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Streptococcus pyogenes, also known as Group A Streptococcus
(GAS), is a Gram-positive human-exclusive pathogen,
responsible for more than 500 000 deaths annually worldwide.
Upon infection, GAS commonly triggers mild symptoms such
as pharyngitis, pyoderma and fever. However, recurrent
infections or prolonged exposure to GAS might lead to life-
threatening conditions. Necrotizing fasciitis, streptococcal
toxic shock syndrome and post-immune mediated diseases,
such as poststreptococcal glomerulonephritis, acute rheumatic
fever and rheumatic heart disease, contribute to very high
mortality rates in non-industrialized countries. Though an
initial reduction in GAS infections was observed in high-
income countries, global outbreaks of GAS, causing rheumatic
fever and acute poststreptococcal glomerulonephritis, have
been reported over the last decade. At the same time, our
understanding of GAS pathogenesis and transmission has
vastly increased, with detailed insight into the various stages
of infection, beginning with adhesion, colonization and
evasion of the host immune system. Despite deeper knowledge
of the impact of GAS on the human body, the development of
a successful vaccine for prophylaxis of GAS remains
outstanding. In this review, we discuss the challenges involved
in identifying a universal GAS vaccine and describe several
potential vaccine candidates that we believe warrant pursuit.
1. Introduction
Group A Streptococcus (GAS) or Streptococcus pyogenes is a
virulent Gram-positive pathogen responsible for a plethora of
diseases ranging from mild, superficial infections to life-
threatening diseases with high morbidity and mortality in
humans [1]. GAS is responsible for causing around 700 million
cases of pharyngitis annually worldwide. Increasing incidence
of mild symptoms such as strep throat may lead to an invasive
prevalence of conditions such as necrotizing fasciitis (NF; also
called flesh-eating disease), streptococcal toxic shock syndrome
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(STSS) and other post-infectious immune-related diseases at the population level [1]. Acute rheumatic

fever (ARF), triggered by an autoimmune response following GAS infection, is one of the major
causes of rheumatic heart disease (RHD) leading to high mortality rates in non-industrialized
countries [2].

GAS remains globally sensitive to penicillin, despite reports that penicillin has failed to eradicate GAS
pharyngitis and tonsillitis [2–5]. Importantly, GAS isolates remain susceptible to other β-lactam
antibiotics such as amoxicillin and cephalosporins [6]. Other commonly used antibiotics to treat GAS
infections, in situations of penicillin allergy, are clindamycin and the macrolides. However, resistance
against both these alternatives has been reported [7]. Strikingly, a recent study demonstrated that a
rare mutation, found in the penicillin-binding protein 2B in two GAS strains, confers reduced
susceptibility to β-lactam antibiotics from the penicillin family, including amoxicillin [8]. This very
same initial mutation occurred in Streptococcus pneumoniae and eventually led to penicillin resistance
[9]. It is alarming to learn that GAS could be on the path to becoming resistant to the most frequently
prescribed antibiotics, including penicillin and amoxicillin. The most promising approach to combat
future antibiotic resistance mechanisms would be a GAS vaccine.

The main challenge in identifying an effective and safe GAS vaccine that has remained unchanged for
decades is the production of a universal vaccine candidate to protect us from extant and emerging GAS
strains. A recent genomic study reported by Davies et al. [10] analysed a database of more than 2000
publicly available GAS genomes. Of these isolates, 649 GAS were described as newly emerged clones.
This extensive genomic study reported 13 possible antigenic proteins as being conserved in over 99%
of isolates found globally.

Historically, the most common possible antigenic targets of GAS were divided into two categories: (i)
M protein-based candidates and (ii) non-M protein-based candidates. The M protein, encoded by the
emm gene, is an immunodominant GAS protein, consisting of a coiled-coil structure, which is
deposited on the surface of the bacterial cell wall. Almost all clinical GAS strains are differentiated by
the presence of their M proteins. The M proteins are widely researched for their ability to adhere to
host cells and block phagocytosis, thereby assisting GAS colonization [11]. Today, more than 250
different M proteins are known, and their sequence variations make it challenging to find conserved
protein domains/motifs that are present in most GAS serotypes. The M protein is structurally
(schematic structure of M-proteins are detailed in [12–14]) and functionally a versatile protein. The M-
protein interaction with the host is reviewed in [15]. Recent investigations of potential GAS vaccine
candidates resulted in the development of a vaccine formulation containing either the N-terminal or
C-terminal domains of selected M proteins, or a combination of both, to analyse the protective efficacy
against GAS infections [16]. A brief review of the current progress of multivalent M proteins and non-
M protein vaccine candidates was recently published [17].

However, a major problem for GAS vaccine development is antibody cross-reactivity with human
organs, in particular with the myosin proteins in heart tissue [18]. The first evidence of cross-reactivity
between anti-streptococcal antibodies and human heart tissues was found in mice immunized with
GAS components [19]. Conversely, GAS pathogens were well recognized by antibodies produced
against human heart extracts. In addition to myosin, skeletal myosin, tropomyosin, keratin, vimentin
and laminin were also identified as cross-reactive host tissue proteins. Evidence shows that M protein
is the strongest candidate to react with heart proteins. Non-M proteins such as N-acetyl-β-D-
glucosamine, the immunodominant epitope of the Group A surface carbohydrate, hyaluronic capsule
and two proteins (60 and 67 kDa) present in the GAS cell membrane, were also identified as cross-
reactive antigens [20–23]. Hence, M proteins are not considered as effective vaccine candidates, unless
human tissue cross-reactivity can be eliminated.

In addition to the M proteins as vaccine candidate antigens, numerous research groups are
investigating non-M protein antigens for their efficacy and safety as vaccine candidates (figure 1). To
date, validated candidate vaccine antigens are the proteins: streptococcal pyrogenic exotoxin (Spe),
fibronectin-binding proteins (FBI), Streptococcus pyogenes cell envelope proteinase (SpyCEP),
streptococcal C5a peptidase (ScpA) and streptolysin O (SLO) [24–28]. The only non-protein GAS
vaccine candidate antigen is a carbohydrate component of the ubiquitous surface-exposed Group A
Carbohydrate (GAC) [29]. Furthermore, a combination of several GAS antigens has also been
developed as a ‘multi-component vaccine’ and has shown to induce protective efficacy in animal GAS
infection models [16]. However, there are drawbacks to the use of non-M protein GAS antigens such
as the high level of sequence variation and low sequence coverage across global GAS strains. In
addition, these protein vaccine targets must be present in all strains to achieve protection against all
GAS isolates. It will also be important to eliminate any autoimmune responses that could lead to
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Figure 1. Virulence factors of GAS. A variety of antigens on the surface of the GAS are involved in virulence. Each of the displayed
antigens have been well documented for their association to impair the host immune system. GAS produces several secreted toxins
that cleave human proteins. Examples are ScpA, which cleaves the chemoattractant C5a and spyCEP cleaves neutrophil attracting
chemokines, e.g. IL-8 on PMNs. This in turn inhibits the phagocyte recruitment. M-proteins bind to the components of the
immune system thereby conferring resistance to phagocytosis. SLO impairs neutrophil function, whereas the carbohydrates GAC
and HA promote GAS survival within the human blood. Abbreviations: NETs – Neutrophil extracellular traps; PMNs –
Polymorphonuclear leukocytes; ScpA, streptococcal C5a peptidase; Spe, streptococcal pyrogenic exotoxin; SpeA, streptococcal
pyrogenic exotoxin A; spyCEP, streptococcal pyogenes cell envelope protease; GAC, Group A Carbohydrate; FBI, fibronectin-
binding protein; sfbI, S. pyogenes fibronectin-binding protein; SOF, serum opacity factor; ADI, arginine deaminase; HA,
hyaluronic acid capsule; GAS, Group A Streptococcus.
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autoimmune sequelae, e.g. the association between the N-acetylglucosamine (GlcNAc) side chain of GAC
and ARF [29].

This review focuses on (i) outlining pathogenic mechanisms of GAS, (ii) the challenges of developing
a universal GAS vaccine, and (iii) the vaccine candidates currently being developed to prevent GAS
infections.
2. Group A Streptococcus is an obligate human pathogen
Unlike groups B, C and G streptococci, which are human and veterinary pathogens, the only natural
reservoir for GAS is humans. The life cycle and diseases caused by GAS have not been reported to
occur naturally in animals: perhaps other environmental reservoirs and biological causes remain to be
discovered. Interestingly, GAS has sporadically been recovered from environmental sources including
canine faeces and conjunctive discharge, and also found in association with a wild European
hedgehog [30–32]. Although humans are the exclusive biological host for this pathogen, GAS
infections can be mimicked in non-human primates as an infection model. For instance, unnaturally
high doses of M1T1 GAS are able to colonize and induce pharyngitis and tonsillitis in Indian rhesus
monkeys [33]. Other models such as C57BL/6, BALB/c, FVB/NJ mice and rabbits have been used as
infection models to understand GAS pathogenesis [29,34].

2.1. Group A Streptococcus adhesion and colonization
The primary spread of GAS is through person-to-person transmission of contaminated air droplets [1].
GAS survives on the skin, and inside the host, for several hours to days [35], and a wide range of
surface GAS proteins contributes to the attachment of the pathogen to the skin. Several GAS
components, including the hyaluronic acid capsule (HA), fimbrious structures or pili (long rod-like
structures that protrude from the surface of the bacterial cell wall), M proteins and the S. pyogenes
fibronectin-binding adhesin (SfbI), contribute to adhesion and colonization of the pathogen in the
nasopharynx region including tonsil epithelium and skin [36].
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Figure 2. Stages of GAS invasion of the host immune system. A wide range of bacterial protein adhesins engage with the
adherence and colonization of the GAS pathogen to the ECM of the host tissue. Initial attachment of GAS is followed by
formation of microcolonies accompanied by cell wall-anchored adhesins and anchorless enzymes. Once colonized within the
tissue sites GAS disseminates inside the host by surviving and multiplying. GAS survives by different mechanisms, including
hiding within the epithelial cell lines, inhibiting phagocytosis and degrading DNase of NETs. GAS-infected cells trigger a
strong inflammatory response, thereby inducing a cytokine storm. Abbreviations: GAS, Group A Streptococcus; ECM,
extracellular matrix; LTA, lipoteichoic acid; MP, M-protein; FbaA, Scli/2, sfbX, sfbI, SlaA, FBP54, protein adhesins; SEN,
streptococcal surface enolase; streptococcal surface dehydrogenase, GAPDH/SDH; MØ, macrophages; NØ, neutrophils; NETs,
neutrophil extracellular traps.
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While cell attachment is a highly complex event that is yet to be fully characterized, it is currently
described as a two-step process. Initial attachment is facilitated by the GAS surface carbohydrate,
lipoteichoic acid, which has weak but sufficient affinity to pharyngeal or dermal epithelial cells of the
host through hydrophobic interactions [37]. Later stages are initiated by the high-affinity binding events,
initiated by pili, and subsequent affinity via lectin–carbohydrate and protein–protein interactions. These
interactions are mediated by GAS adhesion proteins and generate firm adhesion to distinct tissue sites
in the human host [37]. Bacterial adherence is considered a dynamic process due to the ability of the
pathogen to detach from the tight adhesion surface to transfer to a more favourable environment where
they can survive and multiply [37,38]. Numerous human extracellular proteins such as collagen,
fibronectin, fibrinogen, laminin and vitronectin serve as binding components for the GAS adhesins.
Importantly, human fibronectin is a frequent binding site for the streptococcal adhesins, thus
contributing to specific binding affinities between GAS and host α5β1 integrin receptors on epithelial
cells. GAS strains express at least 11 fibronectin-binding adhesins, including several M proteins, and
they bind to host fibronectin either in a soluble or immobilized form in the extracellular matrix (ECM)
[36]. Once GAS attaches to the host skin or pharynx surface, microcolony formation occurs, appearing
as macroscopic structures that multiply and subsequently cause streptococcal infections (figure 2).

The upper respiratory tract favours a rich environment for the growth of many pathogens. GAS
competes with the epithelial lining of the respiratory tract to colonize and invade the host epithelial
cells. Several GAS strains have been reported to penetrate the intracellular space and survive within
respiratory cells for 4 to 7 days [39]. The first observation of colonization of GAS was recorded in
1991 by Wessels et al., revealing that encapsulated GAS strains perform better than non-encapsulated
strains at colonization [40]. Evidence supports that long-term colonization of GAS strains results in a
frameshift mutation in the hasA gene that encodes HA capsule biosynthesis, contributing to either
reduced, or absent, capsule production [41]. The HA capsule acts as a barrier to prevent phagocytosis
by the innate immune cells. The HA also functions as a non-protein adhesin by binding to skin and
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murine epithelial keratinocytes mediated through CD44, a HA receptor expressed on the surface of

keratinocytes [42].
Genes of the component regulatory system (control of virulence), multiple gene regulator and RofA-like

proteins are involved in the control of the expression of colonization function [43]. Adhesion and
colonization of GAS are tightly regulated, multiple-level processes that are extensively reviewed in [37,44].

2.2. Host cell invasion
The invasion of GAS into human epithelial non-phagocytic cells, appearing as an intracellular bacterium,
was first demonstrated by LaPenta et al. in 1994 [45]. The frequency of GAS invasion into human epithelial
cells is similar to that of other classical intracellular pathogens such as Salmonella and Listeria [46].
Subsequent work by Österlund and colleagues described the use of immunohistological methods to
stain and visualize the GAS cells in surgically excised tonsils from patients with frequent episodes of
GAS [39,47,48]. Several studies have investigated the contribution and location of streptococcal invasin
proteins and revealed a promotion of actin rearrangement of the host cell cytoskeleton. SfbI and M
proteins are the best-studied GAS invasins that contribute to the invasion of epithelial, endothelial and
phagocytic cells, respectively [36]. Intracellular dissemination of GAS occurs once the pathogen is in
contact with the human epithelial cells. Most of the GAS pathogens are then engulfed; however, one of
the vital characteristics of GAS is to ‘hide’ within a human cell, or at the endothelial barrier, leaving the
host asymptomatic for a few days post-invasion [44]. This ‘hiding’ allows the pathogen to spread and
colonize the site, e.g. the throat, and initiate the occurrence of mild symptoms such as strep throat.

Depending on the type of streptococcal invasin protein, the invasion of GAS into epithelial cells
varies: a prominent example being SfbI attachment to human ECM. Human fibronectin serves as a
platform for the binding of GAS SfbI to the host ECM. Traditionally, it was believed that GAS binding
to integrin receptors triggered caveolae aggregation to form large invaginations in the host epithelial
cells, which aid in taking up GAS. Alternatively, M protein binding to fibronectin generates a zipper-
like structure, which in turn triggers GAS elimination from the epithelial cells through
phagolysosomes [11]. However, the use of caveolae by GAS for uptake into epithelial cells is not
conclusive. Recent work by Lim et al., shows that caveolae, and their scaffolding protein CAV1,
protect the human epithelial HEp-2 cells against GAS invasion by a caveolae-independent mechanism.
Knockout studies further demonstrated that CAV1 protein extends the host protection to the SfbI-
expressing M12 strains [49]. This indicates that, regardless of SfbI expression, CAV1 proteins do not
mediate the uptake of GAS into HEp-2 epithelial cells. Moreover, electron microscopy studies show
M1T15448 GAS uptake by the plasma membrane invaginations possessing putative actin filaments,
confirming that GAS invasion promotes reorganization of the host actin cytoskeleton [36,49].

Strikingly, GAS survival was shown within professional phagocytes, such as macrophages, by blocking
armaments within the cell. This was first shown by Molinari & Chhatwal [50], demonstrating that GAS
isolates escape phagolysosomes to multiply within the host cell cytoplasm [50]. These escape
mechanism of GAS were also shown in neutrophils [51]. Soft tissue biopsies from patients with GAS
showed the presence of live pathogens inside the macrophages. A correlation of bacterial numbers at
the infected site was observed: low numbers of GAS were found within non-inflamed tissues, while
high GAS numbers correlated with highly inflamed tissue, indicating that severity of infection tracks
colony numbers [52]. It was shown that GAS pathogen survival is linked to streptolysin O that
promotes escape from GAS-containing vacuoles into the macrophage cytosol [53]. This illustrates that
GAS has potential to invade and escape phagolysosome and survival within the host cytoplasm.

Recent advances in research on the transmission of GAS have shown that S. pyogenes can access the
bloodstream of the host through the lymphatic system. This study, conducted using an established
animal soft tissue GAS invasion model, found that S. pyogenes disseminates via afferent and efferent
lymphatics to reach local and distant lymph nodes, respectively, while remaining as an extracellular
pathogen [54]. Although earlier work had indeed noted that bacteria were capable of passing through
the lymphatic system [55], this latest work has provided a new perspective on GAS invasion and the
development of streptococcal pathogenesis [54].

2.3. Non-invasive Group A Streptococcus infections
Early signs of non-invasive GAS infection include pharyngitis, impetigo, rash and redness. However, the
first most common clinical symptom of GAS infection is the onset of pharyngitis. Several M protein
serotypes, such as M1, M3, M5, M6, M14, M18, M19 and M24, were found to be associated with
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pharyngitis and ARF. These serotypes fail to express the serum opacity factor (SOF), a virulent agent of

GAS. Nevertheless, serotypes that express SOF, such as M2, M49, M57, M59, M60 and M61, are
commonly associated with pyoderma and acute glomerulonephritis [56,57]. Moreover, depending on
the season, the prevalence of different disease manifestations of GAS infection varies. For instance,
pharyngitis and ARF have high incidence rates during autumn and winter, whereas skin infections
and pyoderma commonly occur during the summer [1].

Specific GAS virulence factors are known to cause specific GAS symptoms. For example, GAS strains
that produce streptococcal superantigens, such as the streptococcal pyrogenic exotoxins, generally cause
symptoms including rash, ‘strawberry’ tongue, swollen glands and high temperature, as seen in scarlet
fever in young children. An outbreak of scarlet fever in mainland China identified serotype M12
association with the streptococcal superantigen gene, streptococcal pyrogenic exotoxin C and the DNase
gene spd1 [58]. A recent study by Lynskey et al. [59] has revealed that a new M1 subtype [M1UK] is
responsible for scarlet fever cases in the UK and exhibits higher levels of streptococcal pyrogenic
exotoxins type A (SpeA). Subsequent studies by Rümke et al. [60] revealed that M1UK has also been a
dominant clade in the Dutch population and is predicted to be present in many other populations.

2.4. Post-infection immune sequalae
Recurrent GAS infections are directly linked to life-threatening conditions such as STSS, NF and post-
streptococcal glomerulonephritis (PSGN). Necrotizing fasciitis is a life-threatening aggressive disease
caused by the invasion of GAS and destruction of the soft tissue, leading to high mortality rates and
long-term morbidity worldwide. While many underlying details remain to be explored, animal
models challenged with the wild-type M3 strain, which commonly causes NF in humans, showed
extensive development of myonecrosis. By contrast, animals challenged with mutant M3 strains,
deficient in either the HA capsule or the M protein, developed abscesses but no soft tissue destruction
[61]. This suggests that the HA capsule, which is present in highly encapsulated GAS strains, might
contribute to the deadly NF. However, recent outbreak strains M89 and M4, which do not produce
HA capsule, have also been linked to invasive disease, thus implicating the involvement of other GAS
toxins [62]. Increased expression of NADase and streptolysin O were found in the new clade emm89
variant, an acapsular strain that might be capable of causing invasive infections [62].

Further studies on GAS-induced NF demonstrated that GAS hijacks neuronal regulation by secreting
streptolysin S, which activates the nociceptor (or ‘pain receptor’). Activation of nociceptor releases
enormous doses of neuropeptides that block the recruitment of neutrophils and inhibit further uptake
and phagocytosis of GAS. In the mouse model, botulinum neurotoxin A, from the bacterium
Clostridium botulinum, targets the peripheral nervous system by silencing the nerve fibres and thereby
preventing GAS-induced NF [63].

First documented in the 1980s, STSS was observed in the Western countries, including the United
States and Europe. Clinically, 85% of patients with STSS were infected with GAS strains that had
increased SpeA expression [64]. Moreover, rabbits inoculated with purified SpeA protein displayed
high temperature, hypotension and multiple organ failure: all classic symptoms of STSS [65]. A few
studies have noted a link between the M1, M3 strains and SpeA expression and STSS, which is
observed as a correlation rather causation [66,67]. The whole-genome sequence of the M3 strain
isolated from an STSS patient revealed extensive chromosomal rearrangement and genetic variation
compared with M1 and M18 strains, providing new insights into the molecular pathogenesis of STSS
[68]. The contribution of SpeA to GAS invasive diseases is described in the section below: Group A
Streptococcus vaccine candidates in the pre-clinical phase.

One of the widely accepted immediate therapies for STSS is intravenous immunoglobulins (IVIG). The
pooled IgG contains neutralizing antibodies, which inhibit T cell proliferation and pro-inflammatory
production triggered by streptococcal superantigens. Additionally, the IVIG study reported that infusion
of immunoglobulins neutralized the streptococcal superantigenic activity in severe invasive GAS
patients, including those with STSS and NF [69]. This suggests that investigating the antigenic targets
found in IVIG could potentially be a novel route to develop GAS vaccine candidates [70].

2.5. Autoimmune diseases
GAS has been associated mainly with post-infection, immune-related, sequelae such as ARF and acute
glomerulonephritis. ARF, a major cause of RHD in non-industrialized countries, occurs primarily in
children and young adults and leads to disability or death. Although the host immune and
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autoimmune responses are involved in causing rheumatic disease, the primary initiating factor is GAS

infection [71]. The pathogenic mechanism of ARF is yet to be explored in detail, but
immunopathology studies show that the onset of GAS adhesion and invasion triggers pharyngitis in
the host. This is followed by the processing of GAS antigens and their presentation to B and T cells,
leading to robust stimulation of cross-reactive monoclonal antibodies. The excreted antibodies mediate
tissue injury, leading to the development of the classical features of ARF, including carditis [71]. It was
also shown that anti-streptococcal antibodies, specifically anti-streptolysin O and anti-DNase
antibodies, were recovered from patients with recurrent GAS infections, implying that the occurrence
of ARF correlates with the onset of streptococcal infections [72]. Although only a small percentage of
the population with streptococcal pharyngitis eventually develops ARF, studies conducted within
families with ARF suggest that genetic and environmental factors also play a major role in
determining the occurrence of this disease [73].

Post-streptococcal glomerular nephritis (PSGN) is another common autoimmune disease usually
initiated by GAS pharyngitis, impetigo and scarlet fever. Frequent GAS episodes trigger the body’s
immune response of releasing cytokines to fight the pathogen, resulting in PSGN. Serotypes M1, M2,
M4 and M12 have been linked with nephritis [74]. However, other streptococcal groups, such as
Group C streptococci, have also been found contributing to acute PSGN. As well as M proteins,
enolase and the V1 region in streptokinase (GAS-secreted enzymes) are found in systemic rheumatic
disease and PSGN [74,75].

Outbreaks of GAS have been reported in many countries, including China in 2011 with a spike in
scarlet fever [76], in a nursing facility in the United States between 2014 and 2016 with multiple
invasive GAS infections [77], and more recently, in 2019, Public Health England reported invasive
GAS cases in the United Kingdom [78]. To tackle these types of outbreaks and prevent future
occurrences, an effective vaccine is essential.
3. Why is it challenging to develop a universal Group A Streptococcus
vaccine?

Developing a vaccine that offers coverage for all globally identified GAS serotypes plus any future strains
deriving from them is very challenging. Whole GAS genome sequencing has revealed two major issues:
(i) an extensive genomic heterogenicity of GAS isolates due to frequent genetic recombination events,
including gene exchange and single nucleotide polymorphisms, and (ii) subsequent protein sequence
variations. No single protein that has been exploited for vaccine development so far, is 100%
conserved throughout all GAS isolates [10]. Hence, the challenges that require to be addressed to
deliver a universal GAS vaccine include (i) the attributed burden of GAS disease, (ii) safety, and (iii)
diversity and antigenic variation in GAS strains (electronic supplementary material, figure S1).

3.1. Global burden
A deeper investigation of public health and, in particular, communicable invasive GAS diseases reveals
that around 34 million people are affected worldwide per annum, with more than 10 million patients left
permanently disabled [79]. Most cases affect children and young adults from low- and middle-income
countries. Extensive knowledge and deeper research on GAS pathogenesis over the last few decades
encourages an urgent need to develop a vaccine. The WHO lists GAS as the ninth infectious disease
affecting people worldwide and has subsequently flagged developing a safe and global vaccine
against GAS as a priority in their agenda [79]. However, gaps still remain in our current knowledge,
hindering the development of vaccines, including both scientific evaluation and the lack of statistical
data on current rates of global infections, which delay the accuracy of predicting the current GAS
global burden [79].

3.2. Safety considerations
GAS vaccination human trials in the 1960s, using a crude extract of M protein from type 3 GAS, resulted
in devastating side effects in the volunteers, 12.5% of whom developed ARF (3 out of 21 volunteers) [80].
This vaccine trial prompted the US Food and Drug Administration to forbid the use of GAS bacteria and
their products as vaccine candidates. However, a workshop, conducted by the US National Institute of
Allergy and Infectious Diseases in 2004, was instrumental in revoking the ban with the revision that



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:201991
8
purified GAS antigens could be used as vaccine candidates [81,82]. Up to the present, approximately three

dozen GAS antigens have been evaluated as protective and effective vaccine candidates in pre-clinical
studies. Due to adverse effects, and the limitations of using animal models to evaluate GAS vaccine
efficiency and safety for humans, several vaccine candidates have not been carried forward into clinical
trials. Importantly, a number of vaccine candidates, such as the M protein domains, trigger a promising
immune response by reducing the clinical symptoms in the animal models, but concerns remain
regarding cross-reactivity with cardiac proteins [79]. Due diligence is needed to monitor
post-vaccination studies by screening serum for cross-reactivity against human tissue and proteins.

3.3. Diverse Group A Streptococcus strains and antigenic variation
The global distribution of emm types in GAS is extremely diverse. Davies et al. [10] compiled a database
of the GAS genome sequences of 645 geographically and clinically diverse strains. The database
comprises 150 emm types which are clustered into 39 M proteins according to their protein sequences.
This detailed analysis reveals protein sequence variations and heterogenicity within several current
GAS vaccine candidates, including the protein streptolysin O and C5a peptidase. The data analysis
also revealed a high level of gene plasticity throughout the more than 2000 GAS genomes, implying
high-sequence diversity within the existing strains. GAS diversity varies depending on the global
region: for example, emm1 and emm12 serotypes are observed less often, but with greater strain
diversity, in Africa and the Pacific regions, whereas high occurrence with less strain diversity is
recorded in South Asia and Latin American countries [10]. Tartof et al. argue that strain diversity
depends on the social determinants present in the affected areas. For example, greater strain diversity
was noted in the poorest regions than in the high-income suburbs within Brazil [83]. This observation
poses challenges to developing a broad coverage GAS vaccine that benefits both the high-burden
regions and the high-income countries.

As mentioned above, pre-clinical studies have shown that 28 vaccine candidates are protective against
GAS infections using various animal models. However, the sequence conservation of the antigens
throughout GAS strains was not determined. Davies et al. conducted a comprehensive analysis and
revealed that the sequence variation in the antigen expression modulates the regulation of the host
immune response. The authors provide a tool to aid vaccine antigen selection and development. This
tool uses the available bioinformatics platform to assess antigenic variation within GAS genome
sequences for any vaccine candidate of choice. This is an important step towards addressing current
GAS diversity, in line with the vaccine pipeline [10].
4. Developments in Group A Streptococcus vaccines
Although GAS pathogens remain sensitive to penicillin, recent developments regarding the emergence
of new GAS strains that are less sensitive to penicillin derivatives is alarming [8]. Hence, developing
a safe, effective and affordable vaccine would significantly reduce the burden on human health
from GAS disease and eliminate one of the top 10 infectious diseases worldwide. In the following
section, we summarize the recent developments of GAS vaccine candidates in pre-clinical and
clinical trials.

4.1. Group A Streptococcus vaccine candidates in clinical trials
To date, only two GAS vaccine candidates have completed human trials [84,85]. This includes the cell
wall-anchored M protein, which has been the major focus in GAS vaccine research for several
decades. Historically, the M protein has been known to trigger bactericidal antibodies that persist long
after GAS infection in human serum. Reduced GAS colonization was initially observed in a 1970s
study using administration of whole crude M protein extracts in human subjects. Therefore, despite
their high-sequence diversity, M proteins are viewed as strong candidates for GAS vaccines [86].
However, due to the possible links of the M proteins with ARF, GAS vaccine development for
humans was banned until 2004 [80]. Importantly, it was shortly revealed that M protein vaccine
candidates were safe and protected against several GAS serotypes in the rodent infection model. The
N-terminal hypervariable region and the C-terminal conserved region can elicit bactericidal
antibodies. The N-terminal regions were formulated with recombinant proteins to produce the GAS
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vaccine candidates: (i) 6-valent, (ii) 26-valent, and (iii) 30-valent. A synthetic peptide vaccine candidate

from the C- terminal region was formulated to produce J8 M protein preparations completed the
clinical trials (table 1).

Initial studies on M protein-based vaccine candidates focused on the N-terminal fragments of six
different M proteins as antigens. These vaccine candidates were evaluated for their safety and
immune response in a limited number of healthy volunteers. Notably, this 6-valent vaccine candidate
did not cause any adverse effects. Built on this clinical study, the 26-valent vaccine candidate
(StreptAvax) was developed and evaluated. It showed a positive impact on the overall burden of
streptococcal infections in humans by reducing pharyngitis, NF and other streptococcal-related
infections [89]. Even though no cross-reactive antibodies were identified, and the vaccine candidate
tested negative for rheumatogenicity or nephritogenicity, StreptAvax failed in the major objective of
inducing protection against a broad range of GAS strains. Notably, the StreptAvax vaccine candidate
appeared to specifically target GAS strains commonly found in the Western countries and failed to
offer protection against the GAS strains found in Asia and the Pacific continents [109]. The processing
of StreptAvax was stopped due to commercial reasons [84].

The 30-valent vaccine candidate (StreptAnova™) was designed using N-terminal peptides from 30 M
proteins. This vaccine candidate evoked opsonic antibody production protecting against GAS infections
in rabbits [110], although the protection has not been firmly established using animal challenge models.
In pre-clinical trials, these opsonic antibodies raised from rabbits killed not only the GAS isolates used to
develop the vaccine, but also non-vaccine serotypes. An assessment of greater than 40% bactericidal
activity (24/40) was observed against an arbitrary selection of non-vaccine serotypes [110]. This
indicates broad coverage and neutralizing ability beyond the M protein serotypes. In the clinical phase
I study, no evidence of autoimmunity or cross-reactive antibodies was recorded in 23 participants [84].
However, a different study pointed out safety concerns regarding regions with a high incidence of
RHD [18]. Importantly, the 30-valent vaccine only achieves approximately 33% of antigenic coverage
within vaccine targets from the 2083 GAS genomes [10].

An additional M protein domain from the C-terminal region was investigated as a vaccine candidate:
J8 (MJ8VAX) contains a 29-amino acid peptide sequence from the C terminus of the M protein conjugated
to the carrier protein. Analogous to the aforementioned vaccine candidates, J8 stimulated the production
of opsonic antibodies in animals, which correlated with protection against intranasal and intraperitoneal
GAS infection models [111,112]. J8-mediated protection was also shown in mice in conjunction with the
SpyCEP immunogenic fragment [113]. A double-blinded, randomized phase I clinical trial demonstrated
MJ8VAX to be safe and immunogenic [85], but, although the adverse effects were classified as mild in all
ten participants, the level of antibodies decreased with time. The effectiveness of the MJ8VAX vaccine
candidate was judged to be erratic, based on the low number of participants.

4.2. Group A Streptococcus vaccine candidates in the pre-clinical phase
Several vaccine candidates are currently in pre-clinical trials, and we highlight those that have shown
protective immunity in animals. It is worthwhile mentioning that, up to now, none of the non-M-based
vaccine candidates has reached clinical trials. The vaccine candidates in pre-clinical trials include non-M
antigens such as streptococcal pyrogenic exotoxin, streptococcal C5a peptidase, streptolysin O, group A
carbohydrate and derivatives (delta-GlcNAc-GAC/polyrhamnose), streptococcal pyrogenic exotoxin B,
fibronectin-binding protein SfbI, Streptococcus pyogenes cell envelope proteinase, arginine deiminase and
serum opacity factor. Published data is available for all candidates, revealing insights into their potency
against GAS infections in animal studies (table 1).

4.2.1. Streptococcal C5a peptidase

The ScpA, a large surface multi-domain protein expressed on the cell envelope of GAS, has 98% amino
acid sequence identity among the tested GAS serotypes. ScpA is one of the vital mediators of resistance to
phagocytosis by specifically cleaving the chemotaxin C5a from the surface of polymorphonuclear
leucocytes. In children with acute pharyngitis, GAS isolates from throat swabs revealed that ScpA was
highly immunogenic, producing antibodies in the convalescent sera collected four weeks after
infection [25]. Immunization of mice with ScpA mutants produced high titres of IgG1 and T cell
populations. Furthermore, ScpA conjugated with short synthetic polysaccharides of the GAC was
shown to trigger highly active T cell-dependent populations, suggesting that ScpA could be
considered as a carrier protein in formulating ‘combinational’ GAS carbohydrate-based vaccines [114].



Table 1. List of GAS vaccine candidates in clinical and pre-clinical trials. I.M., intramuscular; I.P., intraperitoneal; S.C.,
subcutaneous; I.N., intranasal.

vaccine candidates description outcome reference

clinical trials

6-valent vaccine comprised N-terminal M protein

fragments from serotypes M1, M3,

M5, M6, M19 and M24

Phase I—immunized 28 healthy

adults

clinical assessment, serological

responses and cross-reactive

antibodies were examined post-

vaccination

no tissue cross-reactive antibodies

30% increase in serum bactericidal

activity post-vaccination

first evidence in humans that a multi-

component protein elicits opsonic

antibodies against GAS

[87,88]

26-valent vaccine

(StreptAvax)

comprised four recombinant proteins

containing N-terminal peptides

from 26 M proteins

Phase I—immunized 30 healthy

adults

Phase II—immunized 30 healthy

adults

the absence of rheumatogenicity or

nephritogenicity

no induction of human tissue-reactive

antibodies

a fourfold increase of IgG compared

with control

discontinued due to commercial

reasons

[89–91]

30-valent vaccine

(StreptAnova™)

comprised four recombinant proteins

containing N-terminal peptides

from 30 M proteins

Phase I—immunized 23 healthy

adults

no evidence of autoimmunity

no tissue cross-reactive antibodies

25 out of 31 M serotypes showed

significant antibody titre

[84]

J8 vaccine

(MJ8VAX)

comprised a synthesized and

acetylated peptide antigen (J8)

from the conserved carboxyl

terminus region of the M protein

Phase I—immunized 10 healthy

adults

13 adverse effects were classified as

‘mild’

highly immunogenic after post-

immunization

level of antibodies decreased with

time

[85,92]

pre-clinical trails

serum opacity

factor (SOF)

function: opacifies mammalian serum

anti-SOF antibodies tested against M2,

M4 and M28

SOF stimulates antibodies in humans,

rabbits and mice

provokes protective immunity by killing

M4 and M28

[93–95]

Group A

carbohydrate

(GAC)

GAC without GlcNAc side chain

(polyrhamnose) used as an

immunogen

purified GlcNAc-deficient GAC was

tested for GAS survival

GlcNAc linked to the pathogenesis of

rheumatic carditis

GlcNAc-deficient GAC facilitates

opsonization and phagocytosis of

diverse GAS strains

protects systemic and nasal challenges

on mice and rabbit models

GlcNAc promotes GAS survival in

human blood

[29,96,97]

(Continued.)
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Table 1. (Continued.)

vaccine candidates description outcome reference

C5a peptidase

(ScpA)

highly specific endopeptidase

major virulence factor anchored on

the surface of GAS

samples collected from children

infected with pharyngitis

children with pharyngitis had increased

ScpA activity

level of ScpA correlates with an

increased level of anti-SLO and anti-

DNase B activity

[25,98]

pyrogenic

exotoxins (Spe)

SpeA and SpeC superantigen

Spe linked to STSS

toxoids of SpeA stimulates protective

antibody response

anti-superantigen antibodies protects

mice from GAS nasopharynx

infection

induction of variable β-specific T cells

promotes GAS colonization

[24,99–101]

streptolysin O

(SLO)

pore-forming toxin produced by GAS

animals immunized S.C. and

challenged with GAS

inactivated SLO mutant animals

exhibited decreased mortality

compared with wild-type GAS

SLO mutant protects animals from

lethal M1 challenge

[26,102]

chemokine

cleaving protease

(SpyCEP)

SpyCEP is expressed on the GAS

surface and secreted

function cleaves IL-8

SpyCEP expression upregulated in NF

mice immunized I.M. with SpyCEP

and challenged with GAS through

I.M. and I.N.

reduced bacterial dissemination found

in both GAS and S. equi

offers protection against other

streptococcal species

[27,103,104]

SfbI and FBP54 SfbI and FBP54 is a fibronectin-

binding protein

plays a key role in bacterial

attachment to host cell

SfbI—animals immunized I.N. and

challenged with M23 and blood

isolate NS239

FBP54—mice immunized either S.C

or orally and challenged I.P. with

GAS

SfbI vaccinated animals show 80%

antibody efficacy homologous

challenge and 90% in heterologous

challenge

FBP54 immunized mice survived

significantly longer following GAS

challenges

[28,105]

multi-component vaccines

Spy7 comprised highly conserved

streptococcal surface antigen

expressed in E. coli

mice were immunized, and I.M.

challenged with M1, M3, M12 and

M89

production of anti-streptococcal

antibodies

limited the dissemination of M1 and

M3

[70]

(Continued.)
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Table 1. (Continued.)

vaccine candidates description outcome reference

three technologies comprised Streptolysin O, Spy0269

and SpyCEP

mice immunized I.P. and challenged

I.N. or I.P. with GAS

broad protective antibody response

against M1, M6, M12 and M23

antibody-mediated GAS killing—

classical whole blood bactericidal

assay

[106]

combination

vaccines

three combination vaccines were

formulated

I—comprised SLO, IL-8, SpyCEP,

ScpA, ADI and trigger factor

II—comprised conserved M protein-

derived J8 peptide conjugated to

ADI

III—GAC without N-GlcNaC

mice immunized and challenged

S.C. with GAS

M1 protein was used as a positive

control

all experimental vaccine candidates

elicited antigen-specific antibody

coupled with bactericidal activity

only positive control provided

protection against S.C invasive

disease model

[107]

Combo vaccine

(Combo5)

comprised SLO, ADI, ScpA, SpyCEP

and trigger factor

Indian rhesus macaques immunized

I.M. and challenged I.N with GAS

Combo5 immunization induced

antigen-specific IgG in rhesus

macaques

IgG against Combo5 bind to live GAS

but do not promote killing by HL-

60 cells

decreased severity of clinical signs but

not colonization in pharyngitis

infection model

following work highlighted that using

adjuvants containing saponin QS21

with antigens ADI, SpyCEP, ScpA,

SLO and trigger factor resulted in

significant protection against GAS

invasive infection

[33,108]

5CP comprised sortase A, streptococcal C5a

peptidase, S. pyogenes the

adhesion and division protein, a

fragment of SpyCEP (CEP-5) and

streptolysin O

mice immunized with 5CP and

challenged I.N. with GAS to study

mucosal and systemic infection

mice immunized I.N. with 5CP and

challenged S.C with GAS for skin

abscess model

5CP induced Th17 responses in the

spleen of animals

Th17 responses induced by 5CP resolve

more rapidly than induced by GAS

suggesting competent Th17

response towards 5CP

[34]

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:201991
12



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:201991
13
4.2.2. Streptolysin O

SLO is a secreted GAS pore-forming toxin found to be upregulated in virulent M1T1 GAS isolates and
other leading genotypes. SLO promotes GAS resistance to phagocytosis in the human immune system
[115]. It also modulates the function of neutrophils by suppressing the neutrophil oxidative burst and
impairing the direction of migration, thereby helping the pathogen to survive within the host
bloodstream. High titres of IgG, IgM and anti-SLO antibodies were found in the mouse models
immunized with a mutant (non-pore-forming) form of streptolysin O, implying passive protection in
GAS-infected animals. This study suggested the importance of the SLO toxoid in multi-component
vaccine formulation, because of its ability to reverse the neutrophil function and induce protective
immunity against lethal GAS challenge [26]. SLO is a highly conserved protein achieving 99%
theoretical coverage of all GAS isolates [10].

4.2.3. Group A Carbohydrate

Group A Carbohydrate (GAC) is 100% conserved in all isolated serotypes and is composed of a
polyrhamnose backbone with an immunodominant GlcNAc side-chain decorated with a negatively
charged glycerol phosphate [29]. It is an abundant and essential component of the GAS cell and
makes up around 50%, by weight, of the cell wall [29]. From the early 1990s, affinity-purified anti-
GAC antibodies have been recognized for opsonizing M3, M6, M14 and M28 serotypes [116]. Follow-
up studies demonstrated that animals immunized with GAC produced a protective immune response
against systemic GAS challenges [96]. However, the GlcNAc side chain of GAC was shown to cross-
react with cardiac myosin proteins, thereby stimulating autoimmune antibodies, which are a primary
agent in causing RHD [117]. As a result, only the polyrhamnose backbone of the GAC was taken
forward as a possible vaccine candidate. An extensive study, by van Sorge et al., using mouse and
rabbit GAS infection models revealed that GAC antibodies raised against the polyrhamnose backbone
promoted opsonophagocytic killing of multiple GAS serotypes, suggesting the GAC backbone could
be viewed as a potential universal vaccine for GAS infection [29].

4.2.4. Streptococcal pyrogenic exotoxins

Spe are a family of GAS-secreted extracellular toxins including SpeA and SpeC. The expression of Spe
exotoxins is responsible for producing the prominent rash and ‘strawberry’ tongue during scarlet
fever by stimulating the production of inflammatory cytokines. Exotoxins SpeA and SpeC, also called
superantigens, are commonly isolated from STSS patients. Accumulating evidence suggests that,
similar to SpeA and SpeC, SpeF also acts as superantigen by interacting with major histocompatibility
complex class II molecules on antigen presenting cells and is involved in the activation of T cells
[99,118]. Such activated T cells release enormous amounts of pro-inflammatory cytokines, such as IFN
gamma and tumour-necrosis factor α, leading to fever and shock [119]. One of the observed
characteristics of superantigens is their ability to induce an inflammatory Th1 response rather than a
regulatory Th2 cytokine response. This has been observed in STSS patients and implies a vital role for
this in controlling the severity of invasive infections [120]. Conversely, SpeB, a cysteine protease,
cleaves and degrades host proteins such as fibronectin and vitronectin and converts IL-1β into an
active molecule. Increased production of anti-SpeB antibodies was found in the sera of a diverse range
of invasive disease patients [121]. Immunization with attenuated SpeA toxoid in the murine model of
GAS nasopharyngeal infection resulted in antibody-mediated protection by reducing the burden of
GAS in the nasopharynx, verifying superantigen SpeA as an attractive vaccine candidate for GAS [24].

4.2.5. Multi-component vaccines

A promising GAS vaccine candidate should provide broad coverage and protection against various
serotypes, including emerging new GAS strains. Thus, developing a multi-component vaccine would
be the best solution as it could potentially deliver protection based on factors such as antigenic
variation, high immunogenicity and sequence conservation in most GAS serotypes. For example, the
Combo5 vaccine candidate, a multi-component vaccine composed of GAS antigens such as
streptolysin O, streptococcal c5a peptidase, arginine deiminase, Streptococcus pyogenes cell envelope
proteinase and trigger factor, was shown to reduce pharyngitis and tonsillitis in Indian rhesus
macaques, post-vaccination [33]. Moreover, subsequent work indicated that Combo5 with adjuvants
containing saponin QS21 stimulated a Th1-type response, highlighting the importance of adjuvants
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for designing non-M protein-based vaccine candidates for GAS [108]. A different study investigated a

similar multi-component vaccine, termed 5CP. Intranasal immunization studies in mice revealed that
5CP not only stimulates T helper type 17 cells but also resolves them promptly to avoid Th17-induced
autoimmune disorders, indicating a controlling role in the Th17 response [34]. Further studies
investigated the potential of seven-GAS antigens as a combo vaccine candidate, spy7. Spy7 contains a
variety of highly conserved streptococcal surface antigens that were recombinantly expressed in E. coli.
All targets were purified and mixed in equal proportion to formulate the multi-component vaccine
candidate. Spy7 vaccination in mice produced anti-streptococcal antibodies that prevented systemic
dissemination of M1 and M3 GAS [70].
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R.Soc.Open
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5. Concluding remarks
During the last 60 years, significant advances have been made in our understanding of GAS pathogenesis
and disease, with detailed insights into the molecular mechanisms of pathogenicity including the ability
of GAS to eradicate the host immune system and cause invasive infections. Invaluable information was
generated through extensive genome analysis and evaluation of various GAS antigens as vaccine
candidates. Numerous clinical trials and animal studies have been carried out to address how a single
antigenic virulence determinant, such as the M proteins, can resist major innate immune players,
including macrophages, neutrophils and dendritic cells, and cause serious invasive infections.
Growing evidence for GAS antibiotic resistance, and the high burden of GAS on mankind,
contributed to the WHO’s decision to make GAS vaccine development a priority for global health.
The only way forward to address the vast diversity of GAS isolates is to develop a universal vaccine
candidate using combinational antigenic determinants, including proteins and carbohydrate
glycoconjugates. A systematic approach that addresses multiple antigenic GAS components must be
applied to deliver broad coverage of clinical infections, including careful analysis to avoid any
potential cross-reactivity. The GAS research community has provided promising avenues to succeed
and make a positive and lasting impact on global health.
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