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Abstract

We examine the problem of controlling divergences for latent space regularisation
in variational autoencoders. Specifically, when aiming to reconstruct example
x ∈ Rm via latent space z ∈ Rn (n ≤ m), while balancing this against the need for
generalisable latent representations. We present a regularisation mechanism based
on the skew-geometric Jensen-Shannon divergence

(
JSGα

)
. We find a variation

in JSGα , motivated by limiting cases, which leads to an intuitive interpolation
between forward and reverse KL in the space of both distributions and divergences.
We motivate its potential benefits for VAEs through low-dimensional examples,
before presenting quantitative and qualitative results. Our experiments demonstrate
that skewing our variant of JSGα , in the context of JSGα-VAEs, leads to better
reconstruction and generation when compared to several baseline VAEs. Our
approach is entirely unsupervised and utilises only one hyperparameter which can
be easily interpreted in latent space.

1 Introduction

The problem of controlling regularisation strength for generative models is often data-dependent and
poorly understood [3, 7]. Post-hoc analysis of coefficients dictating regularisation strength is rarely
carried out and even more rarely provides an intuitive explanation (e.g. β-VAE, [13]). Although
evidence suggests that stronger regularisation in variational settings leads to desirable disentangled
representations of latent factors and better generalisation [38], scaling factors remain opaque and
unrelated to the task at hand.

To learn useful latent representations for reconstruction and generation of high-dimensional distribu-
tions, the variational inference problem can be addressed through the use of Variational Autoencoders
(VAEs) [17, 34]. VAE learning requires optimisation of an objective balancing the quality of samples
that are encoded and then decoded, with a regularisation term penalising latent space deviations from
a fixed prior distribution. VAEs have favourable properties when compared with other families of
generative models, such as Generative Adversarial Networks (GANs) [10] and autoregressive models
[9, 20]. In particular, GANs are known to necessitate more stringent and problem-dependent training
regimes, while autoregressive models are computationally expensive and inefficient to sample.

VAEs often assume latent variables to be parameterised by a multivariate Gaussian pθ(z) = N(µ, σ2)
with z, µ, σ ∈ Rn, which is approximated by qφ(z|x) with x ∈ Rm and n ≤ m. In variational
Bayesian methods, using the Evidence Lower BOund (ELBO) [4], the model can be naturally
constrained to prevent overfitting by minimising the Kullback-Leibler (KL) [19] divergence to an
isotropic unit Gaussian ball KL (pθ(z) ‖ N (0, I)). One line of work has sought to better understand
this divergence term to induce disentanglement, robustness, and generalisation [5, 6]. Meanwhile, the
∗Corresponding author.
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broader framework of learning a VAE as a constrained optimisation problem [13], has allowed for
increasing use of more exotic statistical divergences and distances for latent space regularisation [8,
12, 22, 37], such as the regularisation term in InfoVAE [38], the Maximum Mean Discrepancy (MMD)
[11].

As regularisation terms increase in complexity, it is advantageous to maintain intuition as to how
they operate in latent space and to avoid exponential hyperparameter search spaces on real-world
problems. In order to properly capitalise on the advantages of each divergence, it is also desirable that
the meaning of scaling factors remains clear when combining multiple divergence terms. For instance,
as forward KL and reverse KL are known to have distinct beneficial properties—zero-avoidance
allowing for exploration of new areas in the latent space [3] and zero-forcing more easily ignoring
noise for sharper selection of strong modes [37] respectively—there are instances where favouring
one over the other would be beneficial. Even better would be to balance use of both properties at the
same time in a comprehensible manner.

In this regard, we propose the skew-geometric Jensen-Shannon Variational Autoencoder (JSGα -VAE)
as an unsupervised approach to learning strongly regularised latent spaces. More specifically, we
make several contributions: we first discuss the skew-geometric Jensen-Shannon divergence (and
its dual form) [30] in the context of the well known KL and Jensen-Shannon (JS) divergences and
outline its limited use. We proceed to propose an adjustment of the skew parameter, and show how
its effect on an intermediate distribution in JSGα furnishes us with a more intuitive divergence and
permits interpolation between forward and reverse KL divergence. We then study the skew-geometric
Jensen-Shannon in the wider context of latent space regularisation and use it to derive a loss function
for JSGα -VAE.

To test the utility of the proposed skew-geometric Jensen-Shannon adjustments, we investigate how
JSGα operates on low-dimensional examples. We demonstrate that JSGα has beneficial properties for
light-tailed posterior distributions and is a more useful (and tractable) intermediate divergence than
standard JS. We further exhibit that JSGα for VAEs has a positive impact on test set reconstruction
loss. Namely, we show that the dual form, JSGα

∗ consistently outperforms forward and reverse KL
across several standard benchmark datasets and skew values.2

2 JSGα VAE derivation

Existing work suggests that there exists no tractable interpolation between forward and reverse KL
for multivariate Gaussians. In this section, we will show that one can be found by adapting JSGα . We
also exhibit how this interpolation, well-motivated in the space of distributions, reduces to a simple
quadratic interpolation in the space of divergences.

2.1 The JSGα divergences family

Problems with KL and JS minimisation. For distributions P and Q of a continuous random
variable X = [X1, . . . , Xn]

T, the Kullback-Leibler (KL) divergence [19] is defined as

KL(P ‖ Q) =

∫
X

p(x) log

[
p(x)

q(x)

]
dx, (1)

where p and q are the probability densities of P and Q respectively, and x ∈ Rn. In particular,
Equation (1) is known as the forward KL divergence from P to Q, whereas reverse KL divergence
refers to KL(Q ‖ P ).

Due to Gaussian distributions being the self-conjugate distributions of choice in variational learning,
we are interested in using divergences to compare two multivariate normal distributions N1(µ1,Σ1)
and N2(µ2,Σ2) with the same dimension n. In this case, the KL divergence is

KL (N1 ‖ N2) =
1

2

(
tr
(
Σ−12 Σ1

)
+ ln

[
|Σ2|
|Σ1|

]
+ (µ2 − µ1)TΣ−12 (µ2 − µ1)− n

)
. (2)

2Code is available at: https://github.com/jacobdeasy/geometric-js
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This expression is well-known in variational inference and, for the case of reverse KL from a standard
normal distribution N2(0, I) to a diagonal multivariate normal distribution, reduces to the expression

KL
(
N1

(
µ1, diag

(
σ2
1 , . . . , σ

2
n

))
‖ N2(0, I)

)
=

1

2

n∑
i=1

(
σ2
i − ln

[
σ2
i

]
+ µ2

i − 1
)
, (3)

used as a regularisation term in variational models [13, 17, 27] and is known to enforce zero-avoiding
parameters on N1 when minimised [3, 26]. On the other hand, the forward KL divergence reduces to

KL
(
N2(0, I) ‖ N1

(
µ1, diag

(
σ2
1 , . . . , σ

1
n

)))
=

1

2

n∑
i=1

(
σ−2i + ln

[
σ2
i

]
+
µ2
i

σ2
i

− 1

)
, (4)

and is known for its zero-forcing property [3, 26]. However, there exist well-known drawbacks of the
KL divergence, such as no upper bound leading to unstable optimization and poor approximation
[12], as well as its asymmetric property KL(P ‖ Q) 6= KL(Q ‖ P ). Underdispersed approximations
relative to the exact posterior also produce difficulties with light-tailed posteriors when the variational
distribution has heavier tails [8].

One attempt at remedying these issues is the well-known symmetrisation, the Jensen-Shannon (JS)
divergence [23]

JS(p(z) ‖ q(x)) =
1

2
KL
(
p

∥∥∥∥ p+ q

2

)
+

1

2
KL
(
q

∥∥∥∥ p+ q

2

)
. (5)

Although the JS divergence is bounded (in [0, 1] when using base 2), and offers some intuition
through symmetry, it includes the problematic mixture distribution p+q

2 . This term means that no
closed-form expression exists for the JS divergence between two multivariate normal distributions
using Equation (5).

Divergence families. To circumvent these problems, prior work has sought more general families
of distribution divergence [29]. For example, when λ = 1

2 , JS is a special case of the more general
family of λ divergences, defined by

λ(p(x) ‖ q(x)) = λKL (p ‖ (1− λ)p+ λq) + (1− λ)KL (q ‖ (1− λ)p+ λq) , (6)
for λ ∈ [0, 1], which interpolates between forward and reverse KL, and provides control over the
degree of divergence skew (how closely related the intermediate distribution is to p or q).

Although λ divergences do not prevent the intractable comparison to a mixture distribution, their
broader goal is to measure weighted divergence to an intermediate distribution in the space of possible
distributions over X . In the case of the JS divergence, this is the (arithmetic) mean divergence to the
arithmetic mean distribution. Recently, [30] and [32] have proposed a further generalisation of the JS
divergence using abstract means (quasi-arithmetic means [28], also known as Kolmogorov-Nagumo
means). By choosing the weighted geometric mean Gα(x, y) = x1−αyα for α ∈ [0, 1], and using the
property that the weighted product of exponential family distributions (which includes the multivariate
normal) stays in the exponential family [31], a new divergence family has arisen

JSGα(p(x) ‖ q(x)) = (1− α)KL (p ‖ Gα(p, q)) + αKL (q ‖ Gα(p, q)) . (7)

JSGα , the skew-geometric Jensen-Shannon divergence, between two multivariate Gaussians
N (µ1,Σ1) and N (µ2,Σ2) then admits the closed form

JSGα (N1 ‖ N2) = (1− α)KL (N1 ‖ Nα) + αKL (N2 ‖ Nα) (8)

=
1

2

(
tr
(
Σ−1α ((1− α)Σ1 + αΣ2)

)
+ log

[
|Σα|

|Σ1|1−α|Σ2|α

]

+ (1− α)(µα − µ1)TΣ−1α (µα − µ1) + α(µα − µ2)TΣ−1α (µα − µ2)− n

)
, (9)

with the equivalent dual divergence being

JSGα
∗ (N1 ‖ N2) = (1− α)KL (Nα ‖ N1) + αKL (Nα ‖ N2) (10)

=
1

2

(
(1− α)µT

1Σ−11 µ1 + αµT
2Σ−12 µ2 − µT

αΣ−1α µα + log

[
|Σ1|1−α|Σ2|α

|Σα|

])
,

(11)
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where Nα has parameters

Σα =
(
(1− α)Σ−11 + αΣ−12

)−1
, (12)

(the matrix harmonic barycenter) and

µα = Σα
(
(1− α)Σ−11 µ1 + αΣ−12 µ2

)
. (13)

Throughout this paper we explore how to incorporate these expressions into variational learning.

2.2 JSGα and JSGα
∗ in variational neural networks

Interpolation between forward and reverse KL. Before applying JSGα , we note that although
the mean distribution Nα can be intuitively understood, the limiting skew cases still seem to offer no
insight, as

lim
α→0

[
JSGα

]
= 0 lim

α→1

[
JSGα

]
= 0 (14)

lim
α→0

[
JSGα
∗
]

= 0 lim
α→1

[
JSGα
∗
]

= 0. (15)

Therefore, we instead choose to consider the more useful intermediate mean distribution

Nα′ = N
(
µ(1−α),Σ(1−α)

)
. (16)

This is equivalent to simply reversing the geometric mean (using Gα(y, x) rather than Gα(x, y)) and
trivially still permits a valid divergence as a weighted sum of valid divergences.

Proposition 1. The alternative divergence

JSGα′ (N1 ‖ N2) = (1− α)KL (N1 ‖ Nα′) + αKL (N2 ‖ Nα′) , (17)

and its dual JSGα′
∗ , interpolate between forward and reverse KL, satisfying

lim
α→0

[
JSGα′

]
= KL (N1 ‖ N2) lim

α→1

[
JSGα′

]
= KL (N2 ‖ N1) (18)

lim
α→0

[
JSGα′
∗
]

= KL (N2 ‖ N1) lim
α→1

[
JSGα′
∗
]

= KL (N1 ‖ N2) . (19)

The proof of this is given in Appendix A.1. Henceforth in the paper, unless explicitly stated, JSGα

refers to JSGα′ (without the prime (′)).

Variational autoencoders. We can now introduce a new VAE loss function based on this finding by
using the formulation of VAE optimisation as a constrained optimisation problem given in [13]. For
generative models, a suitable objective to maximise is the marginal (log-)likelihood of the observed
data x ∈ Rm as an expectation over the whole distribution of latent factors z ∈ Rn

max
θ

[
Epθ(z) [pθ(x|z)]

]
. (20)

More generalisable latent representations can be achieved by imposing an isotropic unit Gaussian
constraint on the prior p(z) = N (0, I), arriving at the constrained optimisation problem

max
φ,θ

EpD(x)

[
logEqφ(z|x) [pθ(x|z)]

]
subject to D(qφ(z|x) ‖ p(z)) < ε, (21)

where ε dictates the strength of the constraint and D is a divergence. We can then re-write Equa-
tion (21) as a Lagrangian under the KKT conditions [15, 18], obtaining

F(θ, φ, λ;x, z) = Eqφ(z|x) [log pθ(x|z)]− λ (D(qφ(z|x) ‖ p(z))− ε) . (22)

By setting D(α) = JSGα or D(α) = JSGα
∗ , we immediately note that our family of divergences

includes the β-VAE by setting α = 1 and varying λ. In simple terms, a broader family of divergences
using both α and β, would dictate where and with how much strength to skew an intermediate
distribution.

Before experimentation, in order to use JSGα and JSGα
∗ as divergence measures in variational learning,

we first simplify Equations (9) and (11).
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Proposition 2. For a diagonal multivariate normal distribution N1(µ, diag
(
σ2
1 , . . . , σ

1
n

)
) and a

standard normal distribution N2(0, I), the skew-geometric Jensen-Shannon divergence JSGα—an
intermediate of forward and reverse KL regularisation—and its dual JSGα

∗ reduce to

JSGα(N1 ‖ N2) =
1

2

n∑
i=1

(
(1− α)σ2

i + α

σ2
α,i

+ log

[
σ2
α,i

σ
2(1−α)
i

]
+

(1− α)(µα,i − µi)2

σ2
α,i

+
αµ2

α,i

σ2
α,i

− 1

)
,

(23)

and

JSGα
∗ =

1

2

n∑
i=1

(
µ2
i

σ2
i

−
µ2
α,i

σ2
α

+ log

[
σ
2(1−α)
i

σ2
α,i

])
, (24)

respectively, where

σ2
α,i =

σ2
i

(1− α) + ασ2
i

, (25)

and

µα,i =
σ2
α,i(1− α)µi

σ2
i

. (26)

The proof of this is given in Appendix A.2.

3 Experiments

Thus far we have discussed the JSGα divergence and its relationship to KL and in particular VAEs.
In this section, we begin by offering a better understanding of where JSGα and its variants differ
in distributional space. We then provide a quantitative and qualitative exploration, justifying the
immediate benefit of skewing α away from 0 or 1, before finishing with an exploration of the effects
this has on VAE reconstruction as well as on the generative capabilities. Note that, in the analyses
that follow, we set λ = 1 for all variants of JSGα -VAEs3.

3.1 Characteristic behaviour of JSGα

To elucidate how JSGα will behave in the higher dimensional setting of variational inference, we
highlight its properties in the case of one and two dimensions. In Figure 1, univariate Gaussians
illustrate how the integrand for JSGα differs favourably from the intractable JS. As the intermediate
distribution Nα in Figure 1a is a Gaussian, JSGα not only permits a closed-form integral, but also
offers a more natural interpolation between p(z) and q(z|x), which raises questions about whether
intuitive regularisation strength (relative to a known intermediate Gaussian) may be possible in
variational settings. Moreover, Figure 1c demonstrates symmetry for α = 0.5, and both Figure 1b
and Figure 1c depict the increased integrand in areas of low probability density—addressing the
issues touched upon earlier, where KL struggles with light-tailed posteriors.

In Figure 2, we use two dimensions to depict the effect of changing divergence measures on op-
timisation. As the integral of JS divergence is not tractable (and to make comparison fair), we
directly optimise a bivariate Gaussian via samples from the data for all divergences. We see that the
example mixture of Gaussians leads to the zero-avoiding property of KL divergence in Figure 2a
and zero-forcing (i.e. mode dropping) for reverse KL in Figure 2b. While JS divergence provides
an intermediate solution in Figure 2c, there is still considerable unnecessary spreading and direct
optimisation of the integral will not scale. Finally, JSGα with α naively set to the symmetric case
α = 0.5 leads to a more reasonable intermediate distribution which both tends towards the dominant
mode and offers localised exploration.

3Details on the influence of λ on the reconstructive performance of VAEs, with respect to JSGα and JSGα
∗ ,

are given in Appendix E
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(a) Mean comparison.
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(b)N (−2, 1) ‖ N (2, 2)
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G -JS(p q)

(c)N (0, 0.5) ‖ N (0, 3)

Figure 1: Comparison of mean distributions (green) for two univariate Gaussians (red and blue), as
well as comparison of arithmetic Jensen-Shannon integrand against skew-geometric Jensen-Shannon
integrand with α = 0.5 for univariate Gaussians.

(a) KL(p(z)) ‖ (q(z|x) (b) KL(q(z|x) ‖ p(z)) (c) JS. (d) JSGα (α = 0.5).

Figure 2: Level sets for optimised bivariate Gaussians fit to data drawn from a mixture of Gaussians.
JSGα with α naively set to the symmetric case α = 0.5 leads to a more reasonable intermediate
distribution which both tends towards the dominant mode and offers localised exploration

3.2 Variational autoencoder benchmarks

We present quantitative evaluation results following standard experimental protocols from the lit-
erature [5, 13, 38]. In this regard, VAEs are known to have a strong capacity to reproduce images
when used in conjunction with convolutional encoders and decoders. For fair comparison, we follow
Higgins et al. [13] in selecting a common neural architecture across experiments4. Although the
margin for error ε in Equation (21) will vary with dataset and architecture, the point here is to
standardise comparison and isolate the effect of the new divergence measure, rather than searching
within architecture and hyperparameter spaces for the best performing model by some metric.

Throughout our experiments we make use of four standard benchmark datasets: MNIST, 28× 28
black and white images of handwritten digits [21]; Fashion-MNIST, 28×28 black and white images
of clothing [36]; Chairs, 64× 64 black and white images of 3D chairs [1]; dSprites 64× 64 black
and white images of 2D shapes procedurally generated from 6 ground truth independent latent
factors [25].

Influence of skew coefficient. In Figure 3, we demonstrate several immediately useful properties
of skewing our divergence away from α = 0 or α = 1. Firstly, intermediate skew values of
JSGα do not compromise reconstruction loss and remain considerably below KL(p(z) ‖ q(z|x)),
which we find to induce the expected mode collapse across datasets. Secondly, JSGα regularisation
effectively generalises to unseen data, as can be seen by the small discrepancy between train and test
set evaluation. Finally, there are ranges of α values which produce superior reconstructions when
compared to either direction of KL for identical architectures.

Furthermore, Figure 3 indicates that JSGα
∗ outperforms KL(q(z|x) ‖ p(z)) for nearly all values of α.

We verify that the trend, JSGα outperforms traditional divergences for α < 0.3 and JSGα
∗ performs

even better for nearly all α, generalises across datasets in Table 1 and Supplementary Figures 7–9. In

4The specific model details are given in Appendix C
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Figure 3c and 3d, we also include the corresponding divergence loss contributions to verify that JSGα

does not simply minimise regularisation strength in order to improve reconstruction.
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(a) JSGα reconstruction.
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(b) JSGα
∗ reconstruction.
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(c) JSGα divergence.
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(d) JSGα
∗ divergence.

Figure 3: Reconstruction (top) and divergence (bottom) loss comparison for JSGα (left) and JSGα
∗

(right) against KL(q(z|x) ‖ p(z)) (VAE) and KL(p(z) ‖ q(z|x)) on the MNIST dataset. Throughout
this work, dashed or full lines represent evaluation (sampling the mean with no variance) on the
training or test sets, respectively. The comaprisons performed on the remaining three datasets are
given in Appendix B.

In Table 1, we compare the naive symmetric case JSG0.5 against the skew value with the lowest recon-
struction loss (selected from {0.1, . . . , 0.9}) for JSGα and JSGα

∗ , as well as baseline regularisation
terms: KL(q(z|x) ‖ p(z)), KL(p(z) ‖ q(z|x)), β-VAE (with β = 4)5 and MMD (with λ = 500).
JSGα
∗ is clearly stronger than all baselines across datasets. We reinforce this point in Figure 4 where

KL divergence fails to capture sharper reconstructions (such as delineating trouser legs or the heel
of high-heels in the case of Fashion-MNIST) and MMD produces blurred reconstructions (we also
tested λ = 1000 from [38] to no avail). We additionally extend qualitative results in Supplementary
Figures 13–15. We sample each latent dimension at 10 equi-spaced points, while keeping the other 9 reduce this
dimensions fixed in order to highlight the trends learnt by each dimension. As α→ 1, the expected
mode collapse occurs when approaching reverse KL across datasets, impeding reconstruction loss
across more than a few modes. However, for α values close to 0, reverse KL images suffer from blur
due to the aforementioned over-dispersion property.

Figure 4 too small + quite confusing. R4: The paper leaves too much for the reader to inter-
pret regarding Figure 4. Better caption and maybe labels

Generative capacity. In Figure 5, we demonstrate the generative capabilities when skewing JSGα

across different α values. More specifically, we present the model evidence (ME) estimates for JSGα

in comparison to forward KL, reverse KL, and MMD. ME estimates are generated by Monte Carlo
estimation of the marginal distribution pθ(x) with mean and 95% confidence intervals bootstrapped

5Details on the performance of β-VAEs for varying β is given in Appendix F
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Divergence MNIST Fashion-MNIST dSprites Chairs

KL(q(z|x) ‖ p(z)) 8.46 11.98 13.55 12.27
KL(p(z) ‖ q(z|x)) 11.61 14.42 14.18 19.88
β-VAE (β = 4) 11.75 13.32 10.51 20.79
MMD (λ = 500) 13.19 11.10 11.87 18.85

JSG0.5 9.87 11.29 9.89 13.57
JSGα 7.52 (α = 0.1) 10.04 (α = 0.2) 5.54 (α = 0.1) 11.95 (α = 0.2)
JSGα
∗ 7.34 (α = 0.3) 9.58 (α = 0.4) 4.97 (α = 0.5) 11.64 (α = 0.4)

Table 1: Final model reconstruction error including optimal α for JSGα and JSGα
∗ . The reconstruction

errors for different α values for JSGα and JSGα
∗ are given in Appendix B

(a) JSG0.4
∗ . (b) KL(q(z|x) ‖ p(z)). (c) MMD (λ = 500).

Figure 4: Latent space traversal for Fashion-MNIST. Each row represents a latent dimension and
each column represents an equidistant point in the traversal. Analyses for dSprites and Chairs are
given in AppendixG.

from 1000 resamples of estimated batch evidence across 100 test set batches. We emphasise here that
we are not looking for state-of-the-art results, but relative improvement which isolates the impact
of the proposed regularisation and extends our analysis of JSGα . We see that in the case of MNIST
(Figure 5a) the increased reconstructive power of JSGα

∗ does come at a cost to generative performance,
however this trend is not consistent in the noisier Fashion-MNIST dataset (Figure 5b). Nevertheless,
note that the reconstruction error of JSGα

∗ for α > 0.8 and α > 0.6, in the case of MNIST and
Fashion-MNIST, respectively, is still lower than the benchmarks. We also find 0.15 < α < 0.4 for
JSGα is competitive with or better than all alternatives on both datasets.

Taken all together, we make several pragmatic suggestions for selecting α values when using our
variant of JSGα or its dual form. Firstly, when using JSGα , lower α values are to be preferred, this
goes some way to explaining the poor performance of the initial attempts to use JSG0.5 in the literature
(see Section 4). Whereas for the dual divergence, although lower α values (α <= 0.5) lead to the
lowest reconstruction error, higher α values (α > 0.6) exhibit better generative capabilities while
having lower reconstruction error than the benchmarks. Therefore, the symmetric case is a reasonably
strong choice. Moreover, the plots of reconstruction loss against α clearly demonstrate a strong
correlation between train and test set performance. This can be applied in practice, by selecting an
optimal value of α using the training performance, circumventing the need for a separate validation
set.

4 Related work

JSGα -VAEs build upon traditional VAEs [17, 34], with a regularisation constraint inspired by recent
work on closed-form expressions for statistical divergences [30, 32]. JSGα-VAEs, offer simpler and
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(a) MNIST
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Figure 5: Log model evidence for JSGα and JSGα
∗ across different α values compared against

KL(q(z|x) ‖ p(z)), KL(p(z) ‖ q(z|x)) and MMD on the (a) MNIST and (b) Fashion-MNIST
datasets.

more intuitive regularisation by skewing the intermediate distribution, allowing interpolation between
forward and reverse KL divergence, and therefore combatting the issue of posterior collapse [24]. In
this regard, our work is related to approaches that address this issue through KL annealing during
training [5, 14]. In a more general sense, this work is also related to other approaches that utilise
various statistical divergences and distances for latent space regularisation as an alternative to the
conventional KL divergence [8, 12, 22, 37, 38].

Since its recent introduction, [2] used JSG0.5 as a plug-and-play replacement for JS divergence with
little success, while [35] used JSG0.5 to decompose and estimate a multimodal ELBO loss. In contrast
to these papers, we do not overlook the potential of JSGα . We reverse the intermediate distribution
parameterisation, allowing a principled interpolation of forward and reverse KL, we simplify the
subsequent closed-form loss to that needed for VAEs, and we demonstrate improved empirical
performance against several baselines (application, rather than the theory of [31]). Our more natural
parameterisation and pragmatic advice on how to properly use the skew parameter α ultimately lead
to better image reconstruction. We are not aware of any prior work exploring the dual form JSGα

∗ .

5 Conclusion

Prior work assumed that no tractable interpolation existed between forward and reverse KL for
multivariate Gaussians. We have overcome this with our variant of JSGα , before translating it to the
variational learning setting with JSGα-VAE. The benefits of our variant of JSGα include symmetry
(at α = 0.5) and having closed-form expression. Alongside this, we have demonstrated that the
advantages of its role in VAEs include quantitatively and qualitatively better reconstructions than
several baselines. Although we accept that use of “vanilla” VAEs may not out-compete some of the
leading flow and GAN based architectures, we believe our regularisation mechanism addresses the
trade-off between zero-avoidance and zero-forcing in latent space, which goes some way to bridge
this gap while being intuitive in both divergence and distribution space. Our experiments demonstrate
that the flexibility accorded to VAEs by skewing JSGα is worth considering across a broad range of
applications.
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Broader Impact

For the statistics community, our introduction of the alternative JSGα′ and JSGα′
∗ , rather than the

"original" JSGα and JSGα
∗ , immediately presents a benefit as a more intuitive interpolation through

divergence and distribution space. As we have shown the benefits of such an interpolation on the
task of image reconstruction, the first impact of our model lies in better image compression and
generation from latent samples. However, in a more general setting, VAEs present multiple impactful
opportunities.

Applications include compression (of any data type), generation of new samples in fields with data
paucity, as well as extraction of underlying relationships. As our exploration of the JSGα family
of VAEs has improved performance, after translation to data types with other structures, our VAE
could be used for all of these applications. Our experiments also indicate strong regions for the skew
parameter α which could be used as a standard regularisation mechanism across variational learning.

In settings with sensitive data, all of these applications bear some risks. As VAEs provide a form
of lossy compression, in healthcare and social settings there is the risk of misrepresenting personal
information in latent space. In areas of data paucity, without additional constraints, VAEs may
generate samples which are unrealistic and severely bias any downstream training. Finally, when
using VAEs in science, to extract underlying associations, it remains important to analyse the true
meaning of any independent components extracted, rather than taking these rules at face value.
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A Proofs

A.1 Proof of proposition 1

Proof. We first present the more general case of distributions p and q permitting a geometric mean
distribution (e.g. p and q members of the exponential family), as we believe this more general case to
be of note.

JSGα′ = (1− α)KL (p ‖ Gα′(p, q)) + αKL (q ‖ Gα′(p, q)) (27)

= (1− α)KL
(
p ‖ pαq1−α

)
+ αKL

(
q ‖ pαq1−α

)
(28)

= (1− α)

∫
x

p log

[
p

pαq1−α

]
dx+ α

∫
x

q log

[
q

pαq1−α

]
dx (29)

= (1− α)2
∫
x

p log

[
p

q

]
dx+ α2

∫
x

q log

[
q

p

]
dx (30)

= (1− α)2KL(p ‖ q) + α2KL(q ‖ p) (31)

Therefore, the respective cases disappear in the limits α→ 0 and α→ 1 and for JSGα′ we have, in
fact, recovered an equivalence between linear scaling in distribution space and quadratic scaling in
the space of divergences.

The dual case JSGα′
∗ does not simplify in the same way because the geometric mean term lies outside

of the logarithm. However, instead we have

JSGα′
∗ = (1− α)KL (Gα′(p, q) ‖ p) + αKL (Gα′(p, q) ‖ q) (32)

= (1− α)KL
(
pαq1−α ‖ p

)
+ αKL

(
pαq1−α ‖ q

)
(33)

= (1− α)

∫
x

pαq1−α log

[
pαq1−α

p

]
dx+ α

∫
x

pαq1−α log

[
pαq1−α

q

]
dx (34)

= (1− α)2
∫
x

pαq1−α log

[
q

p

]
dx+ α2

∫
x

pαq1−α log

[
p

q

]
dx. (35)

The final step is to recognise the two limits

lim
α→0

[
pαq1−α

]
= q lim

α→1

[
pαq1−α

]
= p, (36)

mean that we recover

lim
α→0

[
JSGα′
∗
]

= KL (N2 ‖ N1) lim
α→1

[
JSGα′
∗
]

= KL (N1 ‖ N2) . (37)

Overall, although the limiting cases are reversed between JSGα′ and JSGα′
∗ , we note that the approach

to either limiting case is distinct and comes with its own benefits through the weighting (non-
logarithmic) term used in the integrand.

A.2 Proof of proposition 2

We choose to prove proposition 1 via reduction of the form in Equation (9) , although we note it is
also reasonable to simply follow through the weighted sum in Equation (8).

Proof. After defining Σii = σ2
i , (Σα)ii = σ2

α,i and (µα)i = µα,i, it is apparent Σ2 = I gives

σ2
α,i =

1

((1− α)σ2
i + α)

, (38)

and µ2 = 0 (the zero vector) gives

µα,i = σ2
α,i

(
(1− α)

µi
σ2
i

)
(39)
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We can then reduce Equation (9) using diagonal matrix properties

JSGα (N1 ‖ N2) =
1

2


n∑
i=1

1

σ2
α,i

(
(1− α)σ2

i + α
)

+ log


n∏
i=1

σ2
α,i

n∏
i=1

(σ2
i )

1−α

 (40)

+
(1− α)(µα,i − µi)2

σ2
α,i

+
αµ2

α,i

σ2
α,i

− n

, (41)

and application of log laws recovers Equation (23).

The proof of the dual form in Equation (25) is carried out similarly.

B Additional training and evaluation information

Divergence MNIST Fashion-MNIST dSprites Chairs

KL(q(z|x) ‖ p(z)) 8.46 11.98 13.55 12.27
KL(p(z) ‖ q(z|x)) 11.61 14.42 14.18 19.88
β-VAE (β = 4) 11.75 13.32 10.51 20.79
β-VAE (β = 0.25) 8.09 9.07 10.39 14.09
MMD (λ = 500) 13.19 11.10 11.87 18.85

JSG0.1 7.52 10.04 6.63 12.62
JSG0.2 8.30 10.04 7.50 11.95
JSG0.3 8.84 10.50 8.56 12.40
JSG0.4 9.39 10.93 9.16 12.96
JSG0.5 9.87 11.29 9.89 13.57
JSG0.6 10.28 11.72 10.38 14.15
JSG0.7 10.51 12.09 10.80 14.68
JSG0.8 11.00 12.44 11.40 15.48
JSG0.9 11.87 13.21 12.05 16.27

JSG0.1
∗ 12.20 13.52 5.54 15.53

JSG0.2
∗ 7.60 10.90 5.18 13.06

JSG0.3
∗ 7.34 10.51 5.06 12.09

JSG0.4
∗ 7.38 9.58 5.17 11.64

JSG0.5
∗ 7.56 9.80 4.97 11.75

JSG0.6
∗ 7.77 10.01 5.30 12.07

JSG0.7
∗ 7.90 10.34 5.23 12.53

JSG0.8
∗ 8.25 10.84 5.42 13.11

JSG0.9
∗ 8.55 11.40 5.74 13.52

Table 2: Final model reconstruction error for different α values for JSGα and JSGα
∗ .
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Figure 6: Breakdown of final model loss components on the MNIST dataset.
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Figure 7: Breakdown of final model loss on the Fashion-MNIST dataset.
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Figure 8: Breakdown of final model loss components on the dSprites dataset.
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Figure 9: Breakdown of final model loss components on the Chairs dataset.
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C Model details

We use the architectures specified in Table 3 throughout experiments. We pad 28x28x1 images to
32x32x1 with zeros as we found resizing images negatively affected performance. We use a learning
rate of 1e-4 throughout and use batch size 64 and 256 for the two MNIST variants and the other
datasets respectively. Where not specified (e.g. momentum coefficients in Adam [16]), we use the
default values from PyTorch [33]. The only architectural change we make between datasets is an
additional convolutional (and transpose convolutional) layer for encoding (and decoding) when inputs
are 64x64x1 instead of 32x32x1. We train dSprites for 30 epochs and all other datasets for 100
epochs.

Dataset Stage Architecture
MNIST Input 28x28x1 zero padded to 32x32x1.

Encoder Repeat Conv 32x4x4 for 3 layers (stride 2, padding 1).
FC 256, FC 256. ReLU activation.

Latents 10.
Decoder FC 256, FC 256, Repeat Deconv 32x4x4 for 3 layers (stride 2, padding 1).

ReLU activation, Sigmoid. MSE.

Fashion-MNIST Input 28x28x1 zero padded to 32x32x1.
Encoder Repeat Conv 32x4x4 for 3 layers (stride 2, padding 1).

FC 256, FC 256. ReLU activation.
Latents 10.
Decoder FC 256, FC 256, Repeat Deconv 32x4x4 for 3 layers (stride 2, padding 1).

ReLU activation, Sigmoid. Bernoulli.

dSprites Input 64x64x1.
Encoder Repeat Conv 32x4x4 for 4 layers (stride 2, padding 1).

FC 256, FC 256. ReLU activation.
Latents 10.
Decoder FC 256, FC 256, Repeat Deconv 32x4x4 for 4 layers (stride 2, padding 1).

ReLU activation, Sigmoid. Bernoulli.

Chairs Input 64x64x1.
Encoder Repeat Conv 32x4x4 for 4 layers (stride 2, padding 1).

FC 256, FC 256. ReLU activation.
Latents 32.
Decoder FC 256, FC 256, Repeat Deconv 32x4x4 for 4 layers (stride 2, padding 1).

ReLU activation, Sigmoid. Bernoulli.

Table 3: Detail of model architectures.
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D JSGα′ vs. JSGα
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∗ .

Figure 10: Comparison of the original JSGα and our variant, JSGα′ , on the MNIST dataset.
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E Influence of the λ parameter on the performance of JSGα-VAEs and
JSGα

∗ -VAEs
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Figure 11: Comparison of the reconstruction loss of JSGα -VAEs and JSGα
∗ -VAEs for different values

of λ, on the MNIST dataset.
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Figure 12: Comparison of the reconstruction loss of β-VAEs for different values of β, on the MNIST
dataset.
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G Latent samples

(a) JSG0.1
∗ . (b) JSG0.4

∗ . (c) JSG0.9 .

Figure 13: Latent space traversal of Fashion-MNIST for different skew values of JSGα
∗ .

(a) JSG0.1
∗ (b) JSG0.5

∗ (c) JSG0.9
∗

(d) KL.

Figure 14: Latent space traversal dSprites for different skew values and KL divergence.
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(a) JSG0.4
∗ . (b) KL.

Figure 15: Latent space traversal for the Chairs dataset (32 latent dimensions).
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