc manner. Both
weight factorization and kernel separation, however, require
modification in the architecture of the model by inserting
a new layer and updating weight components (see §4.1 and
§4.4). Although, counter-intuitive, the insertion of a new
layer only achieves computational e�ciency under certain
conditions, which depends on, e.g., the size of the newly
inserted layer, the size of the original weight matrix, and
the size of convolutional kernels. In §4.1, §4.2 and §4.4 we
derive and show the conditions under which computational
and memory e�ciencies can be achieved.

In this paper, we postulate that the computational and space
e�ciency of the deep learning models can be further im-
proved by adding sparsity constraints to the factorization
process. Accordingly, we propose a sparse dictionary learn-
ing approach to enforcing a sparse factorization of the weight
matrix (see §4.3). In §5.2 we show that under specific spar-
sity conditions the resource scalability of the proposed ap-
proach is significantly better than existing approaches.

The weight factorization approach significantly reduces the
memory footprint of both DNN and CNN models by opti-
mizing the parameter space of the fully connected layers.
The factorization also helps to reduce the overall number of
operations needed and improves the inference time. How-
ever, the inference time improvement due to factorization
is much more pronounced for DNNs than CNNs. This is
primarily due to the fact that a major portion of the CNN-
based inference time (often over 95%) is spent on performing
convolution operations [12, 20], where the layer factorization
technique has no influence. To overcome this limitation, we
also propose a runtime convolution kernel separation tech-
nique that optimizes the convolution operations to reduce
overall inference time and energy expenditure of CNN mod-
els. Together with the weight factorization technique, the
convolution optimization reduces both memory and energy
footprints of cloud-scale CNNs. In §4.4 details of the run-
time convolution optimization are provided.

3.3 Implementation and Operation
To examine the SparseSep techniques, we prototype three
software components: Layer Compression Compiler, Sparse
Inference Runtime and Convolution Separation Runtime;
these are briefly described below, and shown in Figure 2.
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Figure 2: SparseSep Framework and Operation

Layer Compression Compiler (LCC). Prior to a deep
model being used on a wearable device, it is processed to
apply su�cient compression to satisfy device constraints.
No machine learning expertise is required, developers only
specify constraints of the target hardware to LCC including
the memory limits and computational constraints in terms
of execution time. LCC automatically applies the sparse
coding-based factorizations described above throughout the
deep model. The objective is to determine a set of insertion
positions and compression degrees that match the required
resource constraints, while also minimizing any loss of accu-
racy. In §4, this procedure is described in detail as well as
how the search for the optimal configuration of compression
layers is performed e�ciently.

Sparse Inference Runtime (SIR). To maximize the ben-
efit of the model produced by LCC, modifications are re-
quired to the fully connected layers of DNNs/CNNs. First,
compaction layers are k-sparse and it requires a series of key
modifications to be made on the standard feed-forward style
inference approach across the modified model. The modifi-
cation heavily utilizes the inherent sparse structure of the
generated weight matrices to gain computational e�ciency.
Second, to assist those platforms that are constrained by
memory severely, layers are executed one by one. For in-
stance, only the matrices related to the specific two layers
being executed are loaded into the memory and computed
on. The decision to do this for a layer pair is taken by
the compiler and done conservatively if it is expected to in-
troduce unwanted delays in the inference time due to the
overhead of additional load times.

Convolution Separation Runtime (CSR). To further
minimize the inference time of a CNN model, after modi-
fied by the LCC, convolution layer modifications are needed.
The time constraint provided by a developer is again used
to select a set of convolutional layers and their compression
levels are determined to meet the overall resource goals. In
the case of severe memory unavailability, strategies similar
to SIR are employed (see §4.4). The goal here is to keep
the functional behavior of the modified model as close as
possible to the original unmodified model.

4. ALGORITHMIC FOUNDATIONS
The core components of SparseSep rely heavily on a number
of algorithms to select, compress, and optimize both fully
connected and convolution layers of deep models. In the

following we begin by briefly explaining the computational
requirements of typical deep models (e.g., DNN and CNN).
We then provide intuitions for optimizations, describe in
detail the sparse weight factorization and the convolutional
separation approaches employed by SparseSep, and highlight
the necessary conditions and benefits of the techniques on
memory footprint and computational e�ciency.

4.1 Deep Model Computations
The inference task of DNNs can be summarized as a series
of matrix multiplications, vector additions and evaluations
of non-linear functions. For example, the output o of neural
network with a single hidden layer can be computed as:

o = SoftMax
�
b

2 +W

2 · f(b1 +W

1 · x)
�
, (1)

where x is the input vector, f(·) is the non-liner function
(e.g., sigmoid), bi is the bias vector and W

i is the weight
matrix associated with layer i. The matrix operations can
be e�ciently computed using, e.g., a GPU, while applying
new vectorization techniques [21]. Development of computa-
tional optimization is complementary to the development of
e�cient hardware, as it often enables running a deep model
more e�ciently on the new platform. However, GPUs are
seldom available on wearable platforms due to their large en-
ergy footprints. We address both memory and computation
optimization tasks for fully connected layers by drawing in-
spirations from the well-known matrix chain multiplication
problem [22].

In case of a CNN with one convolution, one pooling and one
hidden layer, the output o can be computed as:

o = SoftMax
�
b

2 +W

2 ·maxpool [M ]
�
, (2)

where, M is the feature map computed from the 2D input
x as:

Mj = f

 
X

c

x

c ⇤Kc
j + b

1
j

!
, (3)

where, c represents the index over channels and K is the set
of learnable convolution kernels.

4.2 Weight Factorization
In case of a fully connected layer, updating states of all nodes
requires evaluating the product:

W

L · xL (4)

where, xL 2 Rn is the state of nodes in the previous layer
and W

L 2 Rm⇥n is the matrix representing all the con-
nections between layer L and L + 1. Now, the basic idea
in decreasing the number of required computations is to re-
place the weight matrix W

L with a product of two di↵erent
matrices, i.e.,

W

L = U · V (5)

where U 2 Rm⇥k, V 2 Rk⇥n, such that the total number
of computations needed to compute U · (V · xL) becomes
smaller than the original multiplication (see Equation 4). In
other words, computational e�ciency can be achieved, when
the total number of multiplications in U · (V ·xL) is smaller
than the number of multiplications in W

L · xL, i.e.:

k · n · 1 +m · k · 1 < m · n · 1 (6)

=) k <
m · n
m+ n

(7)
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Figure 3: Layer insertion to achieve computational e�ciency

Hence, the above equation gives us a rule for selecting the di-
mensionality of U and V matrices to achieve computational
e�ciency. The computational gain due to the factorization
of weight matrix W

L can be easily implemented by first re-
moving the connections WL, followed by introducing a new
layer with k nodes1 and finally updating new connections
to the adjacent layers with weights V and U respectively.
Figure 3 illustrates the architectural modifications needed
to allow weight factorization-based optimizations.

Weight factorization also brings memory benefits. For exam-
ple, before any architectural modifications, the total num-
ber of parameters needed to compute x

L+1 is m · n + m,
i.e., all the elements of matrix W

L and the biases of layer
L + 1. Once the weight matrix is factorized and replaced,
n ·k+k ·m+m parameters are required for evaluating x

L+1.
Interestingly, a decrease in model size can be achieved if the
following inequality holds:

n · k + k ·m+m < m · n+m, (8)

The above inequality simplifies to the same requirement as
identified in Equation 7. The space gain Sg due to layer
modification can be defined as:

Sg =
m · n+m

n · k + k ·m+m
(9)

Ideally, we seek a factorization resulting in Sg � 1.

4.3 Weight Reconstruction
Note that, under loss-less factorization, i.e., no error in the
reconstruction of WL, the modified architecture of the deep
model stays functionally equivalent to the original. However,
often arbitrary factorizations of large matrices introduce re-
construction errors and thus the new constructed model de-
viates from the original model and a↵ects the oveall per-
formance accuracy. Thus, care should be taken to keep the
reconstruction error (e.g., L2-norm) as small as possible, i.e.:

||WL �U · V ||22 ⇡ 0 (10)

Previously, optimization of DNNmodels have been attempted
using the well established Singular Value Decomposition (SVD)
approach [23, 24]. Under SVD, the weight matrix can be ef-
ficiently factorized as:

W

L
m⇥n = Xm⇥m ·⌃m⇥n ·NT

n⇥n, (11)

where, ⌃m⇥n is a rectangular diagonal matrix containing
singular values of WL

m⇥n as the diagonal elements. To gain

1We also set the bias of each node to 0 and no no-linearity
function is added.

computational e�ciency the weight matrix can be approxi-
mated well by keeping k highest singular values, i.e.:

W

L
m⇥n ⇡ Xm⇥k ·⌃k⇥k ·NT

k⇥n (12)

Now, the architecture of a fully connected layer of a deep
model can be modified by replacing W

L with U = Xm⇥k

and V = ⌃k⇥k ·NT
k⇥n (see Figure 3).

4.4 Sparse Coding-based Factorization
In the following, we propose a novel technique of improving
the memory and computational gains over the SVD-based
factorizations (for a given k). These gains are essential for
e�ciently running deep models on low-end wearables. The
sparsity requirement also makes SparseSep novel from our
previously published DeepX system [14].

4.4.1 Dictionary Learning
The basic idea is to come up with a sparse factorization of
the weight matrix W

L. In other words, if either of the U or
V matrices can be made sparse, further space savings can
be achieved. Furthermore, sparse matrix multiplication also
helps to improve overall computational time. In this work,
we introduce the use of sparse coding-based factorization
technique of fully connected layer weights to achieve very
low memory and computational footprint.

The sparse matrix factorization problem can be formulated
as a sparse dictionary learning problem, where a dictionary
B = {�}ki=1 (with �i 2 Rm) is learned from the weights
W

L of a fully connected layer of a deep model using an un-
supervised algorithm. Sparse coding approximates an input
wi 2 Rm, e.g., a column of WL, as a sparse linear combi-
nation of basis vectors � from the dictionary B [25, 26, 27],
i.e.:

wi =
kX

j=1

ai
j · �j , (13)

where, ai is a sparse vector, i.e., majority of its elements are
0. A large number of dictionary learning algorithms have
been proposed in the literature and in this paper we use the
K-SVD algorithm [28] to learn a dictionary comprising of k
basis vectors. The K-SVD algorithm learns a dictionary by
solving the following minimization problem:

min
B,A

||WL �B ·A||22 s.t. 8i ||ai||0  K (14)

where A 2 Rk⇥n is the sparse code of the weight matrix
W

L under the dictionary B 2 Rm⇥k and K is the sparsity
constraint factor, i.e., each signal is reconstructed with fewer
than K basis vectors. Once the dictionary B and the sparse
code A is learned, we obtain the sparse factorization of WL

as:

W

L ⇡ B ·A (15)

4.4.2 Architecture Modification
To gain computational and space e�ciency, we interpose a
new layer similarly as described in §4.2, while setting U = B
and V = A (see Figure 3). DNN and CNN models of-
ten have more than one fully connected layers and thus the
sparse factorization technique can be applied on all of these
layers to improve overall inference e�ciency.



4.4.3 Quality of Code Book and Sparsity
The success of the sparse factorization of weights depends
on the quality of the learned dictionary, its reconstruction
quality and the sparsity of the generated code. However, as
in the case with the SVD approach, the dictionary learning
with sparsity constraint introduces reconstruction error and
the modified model deviates from the original model in the
parameter space. Deviation in the parameter space often
adversely a↵ect the performance quality of the model and
thus care should be take to maintain the reconstruction er-
ror at low as possible. This can be achieved by introducing a
hyper parameter ↵ [27] that assigns a greater importance in
minimizing the reconstruction error term than the sparsity
requirement as given in Equation 14. In computer vision
and audio recognition tasks, often over-complete dictionar-
ies are learned for resilient feature learning. However, in line
with our objective of achieving space and computational ef-
ficiency, we extract a compact representation of deep model
parameters by learning a small dictionary.

4.4.4 Memory Gain
One of the main advantages of making sparse factorization
of fully connected layers, over techniques using SVD, is its
ability to reduce memory footprint significantly. For exam-
ple, the space gain under sparse factorization becomes:

S⇤

g =
m · n+m

2 ⇤ nnz(A) + k ·m+m
, (16)

where, nnz(A) counts the number of non-zero elements in
matrix A. The factor 2 is used to take into account stor-
age for indices2 of the non-zero elements of a sparse ma-
trix. Thus, sparse factorization outperforms SVD in terms
of memory by a factor of:

S⇤

g

Sg
=

n · k + k ·m+m

2 ⇤ nnz(A) + k ·m+m
(17)

= 1 +
n · k � 2 ⇤ nnz(A)

2 ⇤ nnz(A) + k ·m+m
(18)

Thus, for nnz(A) < n · k/2, S⇤

g > Sg. Hence, we get a
rule for selecting the variable K in Equation 14 suitably to
reduce the bottle neck in memory.

4.4.5 Execution Pipeline
The main purpose of LCC is to bring sparse factorization as
an o✏ine tool for modifying large deep models. The feed-
forward architecture of DNN allows a unique opportunity
to apply a layer-wise partial inference scheme. Under this
approach, layers of a DNN are sequentially loaded in the
memory and their output is retained. Given the maximum
memory, we can estimate the number of nodes k to use in
the inserted layer for a pre-defined sparsity amount, e.g.,
15%. In extreme cases, when two matrices can not simulta-
neously be loaded on the memory, simple tricks like divide
and conquer approach to matrix multiplication can be em-
ployed that only require partial portions of the matrices in
the memory. Partial multiplication of matrices, however, in-
creases paging amount, which increases the overall inference
time.
Contrary to the constraint on available memory, satisfying
a given limit on the accuracy degradation is non-trivial.
2In case of contiguous memory allocation, one index is
enough to identify elements in a matrix.

Algorithm 1 Satisfy Accuracy Constraint

1: Input: (i)M: a DNN/CNN, (ii) V: a validation dataset
and (iii) ATH : max allowed degradation in accuracy
(e.g., 5%)

2: Output: (i) M̂: an optimized DNN/CNN
3: FCLayer := findAllFCLayers(M)
4: for i := 1 : length(FCLayer) do
5: ku := getUpperBound(FCLayer[i].W ) . Getting

an estimate for k using Equation 7
6: kl := 1
7: kc := kl
8: while True do . Searching for suitable k in the

range (kl, ku) using binary search
9: kc :=updateBinarySerchParameter(kc, kl, ku)
10: U ,V := sparseFactorize(FCLayer[i].W , kc)
11: newLayer := constructNewLayer(U ,V )
12: M̂ := replaceLayer(FCLayer[i], newLayer)
13: DA := getPerformanceDeviation(M̂,V)
14: if DA < ATH then
15: SaveModel(M̂)
16: Break
17: Return readSavedModel()

This is because of the fact that there is no linear correla-
tion between the reconstruction error and the model accu-
racy. Little variations in the weights can force a number
of nodes to switch states, thereby potentially a↵ecting the
inference quality. To mitigate the problem we rely on a val-
idation dataset provided along with the model and employ
a search strategy to satisfy the accuracy degradation limit.
Algorithm 1 provides an overview of the search procedure.
Given the model, validation dataset and accuracy degrada-
tion bound, the algorithm searches for sparse factorization
of one or more fully connected layers. For each layer, the
algorithm follows a binary search procedure to estimate a
suitable value for k and measures the accuracy degradation
after applying sparse factorization of the weight matrix and
replacing the layer as shown in Figure 3. If the accuracy
bound is satisfied, this sparse factorization is accepted and
the algorithm proceeds to the next fully connected layer.

Inference time of a DNN model, among other things, pri-
marily depends on its parameter size and on the processing
capabilities of the hardware. We take opportunistic advan-
tage of Algorithm 1 and log all values of k used in individual
layers (i.e., independent variables) and inference time (de-
pendent variable) to build a simple regression model. The
regression model can predict the execution time given para-
metric setting of k values in each layers. If the time pre-
diction is higher than the given time constraint, we neglect
saving the model. For example a simple conditional state-
ment on time after line–14 in Algorithm 1 can be added to
satisfy the time constraint.

4.5 Convolution Kernel Separation
In addition to the large memory requirement, the other
bottleneck common in CNN-based inferencing (contrary to
DNNs) is the massive amount of convolution operations.
Weight factorization does not help to overcome this bottle-
neck. In the following we summarize techniques to mitigate
this challenge.



4.5.1 Convolution Complexity
The time complexity of convolving a single channel 2D-input
(H ⇥W ) with a bank of N d⇥ d filters is O(Nd2HW ). For
large input image stacks with C channels, the runtime can
be significantly large [29], e.g., O(CNd2HW ). One way to
reduce the time complexity is by reducing the redundancy
among di↵erent filters and filter channels [30]. Although, ap-
proximation techniques using linear combination of a smaller
set of filters have been successfully attempted [29], in this
work we exploit separable filter property to reduce the over-
all convolution operations.

4.5.2 Separable Filters
Let K 2 RN⇥d⇥d⇥C be the set of convolutional kernels (4D),
here the goal is to find an approximation K̂, which can be
decomposed as [31]:

K̂c
n =

KX

k=1

Hk
n(Vc

k)
T , (19)

where, the parameter K controls the rank of the horizontal
filter H 2 RN⇥1⇥d⇥K and the vertical filter V 2 RK⇥d⇥1⇥C .
Under this approximation scheme, the original convolution
task of a single 3D filter3 (indexed by n) becomes:

Kn ⇤ x ⇡ K̂n ⇤ x

=
CX

c=1

KX

k=1

Hk
n(Vc

k)
T ⇤ xc

=
KX

k=1

Hk
n ⇤
 

CX

c=1

Vc
k ⇤ xc

!
(20)

4.5.3 Architecture Modification
Both H and V filters can be learned from the pre-trained
filter K. In this work we adopt a deterministic SVD-based
approximation algorithm, as given in [31], to estimate H,V.
Interestingly, Equation 20 shows that the overall convolu-
tion task can be broken down into two sets of convolutions.
First, the input x is convoluted with the vertical filter V to
produce an intermediate feature map Z. Next, Z is con-
voluted with the horizontal filter H to generate the desired
output. Thus, the original convolution layer of the CNN
now can be replaced with two successive convolution layers
with filters V and H respectively.

4.5.4 Computational Gain
Under this separation, the overall time complexity becomes
O(CKdHW +KNdHW ) or O(dK(N + C)HW ). Now for
computational e�ciency, the parameter K should be chosen
such that:

K <
dCN

C +N
(21)

As described in §4.3, for keeping the functionality of the
modified model as close as the original model, the recon-
struction error of the convolution filter should be very low,
i.e.,

||K� K̂||22 ⇡ 0 (22)

3The 4D filter bank K can be viewed as a collection of N
3D filters.

Platform RAM
CPU GPU

Cores Speed Cores Speed

Snapdragon 1 GB 4 1.2 GHz 6 450 MHz
Tegra 1 GB 4 2.3 GHz 192 950 MHz
Cortex M0 8 KB 1 48 MHz � �
Cortex M3 32 KB 1 96 MHz � �

Table 1: Summary of the Hardware Platforms

4.5.5 Runtime Adaptation
As part of SparseSep, we developed a runtime framework
that dynamically selects convolution layers and their sepa-
ration criteria to adapt the overall computations needed for
a CNN according to the current availability of computation
resources or constraints. The runtime adaptation approach
follows very closely the binary search procedure outlined in
Algorithm 1. Instead of the fully connected layers, the algo-
rithm begins by constructing a list of available convolution
layers. An upper bound of the filter separation parameter
K is estimated using Equation 21. H and V filters are es-
timated for the selected separation parameter K as given
in [31]. Next, the current convolution layer is now replaced
with two successive convolution layers with filters V and H
and the updated model performance is computed on the val-
idation dataset. If the error criterion is satisfied, the modi-
fication is accepted and the procedure moves on to the next
convolution layer.

Runtime convolution operation optimization opens up new
opportunities for SparseSep to gracefully shape and control
resource consumption of both DNNs and CNNs on a large
variety of hardware platforms, which is not possible for sys-
tems like DeepX [14].

5. EVALUATION
In this section we systematically summarize results from a
number of experiments to highlight the main benefits of the
sparse weight factorization and convolution separation tech-
niques presented above. As the target wearable hardware
we consider four platforms: (i) Qualcomm Snapdragon 400
SoCs, (ii) Nvidia Tegra K1, (iii) ARM Cortex M0 and (iv)
ARM Cortex M3. Hardware specifications for the four plat-
forms are summarized in Table 1.

5.1 Experimental Setup
In this paper we focus on audio inference as the represen-
tative wearable and mobile sensing tasks to infer the sit-
uational context of users’ surroundings. We train and de-
ploy DNN models to recognize the ambient environment of
the user and to identify the speaker from voice recordings.
We apply our factorization technique to CNN models by
considering two state-of-the-art object recognition models:
AlexNet and VGG. However, do could not run the CNN
models on the ARM Cortex platforms for severe memory
limitations (allowing only 8 KB and 32 KB).

5.1.1 Audio Datasets
We consider two large publicly available audio datasets: (i)
LITIS Rouen Audio scene dataset [32] and (ii) Automatic
Speaker Verification Spoofing and Countermeasures Chal-
lenge Dataset [33].

The Audio Scene dataset, referred in this paper as the Am-
bient dataset, contains over 1500 minutes of audio scenes,



(a) Snapdragon 400 (b) Tegra K1 (c) Cortex M0 (d) Cortex M3

Figure 4: Hardware platforms: (a) Qualcomm Snapdragon 400 and (b) Nvidia Tegra K1 are used to evaluate the proposed scaling
benefits of weight factorization and convolution separation techniques. Additionally, we use (c) ARM Cortex M0 and (d) M3 to evaluate
DNN performances.

which were captured using Samsung Galaxy S3 smartphones.
The dataset is composed of 19 di↵erent ambient scenes such
as, ‘plane’, ‘busy street’, ‘bus’, ‘cafe’, ‘student hall’ and
‘restaurant’. Audio measurements were recorded with a
sampling frequency of 22.05 KHz and several 30 seconds
long audio files from each ambient environment are made
available.

The Audio Speaker Verification dataset, referred in this pa-
per as the Speaker dataset, contains speech recordings from
106 individuals (45 male and 61 female). In addition to the
clean voice recordings, the dataset also contains synthesized
data for conducting spoofing attacks, however, in this paper
we only focus on clean audio recordings from all 106 par-
ticipants. Audio measurements were recorded with 16 KHz
sampling frequency. To maintain a near equal class distribu-
tion, we restrict the maximum duration of audio recording
to 15 minutes per user.

For the CNN models, we dowloaded pre-trained models from
the ca↵e zoo repository and we use the original test dataset
to measure the overall recognition performances of these
models. In Table 2 we summarize all deep models studied
in this work.

5.1.2 Deep Architecture Training
Small neural networks, e.g., models with a single hidden
layer, can be e�ciently trained using the well known back-
propagation algorithm [34]. However, deep architectures, es-
pecially with many hidden layers, are di�cult to train and
development of e�cient training algorithms are an active
area of research in machine learning. Past years have seen
the development of unsupervised pre-training approaches for
better intialization of the layer weights. In this work we
use denoising autoencoders to pre-train the weights of the
deep architecture and apply the back-propagation algorithm
to fine tune architecture for classification purposes. Before
training the audio models, we follow a sliding window ap-
proach, as described in [32], to extract 13 mel-frequency cep-
stral coe�cients (MFCC) from a measurement window of 25
milli seconds. The extracted MFCC features are then aggre-
gated over a 5 second period to generate an input feature
dimension of 650, see [32] for details. For both the dataset
we follow the same data pre-processing approach. Finally,
we train DNN models with two hidden layers (each having
1, 000 nodes) on both datasets and use early stopping crite-
ria to avoid over-fitting.

5.1.3 Hardware
We evaluate the performances of the weight factorization
and convolution separation techniques, while executing DNNs
and CNNs, on Qualcomm Snapdragon 400 [35] and Nvidia
Tegra [15]. To highlight the benefits of sparse factorization,

Name Type Parameters Architecture

AlexNet CNN 60.9M c:5ı; p:3‡; fc:3?

VGG CNN 138.4M c:13ı; p:5‡; fc:3?

Ambient DNN 1.7M fc:3?

Speaker DNN 1.8M fc:3?
ı
convolution layers; ‡

pooling layers; ?
fully connected layers

Table 2: Representative Deep Models

we also perform experiments by running the DNN models
on ARM Cortex M0 and M3.

The Snapdragon 400 SoC [35] is widely available in many
smartwaches, e.g., LG G smartwatch R [36]. Figure 4a shows
a snapshot of the Snapdragon development board used in
our evaluations. Primarily designed for phones and tablets,
it contains 3 processors: a Krait 4-core 1.2 GHz CPU, an
Adreno 306 GPU and a 680 MHz Hexagon DSP. We find
the CPU can address 1GB of RAM, but the DSP only 8MB.
All our experiments on Snapdragon were conducted using
its CPU only.

Although, not as popular as the Snapdragon, the Tegra
K1 [15] (Figure 4b) provides extreme GPU performance, un-
seen in other mobile SoCs. The heart of this chip is the Ke-
pler 192-core GPU, which is coupled with a 2.3 GHz 4-core
Cortex CPU and an extra low-power 5th core (LPC). The
K1 SoC is used in the Nexus 9, Google’s phone prototype
within Project Ara [37], and even high-end cars [38]. It is
also used in IoT devices like the June Oven [39]. Executing
code on the LPC requires the toggling of linux system calls,
while access to the GPU is available from CUDA drivers [40].

The ARM Cortex-M series are examples of ultra-low power
wearable platforms. The smallest of them all is Cortex M0,
which consumes 12.5 µW/MHz and support a memory size
of 8 KB (Figure 4c). The M3 variant (Figure 4d) of the cor-
tex has double processing abilities (96 MHz) and support a
32 KB memory. These low-end micro-controllers often have
limited memory management capabilities. In our experi-
ments we could only use around 5.2 KB memory on Cortex
M0 and around 28 KB memory on Cortex M3. Availability
of a small memory requires frequent paging, while executing
a large model. The I/O capabilities of Cortex M0 was found
to be significantly slower than Cortex M3. For prototyping,
we use MBED LPC11U24 [41] and LPC1768 [42] boards for
running experiments on Cortex M0 and M3 respectively.

5.2 Scalability Under Sparse Factorization
Next, we study the accuracy of modified DNN model and
its space requirements under factorization of fully connected
layer weights. Although, the principle of weight factoriza-
tion can be simultaneously applied to all fully connected



(a) Ambient (DNN) (b) Speaker (DNN) (c) AlexNet (CNN)

Figure 5: Comparison of memory gains with reduced hidden layer nodes when using sparse coding- and SVD-based weight factorizations
for DNNs and CNNs. For simplicity of illustrations, factorization of one fully connected layer of all three models are considered. For all
the models, sparse factorization generated much smaller model compared to the SVD-based factorization.

(a) Ambient (DNN) (b) Speaker (DNN) (c) AlexNet (CNN)

Figure 6: Comparisons of recognition accuracy performances with reduced hidden layer nodes when using sparse coding- and SVD-based
weight factorizations for DNNs and CNNs. In our experiments we allow a maximum of 5% degradation in accuracy from the original
model performance. Sparse factorization maintains high accuracy, similar to SVD approach, but generates models with smaller memory
footprint. Similarly as above, we factorize only one layer.

layers of a DNN, for simplicity of understanding, we only
focus on one layer of the DNN and study the e↵ect of the
factorization.

Figure 5 illustrates the space or memory gain that can be
achieved over the original models (two DNNs and one CNN)
under sparse and SVD-based factorizations for various sizes
of the new inserted hidden layer. Note that, the high range
in Y-axis in both the figures indicate that the sparse coding-
based approach provides a significantly better scalability
over the SVD solution (see the insets). For example, the
smaller the number of nodes kept in the inserted hidden
layer, higher is the gain in memory. Additionally, the gain
also comes from the sparse matrix multiplications and in this
experiment we keep the sparsity level at 20%, while perform-
ing the dictionary-based weight factorization. Sparse coding
is seen to consistently maintain a superior gain over SVD.
Figure 5 also indicates that a larger value of nodes in the
inserted hidden layer can adversely increase the space re-
quirement of the model, thus making it ine�cient. Finally,
the criterion for selecting a good value for k, as given in
Equation 7, can also be empirically understood from the
figures. SVD looses memory gain when k retains around
80% of the hidden layer parameters. For a layer with 1, 000
nodes, a k value of 80% will results in less than 400 nodes
in the inserted new layer. From Equation 7 we empirically
find k = m·n

m+n
= 650⇤1000

650+1000 ⇡ 394, thus verifying the mathe-

Figure 7: Memory requirements of four original deep learning
models studied in the paper. Ambient and Speaker are two audio-
based DNN models, whereas AgeNet and AlexNet are two image-
based CNN models.

matical intuition given earlier.

Seeing sparse factorization giving rise to a great memory
benefits, we next study the e↵ect of factorization on model
performance. Figure 6 illustrates the accuracy performance
of the models (same two DNNs and one CNN as given in
Figure 5) under both types of weight factorizations. As in-
dicated before, under faithful factorization of the model, i.e.,
W

L = U ·V , the modified model would have the same func-
tional properties, i.e., same accuracy. However, as we search
for small k the reconstructions starts to deviate significantly
from W

L and the model accuracy is observed to violate the



(a) Ambient (DNN) (b) Speaker (DNN)

(c) AlexNet (CNN) (d) VGG (CNN)

Figure 8: Energy-consumption and average inference time of di↵erent variants of the deep models on four di↵erent hardware platforms.

Figure 9: Memory requirements of the four deep models under
SVD- and sparse weight factorizations

accepted (pre-defined) 5% tolerance level. Interestingly, for
majority of the chosen values of k, both sparse coding and
SVD exhibit accuracy very close to the original DNN. Thus,
the factorization approach can reduce memory footprint sig-
nificantly, while maintaining high accuracies.

Figure 7 illustrates the original (uncompressed) model sizes
for all the four DNN/CNN models considered in this work.

The two DNN models are much smaller in size and depth,
compared to the CNN models. However, after our factoriza-
tions the memory footprints of the models are highlighted
in Figure 9. To obtain an optimized model we execute Al-
gorithm 1 with the models and allow an accuracy toler-
ance level of 5%, the algorithm performs factorization on
all fully connected layers of the model and generates a com-
pact version of the model. This figure indicates the ability of
the Sparse factorization to achieve significantly smaller and
equal functional models as provided by the SVD technique.
The memory is one of the main bottlenecks in low end plat-
forms such as Cortex M series, and thus Sparse coding tech-
nique allows for a better tradeo↵ solutions by significantly
reducing the amount of required paging.

Although, we focussed mainly on the factorizations of DNN
layer weights, the basic idea applies to a subset of layers
within CNN models. For example, in addition to the con-
volution and pooling layers, often a CNN has one or more
fully connected layers, e.g., for classification purposes. These
fully connected layers are ideal for sparse factorizations to
gain computational and memory e�ciencies. Thus, as the
final set of experiments we apply our proposed sparse factor-
ization on the AlexNet model, which is a popular computer
vision (CNN) model trained for recognizing objects within
natural images. However, later we show that the main com-
putational benefits of CNN models arise mainly from the
separation of kernel approach.



Contrary to the model used for Ambient or Speaker iden-
tification, the original AlexNet model is much larger, e.g.,
contains 61 million parameters [12], and requires a storage
space of 233 MB. When applied sparse factorization to its
first fully connected layer only, memory requirement reduces
from 233 MB to below 100 MB. Figure 5c and 6c respectively
shows memory gain and accuracy deviations for various sizes
of the inserted hidden layer.

5.3 Runtime and Energy Performances
We now turn our attention to evaluating runtime and en-
ergy performances of sparsely factorized DNNs and CNNs
on the four wearable hardware platforms (Cortex M series
are only used to evaluate DNNs). For the CNN models we
also evaluate the performance of the convolution separation
approach on runtime and energy consumption.

To measure runtime and energy performances, we next run
the original, the factorized models, and the convolution sep-
arated models (incase of CNNs) on the four hardware plat-
forms. The results of the experiment are presented as a
tradeo↵ study in Figure 8 for all four individual models.
Not only space scalability, the reduced number of param-
eters significantly improves the running time of the sparse
model on all platforms (note the log scale on both the axes).
For both the ambient and speaker models (DNNs), the av-
erage4 inference time is observed to vary significantly across
platforms. However, the e↵ects of factorizations of DNNs
are significant on all platforms. Overall, the sparse factor-
ization generating better running time over SVD. On both
Snapdragon and Tegra, the factorized DNNs runs under
one milli second, resulting in around 5 times faster infer-
ence than the unmodified model. Similarly to the running
time, sparse factorization helps to drop the average energy
consumptions significantly on all platforms. For example, on
Cortex M0, the power consumption becomes one tength. On
Snapdragon 400, the optimized DNN model now consumes
only 56% of energy compared to the unmodified model.

Most interesting performance gains are observed for the CNN
models, while applying the convolution separation (CSR)
technique in conjunction with the weight factorization (LCC).
On both Snapdragon and Tegra, the VGG model is seen to
be benefitted the most, as it contains significantly high (13)
numbers of convolutional layers than AlexNet (see Table 2).
The overall running time of the optimized VGG model is
just over 1.5 sec on Snapdragon, which is around 2.7 times
faster (little below the theoretical upper limit of 3) than its
sparse weight factorized only variant.

Thus the techniques presented in the paper open up new op-
portunities to drastically reduce the memory footprint and
overall computational demands of state-of-the-art deep mod-
els. We believe that our work will make deep learning based
inference engine on wearable and IoT devices highly popular
and will help to redefine mobile and IoT experiences.

6. DISCUSSION
We briefly examine a range of key issues related to Spars-
eSep, along with the limitations of our approach.

Broader Deep Learning Support. Our approach has
been tested on the two most popular forms of deep learning –

4All inferences are repeated 1,000 times and we report their
averages in the figures.

DNNs and CNNs – which both include fully-connected feed-
forward layers. Any deep model that includes this layer type
will benefit from sparse weight factorization of SparseSep.
Moreover, the convolution separation technique of Spars-
eSep will allow further optimization of CNNs. Although
the mixture of layer types within a model will influence the
gains, for example, CNNs have more convolutional layers
than feed-forward layers, thus are benefited the most from
SparseSep; however, feed-forward layers in CNNs account
typically for 80 to 90% of all the memory consumed [12,
20] making them an important target for memory-centric
optimizations. Extending the ideas of SparseSep to other
forms of deep learning, such as RNNs and LSTMs, remain
as important future work.

Hardware Portability. To keep the usage of SparseSep
simple for developers we allow them to express constraints
to LCC in terms of accuracy, memory and execution time.
However, supporting execution time requires SparseSep to
estimate the performance of a specific deep model archi-
tecture (i.e., layers and node configuration) on the target
hardware. SparseSep includes only a fairly simple estima-
tion process based on data from hardware profile process.
In our experiments, profiling hardware takes only around 30
minutes using an automated script that tests various model
architectures while the device is attached to a power moni-
tor.

Hardware Accelerators. Purpose-built hardware accel-
erators for deep learning are beginning to emerge [43, 6].
While none of them are currently suitable for wearables yet;
more importantly, SparseSep will remain useful even when
accelerators become available due to the substantial savings
in resource usage o↵ered with only a minimal impact on ac-
curacy. This will allow accelerators to execute even larger
models than currently possible. Moreover, the reductions
in resources enabled by SparseSep will facilitate the design
of more energy e�cient deep learning accelerators, better
suited to wearables than today, because they can be built
with fewer computational and memory resources than pre-
viously possible.

7. RELATED WORK
We now overview work closely related to SparseSep, this in-
cludes results from the compressive sensing area, and e↵orts
to lower resources used by sensing algorithms.

Optimizing Mobile Sensing Algorithms. The chal-
lenge to mobile resources of executing the algorithms neces-
sary to extract context and user activities from sensor data
has been long recognized and studied. Approaches include
the development of sensing algorithm optimizations such as
short-circuiting sequences of processing or identifying e�-
cient sampling rates and duty cycles for sensors and algo-
rithm components like [44, 45, 46]. Work such as [47] aims
to combine such optimizations along with careful usage of
energy e�cient hardware. Others [48] take a stream view
and so applies stream oriented optimizations on the basis of
real dataflows arriving from sensors. [49] approaches perfor-
mance tuning by extending ideas of feature and model selec-
tion to consider device resources, and even cloud o✏oading
opportunities.

In sum, SparseSep is the most recent of this chain of work,
but di↵ers importantly in the fact that it is one of the few



to investigate deep learning specific methods exclusively –
this in turn allows SparseSep to highlight significant oppor-
tunities for gains (such as memory and computation) that
only exist within such models. It is likely that many of
the other techniques described could operate in combina-
tion with SparseSep given they frequently treat the learning
algorithm itself as a black-box. However, they may bring un-
desirable negative side-e↵ects such as higher levels of accu-
racy loss. More broadly, one could characterize the de-facto
approach to using deep learning in wearables and mobile
devices today as being based on cloud-based, and therefore
approaches like MAUI [50] and those related to it are appli-
cable. However, such approaches su↵er from problems in-
cluding challenges to privacy protection when partitioning
deep models as highlighted in §1.
Deep Learning under Resource Constraints. Ex-
amples of deep models designed specifically for wearable
constraints are still maturing. A popular approach is for
experts to hand optimize specific deep models targeting a
specific device class (e.g., smartphone). This has been done
for machine translation [10], speaker identification [51] and
keyword spotting [11] (i.e., a device constantly waiting for
a small number of specific phrases). Moderately-sized DNNs
designed specifically for constrained processors (like the DSP)
in smartphones have also be demonstrated [8, 52] for a range
of audio sensing tasks, as well as basic activity recognition
scenarios. Discussions of the techniques used to optimize
these models are slowly now being reported [20]. In contrast,
SparseSep enables automated optimization broadly applica-
ble to deep model families (DNN and CNN). There is little
cost for SparseSep to be applied to new/revised models, or
when resources change (e.g., a new device is released).

Naturally, work is also increasing in the area of more system-
atic easily re-used techniques for lowering resource consump-
tion in deep models. A common framework for these ap-
proaches is from the machine learning community and called
model compression that most often used at training time
(unlike SparseSep that is inference-time focused) to scale
to larger datasets or increase hardware utilization. Tech-
niques of this type vary in particular to the extent to which
the underlying model is altered. For example, [24] actually
removes nodes and reshapes layers within the model while
[21, 53] performs types of quantization of parameters within
layers. We design SparseSep towards minimizing the mod-
ifications made to the model and so adopt approaches that
insert new layers designed to optimize performance. SVD-
based methods of this type are the current state of the art
(such as [54]) which SparseSep has numerous advantages as
detailed throughout this paper. [14] focuses on how to parti-
tion deep learning models across di↵erent types of processors
(GPUs, CPUs, DSPs) found within an system-on-a-chip; it
uses an SVD-based model compression approach to allow a
partition of a model to fit within the resources of a specific
processor (such as a DSP). SparseSep in contrast is agnos-
tic to processor type, and complementary to [14] in that its
performance could only improve if it incorporated ideas of
utilizing a spectrum of processors.

8. CONCLUSION
In this paper, we have proposed SparseSep – a set of novel
techniques for optimizing large-scale deep learning models –
that allows deep models to function even under the extreme

system constraints presented by wearable hardware. Con-
ceptually, SparseSep brings many of the recent advances in
sparse dictionary learning and convolution kernel separation
to how deep learning models are both represented and exe-
cuted. The core innovation is an o↵-line method to sparsify
the internal feed-forward layers of both DNNs and CNNs,
and optimization of convolution filters of CNNs, that pro-
duces a highly compact model representation with only small
reductions in classification accuracy. Such layer sparsity in
turn, enables SparseSep to re-invent the inference process
used in deep models and allow classification to occur with
radically lower resources. We believe the leaps in deep learn-
ing inference e�ciency that SparseSep provides will prove
to be a significant enabler for the broader adoption of such
modeling techniques within mobile and IoT platforms.
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R. Walker, and T. Plötz, “Pd disease state assessment
in naturalistic environments using deep learning,” in
AAAI 2015, 2015.

http://www.iro.umontreal.ca/~bengioy/dlbook
http://research.microsoft.com/apps/pubs/default.aspx?id=209355
http://research.microsoft.com/apps/pubs/default.aspx?id=209355
http://arxiv.org/abs/1511.06433
http://doi.acm.org/10.1145/2541940.2541967


[8] N. D. Lane and P. Georgiev, “Can deep learning
revolutionize mobile sensing?” in Proceedings of the
16th International Workshop on Mobile Computing
Systems and Applications, ser. HotMobile ’15. New
York, NY, USA: ACM, 2015, pp. 117–122. [Online].
Available:
http://doi.acm.org/10.1145/2699343.2699349

[9] “Your Samsung SmartTV Is Spying on You,
Basically,” http:
//www.thedailybeast.com/articles/2015/02/05/your-
samsung-smarttv-is-spying-on-you-basically.html.

[10] “How Google Translate squeezes deep learning onto a
phone,” http://googleresearch.blogspot.co.uk/2015/
07/how-google-translate-squeezes-deep.html.

[11] G. Chen, C. Parada, and G. Heigold, “Small-footprint
keyword spotting using deep neural networks,” in
IEEE International Conference on Acoustics, Speech,
and Signal Processing, ser. ICASSP’14, 2014.

[12] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi,
and F. Kawsar, “An early resource characterization of
deep learning on wearables, smartphones and
internet-of-things devices,” in Proceedings of the 2015
International Workshop on Internet of Things Towards
Applications, ser. IoT-App ’15. New York, NY, USA:
ACM, 2015, pp. 7–12. [Online]. Available:
http://doi.acm.org/10.1145/2820975.2820980

[13] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin,
M. Mao, M. aurelio Ranzato, A. Senior, P. Tucker,
K. Yang, Q. V. Le, and A. Y. Ng, “Large scale
distributed deep networks,” in Advances in Neural
Information Processing Systems (NIPS). Curran
Associates, Inc., 2012, pp. 1223–1231.

[14] N. D. Lane, S. Bhattacharya, C. Forlivesi,
P. Georgiev, L. Jiao, L. Qendro, , and F. Kawsar,
“Deepx: A software accelerator for low-power deep
learning inference on mobile devices,” in IPSN 2016.

[15] “Nvidia Tegra K1,” http:
//www.nvidia.com/object/tegra-k1-processor.html.

[16] “Arm Cortex-M3,” http://www.arm.com/products/
processors/cortex-m/cortex-m3.php.

[17] B. A. Olshausen and D. J. Field, “Sparse coding with
an overcomplete basis set: A strategy employed by
v1?” Vision research, vol. 37, no. 23, pp. 3311–3325,
1997.

[18] Principal component analysis. Wiley Online Library,
2002.

[19] C. M. Bishop, Pattern Recognition and Machine
Learning. Springer, 2007.

[20] A. Krizhevsky, “One weird trick for parallelizing
convolutional neural networks,”CoRR, vol.
abs/1404.5997, 2014. [Online]. Available:
http://arxiv.org/abs/1404.5997

[21] J. S. Ren and L. Xu, “On vectorization of deep
convolutional neural networks for vision tasks,” in
Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2015.

[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein, Introduction to algorithms, 3rd ed. MIT
press, 2009.

[23] J. Xue, J. Li, and Y. Gong, “Restructuring of deep
neural network acoustic models with singular value
decomposition,” in INTERSPEECH, 2013, pp.

2365–2369.
[24] T. He, Y. Fan, Y. Qian, T. Tan, and K. Yu,

“Reshaping deep neural network for fast decoding by
node-pruning,” in Acoustics, Speech and Signal
Processing (ICASSP), 2014 IEEE International
Conference on. IEEE, 2014, pp. 245–249.

[25] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “E�cient
sparse coding algorithms,” in Neural Information
Processing Systems (NIPS), 2007.

[26] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng,
“Self-taught learning: Transfer learning from
unlabeled data,” in Proceeding of the International
Conference on Machine Learning (ICML), 2007.

[27] S. Bhattacharya, P. Nurmi, N. Hammerla, and
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