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Abstract— We consider the problem of controlling ther-
mostatic loads such that ancillary services are provided to
the power network within the secondary frequency control
timeframe. This problem has been widely studied in the
literature, where stochastic control schemes have been proposed
to avoid the possibility of load synchronization, which induces
persistent frequency oscillations. However, stochastic schemes
introduce delays in the response of thermostatic loads that
may limit their ability to provide support at urgencies. In
this paper, we present a deterministic control mechanism for
thermostatic loads such that those switch when prescribed
frequency thresholds are exceeded in order to provide ancillary
services to the power network. For the considered scheme, we
propose appropriate conditions for the design of the frequency
thresholds that bound the coupling between frequency and
thermostatic load dynamics, so as to avoid synchronization
phenomena. In particular, we show that as the number of loads
tends to infinity, there exist arbitrarily long time intervals where
the frequency deviations are arbitrarily small.

I. INTRODUCTION

Motivation and literature review: A significant growth in
the penetration of renewable sources of generation in power
networks is expected in the following years [1], [2], driven
by environmental concerns. This will result in increasingly
intermittent generation, endangering power quality and po-
tentially the stability of the power network. Controllable
loads are considered to be a way to counterbalance in-
termittent generation, due to their ability to provide fast
response at urgencies by adapting their demand accordingly.
The use of loads as ancillary services, in conjunction with
a large penetration of renewable sources of generation will
significantly increase the number of active devices in the
network making its electromechanical behavior difficult to
predict and encouraging the analytical study of its behaviour.
Along these lines, various research studies in recent years
have considered controllable demand as a means of providing
support to primary [3], [4], [5], [6], [7], and secondary [8],
[9], [10], [11], [12], [13], frequency control mechanisms,
where the objective is to ensure that generation and demand
are balanced and that the frequency converges to its nominal
value (50Hz or 60Hz) respectively.

Thermostatic loads comprise a significant portion of the
total demand. A recent survey in the EU [14] showed that
thermostatic loads exceeded 80% and 40% of the total
consumption in households with and without electric heating
respectively. Hence, an analytic study of the thermostatic
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effects on load behavior is of great importance if those are
to provide ancillary services to the power network.

The use of thermostatic loads as a means for providing
support to frequency control has been considered in [15],
where the authors suggested temperature thresholds in ther-
mostatic loads to be linearly dependent on frequency and
demonstrated with simulations that this resulted in improved
performance. However, it was demonstrated in [16] that
such control scheme could potentially result to load syn-
chronization, i.e. many loads simultaneously switching and
causing large oscillations in the power network. As a remedy
to this problem, the authors proposed a stochastic control
scheme which ensured that load would not synchronize.
Various other studies [17], [18], [19], considered similar
problems by relying on stochastic approaches. However,
stochastic approaches induce time delays in the response of
thermostatic loads at fast frequency fluctuations, which may
limit their applicability. The latter, motivates the study of
deterministic schemes for the control of thermostatic loads,
such that a faster response is allowed at urgencies.

Contribution: This study considers a deterministic ap-
proach for the control of thermostatic loads, such that an-
cillary services are provided at urgencies. Our main analytic
results concern the case when the number of loads tends
to infinity, a condition justified by the large number of
thermostatic appliances in power networks, e.g. around 40
million refrigerators are estimated to operate in the U.K. [17].

We first consider a conventional scheme for thermostatic
loads where they do not contribute to frequency control, and
show that when their number tends to infinity, the variance
of their aggregate sum tends to zero.

We then consider a control scheme for thermostatic loads,
such that loads switch when certain frequency thresholds are
exceeded in order to support existing secondary frequency
control schemes. The considered scheme ensures that load
temperatures will not exceed their respective bounds, and
hence that user comfort levels will not be affected. Further-
more, the proposed scheme, being deterministic, enables the
instant switch of loads at urgencies, hence allowing faster
frequency response compared to stochastic approaches. For
the considered scheme, we provide design conditions for
the frequency thresholds that bound the coupling between
the frequency and the load dynamics so as to avoid load
synchronization. In particular, we analytically show that
when the number of loads tends to infinity, the frequency
deviations will be arbitrarily small for arbitrarily long time
intervals.

Paper structure: In Section II we present some basic
notation used in the paper and in Section III the considered



power system. In Section IV we consider a conventional
model for thermostatic loads and study its properties in
terms of the aggregate mean and variance. In Section V,
we present our proposed scheme for frequency control using
thermostatic loads and state our main results regarding the
performance of the power system. Finally, conclusions are
drawn in Section VI. The proofs of the results have been
omitted due to page constraints and will be included in an
extended version of this work.

II. NOTATION

Real numbers are denoted by R and N, and the set of n-
dimensional vectors with real entries is denoted by Rn. Fur-
thermore, we define the sets of integers and positive rational
and positive real numbers by Z,Q+ and R+ respectively.
The set of natural numbers and the set of natural numbers
including zero are denoted by N and N0 respectively. The
cardinality of a set S is denoted by |S|. For a ∈ R, b ∈
R \{0} the modulo of a to b is denoted by [a]+b and defined
as [a]+b = a − bbab c, where for x ∈ R, bxc = sup{m ∈ Z :
m ≤ x}. The average of a real valued time signal x(t) with
respect to time is defined as Et(x(t)) = limτ→∞

1
τ

∫ τ
0
x(t)dt

and its variance as Vt(x(t)) = Et((x(t))2) − [Et(x(t))]2.
Note that for convenience in presentation we shall use E and
V (without the subscript t) to denote the mean and variance
with respect to time.

III. POWER SYSTEM MODEL

We use the swing equation to describe the rate of change
of the frequency of the power system (e.g. [20]). In particular,
we consider the following assumptions on our studied model:
1) Bus voltage magnitudes satisfy |V | = 1 p.u. for all buses.
2) Lines are lossless and characterized by their susceptances.
3) Reactive power flows do not affect bus voltage phase
angles and frequencies.
4) Frequencies between buses are synchronized.

The first three conditions have been widely used in the
literature for the study of frequency control schemes in
power networks [10], [13]. The fourth assumption is justified
from the relatively small deviations between bus frequencies,
which allows the study of power system characteristics using
a single frequency (see also [21], [22]). This motivates the
following system dynamics,

Mω̇ = −pL + pM −Dω −
∑
j∈N

dcj . (1)

In system (1) the time-dependent variables pM , dcj
and ω represent, respectively, the mechanical power in-
jection, the jth thermostatic load and the deviation from
the nominal value1 of frequency. Furthermore, we let
N := {1, 2 . . . , |N |} be the set of thermostatic loads. The
constants M > 0 and D > 0 denote the generator inertia and
damping coefficient respectively. We study the response of
system (1) at a step change in the uncontrollable demand

1A nominal value is defined as an equilibrium of (1) with frequency equal
to 50Hz (or 60Hz).

0

0

Fig. 1: Thermostatic loads scheme described by (3).

pL. Furthermore, we shall consider generation dynamics
described by

ṗM = −Kω, (2)

where K > 0 is the integral gain. Note that the simplicity
in the generation dynamics (2) is in order to facilitate the
analysis of the paper and keep its focus on thermostatic loads,
which have a non-trivial hybrid and periodic behaviour as it
will be discussed within the paper. More advanced generation
models will be considered as part of future work.

IV. THERMOSTATIC LOADS

In this section we consider the conventional model for
thermostatic loads and study its properties. The analysis in
this section deduces important properties of thermostatic load
behavior, which are used to obtain the main results of this
paper. Thermostatic load dynamics are conventionally (e.g
[16], [23]) described by

dcj = djσj , σj(t
+) =


1, Tj ≥ T j ,

0, Tj ≤ T j ,

σj(t), T j ≤ Tj ≤ T j ,

(3)

where j ∈ N and t+ = limε→0(t + ε). In (3), the time-
dependent variables dcj and σj denote the demand and switch
state of the jth load respectively. The constants dj , T j and T j
denote the load magnitude and lower and upper temperature
thresholds for load j respectively and satisfy dj ∈ R+ and
T j > T j > 0, j ∈ N . The hysteresis scheme in (3) is
depicted in Figure 1.

Furthermore, the temperature dynamics satisfy

Ṫj = −kj(Tj − T̂j + λjd
c
j), j ∈ N, (4)

where Tj , kj , λj > 0 denote the time-dependent temperature,
thermal insulation coefficient and coefficient of performance
of load j respectively. Furthermore, T̂j denotes the ambient
temperature of load j that is assumed constant. Moreover, it
is assumed that T̂j − λjdj < T j , such that (3), (4), has no
equilibria, as is the case in practise.



A. Period and ON-time of thermostatic loads
The period πj of thermal load j, described by (3), (4), is

defined as the time required for load j to switch twice, i.e.
the time between two consecutive switches to the ON (or
equivalently OFF) state. In the following definition, we let
tj,i be the time where the ith switch of load j, described by
(3), (4), occurs.

Definition 1: The period of load j is defined as πj =
tj,i+2 − tj,i, for any i ≥ 1.

It should be clear that for any j ∈ N , it holds that tj,i+2−
tj,i = tj,k+2−tj,k, for all i, k ∈ N. Note that the time lengths
that load j remains switched ON and OFF within each period
are respectively given by

πONj =
1

kj
ln(

T j + λjdj − T̂j
T j + λjdj − T̂j

), j ∈ N, (5a)

πOFFj =
1

kj
ln(

T̂j − T j
T̂j − T j

), j ∈ N, (5b)

and that it trivially follows that πj = πONj + πOFFj .

Furthermore, we let αj =
πONj
πj

be the ratio of time each
load stays switched ON within each period. Moreover, we
define the period ratio between loads i and j as ρij = πi

πj
.

We shall use dc,∗j = αjdj to denote the average value of dcj
when its dynamics are described by (3), (4). Finally, we let

ds =
∑
j∈N

dcj , Γ =
∑
j∈N

dj , (6)

be the aggregate sum and aggregate magnitude of thermo-
static loads, where Γ ∈ R+.

B. Expectation and variance analysis
In this section we consider the behavior of the aggregation

of thermostatic loads in terms of mean and variance. In
particular, we study how these two quantities are influenced
when the number of loads tends to infinity, assuming always
a constant aggregate sum.

An important assumption for the following analysis is that
all period ratios lie in the set R+/Q+. Note that Q+ is
of measure zero and hence the condition ρij ∈ R+/Q+ is
unlikely to be violated in practise. The assumption is stated
below.

Assumption 1: All loads i, j ∈ N described by (3), (4),
satisfy ρij ∈ R+/Q+.

Assumption 1 is a technical condition for Theorem 1
below showing that the variance of the aggregation of loads
is zero for any initial condition. Assumption 1 excludes cases
such as when two loads have identical periods, which makes
the trajectory of the aggregation of any two loads periodic
and depended on the initial conditions. The latter is true for
all cases where ρij ∈ Q+, which are hence excluded.

The following theorem states that the variance of the
aggregation of thermostatic loads tends to zero as their
number tends to infinity.

Theorem 1: Consider thermostatic loads described by
(3), (4), with dj = Γ

|N | and let Assumption 1 hold. Then,
lim|N |→∞ V(ds) = 0.

Theorem 1 demonstrates that as the number of loads tends
to infinity, the variance of their aggregation tends to zero.
This suggests that as the number of loads described by (3),
(4), in the power network becomes large, then an almost flat
load aggregation should be expected, a desired feature to
obtain a smooth frequency response. Note that Theorem 1, as
well as many of the results that follow, are stated for the case
where dj = Γ

|N | , j ∈ N, which suggests a constant aggregate
sum Γ and loads of identical magnitude. Although the former
is essential for the presented analysis, the assumption that all
load magnitudes are identical is made only for simplicity and
could potentially be relaxed, as part of future work.

V. FREQUENCY CONTROL OF THERMOSTATIC LOADS

In this section we consider the use of frequency feedback
for the control of thermostatic loads. In particular, we present
a frequency control scheme for thermostatic loads and pro-
pose appropriate conditions for its design. For the proposed
scheme, we show that, as the number of loads tends to
infinity, then no synchronization phenomena occur and that
there exist arbitrarily long time intervals where frequency
deviations are arbitrarily small.

A. Frequency control scheme for thermostatic loads

In this section we present a novel scheme to control
thermostatic loads such that ancillary services are provided
at urgencies, i.e. when frequency deviations exceed particular
thresholds. The scheme, depicted on Figure 2, is described
below

dcj = djσj , (7a)

σj(t
+) =



1,

{
Tj ≥ T j ,

ω ≥ ω1
j and T j + εj ≤ Tj ≤ T j − εj ,

0,

{
Tj ≤ T j ,

ω≤−ω1
j and T j + εj≤Tj≤T j − εj ,

σj(t),

{
|ω| ≤ ω1

j and T j ≤ Tj ≤ T j ,

Tj ∈ [T j , T j + εj ] ∪ [T j , T j − εj ].
(7b)

where ω1
j > 0 are frequency thresholds and 0 < εj < (T j −

T j)/2, j ∈ N . Note that, εj in (7) serves to ensure than no
Zeno behaviour should be expected as a result of the coupling
between the frequency and thermostatic load dynamics. The
latter is analytically shown in Lemma 1 below.

The scheme in (7) responds to frequency deviations
by switching when prescribed frequency thresholds are
exceeded thus providing ancillary services to the power
network. Furthermore, when the frequency deviation does
not reach the corresponding frequency thresholds, then the
scheme in (7) reduces to (3). Note that, according to (7),
temperature will always be within its respective thresholds
and hence users comfort levels will not be affected.

For the rest of the manuscript, we let S(ω) = {j : ω1
j ≤

ω} be the set of loads with respective upper frequency thresh-
olds below ω. Moreover, for any set S ⊆ N , we let ωm(S) =



0

Fig. 2: Thermostatic loads scheme described by (7).

minj∈S ω
1
j , d

s
S(t) =

∑
j∈S d

c
j(t) and ds,∗S =

∑
j∈S αjdj .

Furthermore, we define the following parameters

L =

{
D
MK , if D2 ≥ 4MK

2( 1
D2 + 1

4MK−D2 )
1
2 ), otherwise.

(8a)

L̂ =

{
1
Mω̂ (d

ω̂−β
2ω̂ − d−

ω̂+β
2ω̂ ) if D2 ≥ 4MK

2
Mωc

(
β
ωc + (e−

β
ω (φ+π

2 ))/(1− e−
β
ωπ)
)
, otherwise,

(8b)
where β = D

2M , ω̂ =
√
D2−4MK

2M , ω = jω̂, d = β+ω̂
β−ω̂ ,

c = (1 + β2

ω2 )
1
2 and φ ∈ {tan−1( βω )} ∩ (0, π2 ). Note that it

is trivial to show that L, L̂ ∈ R+ when M,K,D ∈ R+.
The following condition is imposed for the design of

frequency thresholds.
Design condition 1: The frequency thresholds ω1

j are cho-
sen such that, for all ω ∈ R and some δ > 0, at least one of
the following holds for L, L̂ defined by (8)

(i)
∑
j∈S(|ω|) dj ≤ max(K(|ω| − δ), 0), where K = L−1,

(ii)
∑
j∈S(|ω|) dj ≤ max(K̂(|ω| − δ), 0), where K̂ = L̂−1.

It should be clear that δ in Design condition 1 satisfies
δ ∈ (0, ωm(N)) by definition, since ω1

j < δ for some j ∈ N
would imply that Design condition 1 does not hold. Design
condition 1 is important to deduce that no synchronization
occurs between thermostatic loads when the scheme (7) is
considered. The respective values of L and L̂ consist an
upper bound and the exact value of the 1-norm of the system
(1), (2), with input ds and output ω, which is relevant in the
analysis below. This suggests that part (ii) is a relaxation of
part (i) allowing for a less conservative bound on allowable
loads. This bound becomes significantly better at particular
parametric realizations of (1), (2), e.g. when 4MK > D2

and D2 → 4MK. On the other hand, part (i) provides an
intuitive and easy to implement condition that is satisfactory
for many practical cases.

B. Hybrid system description

The behavior of system (1), (2), (4), (7), can be described
by the states z = (x, σ), where x = (ω, pM , T ) ∈ Rn, n =
|N | + 2, is the continuous state, and σ ∈ P |N | the discrete

state, where P = {0, 1}. Moreover, let Λ = Rn × P |N | be
the space where the system states evolve. The continuous
dynamics of the system (1), (2), (4), (7), are described by

Mω̇ = −pL + pM −Dω −
∑
j∈N

djσj (9a)

ṗM = −Kω, (9b)

Ṫj = −kj(Tj − T̂j + λjd
c
j), j ∈ N, (9c)

σ̇j = 0, j ∈ N, (9d)

which is valid when z belongs to the set C given by

C = {z ∈ Λ : σj ∈ Ij(Tj , ω), ∀j ∈ N}, (10)

where

Ij(Tj , ω) =



{1},

{
Tj > T j ,

ω > ω1
j and T j + εj < Tj < T j − εj ,

{0},

{
Tj < T j ,

ω<−ω1
j and T j + εj<Tj<T j − εj ,

{0, 1},

{
|ω| ≤ ω1

j and T j ≤ Tj ≤ T j ,

Tj ∈ [T j , T j + εj ] ∪ [T j , T j − εj ].

Alternatively, when z belongs to the set D = (Λ \ C) ∪D
where D = {z ∈ Λ : σj ∈ IDj (Tj , ω), ∀j ∈ N}, and

IDj (Tj , ω) =



{1},


Tj = T j ,

ω = −ω1
j and Tj ∈ [T j+εj , T j−εj ],

ω ≤ −ω1
j and Tj ∈ {T j+εj , T j−εj},

{0},


Tj = T j ,

ω = ω1
j and Tj ∈ [T j + εj , T j − εj ],

ω ≥ ω1
j and Tj ∈ {T j + εj , T j − εj},

then its components follow the discrete update described
below

x+ = x, σj(t
+) =


1,

{
Tj ≥ T j ,

ω≥ω1
j and Tj ∈ [T j+εj , T j−εj ],

0,

{
Tj ≤ T j ,

ω≤−ω1
j and Tj ∈ [T j+εj , T j−εj ].

(11)

We can now provide the following compact representation
for the hybrid system (1), (2), (4), (7),

ż = f(z), z ∈ C, (12a)
z+ = g(z), z ∈ D, (12b)

where f(z) : C → Λ and g(z) : D → C are described by
(9) and (11) respectively. Note that z+ = g(z) represents a
discrete dynamical system where z+ indicates that the next
value of the state z is given as a function of its current value
through g(z). Moreover, notice that C ∪D = Λ.



C. Analysis of solutions

In this section we consider the solutions of (12) and show
their existence and that no Zeno behavior occurs. Note that
we use the definitions of a hybrid time domain, hybrid
solution and complete and maximal solutions for systems
described by (12) from [24, Ch. 2].

The following lemma shows the existence of complete
solutions to (12). Furthermore, it provides a lower bound on
the time between three consecutive switches, which suffices
to show that no Zeno behavior occurs. We remind that tj,i
denotes the time when the ith switch of load j occurs.

Lemma 1: For any initial condition z(0, 0) ∈ Λ there
exists a complete solution to (12). Furthermore, for any
complete bounded solution to (12), there exists τ > 0 such
that mini≥1(tj,i+2 − tj,i) ≥ τ for any j ∈ N .

It should be noted that the condition for boundedness of
solutions to (12) is not restrictive since it can be shown
that all solutions to (12) are bounded. The latter, follows by
noting that (12) consists of the asymptotically stable linear
system (1), (2), in feedback with the hybrid system (4), (7)
and that the magnitude of ds, which can be regarded as the
output of (4), (7), is bounded.

D. Performance analysis

In this section we state one of the main results of this
paper, associated with the performance of solutions to (12).
The following theorem demonstrates that as the number
of loads tends to infinity, then for all initial conditions
there exist arbitrarily long time intervals where frequency
deviations are arbitrarily small.

Theorem 2: Consider the system described by (12) and let
Assumption 1 and Design condition 1 hold. Furthermore, as-
sume that the thermostatic loads described by (4), (7) satisfy
dj = Γ

|N | . Then, as |N | → ∞, for any z(0, 0) ∈ Rn × P |N |,
any maximal solution of (12) and any ε > 0, τ̂ ∈ R+, there
exists τ ∈ R+ such that |ω(t, j)| ≤ ε for t ∈ [τ, τ + τ̂ ].

The importance of Theorem 2 is that it shows, for all initial
conditions, that frequency trajectories become arbitrarily
small for an arbitrarily long amount of time. Also as shown in
Lemma 1 the scheme in (7) avoids Zeno behaviour, and being
deterministic, it allows the instant response to frequency
deviations, thus providing improved ancillary services to the
power system.

Preliminary analysis and numerical simulations indicate
that a stronger version of Theorem 2 possibly holds, sug-
gesting that, when the frequency control scheme (7) is
implemented and the number of loads tends to infinity,
frequency deviations are arbitrarily small with arbitrarily
high probability (i.e. at times with arbitrarily high relative
frequency of occurrence). However, the analytic derivation
of the above statement raises various technical challenges
and will be part of future work.

VI. CONCLUSION

We have studied the problem of controlling thermostatic
loads to provide ancillary services to the power network
at urgencies. We first considered conventional thermostatic

loads and showed that their aggregation has zero variance
when their number tends to infinity and a mild condition on
their period ratios holds. Then, we proposed a deterministic
control scheme for thermostatic loads which induces switch-
ing when frequency deviations exceed particular frequency
thresholds. For the considered scheme, we explain how fre-
quency thresholds could be designed such that the coupling
between load and frequency dynamics does not cause load
synchronization. In particular, when the number of loads
tends to infinity, we showed that frequency deviations are
arbitrarily small for arbitrarily large periods of time.
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