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Abstract

The ability to accurately assess liana (woody vine) infestation at the landscape

level is essential to quantify their impact on carbon dynamics and help inform

targeted forest management and conservation action. Remote sensing tech-

niques provide potential solutions for assessing liana infestation at broader spa-

tial scales. However, their use so far has been limited to seasonal forests, where

there is a high spectral contrast between lianas and trees. Additionally, the abil-

ity to align the spatial units of remotely sensed data with canopy observations

of liana infestation requires further attention. We combined airborne hyper-

spectral and LiDAR data with a neural network machine learning classification

to assess the distribution of liana infestation at the landscape-level across an

aseasonal primary forest in Sabah, Malaysia. We tested whether an object-based

classification was more effective at predicting liana infestation when compared

to a pixel-based classification. We found a stronger relationship between pre-

dicted and observed liana infestation when using a pixel-based approach

(RMSD = 27.0% � 0.80) in comparison to an object-based approach

(RMSD = 32.6% � 4.84). However, there was no significant difference in accu-

racy for object- versus pixel-based classifications when liana infestation was

grouped into three classes; Low [0–30%], Medium [31–69%] and High

[70–100%] (McNemar’s χ2 = 0.211, P = 0.65). We demonstrate, for the first

time, that remote sensing approaches are effective in accurately assessing liana

infestation at a landscape scale in an aseasonal tropical forest. Our results indi-

cate potential limitations in object-based approaches which require refinement

in order to accurately segment imagery across contiguous closed-canopy forests.

We conclude that the decision on whether to use a pixel- or object-based

approach may depend on the structure of the forest and the ultimate applica-

tion of the resulting output. Both approaches will provide a valuable tool to

inform effective conservation and forest management.

Introduction

Lianas (woody vines) are a dominant plant functional

type in tropical forests. Lianas use the structural composi-

tion of trees to reach the forest canopy, where they

strongly compete with trees for light (Putz, 1984; Sch-

nitzer, 2005). Recent studies have indicated that the pres-

ence of lianas may have a strong negative effect on tree

diversity (Schnitzer & Carson, 2010), growth (van der

Heijden & Phillips, 2009), recruitment (Stevens, 1987;

Tymen et al., 2016), survival (Putz, 1984) and the ability

of these forests to store and sequester carbon (Durán &

Gianoli, 2013; van der Heijden et al., 2015). This is par-

ticularly relevant as tropical forests represent around 55%

(471 � 93 Pg C) of global carbon stocks (Pan et al.,

2011) and thus are highly valued for their role in the
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global carbon cycle. Therefore, liana proliferation, such as

that observed in Neotropical forests (Phillips et al., 2002;

Schnitzer & Bongers, 2011), may have global conse-

quences for climate change.

Growing concern for the impact of lianas on the tropi-

cal forest carbon balance has led to an expansion of stud-

ies in recent years. However, the impact of lianas on

tropical carbon budgets are usually studied from the

ground (van der Heijden et al., 2015; Ingwell et al., 2010;

Wright et al., 2015) with spatial extents limited to the

order of plot size (typically, 0.1 ha to 50 ha) (Ingwell

et al., 2010; Schnitzer et al., 2012). As the abundance and

distribution of lianas may be influenced by processes that

operate at multiple scales, field measurements that are

constrained to small plots may restrict our understanding

of the distribution and impact of lianas over larger areas.

The ability to accurately assess liana infestation at a land-

scape level is therefore essential to quantify their impact

on carbon dynamics and monitor change over time,

which will assist in targeting conservation and manage-

ment actions focussing on climate change mitigation in

tropical forests.

Remote sensing may provide a solution to map liana

infestation over larger areas than possible using field-

based methods alone. Studies have shown clear differences

in the spectral response of trees and lianas at the leaf-

(Castro-Esau et al., 2004; Guzman et al., 2018; Hesketh &

Sánchez-Azofeifa, 2012) and canopy levels (Kalacska

et al., 2007; Sánchez-Azofeifa & Castro-Esau, 2006). Based

on differences in the spectral response of trees and lianas,

airborne-derived hyperspectral and LiDAR data have been

used to effectively map liana canopy cover at a landscape

level (Marvin et al., 2016). However, the use of remote

sensing methodologies to map liana infestation at the

landscape level have so far been limited to seasonal forests

in the Neotropics (Foster et al., 2008; Li et al., 2018; Mar-

vin et al., 2016). In aseasonal forests, a low spectral con-

trast between lianas and trees (Castro-Esau et al., 2004;

Sánchez-Azofeifa et al., 2009) may pose an additional

challenge for mapping liana infestation. Moreover in the

study by Marvin et al. (2016) a disagreement between

liana infestation predictions at the pixel-level (i.e., deter-

mined by the hyperspectral data) with field estimates at

the object-level (i.e., per tree-crown) may have led to a

reduction in classification accuracy. Such discrepancies in

spatial units have been noted in multiple studies that have

suggested the need to account for meaningful image

objects in order to produce accurate land cover maps

(Blaschke, 2010; Li & Shao, 2014; Yu et al., 2006).

The ability to spatially and temporally align ground

observations of liana infestation with remotely sensed

data is highly desirable to achieve an accurate classifica-

tion. While aligning datasets in time is challenging due to

the nature of data collection, the spatial units of remotely

sensed data can be modified to accurately align with esti-

mates of liana canopy cover. Liana infestation estimates at

the pixel-level may be achieved by spectral unmixing of

endmember pixels (Adam et al., 2016; Shao & Lan, 2019).

Alternatively, LiDAR data may be used to delineate indi-

vidual tree crowns (Jakubowski et al., 2013; Jing et al.,

2014; Nunes et al., 2017), which can be used to segment

hyperspectral imagery for an object-based classification.

However, the effectiveness of an object-based approach

may be compromised by errors caused by over- and

under-segmentation (Chen et al., 2018; Liu & Xia, 2010).

Here, we examine, for the first time, whether a combi-

nation of airborne hyperspectral and LiDAR data can be

used to accurately assess liana infestation across an asea-

sonal primary forest in Sabah, Borneo. By employing a

neural network machine learning classification, we aim to

predict liana infestation using both pixel- and object-

based approaches and compare differences in their accu-

racies. We also discuss the potential benefits of pixel- ver-

sus object-based liana infestation outputs and their

suitability for informing effective conservation and land

management.

Materials and Methods

Study area

The study area is situated within the Danum Valley Con-

servation Area (DVCA), a primary lowland dipterocarp

forest within the Yayasan Sabah (Sabah Foundation) for-

est concession (Reynolds et al., 2011) (Fig. 1). The DVCA

(117°48’15.641"E, 4°57’54.822"N) remains a large and

intact lowland forest (438 km2). The climate is typical of

the aseasonal tropics with an annual rainfall of around

2900 mm (O’Brien et al., 2019) and a mean annual tem-

perature of 25.6°C (Fick & Hijmans, 2017).

Occupied airborne data collection

Occupied (or manned) airborne hyperspectral and LiDAR

data were collected concurrently by the UK Natural Envi-

ronmental Research Council’s Airborne Research Facility

(NERC-ARF) in November 2014. The data were captured

from a Dornier 228–201, flying at 65.6–71.6 ms−1 at an

altitude of 2335–2429 m. In total 10 flightlines were

flown, on bearings of 100 or 280°, surveying an area of

~2083 ha of primary forest (Fig. 1).

LiDAR data were captured using a Leica ALS50-II

which operates with an 8W class 4 laser with radiation at

1064 nm. The sensor is capable of recording up to four

discrete returns for each emitted pulse. The footprint of

the pulse on the ground is approximately 22 cm when
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fired from an altitude of 1000 m. The dataset has a point

density ranging between 2.80 and 3.16 per m2. The data

were processed to produce a top-of-Canopy Height

Model (CHM), with a spatial resolution of 1 m2, based

on the difference between the Digital Surface Model

(DSM) and the Digital Elevation Model (DEM) using

LAStools software (Isenburg, 2014).

Hyperspectral imagery were collected using a FENIX

sensor (Specim Spectral Imaging, Finland), which

acquired high resolution data from a large spectral range

(380–2500 nm). Data were collected across 448 contigu-

ous channels at a spatial resolution of 9 m2. Spectral radi-

ance sampled (2.9 nm) in the visible-to-near infrared

(VNIR) ranged from 380 to 970 nm with a spectral reso-

lution of 3.5 nm; in the shortwave infrared (SWIR) spec-

tra were sampled (5.7 nm) from 970 to 2500 nm with a

spectral resolution of 12 nm. Radiometric corrections

were applied to the full hyperspectral dataset. Bands

without data or those which were overly-saturated were

removed. Data were atmospherically corrected using

ENVI FLAASH (Fast Line-of-sight- Atmospheric Analysis

of Spectral Hypercube) Atmospheric Correction (ENVI

version 4.8, Exelis Visual Information Solutions, Boulder,

Colorado). Post-correction quality checks revealed reflec-

tance values varied between flightlines for the same indi-

vidual pixels. As a result, all spectral values for individual

flightlines were adjusted based on the difference in reflec-

tance between overlapping pixels of adjacent flightlines

(Taylor, 2001). An average of all pixels from one flight

line were compared with an average of all overlapping

pixels from the adjacent flightline. The average difference

was calculated and adjusted for each band across the full

flightline. All flightlines were combined and the dimen-

sions of the data were reduced using a Standardised Prin-

cipal Component Analysis (SPCA) to account for

differences in spectral reflectance between flightlines.

Figure 1. Location of the remotely sensed data and 50 ha plot in relation to the Danum Valley Conservation Area (DVCA) in Sabah, Malaysia.

SFMA, Sabah Forest Management Area. The study area (orange line) as well as the 50-ha plot (green rectangle) are indicated. The Canopy Height

Model (CHM) is used to represent the extent of the remotely sensed data.
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SPCA uses a correlation matrix which has the same effect

as using normalised bands of unit variance (Chang &

Yoon, 2003). The first 8 principal components (raster lay-

ers) were retained, which explained more than 99% of

the variation. Lastly, the 8 principal component values

were scaled using a min-max normalisation:

ppc�min ppc

� �

max ppc

� �
�min ppc

� � (1)

where ppc is the value for each pixel within each of the

eight principal component layers.

Liana canopy cover survey

Data on liana canopy cover were collected in 2017 and

2018 for training of a neural network classification

(n = 454 trees). The LiDAR data were uploaded to a

tablet computer (Apple) connected to a GPS receiver

(Garmin GLO 2; GARMIN) so individual tree crowns

could be visually delineated in the field using the GeoEdi-

tor application (MapTiler). As a result, error associated

with GPS accuracies can be avoided. To minimise error

associated with estimating liana canopy cover, effort was

taken to ensure each tree crown was thoroughly and

accurately assessed by; (1) only recording tree crowns that

were identified on the canopy height model with a high

degree of certainty, (2) making sure tree crowns were

fully sun-lit and completely unobscured from above and

(3) having a minimum of two people independently esti-

mating the percentage of a tree crown infested with lianas

to the nearest 5% and then mutually agreeing on a final

estimate (cf. Marvin et al., 2016).

Tree crown segmentation

The CHM was segmented using the meanshift algorithm

in the Orfeo Toolbox (OTB) within QGIS v3.6.0 (QGIS

Development Team, 2018). The segmentation output

consisted of a set of contiguous and non-overlapping

objects. The meanshift algorithm was controlled by three

main parameters: scale, radius and threshold. We per-

formed a grid-search using four different values for each

parameter (Table S1). A total of 64 segmentations were

produced using each parameter combination (Table S2).

It is not possible to know, prior to segmentation, which

combination of values will produce the optimal segmen-

tation, therefore a large range of values were chosen for

each parameter to ensure the optimal parameter combi-

nation was captured. Following this, a second grid search

was performed which inspected an additional 27 combi-

nations (Table S3). Each segmentation result was

submitted to a supervised accuracy assessment. Among

the many methods available (Costa et al., 2018), the Seg-

mentation Evaluation Index (SEI) (Yang et al., 2015) was

selected to provide an estimate of the accuracy of the

segmentation. SEI is a strict measure as it requires a

one-to-one correspondence between the segments and

reference polygons. This is a desirable feature in the con-

text of this study as one object should correspond to just

one tree and vice versa. If not, the segmentation accu-

racy is penalised (Costa et al., 2018). The 91 segmenta-

tions were compared against a reference set of 124 tree

boundaries across the study area manually delineated

using the CHM. SEI values ranged from 0.276 to 0.818,

corresponding to the best and worse results, respectively.

The smallest SEI value was derived from the parameter

combination: scale = 15, radius = 5 and threshold =
0.005 (Table S3). The segmentation produced with this

parameter combination was used in the subsequent anal-

ysis.

Hyperspectral data extraction

When assessing liana canopy cover from the ground, it is

only possible to estimate liana infestation for entire tree-

crowns (objects). A more detailed assessment of liana

infestation within a tree crown can be achieved by visu-

ally dividing the crown into quadrants (cf. Marvin et al.,

2016). In either case, estimates of liana infestation when

assessed from the ground cannot be achieved at the same

scale of the hyperspectral pixels. To overcome this, we

derived end-member spectra from trees without lianas in

their canopy (therefore ‘tree’) and trees with highly liana

infested (≥75%) canopies (therefore ‘liana’) to explain

the spectral range (Plaza et al., 2012). As such, each

hyperspectral pixel within the object relates to a pure

cover of either tree or liana leaves. To allow comparison

with the object-based approach, we derived end-member

spectra for both approaches (Fig. 2). For the object-based

classification, end-member spectra were extracted from

the segmented hyperspectral imagery for the same trees

used in the pixel-based classification (n = 267 trees/8827

pixels; Table 1). This yielded a total of 7826 hyperspectral

pixels (226 trees) with no liana infestation and 1001

hyperspectral pixels (41 trees) with highly liana-infested

canopies (see, Table 1).

Where the crown delineation derived from the CHM

overlapped more than one object in the segmented hyper-

spectral imagery, we assigned a weight based on the pro-

portion of each segmented object that made up the area

as defined by the delineated crown boundaries. All

weights were normalised to add up to one and used to

calculate a weighted mean by multiplying the spectral val-

ues of a segmented object with the associated weight.
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Figure 2. Spectral reflectance of liana-free trees and trees highly infested with liana leaves using ground-based training data. (A and B) Average

reflectance values for pixel- and object-based approaches, respectively. (C and D) Standardised reflectance values for pixel- and object-based

approaches, respectively. Standardised (μ = 0, σ = 1) reflectance shows the difference across all bands by removing the magnitude of reflectance.

Lines are mean reflectance values for all trees (shading � 1 SD). Blue lines represent liana-free trees (ntrees = 226, npixels = 7826), yellow lines

represent trees highly infested with liana leaves (ntrees = 41, npixels = 1001).

Table 1. Data used for the training of neural network models and validation of predicted liana infestation maps.

Approach

Spatial

unit

Training

data

Total

EMs

EMs

[0%]

EMs

[>75%]

Balanced EMs

[0, 75%]

EMs (80%) training

[0, >75%]

EMs (20%) testing

[0, >75%]

Valid. data

(#trees)

Pixel

Output P

9 m2

Pixel

14 552 8827 7826 1001 2002 1602 200 168

Object

Output O

Tree crown 454 267 226 41 82 66 16

168

EMs, Endmembers; values within [ ] indicate proportional coverage of liana infestation in the tree crown. Balanced EMs contain an equal number

of data points within each class. Numbers in bold refer to totals.
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Neural network modelling

To predict liana infestation across the landscape we used a

neural network model. Machine learning classifications such

as neural networks often perform well when dealing with

large datasets that include variables with non-linear, com-

plex relationships. Unlike many other prediction techniques,

they can learn hidden relationships without imposing

restrictions such as fixed relationships in the data. We used

a neural network model with resilient backpropagation and

weight backtracking, which is often faster than regular back-

propagation as parameters such as learning rate and

momentum are not required to achieve optimal convergence

time (Yu & Liu, 2002). The model architecture consisted of

an input layer with eight principal components and canopy

height, one hidden layer with 6 units (neurons) and an out-

puts layer with two units which correspond to either a tree

or liana class. Tree height was used as an input variable as it

has shown to be a key driver in the spatial distribution of lia-

nas (Dalling et al., 2012; Meyer et al., 2019). The number of

hidden units were defined subjectively based on trial runs

(see Table S4.). The optimal model consisted of one hidden

layer with 4 neurons, thus the architecture took the form of

9 : 4 : 2 for input : hidden : output units, respectively. A sig-

moid activation function was applied to the hidden units

and therefore the outputs values were restricted to a range

between 0 and 1, that is, σ(x) 2 (0, 1). The output from the

neural network represents a measure of the strength of class

membership, and so may be used to generate a soft classifi-

cation output, in this case, the proportion of liana infesta-

tion cover (Foody, 1997; Foody, 2000).

Prior to training the neural network model, the liana-

free and severely liana-infested data were balanced by ran-

domly removing pixels without liana infestation to ensure

there was an equal number of data points within each

input class (i.e., 1001 pixels for each class). The pixels for

each class were then randomly split into 80% for training

(801 pixels) and 20% for verification (200 pixels) (Olson

et al., 2018).

We recognise that liana canopy cover estimates may have

changed during the time lag (2.5–3.5 years) between airborne

data acquisition and liana canopy cover surveys. Subse-

quently, both an increase and decrease in liana infestation

may have occurred during this time. For example, the forma-

tion of a new canopy gap would be prone to rapid liana

colonisation. While knowledge on the temporal dynamics of

liana infestation is scarce, two studies—one in a seasonal

(Ingwell et al., 2010) and one in an aseasonal forest (Wright

et al., 2015)—give some insights into the size of the change

in liana infestation that can be expected. A study conducted

in an aseasonal forest in peninsular Malaysia revealed that

2% of trees that had no liana infestation had become severely

(≥75%) liana infested, and vice versa, over a 12-year period

(Wright et al., 2015). The change in the seasonal forest was

greater, with Ingwell et al. (2010) observing that 5.3% of trees

had changed from no liana infestation to severely (≥75%)

liana infested; and 10.9% of trees had changed from severely

liana infested to no liana infestation over a 10-year period.

The difference between the two studies can be explained by

the rapid growth, and the growth advantage, of lianas over

trees in seasonal forests (Schnitzer et al., 2019). Although

these data show that it is unlikely that substantial changes in

liana infestation would have occurred over a 3.5-year time

frame, we nevertheless accounted for a potential large differ-

ence in liana canopy cover estimates by applying noise to the

input data that represented the same degree of change

observed by Ingwell et al. (2010). To incorporate a similar

size error as in Ingwell et al. (2010), we randomly selected 42

pixels or 2 trees (5.3% of the input data, pixels or objects

respectively) from the class with no liana infestation and clas-

sified them as severely liana infested. Similarly, we randomly

selected 87 pixels or 4 trees (10.9% of the input data, pixels

or objects, respectively) from the class with severe liana infes-

tation and classified them as liana-free.

The neural network model was run 100 times and after

each iteration the model was applied to the entire study

landscape. With each iteration we randomly (1) removed

pixels from the no liana infestation class to ensure each

input class was balanced, (2) split data for training and

verification and (3) reclassified a proportion of the input

data to account for differences in liana canopy cover esti-

mates over time (as above). The final landscape scale

liana infestation output is an average of all 100 neural

network iterations. Averaging multiple models improves

generalisation and also allows the calculation of uncer-

tainty estimates based on the standard deviation of all

predictions (Lu et al., 2008). To assess the level of uncer-

tainty across predictions, we regressed the standard devia-

tion for predicted values, from 100 runs of the neural

network, against liana infestation.

Separately to this, we also assessed the maximum degree

of error which could be applied to the input data without a

significant loss in the accuracy of predicted liana infestation.

We incrementally increased error in the input data from 0%

to 50% over 100 neural network model iterations to assess

the effect of input data inaccuracies on the neural network

model error and classification accuracy. An incremental

increase of noise in the input data with each iteration of the

neural network revealed a steady increase in the neural net-

work sum of squared error (Fig. S4). However, the ability of

the neural network to generalise is maintained up to 30%

error in the input data as shown by the accuracy of model

predictions in relation to a verification dataset. The use of

input data with 16% error, as observed by Ingwell et al.

(2010), shows to have little impact on the accuracy of pre-

dicted liana infestation.
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Accuracy assessment of predicted outputs

Following good practice for accuracy assessment (Olofs-

son et al., 2014; Stehman & Foody, 2019), we used an

independent dataset of trees (n = 168) collected in a ran-

dom distribution from within the 50 ha plot to assess the

accuracy of the predicted map (Fig. 1; Table 1). We used

a weighted mean approach (see Section 2.5) to account

for cases where tree crown boundaries of segmented

objects did not match perfectly with crown boundaries

delineated using the CHM in the field. To validate the

pixel-based classification, we averaged predicted liana

infestation values for individual pixels inside the delin-

eated crown boundaries to derive liana canopy cover esti-

mates at the tree level.

To assess the accuracy of predicted liana infestation

maps, we estimated the root mean squared deviation

(RMSD) as follows:

RMSD¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1
∑n

i¼1ðŷi� yiÞ2
r

(2)

which represents the mean deviation of predicted from

observed values (i.e., with respect to the 1:1 line) (Piñeiro

et al., 2008). Assessing the accuracy of model predictions

imposes special interest in the 1:1 line of equality, Y = X.

Unlike the root mean squared error (RMSE) which esti-

mates the mean deviation of predicted values from the

regression line of predicted vs observed values, the RMSD

calculates the deviation of each predicted value against

the 1:1 line (Gauch et al., 2003). Subsequently, RMSE will

always be smaller and thus an underestimation of the

error between observed and predicted values (Piñeiro

et al., 2008). The units of RMSD correspond to the same

units as the model variable under evaluation, in this case

the percentage of liana infestation.

We accounted for error associated with observational

uncertainty in liana canopy cover estimates as well as

temporal change applied in model training. We quantified

observational error by assessing the difference between

estimates of liana canopy cover derived from two obser-

vers. The mean difference in estimates were used to

obtain a small and gross observational uncertainty (Fig.

S5). Data revealed that 96% of trees contained a small

error of 5% and 4% of trees contained a large error of

30% (Fig. S5). Error derived from temporal change was

also applied whereby 8% of trees had an error of 75%

(see Data S1, section 1.6). Observed liana canopy cover

values were entered into Monte Carlo (MC) simulations.

Random values were generated from a t-distribution with

a variation that encompassed the three levels of error

(i.e., 5%, 30% and 75%). Using this approach we gener-

ated 100 random values which could be used to assess

each of the 100 predicted liana infestation maps.

We also degraded outputs to an ordinal scale by parti-

tioning predicted liana infestation into three groups as

follows: neural network membership values equal to or

below 0.3 were set to ‘low’, values between 0.31 and 0.69

were set to ‘medium’ and values equal to or greater than

0.7 were set to ‘high’. We produced a confusion matrix

using predicted and reference liana infestation grouped in

three classes. We used overall accuracy and Area Under

the Curve (AUC) to assess the accuracy of predicted val-

ues. To test for significant differences between pixel- and

object-based approaches we used a McNemar test to

assess the level of consistency between the two model out-

puts. A 0.05 significance level was used. All analyses were

conducted in R v3.5.1 (R Core Team, 2019).

Results

Spectral difference between liana-free and
highly liana infested trees

We found spectral differences between liana-free trees and

trees highly infested with lianas for both pixel- (Fig. 2A

and C) and object-based approaches to the classification

(Fig. 2B and D). While the principal components were

used to train the neural network model, the full spectral

reflectance indicates regions of the spectra with the great-

est difference between liana-free and severely liana

infested trees. Furthermore, standardised reflectance

removes the signal of reflectance magnitude making these

differences more apparent. The spectral reflectance for

severely liana-infested trees was greater across all spectral

bands in comparison to liana-free trees (Fig. 2C and D).

The regions of the spectra that were most efficient for dis-

tinguishing lianas from trees peaked in the visible

(546–574 nm) and near-infrared (893–916 nm) for pixel-

and object-based approaches, respectively.

Predicted and observed liana canopy cover

A scatterplot of observed and predicted liana infestation

revealed a better fit with a pixel-based approach

(RMSD = 27.0% � 0.80; Fig. 3A) compared to an object-

based approach (RMSD = 32.6% � 4.84; Fig. 3B). How-

ever, the accuracy of predicted liana infestation when par-

titioned into three classes [≤30%, 31%–69%, ≥70%] did

not differ between pixel- and object-based approaches

(McNemar’s χ2 = 0.211, P = 0.65, Table 2).

Model outputs and uncertainty

Both pixel- and object-based approaches produced similar

patterns of predicted liana infestation across the landscape

(Fig. 4A). An increase in liana infestation was generally
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associated with a decrease in canopy height (Fig. S1). The

use of multiple neural network models allowed for a cal-

culation of uncertainty around overall predictions

(Fig. 5). We found a pixel-based classification to predict

liana infestation with less uncertainty in comparison to

an object-based classification (Figs. 3 and 5).

Discussion

Here, we show, for the first time, that despite a lower

spectral contrast between liana-free and highly liana

infested tree crowns compared to seasonally dry forests

(Castro-Esau et al., 2004; Marvin et al., 2016; Sánchez-

Azofeifa et al., 2009), airborne remotely sensed imagery

and a neural network machine learning classification can

be used to assess liana infestation at a landscape-level

across an aseasonal forest. Our work therefore extends

previous research using similar methodologies to predict

liana infestation in seasonally dry forests (Foster et al.,

2008; Li et al., 2018; Marvin et al., 2016).

Additionally, we utilised two different approaches in an

attempt to overcome some of the methodological issues

associated with a difference in scale between remotely

sensed data and canopy observations of liana infestation.

A pixel-based classification approach revealed a stronger

relationship with reference data (RMSD = 27.0% � 0.80)

in comparison with an object-based approach (RMSD =
32.6% � 4.84; Fig. 3). Furthermore, a pixel-based

approach revealed less variation in predictions compared

to an object-based approach (Fig. 5).

Figure 3. Relationship between predicted and ground reference liana canopy cover for (A) a pixel-based approach and (B) an object-based

approach on a continuous scale. Black dashed line represents a 1:1 line. Coloured points correspond to the density of points, ranging from purple

to white with an increasing number of overlapping points. Horizontal error bars represent the standard deviation of 100 predicted values

generated from multiple iterations of the neural network model. Vertical error bars represent the standard deviation of 100 randomly generated

liana canopy cover values using Monte Carlo simulations.

Table 2. Accuracy assessment of pixel- and object-based model outputs.

Model output Classification AUC Accuracy (95% CI) RMSD

No error applied to validation data

Output P Pixel 0.88 0.78 (0.71–0.84) 20.5

Output O Object 0.84 0.70 (0.63–0.77) 25.1

Error applied to validation data over 100 runs

Output P Pixel 0.74 � 0.03 0.71 � 0.02 27.0 � 0.80

Output O Object 0.68 � 0.19 0.61 � 0.18 32.6 � 4.84

AUC, area under the curve; RMSD, root mean squared deviation.
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While the change in spatial units from pixels to objects

reduced within-class spectral variation (Fig. 2), error asso-

ciated with under-segmentation, that is objects that cover

more than one class, may have resulted in large differ-

ences in predictions for segmented objects (Liu & Xia,

2010). The overall effects of both over- and under-seg-

mentation present a key limitation for object-based classi-

fications. Therefore, while utilising the entire tree canopy

may offer a more attractive approach in theory, the suc-

cess of this approach, in dense tropical forests, depends

greatly on the segmentation process to accurately define

objects.

We found a noticeable over-prediction of liana canopy

cover for observed estimates below 30% infestation

(Fig. 3). This finding is similar to others that have found

greater error in the discrimination of tree crowns with

liana coverage below 25% - 40% from tree crowns with

no liana infestation (Kalacska et al., 2007; Marvin et al.,

2016). Where liana infestation is low or absent in a tree

canopy, spectral reflectance contaminated by exposed

branches, epiphytes or tree trunks may affect the predic-

tion of liana infestation.

Several other factors may have influenced the accuracy

of predicted liana infestation in this study. First, we often

observed tall, emergent dipterocarps to be liana-free.

However, the accuracy of liana infestation estimates may

be reduced when assessing tall canopy and emergent trees

from the ground due to the greater distance between the

observer and tree crown (Waite et al., 2019). As a result,

error in liana canopy cover estimates for tall trees may

have been introduced in the training data which could

affect the accurate prediction of liana infestation. In such

cases, or when trees are obscured, unoccupied aerial vehi-

cles have proven to be an effective tool for accurate liana

infestation assessment (Waite et al., 2019). Furthermore,

tall dipterocarps which typically have large, emergent

crowns will likely mask liana infestation in tree canopies

directly beneath. Liana infestation of the upper canopy, as

assessed by an airborne platform, may therefore underes-

timate the amount of liana infestation in the forest

canopy as a whole.

Second, hyperspectral data were collected in 2014

whereas ground-based estimates of liana canopy cover

were collected between 2017 and 2019. Data from Wright

et al. (2015) indicated around 2% of all trees that had no

liana infestation had become severely (≥75%) liana

infested, and vice versa, over a 12-year period. We there-

fore suggest that liana canopy cover estimates may not

Figure 4. Predicted liana infestation showing (A) the distribution of values for a pixel- (yellow line) and object-based (blue line) classifications, as

well as the model predictions for a section of the study area for (B) pixel and (C) object-based classifications, respectively.
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have varied considerably over a 3.5-year period. Neverthe-

less, we accounted for error associated with temporal

change and field observations of liana canopy cover to

quantify uncertainty in predictions of liana infestation.

We found that accounting for this error did not substan-

tially alter predicted liana infestation (Figs. S2–S5). While

a small degree of error will ultimately be present in the

final predicted liana infestation output, the effect on the

accuracy of predictions for low liana infestation versus

high or severely liana infested trees should be minimal

(Fig. 3). This study demonstrates a method that can accu-

rately assess the spatial distribution of liana infestation

and should be beneficial for future studies that aim to

assess patterns of liana infestation at landscape-scales.

Our method shows that we can identify tree crowns

and pixels with liana infestation greater than 30% with a

high degree of accuracy (Fig. 3). Accurately identifying

trees with more than 50% of their crown covered is

essential as previous research has indicated that the

impact of lianas on growth, survival and fecundity is

greatest for those trees that have more than 50% of their

crown covered by liana leaves (Ingwell et al., 2010;

Wright et al., 2015). Information on the spatial distribu-

tion of high liana infestation may be particularly impor-

tant for targeted conservation and restoration efforts,

especially when geared toward increasing the carbon

storage and sequestration potential of tropical forests for

climate change mitigation (Addo-Fordjour et al., 2014;

Bongers et al., 2002). For example, one of the methods

deployed to increase carbon storage and uptake in tropi-

cal forests is liana removal (van der Heijden et al., 2015,

Marshall et al. 2017). However, blanket liana cutting can

be expensive, particularly when it needs to be carried

out over large areas or more than once to be effective

(Gerwing & Vidal, 2002; Parren & Bongers, 2001; Sch-

nitzer & Bongers, 2005). Being able to accurately locate

areas with high liana infestation may therefore help tar-

get liana cutting to areas where it is most beneficial and

inform efficient forest management and conservation

action.

Figure 5. Estimated uncertainty for both model outputs. (A) shows the relationship between estimated uncertainty and predicted liana

infestation, (B) and (C) show the scaled and unscaled frequency of uncertainty values across the study area, respectively. Estimated uncertainty

was calculated based on the standard deviation of predicted values over 100 neural network models. Fitted lines are produced using a local

regression (loess) with 95% confidence interval. Note, the confidence intervals are not visible due to the large sample size.
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Our findings have demonstrated that remote sensing

technologies are capable of accurately detecting liana

infestation across an aseasonal tropical forest. As the spec-

tral response of lianas in comparison to trees (Fig. 2) clo-

sely resembled results derived from seasonal forests

(Marvin et al., 2016), this method may be broadly appli-

cable to other forest locations and types. The approaches

used in this study also revealed limitations, suggesting

certain approaches may be more suited to one environ-

ment over another. For example, the accuracy of segmen-

tation is critical for an object-based approach, which may

only be achievable in a primary forest, where there is

greater heterogeneity in the canopy in comparison to

logged forests (Numata et al., 2006). In secondary forests,

where tree and canopy dimensions are typically more

homogenous, a pixel-based approach may be more suit-

able. In addition, the requirement for a liana infestation

output may guide the decision to adopt a pixel- or

object-based approach. The use of an object-based liana

infestation output may be more relatable for forest man-

agers or conservationists that are interested in locating

specific trees which are liana-free or heavily liana infested.

Similarly, monitoring change in liana infestation over

time, or assessing tree mortality as a result of liana infes-

tation, may favour an object-based approach as change is

interpreted at the tree-level. However, relating liana infes-

tation to an above ground biomass map or species diver-

sity may benefit from a pixel-based approach, to allow

estimates to be generated at scales which can be aligned

for meaningful comparisons.

Conclusion

The assessment of liana infestation at the landscape scale is

essential to understand the mechanisms that drive spatial

patterns of liana coverage, monitor changes over time and

quantify the impact on carbon storage and sequestration.

By combining airborne hyperspectral and LiDAR data with

a neural network classification approach, we have demon-

strated the ability to detect and assess liana infestation in an

aseasonal tropical environment, where the spectral contrast

between lianas and trees is low. Due to potential limitations

in the accurate segmentation of tree canopies required for

an object-based approach, a pixel-based classification

revealed a higher accuracy in predicting liana infestation at

a landscape-level. This study advances our ability to assess

spatial patterns of liana infestation at the landscape-level,

particularly for high (>50%) liana infestation where the

impact on carbon storage and sequestration is more pro-

nounced. Being able to detect liana infestation in a tropical

forest landscape provides a valuable tool for targeted con-

servation action and effective forest management focused

on liana assessment and control.
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Figure S1. Relationship between liana canopy cover (%)

and canopy height (m) for (A) pixel- and (B) object-

based data. Red dashed line corresponds to a fitted linear

regression.

Figure S2. Relationship between predicted and ground

reference liana canopy cover for the first 10 of the 100

iterations of the modelling process using a pixel-based

approach.

Figure S3. Relationship between predicted and ground

reference liana canopy cover for the first 10 of the 100

iterations of the modelling process using an object-based

approach.

Figure S4. Neural network error (green) and accuracy of

predicted liana infestation (orange) in response to an

incremental increase in error from 0% to 50% applied to

the input data over 100 iterations.

Figure S5. The difference in estimates of liana canopy

cover by two observers.

Figure S6. Average monthly rainfall (mm) at the Danum

Valley Field Centre (DVFC) from 1986-2016. Data from

Chappell (2016).

Data S1. Supplementary materials.
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