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Abstract

The theory of lower previsions is designed around the principles of coherence
and sure-loss avoidance, thus steers clear of all the updating anomalies highlighted
in Gong and Meng’s “Judicious Judgment Meets Unsettling Updating: Dilation,
Sure Loss, and Simpson’s Paradox” except dilation. In fact, the traditional problem
with the theory of imprecise probability is that coherent inference is too compli-
cated rather than unsettling. Progress has been made simplifying coherent inference
by demoting sets of probabilities from fundamental building blocks to secondary
representations that are derived or discarded as needed.

Keywords: Desirable gambles, lower previsions, imprecise probabilities, dilation

Professors Gong and Meng’s (2021) lucid and thought-provoking article views im-
precise probability through the lens of three updating rules, highlighting discrepancies in
inference between the generalized Bayes rule, on the one hand, and Dempster’s rule and
its dual, the geometric rule, on the other. In doing so, Gong and Meng vividly illustrate
two important points, namely (i) inferential anomalies involving imprecise probabilities
ought to be viewed as a helpful warning sign that some structural uncertainty looms in
one’s model, and (ii) such uncertainty is different in kind to sampling variability and
therefore not resolved by updating with additional data.

Even so, the route Gong and Meng take to arrive at these two conclusions risks
leaving the impression that the theory of imprecise probability is wobblier than it is.
Specifically, in writing that,

“in the world of imprecise probabilities, not only must we live with imper-
fections, but also accept intrinsic contradictions”,

Gong and Meng suggest little has changed from the days of C.A.B. Smith’s outline for
inference with lower and upper personal “pignic odds” (Smith 1961), a proposal that
Savage and de Finetti deemed “not fit for characterizing a new, weaker kind of coherent
behaviour” (de Finetti and Savage 1962).

In my remarks, I would like to offer a corrective to the notion that inference with
imprecise probabilities is plagued by inherent contradictions. On the contrary, for the
contemporary theory of lower previsions (Walley 1991; Troffaes and de Cooman 2014),
which includes lower probabilities as a special case, coherence preservation under infer-
ence is inviolable. Yet, once sure-loss avoidance is promoted to a fundamental principle,
both Dempster’s rule and the geometric rule fall by the wayside—except in specific, be-
nign circumstances where their application is guaranteed to avoid sure loss.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PhilPapers

https://core.ac.uk/display/390061531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Sure Loss Avoidance & Coherence

Whether to accept sure-loss avoidance as fundamental will depend on what you get from
the theory of lower previsions in return. Gong and Meng rightly observe that if lower
and upper previsions are interpreted as acceptable one-sided betting odds, with lower
previsions denoting the maximum buying price you would pay for a gamble and upper
previsions denoting the minimum selling price you would accept for that gamble, then
it is natural to accept sure-loss avoidance as a principle of rationality. They neverthe-
less contrast this direct interpretation of a lower prevision, as a representation of your
disposition to bet on a collection of gambles, with an indirect interpretation that regards
a lower prevision as a summary of the set of probabilities that are compatible with an
incompletely specified model. This indirect interpretation is central to Bayesian sensi-
tivity analysis, but it has also played an important role in the historical development of
imprecise probabilities more generally.

For instance, Smith showed that every coherent lower prevision may be understood
as the lower envelope of some set of linear previsions, a result that Walley later strength-
ened to a characterization (1991, §3.3): specifically, a lower prevision P avoids sure loss
if and only if there is a linear prevision P such that P(X) ≥ P(X), for all gambles X on
a fixed domain, and P is a coherent lower prevision if and only if there is a set of linear
previsions P such that P is the lower envelope of P, that is P(X) = inf{P(X) : P∈ P}, for
all X on a similarly shared domain. When the range of X is restricted to {0,1}, X works
as an indicator function and P(X) as a lower probability. Such sure-loss avoidance and
coherence conditions extend to conditional lower previsions, too.

The question then is whether the inferential capabilities that one would need when
approximating a true but unknown probability distribution can be subsumed under the
machinery developed for lower previsions based on a direct, behavioral interpretation.
Walley argued that it does (1991, §2.10) and I agree, with one qualification.

That qualification, a benefit of hindsight, is to concede that managing coherence con-
ditions for conditional lower previsions is complicated when those conditions are tied to
a set of linear previsions in the (customary) manner sketched above. One reason why is
that the familiar equivalence between additive probability and linear previsions does not
carry over to lower probability and lower previsions. A linear prevision is simply the
expectation calculated by taking the integral with respect to a given probability, and this
equivalence licenses Bayesians to treat “degrees of belief” expressed over a language
of events as fundamental. However, an analogous one-to-one correspondence between
lower probability and lower previsions does not hold. Specifically, unlike linear pre-
visions, two lower previsions can agree in values for all events, and therefore express
the same lower probabilities, but still express different values over gambles. This one-
to-many relationship means that commonplace probabilistic intuitions can go haywire
in the context of imprecise probabilities, resulting in some forms of reasoning that are
valid for precise probabilities being invalid for imprecise probabilities.

Since Walley’s chef-d’œuvre, simpler and more unified inference methods for con-
ditional lower previsions have been developed (Troffaes and de Cooman 2014), but
they have come about by abandoning the notion that sets of probabilities are elemen-
tal. Whereas the Old Testament approach to imprecise probabilities closely links lower
previsions to sets of probabilities, thereby setting a difficult path for coherent inference
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to follow, the New Testament puts coherence and inference first but demotes (closed
convex) sets of probabilities to derivable or dispensable representations, as need be. In-
stead, desirable or acceptable gambles are treated as fundamental, where a gamble X on
a set of possibilities is a real-valued map from those possibilities, interpreted as the gain
or loss that you associate with each possible state. Then, P(X) represents the supremum
price you are willing to pay in exchange for the gamble X , and a conditional lower pre-
vision of the gamble X given the {0,1}-gamble G, P(X |G) is your lower prevision for X
contingent on the event G occurring (G = 1), which is “called-off” otherwise (G = 0).

Briefly, and to just give a flavor, there are four simple yet constructive axioms for
a coherent set D of desirable gambles. The first two, which are rationality axioms,
mandate that you ought to (i) never accept a gamble you cannot win (i.e., do not include
in D an X whose vector of values is everywhere negative), and (ii) always accept a
gamble you cannot lose. The 0-gamble denotes status quo ante, and there are variants
of these axioms which include, rather than exclude, 0-gambles among a coherent set
of gambles—a difference reflected, even if only loosely observed, in the terminology
used to refer to the strict desirability of gambles or merely to their acceptability. The
second pair of axioms are closure conditions, encoding the properties of a linear scale
for evaluating gambles, namely (iii) positive scale invariance and (iv) a combination rule
whereby if X and Y are each acceptable gambles, then X +Y ought to be acceptable to
you, too.

The generalized Bayes rule in this scheme is simply

P(G [X−P(X |G)]) = 0 (1)

where it is assumed that both P(G) > 0 and the contingent gamble G [X−P(X |G)] are
in D. Methods for conditioning and updating on zero-probabilities have been simplified,
too (De Bock and de Cooman 2015).

2 What price for generality?

The New Testament’s full embrace of modeling uncertainty in terms of the rationality
of beliefs and behavioral dispositions might appear to go too far, even among those
who otherwise favor the Bayesian approach. Yet, the contemporary theory of lower
previsions is a general framework attuned to foundational issues of the kind that Gong
and Meng raise, and as such includes traditional linear previsions as a special case, much
like first-order logic includes propositional logic as a special case. Lower previsions
offer an alternative way of conceiving and working with probability models, not an
alternative to probability altogether. Viewed in this light, it is perhaps less surprising
to find that sets of probabilities are derivable from, rather than foundational to, lower
previsions.

The analogy to logic goes a bit further. Consider some differences between proposi-
tional logic, which dates back two millennia, and first-order logic, which is just over a
century old. Both the syntax and semantics of first-order logic work very differently than
the syntax and semantics of propositional logic. First-order logic admits syntactically
well-formed “open” sentences which are nevertheless uninterpretable, semantically, un-
til “closed” under quantification. There is no such thing as a syntactically well-formed

3



formula of propositional logic that is semantically uninterpretable, however. Every for-
mula of propositional logic is interpreted by evaluating all logically exhaustive combina-
tions of its interpretations, such as may be displayed in a truth table, which is impossible
to do for first-order logic. As for inference, propositional logic is decidable whereas
first-order logic is not. Yet, if one were to maintain that semantic interpretability and
syntactic well-formedness were inseparable properties of logical formulas, truth tables
fundamental to model theory, or decidability essential to logic itself, the world of first-
order logic would be regarded as imperfect and contradictory, too. We generally don’t
take that view, however, and similar slack should be afforded to lower previsions—or
so I would argue. Space prohibits more than a gesture here, but a paper-sized treatment
appears elsewhere (Wheeler 2021).

The main point is this. Trouble for imprecise probabilities rarely comes in the form
of inherent contradictions, but instead is more apt to arise from seeking to preserve
consistency at all costs. Disjunction, for instance, is missing from the vocabulary of
desirable gambles, and is tricky to deal with. Recent work using desirable gamble sets
to construct choice functions (De Bock and de Cooman 2019) offers a promising avenue
to address this deficiency, however. This extension offers the capability to say of a
set of gambles that at least one is desirable without necessarily identifying which it
is. Accommodating set-based choice also suggests a means, in a coherence preserving
setting, to address problems of the kind that motivate the use of belief functions.

3 Dilation and Association

Which brings us to dilation. Dilation occurs when the interval estimate of an event
E is properly included in the interval estimate of E conditional on every element of
some measurable partition B. As Gong and Meng point out, in such cases, updating
by the generalized Bayes rule on any value of B would render your initial estimate
of E less precise. Should you update or instead refuse information that would resolve
your uncertainty about B? Would you be willing to pay some amount, however small,
to remain ignorant? With dilation, one could be forgiven for thinking, so much for
consistency.

Yet, the notion that you can be better off with less information is not unheard of
in the theory of games. Akerlof’s study of market failures in the used car market, circa
1970, is a prime example. A customer will not know, but a used-car salesman will know,
which cars on the lot are lemons. Wary of being fleeced, a customer will refuse to pay
more than the going rate for a bad car, if not refuse to trade altogether. For the salesman
then there is a disadvantage knowing more about the quality of the cars on the lot than
his customers do, as no car, good or bad, can command a good-car price.

Akerlof’s demonstration of adverse selection is an example of a strategic interaction
in which information asymmetry backfires on the player with more information. Some
textbook treatments of adverse selection maintain that negative-valued information can-
not occur in single-person decision problems, however, as act-state independence would
rule out the type of act-state dependence that the customer on the car lot fears will be
used against him. But this is only true for single-person decision problems with addi-
tive probabilities. Dilation illustrates a form of state uncertainty, which lower previsions
capture, that is sufficient to break the independence condition that ordinary decision
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problems take for granted. Put more carefully, dilation examples do not explicitly rule
out that the pair of events in question are dependent. And a cleverly designed dilation
example will prey on intuitions that are misleading in an imprecise probabilities setting,
particularly those to do with structural properties of independence and association.

At root, dilation is not so much an updating paradox as a result of reasoning as if
stochastic independence holds when it does not. Although Gong and Meng remark that
“generalized notions of association and independence...are yet to be defined for sets of
probabilities”, there are several logically distinct notions of independence for imprecise
probabilities (Couso, Moral, and Walley 1999). Here reference to an explicit set of
probabilities helps. For instance, for an ordinary additive probability p ∈ P and events
A,B, you know that if B is irrelevant to A with respect to this p, that is, if p(A|B) = p(A),
then A is irrelevant to B, and the joint distribution of A and B is the product of the pair
of marginal distributions. But each step in this sequence of valid inferences is invalid
for imprecise probabilities. Irrelevance for lower previsions is not symmetric, and even
when both A is irrelevant to B and B irrelevant to A, the set of joint distributions might
not factorize. The converse of each is valid, however, pointing to a range of strong to
weak independence concepts.

Wily dilation examples are often constructed to satisfy weaker notions of irrelevance
without satisfying full, factorized stochastic independence, and will in fact include a
distribution in P for which the pair of events are positively associated and another dis-
tribution for which they are negatively associated (Pedersen and Wheeler 2014), an ob-
servation that is easily adapted to include asymmetric cases in which one event dilates
another but not vice versa (Pedersen and Wheeler 2019).

But if this explains what dilation is, what should be done about it? I agree with
Gong and Meng that dilation alone is not a problem, anymore than an open formula of
first-order logic is itself a problem. But instead of opting for an alternative updating
rule, and braving the hazards they bring, I prefer to stick to the generalized Bayes rule
and simply select an appropriate decision rule. In fact, returning to the questions above
that suggest you might be rationally compelled by dilating probabilities to either ignore
information or even pay someone to avoid it, such injunctions depend crucially on your
choice of decision rule. In fact, some decision rules for imprecise probabilities preserve
the principle that no decision maker should be made worse off, in expectation, from
receiving free information (Pedersen and Wheeler 2015).

To be fair, a remnant of the updating anomalies that Gong and Meng discuss carries
over to decision making with imprecise probabilities. There is no single decision rule
that is unequivocally best, and the current state of the art is far less tidy. A complaint
might then be lodged that this only kicks the inference can down the pick-the-right-
decision-rule road, and there is a kernel of truth to this. But, that is a discussion to save
for another day.

In closing, I commend Gong and Meng for their valuable contribution and wish to
stress once more how much I agree with them in the main. Lower previsions afford
much greater expressive capacity and, as a consequence, pull apart some notions that
are unitary concepts in standard, additive probability models. Thus, it is a natural re-
sponse to view updating anomalies like dilation as a helpful pointer to some of the novel
implications that follow from uncertainty in such settings.
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