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Table S1. Crystallographic data. Data collection and refinement statistics. 

 

Data collection 
Beamline SLS PXI (X06SA) 
Detector Pilatus 16M 
Wavelength (Å) 1.00 
Space group P63 

Cell dimensions  
a, b, c (Å) 84.39, 84.39, 107.11 

, ,  (°) 90, 90, 120 

Resolution (Å) 50-2.75 (2.81-2.75)
a
 

Total no. of reflections 75393 
Unique no. of reflections 11223 
Redundancy 6.7 (7.1) 

R
merge

 (%)
b
 0.077 (0.840) 

I/σI 22.67 (2.22) 
Completeness (%) 99.8 (100) 
Refinement  
Resolution (Å) 2.76 

R
work

d
/R

free

e
 21.3/26.0 

No. of atoms  
Protein 2612 

RMSD
f
  

Bond lengths (Å) 0.008 

Bond angles (⁰) 1.466 

Ramachandran plot  
Favored (%) 97.6 
Allowed (%) 2.4 
Outliers (%) 0  

a
Values in parentheses are for the highest resolution shell. 

b
Rmerge = Σ|Iobs - Iavg|/Σ Iavg, where Iobs is the measured intensity of each reflection, and Iavg 

is the intensity averaged from symmetry equivalents. 

d
Rwork= (Σ||Fo| - |Fc|| / Σ|Fo|), where Fo denotes the observed structure factor amplitude 

and Fc denotes the structure factor amplitude calculated from the model. 

e
Rfree = Rfree is as for Rwork but calculated with 5% of randomly chosen reflections omitted 

from the refinement. 

f
RMSD = Root mean square deviation. 
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Comparison of PorB porin between N. gonorrhoeae and N. meningitidis W135 

 

 

 

Figure S1. Sequence comparison of the PorB porins of the pathogenic neisserial 

species. (A) Sequence comparison of the PorB proteins of Neisseria gonorrhoeae 

(Uniprot id: Q51056_NEIGO) and Neisseria meningitidis W135 (UniprotKG id: 

Q5RT80_NEIME). The L3 loop is highlighted in yellow, the mutation site is highlighted in 

blue and the residues that shape the PorB constriction site are shown in red letters. (B) 

Top view of the constriction zone of the PorB protein of Neisseria gonorrhoeae (PDB id: 

4AUI). (C) Top view of the constriction zone of PorB protein of Neisseria meningitidis 

W135 (PDB id: 3VY8).  
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Electrostatic surface potential of PorB 

 

 

Figure S2. Electrostatic surface potential of PorB viewed from the periplasmic side, 

calculated with APBS (61). The potential of (A) PorB wt and (B-J) 9 different possible 

Lys103 positions (PorB G103K) are shown. Positive potential is colored in blue, and 

negative potential is colored in red. Potentials are contoured from +8 kT∕e to −8 kT∕e. The 

results are shown at the solvent accessible surface area of PorB.  
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Figure S3. Electrostatic surface potential of PorB viewed from the extracellular side, 

calculated with APBS (61). The potential of (A) PorB wt and (B-J) 9 different possible 

Lys103 positions (PorB G103K) are shown. Positive potential is colored in blue, and 

negative potential is colored in red. Potentials are contoured from +8 kT∕e to −8 kT∕e. The 

results are shown at the solvent accessible surface area of PorB. 
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Control recordings on solvent-free bilayers lacking PorB 

 

 

Figure S4. Conductivity event histogram recorded on a solvent-free membrane in 

1 M KCl at pH 7.5 to which only buffer containing LDAO (200 mM NaCl, 20 mM TRIS, 

0.1 % (w/w) LDAO) was added. Conductivity maxima of G1 = (0.04  0.02) nS, 

G2 = (0.26  0.07) nS and G3 = (0.53  0.16) nS were determined (n = 2577) with a 

kernel density estimation using a Gaussian kernel (black solid line) 
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Atomistic simulations of the ionic pathway 

 

Figure S5. Unbiased molecular dynamics simulations of apo PorB systems. (A) Root 

mean squared deviation (RMSD) calculated for the C (grey) of each monomer of the 

wild type (left) and G103K (right) PorB simulations. (B) Interaction between the nitrogen 

atom of the Lys103 and the oxygen atoms of the residues Asp104 (blue lines) and 

Glu128 (black lines).  
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Conformations of the K103 residue compared between the X-ray structure and the 

molecular dynamics simulations of mutant PorB 

 

 

 

 

Figure S6. Comparison of the conformations of the K103 residue between the X-

ray structure and the molecular dynamics simulations of mutant PorB. The X-ray 

structure and the MD ensemble are shown in orange and white cartoon and sticks 

respectively. The MD ensemble reflects several conformations of the K103, extracted 

every 20ns for each of the three PorB monomers.  
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Figure S7. Schematic representation of the x and z axes used to obtain the PMF plots 

of the K+ and Cl- ions along the PorB pore.  
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Figure S8. Representation of the ionic pathways for the wt PorB channel. Overlay 

of ion positions (green spheres, Cl−; purple spheres, K+) from 100 snapshots taken from 

the last 100 ns of simulation of unbiased molecular dynamics simulations of the apo wt 

PorB.  
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Figure S9. Unbiased molecular dynamics simulations of ampicillin-bound PorB 

systems. (A) Root mean squared deviation (RMSD) calculated for the ampicillin 

molecule (red) and the C (grey) of each monomer (red) of the wild type (left) and G103K 

(right) PorB simulations. (B) Interactions of the ampicillin molecule with the acid side 

(carbonyl atom of G112 in red lines and Glu116 in maroon lines) and (C) basic side 

(Lys64 in blue lines, Lys100 in navy lines and Arg130 in blue lines) of the eyelet. (D) Tilt 

angle of ampicillin along simulation time.  
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Figure S10. Final configurations of the ampicillin bound to both PorB proteins. 

Green and white cartoons represent the wt and G103K PorB proteins respectively. Initial 

and final orientation of ampicillin molecules are represented as grey and purple sticks, 

respectively.  
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Figure S11. Effect of the ampicillin binding on the ion current in simulations under 

voltage. (A, B) Initial binding modes of ampicillin of the wt and G103K PorB respectively. 

wt and G103K PorB proteins are shown in green and grey cartoon respectively. 

Ampicillin molecules are shown in orange sticks. (C,D) The asymmetric flux of 

Cl− (green), K+ ions (purple) and electro-osmotic flow of water molecules (blue) across 

the eyelet at negative and positive voltages is shown. Positive values of flux account for 

permeations from the extracellular compartment to the periplasmic compartment.  
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Figure S12. Comparison of field-dependent translocation of ampicillin in wt and G103K 

PorB systems. The membranes under positive and negative voltages are depicted in 

orange and blue, respectively, for an ion imbalance q of 18 (Vm ≈ ±600 mV). (A) 

Rotation of ampicillin as shown by the difference in the centre of geometry of the benzene 

and acidic moieties. (B) Translation of ampicillin under voltage in wt and G103K PorB 

relative to the original binding site. In the wt system, ampicillin tends to remain in the 

binding site but shows some rotation of the molecule. Ampicillin in G103K PorB displays 

a smaller degree of rotation but is translated farther from the original binding site under 

negative voltages. In both plots, each channel is treated individually with mean value and 

a confidence interval of 95% plotted every 2 ns. 
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Figure S13. Field-dependent rotation of ampicillin in wt PorB simulations. Duplicate 

simulations were performed for each ion imbalance, with each pore being treated 

separately, resulting in data from six pores for both positive (orange) and negative (blue) 

voltages. The angle of the drug to the z-axis is defined as the angle formed between the 

z-angle and a plane between the benzene and carboxylic moieties. The mean angle is 

plotted every 2 ns with a confidence interval of 95%. The data shown are for ion 

imbalances in the CompEL double membrane system of 0, 2, 3, 8 and 18e from top to 

bottom.  
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Figure S14. Conductance of ampicillin-bound wt and G103K PorB trimers as a function 

of time. The membranes under positive and negative voltages are depicted in orange 

and blue, respectively, for a CompEL ion imbalance q of 18e (Vm  ±600 mV). The 

voltage and number of ion permeations were calculated within overlapping 20 ns 

windows. The conductance refers to the homotrimer system, with the mean value of each 

duplicate system plotted with a confidence interval of 95%. 
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Figure S15. Liposome swelling assay of glucose transport through PorB. The 

glucose-uptake swelling of liposomes containing wt PorB (blue) and G103K PorB (red) 

were monitored. Liposomes without protein (blank, gray) were used as control.  

 

 

 

 

 


