Running head: YOU MUST STAY AT HOME

1

You Must Stay at Home! The Impact of Commands on Behaviours During COVID-19

Dario Krpan and Paul Dolan

London School of Economics and Political Science

In Press: Social Psychological and Personality Science

Author Note

Dario Krpan and Paul Dolan, Department of Psychological and Behavioural Science,

London School of Economics and Political Science.

Correspondence concerning this article should be addressed to Dario Krpan, Department of Psychological and Behavioural Science, London School of Economics and Political Science, Houghton Street, London WC2A 2AE, UK. E-mail: d.krpan@lse.ac.uk. Phone: +442079556719

Abstract

"You Must Stay at Home!" This is how the UK Prime Minister announced lockdown in March 2020. Many countries implemented similarly assertive messages. Research, however, suggests that authoritative language can backfire by inciting psychological reactance (i.e., feelings of anger arising from threats to one's autonomy). In a series of three studies, we therefore tested whether commanding, versus control and non-commanding messages, influence several cognitive and affective indicators of reactance, intentions to comply with COVID-19 recommendations, and the compliance behaviour itself. Although people found commanding messages threatening and felt angry and negative toward them, these messages impacted only intentions, but there was no evidence of behavioural reactance. Overall, our research constitutes the most comprehensive examination of cognitive-affective and behavioural indicators of reactance regarding commands to date and offers new insights into both reactance theory and COVID-19 communication.

Keywords: COVID-19, reactance, spillovers, spillunders, policy.

You Must Stay at Home! The Impact of Commands on Behaviours During COVID-19

On 23rd March 2020, UK Prime Minister Boris Johnson exclaimed "You must stay at home!" to announce lockdown (BBC, 2020). Although such authoritative language may seem necessary to convey the seriousness of the situation and convince people to comply with governmental recommendations, research indicates that assertive messages can negatively impact behaviour by evoking psychological reactance (Brehm, 1966; Rosenberg & Siegel, 2018). Experts have warned that reactance—rather than the widely publicized and critiqued behavioural fatigue—may in fact be the main threat to compliance with social distancing measures (Sibony, 2020). There has not, however, been any empirical investigation into whether the type of messages that governments have been using to enforce lockdown can backfire. In the present research, we therefore investigated how commanding messages impact compliance with COVID-19 behavioural recommendations. Because researchers have neglected whether messages aimed at enhancing the compliance might influence other activities not directly relevant to COVID-19, such as leisure, and because psychological reactance is known to evoke emotional mechanisms that shape various behaviours (Rosenberg & Siegel, 2018), we also explored potential "spillover" and "spillunder" effects of the messages (Dolan & Galizzi, 2015; Krpan, Galizzi, & Dolan, 2019). These variables and the corresponding analyses are, however, presented in Supplementary Materials (SM; pp.22-31 & 79-88), given that they generally yielded null effects. We next overview previous research on reactance theory to develop our hypotheses.

Psychological Reactance

Psychological reactance theory posits that, if people's freedom of action has been undermined, a motivational state of reactance marked by anger will be activated, thus prompting them to restore their freedom by undertaking the forbidden or discouraged behaviours (Miron &

Brehm, 2006). The main assumption of the theory is that reactance effects occur when a behaviour that a person can typically freely undertake, such as going out, is suddenly restricted: for example, by telling them they must stay at home (Brehm & Brehm, 2013).

Crucially, psychological reactance depends on how the restriction on behaviour is communicated to people (Rosenberg & Siegel, 2018). This can be through language that is either commanding (e.g., "must") or creates an impression of free choice (e.g., "may"). One of the most robust findings from the literature is that using commanding compared to noncommanding language instigates reactance (Rains, 2013; Rosenberg & Siegel, 2018). For example, commanding (vs. non-commanding) health messages were perceived as less persuasive and decreased people's intention to undertake the targeted health behaviours (Miller, Lane, Deatrick, Young, & Potts, 2007; Quick & Considine, 2008). Based on the previous findings regarding the consequences of message language, we therefore predict the following:

Hypothesis 1: A commanding message will reduce compliance with COVID-19 behavioural recommendations compared to either a control or a non-commanding message.

It is also important to address the mechanisms behind the hypothesized effects of commands on COVID-19 compliance. In a meta-analysis involving 20 studies and 4942 participants, Rains (2013) found that reactance is typically experienced as anger, and this emotional state contributes to its undesirable behavioural effects. We therefore predict the following:

Hypothesis 2: People receiving a commanding message (vs. a control or a noncommanding message) will be less compliant with COVID-19 behavioural recommendations due to experiencing more anger.

Overview of the Present Research

The first study we conducted to test the hypotheses generally yielded null effects. Study 1 is therefore relegated to SM (pp.5-88), whereas the main measures assessed in that study are outlined in Table 1 for informative purposes. The table also overviews measures from the main Studies 2 and 3 that are presented in the article. These studies drew on the insights from Study 1 to gain a more nuanced understanding of when reactance to commanding (vs. control and non-commanding) messages might occur. We considered two main possibilities behind the failure to detect reactance in Study 1. One is that our measures were not sufficiently sensitive. For example, in previous relevant research, reactance was captured via intentions (Rosenberg & Siegel, 2018), whereas our study focused on actual behaviours. A second possibility is that reactance does not occur regarding COVID-19 messages, in which case it would be important to understand why, given that message-related reactance has been documented in other health domains (Miller et al., 2007).

To address the first possibility, across Studies 2-3 we measured all important indicators of reactance (Table 1) we could identify in the literature (Rosenberg & Siegel, 2018). Next to assessing the main dependent variables that tap into behaviour (actual *compliance* and *intentions* to comply, Table 1), we measured several cognitive or affective indicators of reactance. These included *general anger* as in Study 1, but also *anger* specifically directed toward messages, *negative thoughts* experienced upon reading the messages, and *autonomy threat* (Dillard & Shen, 2005; Rosenberg & Siegel, 2018). Moreover, we assessed *hostility toward the present study* (Table 1), given that reactance can also manifest itself as hostility toward the source of threat (Nezlek & Brehm, 1975; Rains, 2013)—in this case the study in which participants took part.

Table 1

Conditions and Key Variables from the Present Research

Variable/Condition	Study	Description
Conditions		
a) Control COVID-19	1, 2, 3	Participants were given a list of six recommendations concerning COVID-19: staying at home unless undertaking essential activities; washing hands often; avoiding meeting friends/family members from other households; avoiding the hoarding of groceries and/or household goods; keeping two or more meters apart from others when outside; and disinfecting goods/packages brought into the household. All people were asked to select one recommendation regarding which they thought they could further improve.
b) Non-commanding COVID-19	1, 3	Same as in the control condition. In addition, participants received a message prompting them to comply with the recommendation they selected. In this and other conditions, the messages targeted the self-selected recommendation because previous research showed that many people tend to comply with COVID-19 recommendations (Barari et al., 2020; Fetzer et al., 2020), and by focusing on the "weak" behaviour we aimed to avoid potential ceiling effects. The message specifically stated we would like to know whether participants would be willing to do their best and try to practise the selected recommendation as much as possible. We told them that they are not obliged to do so and then asked them to indicate whether they are intending to practise the recommendation on that day and over the next two days or not.
c) Commanding COVID-19	1, 2, 3	Same as in the control condition. In addition, participants received a message prompting them to comply with the recommendation they selected. They were told that, on that day and over the next two days, they ABSOLUTELY MUST practise the selected recommendation as much as they can and comply with it under every circumstance. Then, they were prompted to confirm that they read and understood the text.
d) Non-commanding Plus Benefit t Others COVID-19	to 1	Same as in the non-commanding condition. In addition, the following text was added: "Your actions will help the NHS and ensure that the vulnerable people stay safe and have access to resources they need." We based this text on similar appeals used in the media (e.g., BBC, 2020).
e) Commanding Plus Benefit to Others COVID-19	1	Same as in the commanding condition, plus the text regarding the NHS described in the condition above.
f) Control General Health	2	Same as in the control for COVID-19, with the only difference being that the following six behavioural recommendations were used: engaging in regular physical activity; eating a variety of vegetables and fruits; eating low calorie foods; sleeping no less than 7-8 hours per night; avoiding alcoholic drinks (i.e., drinking no more than 2 units of alcohol per day); and quitting smoking.
g) Commanding General Health	2	Same as the control for general health, plus the message described in the commanding COVID condition.
Main Dependent Variables:	Intentions a	nd Behaviour
1. Compliance with Self-selected Recommended Behaviour	1, 3	How often participants engaged in the behaviour described under the recommendation they selected.
2. Compliance with Other Recommended Behaviours	1, 3	How often participants engaged in the behaviours from the recommendations they did not select.

3.	Intentions to Comply with Self-	2, 3	Participants' intentions to comply (today and over the next 2 days) with the behavioural recommendation					
	selected Recommended Behaviour		they selected.					
4.	Intentions to Comply with Other	3	Participants' intention to comply (today and over the next 2 days) with the remaining behavioural					
	Recommended Behaviours		recommendations they did not select.					
(Cognitive or Affective Indicators of Reactance							
5.	General Anger	1, 2, 3	How generally angry participants currently felt.					
6.	Message Anger	3	How angry toward the messages participants currently felt.					
7.	Autonomy Threat	2, 3	To what extent the messages threatened participants' autonomy.					
8.	Message Negative Thoughts	3	To what extent the messages evoked negative thoughts.					
9.	Hostility Toward the Present Study	3	To what extent participants felt hostile toward the study (i.e., they felt the study was useless).					
Ι	<i>Ioderators</i>							
10	. Uncertainty toward COVID-19	2, 3	To what extent participants generally experienced uncertainty regarding the COVID-19 situation.					
11	. Societal Consequences	2, 3	Whether participants felt their choices regarding COVID-19 recommendations could impact society.					
12	. Right to Restrict Freedom	2, 3	To what extent people thought the government/policy makers had the right to restrict their freedom.					
13	. Impact on Health	3	To what extent people thought COVID-19 could impact health more seriously than other illnesses.					
14	. Lacking Control	3	To what extent participants felt they lacked the sense of control regarding the COVID-19 situation.					
15	. Desensitized toward COVID-19	3	Whether people were indifferent to COVID-19 due to being exposed to too much information about it.					
16	. Perception of Free Choice	3	Whether they felt they were given enough free choice regarding their behaviours during the pandemic.					
17	. Importance of Free Choice	3	Whether participants thought they should be allowed to freely choose their actions during the pandemic.					
18	. Aversion to Freedom Restrictions	3	To what extent participants felt bothered by their freedom being restricted during the COVID-19 pandemic.					
19	. Compliance Demandingness	3	Whether they thought that complying with the COVID-19 recommendations was too demanding.					
20	. Government Seriousness	3	Whether participants thought the government was taking COVID-19 seriously enough.					
21	. Freedom Threat	3	Whether participants felt that COVID-19 behavioural recommendations threatened their freedom.					

Note. Variables 1 and 2 were scored on a scale from 0 (Never) to 4 (Very often). Variables 3, 4, 5, and 9 were scored on a scale from 0 (Not at all) to 10 (Completely). Variables 6-8 were scored on a scale from 1 (Strongly disagree) to 7 (Strongly agree). Variables 10-21 were scored on a scale from 0 (Not at all) to 10 (To a great degree). Full description of all conditions and variables is available in Supplementary Materials (pp.8-48, and 89-131).

To address the second possibility behind the failure to initially detect reactance, we measured all relevant variables that should, according to reactance theory, determine the likelihood of reactance (Brehm & Brehm, 2013; Rains & Turner, 2007; Rosenberg & Siegel, 2018), and may therefore moderate the impact of commanding (vs. control or non-commanding) language on variables indicative of this phenomenon. Reactance should occur if acting freely is important to people (Variable 17, Table 1); if they are averse to someone attempting to restrict their freedom (Variables 12 & 18; Table 1); if they feel that their freedom is being threatened or eliminated (Variables 16 & 21, Table 1); if the behaviours in question are too demanding (Variable 19, Table 1) or do not have serious (e.g., life-threatening) consequences (Variables 11, 13, and 20; Table 1); and if people feel they have control over their actions (Variable 14; Table 1) or are not uncertain regarding the situation (Variable 10; Table 1). We also measured whether people were desensitised to COVID-19 (Variable 15; Table 1), given that we considered they may fail to experience reactance toward commanding language because they are generally exposed to too much COVID-related information in the media. Finally, in Study 2 we manipulated commanding versus control messages regarding general health as one of the domains where reactance has been frequently documented (Rosenberg & Siegel, 2018) to understand whether the effects would differ compared to COVID-19-related messages.

Overall, the general approach in Studies 2-3 was to first test whether the commanding (vs. control or non-commanding) condition would impact any of the behavioural or cognitiveaffective indicators of reactance tested. In Study 2, we also probed whether the effects of COVID-19-related messages on these variables were different than the effects of messages regarding general health. For any of the significant effects of the commanding (vs. control or non-commanding) COVID-19 messages on intentions or behaviour, we then aimed to further test

the mediating role of the cognitive-affective variables. We next probed the potential moderators of the impact of commanding (vs. control or non-commanding) COVID-19 conditions on reactance variables. Finally, we meta-analysed any main effects of message language on dependent variables that were probed in more than one study.

Method

Participants

In Study 2, which had only one part, out of 1763 UK participants recruited, 1719 passed the inclusion criteria and were included in analyses (Male=622; Female=1091; Other=6; M_{age} =41.127; SD_{age} =13.105). There were therefore 427, 433, 433, and 426 participants in the health control, COVID-19 control, health commanding, and COVID-19 commanding conditions (Table 1), respectively. In Study 3, which had two pats, out of 2112 UK participants recruited for part 1, 1969 were included in analyses because they completed both parts and passed the inclusion criteria (Male=632; Female=1331; Other=6; Mage=37.045; SD=12.879). There were therefore 662, 658, and 649 participants in the control, commanding, and non-commanding conditions (Table 1), respectively. In both studies, the inclusion criteria involved passing seriousness checks at the end of the study (Aust, Diedenhofen, Ullrich, & Musch, 2013), correctly answering instructed-response items (Meade & Craig, 2012), and participants allowing us to use their data (SM, pp.132-135). For both studies, sample size was determined based on meeting a high power (.90) to detect small effects (Cohen's $f^2 \le 0.02$; Cohen, 1988). Detailed power analyses are available in SM (pp.142-146). The data were collected via Prolific.co on 22 June 2020 (Study 2), and between 29 September and 5 October 2020 (Study 3).

Study Design, Procedure, and Measures

The study design involved a between-subjects variable (*message language*) consisting of four conditions in Study 2 and three conditions in Study 3 (Table 1). For part 1, procedures in both studies were similar. All participants first answered the consent form, after which we measured two covariates—age and gender (male vs. female vs. other)—given their links to compliance with COVID-19 recommendations (Galasso et al., 2020; Levkovich, 2020). Thereafter, participants were randomly allocated to one of the message language conditions and read the corresponding messages (see Table 1 and SM, pp.89-93 & 103-106). Then they received the questions measuring *compliance intentions, cognitive-affective indicators of reactance*, and the *moderator* variables (Table 1). Finally, at the end of part 1, participants answered the seriousness check and whether they allowed us to use their data.

In Study 3, which also had part 2, participants were contacted on the third day after completing part 1. They first received the consent form, and then responded to the questions measuring their *compliance* with behavioural recommendations (Table 1). In the end, they answered the seriousness check and whether they allowed us to use their data. Study materials and all variables are detailed in SM (pp.89-135) and available via OSF (https://osf.io/a2jnb/).

Results

All analyses reported in this section were computed using linear regression models. The data and analysis codes that produced the results can be accessed via OSF (https://osf.io/a2jnb/). Influence of Messages on Reactance Variables and Comparison Between COVID-19 and General Health

Regression models testing the impact of messages on reactance variables in Studies 2 and 3 are presented in Tables 2 and 3, whereas the means and 95% CIs for the variables are reported in Tables 4 and 5. To minimise the chance of Type I Error, the effects were deemed significant

only if they passed the false discovery rate (FDR; Benjamini & Hochberg, 1995) correction (SM, pp.142-146). Overall, the analyses showed that, whereas the commanding condition influenced various cognitive-affective indicators of reactance compared to the other conditions, it impacted intentions in line with reactance theory only relative to the non-commanding condition but failed to change behaviour, which is inconsistent with Hypothesis 1.

More specifically, concerning the cognitive-affective indicators of reactance regarding COVID-19, in both Studies 2 (Table 2: Model 3) and 3 (Table 3: Model 5), participants experienced higher autonomy threat in the commanding (vs. control) COVID-19 condition. Moreover, in Study 3 (Table 3: Model 5), the commanding (vs. non-commanding) condition also increased this variable. Interestingly, in either of the studies, the commanding (vs. control) condition did not influence general anger, whereas in Study 3 participants in the commanding (vs. non-commanding) condition had higher anger, but the effect size was small (Table 2: Model 5; Table 3: Model 6). In contrast, in Study 3 the commanding (vs. both control and noncommanding) condition increased message specific anger, and the effect sizes were more substantial (Table 3: Model 7). Finally, in this study the commanding (vs. control and noncommanding) condition also increased message negative thoughts (Table 3: Model 8). No significant effects were obtained regarding hostility toward the present study (Table 3: Model 9).

Concerning the variables capturing COVID-related intentions and behaviour, in Study 3 (Table 3: Model 3) participants in the commanding (vs. non-commanding) condition had lower intentions to comply with the self-selected recommended behaviour, in line with Hypothesis 1. In Studies 2 (Table 2: Model 1) and 3 (Table 3: Model 3), however, the commanding (vs. control) condition increased the intentions, which would not be expected based on Hypothesis 1. The effects regarding the intentions to comply with other recommended behaviour (Table 3:

Model 3), and regarding the actual compliance behaviours (Table 3: Models 1 and 2) were not

significant. Overall, all significant effects reported in Tables 2 and 3 concerning cognitive-

affective variables and intentions remained significant despite covariates (SM, pp.201-204).

Table 2

The Effects of Commanding (vs. Control) COVID-19 Messages and Commanding (vs. Control)

DV = Intentions to Comply with Self-selected Recommended Behaviour									
Model 1: COVID-19 Messages - Commanding (baseline) vs. Control									
Variable	b	SE b	95% CI	t	р	f^2			
(Constant)	6.134	0.144	5.851 - 6.416	42.607	<.001	1.059			
Control COVID-19	-0.861	0.203	-1.2590.463	-4.242	<.001	0.010			
Control Health	-1.258	0.203	-1.6570.859	-6.182	<.001	0.022			
Commanding Health	-0.744	0.203	-1.1410.346	-3.667	<.001	0.008			
Model 2: General H	lealth Me	essages -	Commanding (ba	aseline) vs	s. Contro	ol			
Variable	b	SE b	95% CI	t	р	f^2			
(Constant)	5.390	0.143	5.110 - 5.670	37.749	<.001	0.831			
Control Health	-0.514	0.203	-0.9120.117	-2.538	.011	0.004			
Control COVID-19	-0.117	0.202	-0.513 - 0.279	-0.580	.562	< 0.001			
Commanding COVID-19	0.744	0.203	0.346 - 1.141	3.667	<.001	0.008			
	DV :	= Auton	omy Threat						
Model 3: COVID	-19 Mess	ages - C	ommanding (base	eline) vs. (Control				
Variable	b	SE b	95% CI	t	р	f^2			
(Constant)	4.710	0.068	4.576 - 4.844	69.144	<.001	2.788			
Control COVID-19	-2.146	0.096	-2.3341.958	-22.367	<.001	0.292			
Control Health	-2.512	0.096	-2.7002.323	-26.087	<.001	0.397			
Commanding Health	0.209	0.096	0.021 - 0.397	2.179	.029	0.003			
Model 4: General H	lealth Me	essages -	Commanding (ba	aseline) vs	s. Contro	ol			
Variable	b	SE b	95% CI	t	р	f^2			
(Constant)	4.919	0.068	4.787 - 5.052	72.805	<.001	3.091			
Control Health	-2.721	0.096	-2.9092.533	-28.373	<.001	0.469			
Control COVID-19	-2.355	0.096	-2.5422.168	-24.647	<.001	0.354			
Commanding COVID-19	-0.209	0.096	-0.3970.021	-2.179	.029	0.003			
	DV	/ = Gene	eral Anger						
Model 5: COVID	-19 Mess	ages - C	ommanding (base	eline) vs. (Control				
Variable	b	SE b	95% CI	t	р	f^2			
(Constant)	2.272	0.117	2.043 - 2.501	19.467	<.001	0.221			
Control COVID-19	-0.298	0.164	-0.620 - 0.025	-1.811	.070	0.002			

Control Health	-0.492	0.165	-0.8160.169	-2.985	.003	0.005		
Commanding Health	-0.048	0.164	-0.371 - 0.274	-0.294	.769	< 0.001		
Model 6: General Health Messages - Commanding (baseline) vs. Control								
Variable	b	SE b	95% CI	t	р	f^2		
(Constant)	2.224	0.116	1.997 – 2.451	19.210	<.001	0.215		
Control Health	-0.444	0.164	-0.7660.122	-2.703	.007	0.004		
Control COVID-19	-0.249	0.164	-0.571 - 0.072	-1.523	.128	0.001		
Commanding COVID-19	0.048	0.164	-0.274 - 0.371	0.294	.769	< 0.001		

Note. Models 1 & 2 R^2 = .023; Models 3 & 4 R^2 = .432; Models 5 & 6 R^2 = .007. In Models 2-6, all 1719 participants were used in statistical analyses, and in Models 1 & 2, 1718 participants were used because 1 participant did not select a behaviour on which they wanted to focus regarding compliance. In Models 1, 3, and 5, the commanding COVID-19 language condition is the reference category, and in Models 2, 4, and 6 the commanding general health condition is the reference. Given that the study had 4 conditions, each regression model contains 3 dummy variables. However, key analyses testing the effects of commanding (vs. control) COVID-19 messages and commanding (vs. control) general health messages on the reactance variables are highlighted in grey. f^2 refers to Cohen's f^2 effect size (Cohen, 1988): effects ≤ 0.02 are considered small.

Table 3

The Effects of Commanding (vs. Control and Non-commanding) COVID-19 Messages on

Model 1: DV = Compliance with Self-selected Recommended Behaviour								
Variable	b	SE b	95% CI	t	р	f^2		
(Constant)	1.830	0.057	1.718 - 1.942	32.091	<.001	0.580		
Control	0.036	0.080	-0.121 - 0.194	0.454	.650	< 0.001		
Non-commanding	0.205	0.081	0.047 - 0.363	2.547	.011†	0.004		
Model 2: DV =	Complia	nce with	Other Recomme	nded Beha	viours			
Variable	b	SE b	95% CI	t	р	f^2		
(Constant)	3.017	0.024	2.970 - 3.064	126.233	<.001	8.130		
Control	-0.004	0.034	-0.070 - 0.062	-0.126	.899	< 0.001		
Non-commanding	0.008	0.034	-0.059 - 0.074	0.226	.821	< 0.001		
Model 3: DV = Intentio	ons to Co	mply wi	th Self-selected R	ecommend	led Beha	viour		
Variable	h	SE b	95% CI	t	п	f^2		
variable	U	DL U	<i>,,,,</i> ,,,	•	P	J		
(Constant)	5.737	0.117	5.508 - 5.967	49.006	<.001	1.225		
(Constant) Control	5.737 -0.576	0.117 0.165	5.508 - 5.967 -0.9000.252	49.006 -3.484	<.001 .001	1.225 0.006		
(Constant) Control Non-commanding	5.737 -0.576 0.640	0.117 0.165 0.166	$5.508 - 5.967 \\ -0.9000.252 \\ 0.314 - 0.965$	49.006 -3.484 3.852	<.001 .001 <.001	1.225 0.006 0.008		
(Constant) Control Non-commanding Model 4: DV = Inter	5.737 -0.576 0.640	0.117 0.165 0.166 Comply	5.508 - 5.967 -0.9000.252 0.314 - 0.965 with Other Reco	49.006 -3.484 3.852 mmended	<.001 .001 <.001 Behaviou	1.225 0.006 0.008 11rs		
(Constant) Control Non-commanding Model 4: DV = Inter Variable	5.737 -0.576 0.640 ntions to b	0.117 0.165 0.166 Comply SE b	5.508 - 5.967 -0.9000.252 0.314 - 0.965 with Other Records 95% CI	49.006 -3.484 3.852 mmended	<.001 .001 <.001 Behaviou p	$ 1.225 \\ 0.006 \\ 0.008 1rs f2 $		
(Constant) Control Non-commanding Model 4: DV = Inter Variable (Constant)	5.737 -0.576 0.640 ntions to b 7.768	0.117 0.165 0.166 Comply SE b 0.081	5.508 - 5.967 -0.9000.252 0.314 - 0.965 with Other Reco 95% CI 7.609 - 7.927	49.006 -3.484 3.852 mmended 2 t 96.052	<.001 .001 <.001 Behaviou <u>p</u> <.001	$ \begin{array}{r} 1.225 \\ 0.006 \\ 0.008 \\ \end{tabular} Irs \\ \underline{f^2} \\ 4.707 \\ \hline $		
(Constant) Control Non-commanding Model 4: DV = Inter Variable (Constant) Control	5.737 -0.576 0.640 ntions to b 7.768 -0.089	0.117 0.165 0.166 Comply SE b 0.081 0.114	5.508 - 5.967 -0.9000.252 0.314 - 0.965 with Other Reco 95% CI 7.609 - 7.927 -0.312 - 0.135	49.006 -3.484 3.852 mmended 1 t 96.052 -0.777	<.001 .001 <.001 Behaviou p <.001 .437	$ \begin{array}{r} $		
Variable (Constant) Control Non-commanding Model 4: DV = Inter Variable (Constant) Control Non-commanding	5.737 -0.576 0.640 ntions to b 7.768 -0.089 0.133	0.117 0.165 0.166 Comply SE b 0.081 0.114 0.115	5.508 - 5.967 -0.9000.252 0.314 - 0.965 with Other Record 95% CI 7.609 - 7.927 -0.312 - 0.135 -0.092 - 0.358	49.006 -3.484 3.852 mmended 1 t 96.052 -0.777 1.161	<.001 .001 <.001 Behaviou p <.001 .437 .246	$ \begin{array}{r} \mathbf{j} \\ 1.225 \\ 0.006 \\ 0.008 \\ \mbox{irs} \\ \hline \mathbf{f}^2 \\ 4.707 \\ < 0.001 \\ 0.001 \\ 0.001 \\ \end{array} $		
Variable (Constant) Control Non-commanding Model 4: DV = Inter Variable (Constant) Control Non-commanding	5.737 -0.576 0.640 ntions to b 7.768 -0.089 0.133 Model 5	0.117 0.165 0.166 Comply SE b 0.081 0.114 0.115 S: DV = 2	5.508 - 5.967 -0.9000.252 0.314 - 0.965 with Other Record 95% CI 7.609 - 7.927 -0.312 - 0.135 -0.092 - 0.358 Autonomy Threa	49.006 -3.484 3.852 mmended <i>t</i> 96.052 -0.777 1.161 t	<.001 .001 <.001 Behaviou <i>p</i> <.001 .437 .246	$ \begin{array}{r} \mathbf{j} \\ 1.225 \\ 0.006 \\ 0.008 \\ \hline \mathbf{irs} \\ \hline \mathbf{f}^2 \\ 4.707 \\ < 0.001 \\ 0.001 \\ \end{array} $		

Reactance Variables in Study 3

(Constant)	4.506	0.059	4.389 - 4.622	75.852	<.001	2.926				
Control	-1.653	0.084	-1.8181.489	-19.711	<.001	0.198				
Non-commanding	-1.592	0.084	-1.7581.427	-18.890	<.001	0.182				
Model 6: DV = General Anger										
Variable	b	SE b	95% CI	t	р	f^2				
(Constant)	2.742	0.103	2.540 - 2.943	26.717	<.001	0.363				
Control	-0.008	0.145	-0.292 - 0.277	-0.052	.959	< 0.001				
Non-commanding	-0.504	0.146	-0.7900.219	-3.463	.001	0.006				
Model 7: DV = Message Anger										
Variable	b	SE b	95% CI	t	р	f^2				
(Constant)	3.514	0.062	3.393 - 3.635	56.851	<.001	1.644				
Control	-1.070	0.087	-1.2410.898	-12.254	<.001	0.076				
Non-commanding	-1.175	0.088	-1.3471.003	-13.391	<.001	0.091				
Мо	del 8: DV	' = Mess	age Negative Tho	ughts						
Variable	b	SE b	95% CI	t	р	f^2				
(Constant)	3.488	0.065	3.360 - 3.616	53.373	<.001	1.449				
Control	-0.607	0.092	-0.7880.426	-6.580	<.001	0.022				
Non-commanding	-0.853	0.093	-1.0350.671	-9.198	<.001	0.043				
Model	9: DV = H	Iostility	Toward the Prese	ent Study						
Variable	b	SE b	95% CI	t	р	f^2				
(Constant)	2.498	0.099	2.303 - 2.694	25.119	<.001	0.321				
Control	-0.178	0.140	-0.454 - 0.097	-1.269	.205	0.001				
Non-commanding	-0.079	0.141	-0.356 - 0.197	-0.562	.574	< 0.001				
Note. Model 1 $R^2 = .004$ · Model	Note Model 1 $R^2 = 0.04$: Model 2 $R^2 = < 0.01$: Model 3 $R^2 = 0.07$: Model 4 $R^2 = 0.02$: Model 5 $R^2 = 202$:									

Note: Model 1 R^2 = .004; Model 2 R^2 = <.001; Model 3 R^2 = .027; Model 4 R^2 = .002; Model 5 R^2 = .202; Model 6 R^2 = .008; Model 7 R^2 = .101; Model 8 R^2 = .044; Model 9 R^2 = .001. In models 2, 3, and 4, 1963 participants were used in statistical analyses because 6 participants did not select a behaviour on which they wanted to focus regarding compliance. In Model 1, 1779 participants were used because 6 participants did not select a focus behaviour, and the remaining 184 participants selected the option "Does not apply to me" in relation to the DV. In all other models, all 1969 participants were used. Symbol † indicates results that stopped being significant after the FDR correction was applied. In all models, the commanding condition is the reference category. f^2 refers to Cohen's f^2 effect size (Cohen, 1988): effects ≤ 0.02 are considered small.

Table 4

Mean (M) and 95% Confidence Intervals (CI) for the Reactance Dependent Variables Used in

Study 2: Intentions to Comply with Self-selected Recommended Behaviour (DV1), Autonomy

Threat (DV2),	and General	l Anger	(DV3)
---------------	-------------	---------	-------

	V1 (0-10)) DV2 (1-7)			V3 (0-10)	
Condition	M	95% CI	M	95% CI	M	95% CI
Control Health	4.876	4.606 - 5.146	2.198	2.088 - 2.309	1.780	1.563 – 1.997
Control COVID	5.273	4.961 - 5.586	2.564	2.436 - 2.692	1.975	1.757 - 2.192
Command. Health	5.390	5.127 - 5.654	4.919	4.774 - 5.065	2.224	1.976 - 2.472

 Command. COVID
 6.134
 5.855 - 6.413
 4.710
 4.564 - 4.857
 2.272
 2.043 - 2.502

Note. Numbers in parentheses next to DVs indicate the possible range of values for each DV. Command. = Commanding Condition.

Table 5

Mean (M) and 95% Confidence Intervals (CI) for the Reactance Dependent Variables Used in

Study 3

	Control Condition			ommanding	Non-commanding		
Variable	M	95% CI		95% CI	M	95% CI	
DV1 (0-4)	1.867	1.753 – 1.980	1.830	1.719 – 1.941	2.036	1.925 - 2.146	
DV2 (0-4)	3.012	2.967 - 3.058	3.017	2.969 - 3.065	3.024	2.977 - 3.072	
DV3 (0-10)	5.162	4.922 - 5.401	5.737	5.519 - 5.956	6.377	6.145 - 6.609	
DV4 (0-10)	7.679	7.519 – 7.839	7.768	7.610 - 7.926	7.901	7.743 - 8.060	
DV5 (1-7)	2.852	2.739 - 2.966	4.506	4.383 - 4.628	2.913	2.799 - 3.028	
DV6 (0-10)	2.734	2.533 - 2.935	2.742	2.531 - 2.952	2.237	2.044 - 2.431	
DV7 (1-7)	2.445	2.332 - 2.558	3.514	3.375 - 3.654	2.339	2.230 - 2.449	
DV8 (1-7)	2.881	2.755 - 3.006	3.488	3.351 - 3.624	2.635	2.512 - 2.758	
DV9 (0-10)	2.320	2.133 - 2.508	2.498	2.300 - 2.697	2.419	2.219 - 2.620	

Note. DV1 = Compliance with Self-selected Recommended Behaviour, <math>DV2 = Compliance with Other Recommended Behaviours; <math>DV3 = Intentions to Comply with Self-selected Recommended Behaviour; DV4 = Intentions to Comply with Other Recommended Behaviours; DV5 = Autonomy Threat; DV6 = General Anger; DV7 = Message Anger; DV8 = Message Negative Thoughts; DV9 = Hostility Toward the Present Study. Numbers in parentheses next to DVs indicate the possible range of values for each DV.

In addition, we probed whether the effects for the health messages in Study 2 would be different than for the COVID-19 messages. As shown in Table 2, the findings for general health were comparable. Participants experienced higher autonomy threat in the commanding (vs. control) condition (Table 2: Model 4) but had higher intentions to comply with the self-selected recommended behaviour (Table 2: Model 2). Although the effect on general anger was significant, it was in the same direction as for the COVID-19 messages (Table 2: Models 5 & 6). The significant effects were robust to covariates (SM, pp.201-202). To more precisely investigate whether the effects differed between the COVID-19 versus general health domains, we conducted moderation analyses where message (commanding vs. control) was used as the

independent variable, and message domain (COVID-19 vs. health) as the moderator (Table 6).

The effects regarding anger and intentions did not differ, whereas the effects regarding autonomy

threat were different between the two domains, given that the interaction was significant (Table

6: Model 2). Nevertheless, because the influence of the commanding (vs. control) messages on

autonomy threat was highly significant and in the same direction in both domains (Table 2:

Models 3-4), the main conclusion from the analyses is that it is unlikely that commanding

messages impact reactance-related variables only for general health but not for COVID-19.

Table 6

The Effects of Message (Commanding vs. Control) × Message Domain (COVID-19 vs. General Health) Interaction on Reactance Variables in Study 2

Model 1: DV = Intentions to Comply with Self-selected Recommended Behaviour								
Variable	b	SE b	95% CI	t	р	f^2		
(Constant)	6.134	0.144	5.851 - 6.416	42.607	<.001	1.059		
Message	-0.861	0.203	-1.2590.463	-4.242	<.001	0.010		
Message Domain	-0.744	0.203	-1.1410.346	-3.667	<.001	0.008		
Message × Message Domain	0.346	0.287	-0.216 - 0.909	1.207	.227	0.001		
]	Model 2:	$\mathbf{DV} = \mathbf{A}$	utonomy Threat					
Variable	b	SE b	95% CI	t	р	f^2		
(Constant)	4.710	0.068	4.576 - 4.844	69.144	<.001	2.788		
Message	-2.146	0.096	-2.3341.958	-22.367	<.001	0.292		
Message Domain	0.209	0.096	0.021 - 0.397	2.179	.029	0.003		
Message × Message Domain	-0.575	0.136	-0.8410.309	-4.237	<.001	0.010		
	Model 3	B: DV =	General Anger					
Variable	b	SE b	95% CI	t	р	f^2		
(Constant)	2.272	0.117	2.043 - 2.501	19.467	<.001	0.221		
Message	-0.298	0.164	-0.620 - 0.025	-1.811	.070	0.002		
Message Domain	-0.048	0.164	-0.371 - 0.274	-0.294	.769	< 0.001		
Message × Message Domain	-0.146	0.232	-0.602 - 0.309	-0.630	.529	< 0.001		

Note. Model 1 $R^2 = .023$; Model 2 $R^2 = .432$; Model 3 $R^2 = .007$. For Message, commanding message is the reference category, and for Message Domain, COVID-19 is the reference category. Key interaction terms probing whether the impact of commanding vs. control messages on dependent variables differed between COVID-19 vs. general health are highlighted in grey. f^2 refers to Cohen's f^2 effect size (Cohen, 1988): effects ≤ 0.02 are considered small.

Cognitive-Affective Indicators of Reactance as Mediators of Effects on Intentions

In this section, we examine whether the cognitive-affective indicators of reactance from Studies 2 and 3 (Table 1) mediated the three significant effects of COVID-19 messages on intentions reported in the previous section—the effects of commanding (vs. control) conditions in Studies 2 and 3, and the effect of commanding (vs. non-commanding) condition in Study 3. We did not probe mediated effects for the non-significant effects on intentions and behaviour to be consistent with Hypothesis 2, which implied using mediation analyses to understand the mechanism behind significant effects of COVID-19 commands on compliance. Parallel mediation analyses (i.e., with all potential mediators included in the analyses together), percentile-bootstrapped with 20,000 samples, were conducted using the Process package (Model 4; Hayes, 2018). To determine significance, 99% CIs were used to minimise chances of Type I Error, given that each mediation analysis included several regression models, as presented in Table 7 (for a full analyses output, see SM, pp.207-218).

We first discuss the findings regarding the mediation for commanding versus noncommanding condition in Study 3. The analyses showed that both autonomy threat $(a_1b_1=0.492, 99\% \text{ CI}=[0.218, 0.784])$ and message anger $(a_2b_2=0.412, 99\% \text{ CI}=[0.164, 0.678])$ contributed to explaining lower behavioural intentions in the former condition, given that participants exposed to commands (vs. control) had higher autonomy threat and message anger (Table 7: Models 4 & 6), and that the two mediators negatively predicted the intentions (Table 7: Model 9). The results remained significant despite covariates (SM, pp.216-218). Overall, this finding is consistent with Hypothesis 2, given that one of the anger components we measured contributed to explaining reactance effects, but it also provides additional insights given that another cognitiveaffective indicator of reactance—autonomy threat—was established as an important mediator.

Parallel mediation analyses computed to examine the mechanism behind higher behavioural intentions in the commanding versus control condition (Studies 2 and 3) produced a more complex picture, given that "inconsistent mediation" was obtained (MacKinnon, Fairchild, & Fritz, 2007, p. 602). Indeed, although mediated effects were significant for autonomy threat (Study 2: a₃b₃=0.852, 99% CI=[0.544, 1.196]; Study 3: a₄b₄=0.511, 99% CI=[0.222, 0.810]) and message anger (Study 3: a₅b₅=0.375, 99% CI=[0.146, 0.626]), these effects were in the opposite direction to the main effect and indicated that the commanding (vs. control) condition indirectly lowered behavioural intentions. This is because the commanding condition increased autonomy threat and message anger (Table 7: models 2, 4, 6), and these variables negatively predicted the compliance intentions (Table 7: model 3 & 9). The results remained significant despite covariates (SM, pp.208-210). This finding suggests that commanding language, compared to control, evokes message anger and autonomy-threat that undermine intentions, consistent with Hypothesis 2 and the obtained mediated effect of the commanding (vs. non-commanding) conditions on intentions. Because the commanding language condition, however, contained explicit instructions prompting participants to change their behaviour, whereas the control condition did not, it is plausible that these instructions overcame the negative reactance effect. The same conclusion applies to the impact of commanding (vs. control) general health messages on the behavioural intentions (SM, pp.210-213).

Table 7

inear Regression Models	for Parallel	Mediation Anal	lyses in S	tudies 2	and 3
-------------------------	--------------	----------------	------------	----------	-------

Linear Regression Models for Parallel Mediation Analysis in Study 2							
Model 1: Impact of Commanding (baseline) vs. Control Condition on General Anger							
Variable	b	SE b	99% CI	t	р	f^2	

(Constant)	2.272	0.117	1.971 - 2.573	19.466	<.001	0.221		
Control COVID-19	-0.293	0.165	-0.717 - 0.131	-1.782	.075	0.002		
Control Health	-0.492	0.165	-0.9180.067	-2.985	.003	0.005		
Commanding Health	-0.048	0.164	-0.472 - 0.376	-0.294	.769	< 0.001		
Model 2: Impact of Comm	anding (b	aseline)	vs. Control Cond	lition on A	utonom	y Threat		
Variable	b	SE b	99% CI	t	р	f^2		
(Constant)	4.710	0.068	4.534 - 4.886	69.131	<.001	2.788		
Control COVID-19	-2.144	0.096	-2.3921.897	-22.330	<.001	0.291		
Control Health	-2.512	0.096	-2.760 - 2.263	-26.082	<.001	0.397		
Commanding Health	0.209	0.096	-0.038 - 0.457	2.179	.029	0.003		
Model 3: Commanding (ba	aseline) vs	. Contro	l Condition and	the Two N	Iediator	s (Anger		
and Autonomy Threat) a	as Predict	ors of th	e Intentions to C	omply wit	th Self-se	elected		
	Reco	mmende	ed Behaviour					
Variable	b	SE b	99% CI	t	р	f^2		
(Constant)	7.977	0.276	7.267 - 8.687	28.954	<.001	0.490		
Control COVID-19	-1.709	0.228	-2.2961.122	-7.506	<.001	0.033		
Control Health	-2.250	0.237	-2.8621.637	-9.478	<.001	0.052		
Commanding Health	-0.660	0.200	-1.1750.145	-3.306	.001	0.006		
General Anger	0.012	0.030	-0.066 - 0.091	0.400	.689	< 0.001		
Autonomy Threat	-0.397	0.052	-0.5320.263	-7.618	<.001	0.034		
	Linear	Regress	ion Models for					
Pa	arallel Me	diation A	Analysis in Study	3				
Model 4: Impact of Commanding (baseline) vs. Non-commanding and Control								
Model 4: Impact of Co	Jiiiiiaiiuii	ig (base	line) vs. Non-com	manding	and Con	uroi		
	Conditio	ns on A	line) vs. Non-com utonomy Threat	manding		ltroi		
Variable	Conditio	ng (base) ns on Au SE b	line) vs. Non-com utonomy Threat 99% CI			$\frac{f^2}{f^2}$		
Variable (Constant)	Conditio b 4.521	ng (base) ns on Au <u>SE b</u> 0.059	une) vs. Non-com utonomy Threat 99% CI 4.368 – 4.674	<i>t</i> 76.140	p <.001	<u>f</u> ² 2.958		
Variable (Constant) Non-commanding	Conditio b 4.521 -1.604	ns on Au SE b 0.059 0.084	une) vs. Non-com utonomy Threat 99% CI 4.368 – 4.674 -1.821 – -1.387	<i>t</i> 76.140 -19.044	<i>p</i> <.001 <.001	<i>f</i> ² 2.958 0.185		
Variable (Constant) Non-commanding Control	Conditio b 4.521 -1.604 -1.667	ns on Au sE b 0.059 0.084 0.084	utonomy Threat 99% CI 4.368 – 4.674 -1.821 – -1.387 -1.883 – -1.451	<i>t</i> 76.140 -19.044 -19.901	<i>p</i> <.001 <.001 <.001	<i>f</i> ² 2.958 0.185 0.202		
Variable (Constant) Non-commanding Control Model 5: Impact of Co	Conditio b 4.521 -1.604 -1.667 ommandii	ns on At <u>SE b</u> 0.059 0.084 0.084 ng (base)	une) vs. Non-com utonomy Threat 99% CI 4.368 – 4.674 -1.821 – -1.387 -1.883 – -1.451 line) vs. Non-com	<i>t</i> 76.140 -19.044 -19.901 manding	<i>p</i> <.001 <.001 <.001 and Con	<i>f</i> ² 2.958 0.185 0.202 htrol		
Variable (Constant) Non-commanding Control Model 5: Impact of Co	Conditio b 4.521 -1.604 -1.667 ommandin Conditi	ns on At <u>SE b</u> 0.059 0.084 0.084 ng (base) ions on 0	une) vs. Non-com <u>utonomy Threat</u> <u>99% CI</u> 4.368 – 4.674 -1.821 – -1.387 -1.883 – -1.451 line) vs. Non-com General Anger	<i>t</i> 76.140 -19.044 -19.901 manding	<i>p</i> <.001 <.001 <.001 and Con	<i>f</i> ² 2.958 0.185 0.202 atrol		
Variable (Constant) Non-commanding Control Model 5: Impact of Co	Conditio b 4.521 -1.604 -1.667 ommandin Conditi b	ns on Au <u>SE b</u> 0.059 0.084 0.084 0.084 ions on C <u>SE b</u>	utonomy Threat 99% CI 4.368 – 4.674 -1.821 – -1.387 -1.883 – -1.451 line) vs. Non-com General Anger 99% CI	t 76.140 -19.044 -19.901 manding t	<i>p</i> <.001 <.001 <.001 and Con <i>p</i>	$ \frac{f^2}{2.958} \\ 0.185 \\ 0.202 ttrol f^2 $		
Variable (Constant) Non-commanding Control Model 5: Impact of Control Variable (Constant)	Conditio b 4.521 -1.604 -1.667 ommandin Conditi b 2.748	ns on At <u>SE b</u> 0.059 0.084 0.084 ng (base) ions on C <u>SE b</u> 0.103	utonomy Threat 99% CI 4.368 – 4.674 -1.821 – -1.387 -1.883 – -1.451 line) vs. Non-com General Anger 99% CI 2.483 – 3.013	t 76.140 -19.044 -19.901 manding t 26.706	<i>p</i> <.001 <.001 <.001 and Con <i>p</i> <.001	$ \frac{f^2}{2.958} 0.185 0.202 ttrol f^2 0.364 $		
Variable (Constant) Non-commanding Control Model 5: Impact of Control Variable (Constant) Non-commanding Output Variable (Constant) Non-commanding	Conditio b 4.521 -1.604 -1.667 ommandin Condit b 2.748 -0.507	ns on At <u>SE b</u> 0.059 0.084 0.084 ng (basel ions on 0 <u>SE b</u> 0.103 0.146	$\begin{array}{r} \textbf{ine) vs. Non-com}\\ \textbf{utonomy Threat}\\ \hline \textbf{99\% CI}\\ \hline \textbf{4.368}-\textbf{4.674}\\ \textbf{-1.821}-\textbf{-1.387}\\ \textbf{-1.883}-\textbf{-1.451}\\ \hline \textbf{line) vs. Non-com}\\ \hline \textbf{General Anger}\\ \hline \textbf{99\% CI}\\ \hline \textbf{2.483}-\textbf{3.013}\\ \textbf{-0.883}-\textbf{-0.131}\\ \end{array}$	<i>t</i> 76.140 -19.044 -19.901 manding <i>t</i> 26.706 -3.473	<u>p</u> <.001 <.001 <.001 and Con <u>p</u> <.001 .001	$ f^2 2.958 0.185 0.202 trol f^2 0.364 0.006 $		
Variable (Constant) Non-commanding Control Model 5: Impact of Control Variable (Constant) Non-commanding Control	Conditio b 4.521 -1.604 -1.667 ommandin Condit b 2.748 -0.507 -0.010	Ig (base) ns on Au <u>SE b</u> 0.059 0.084 0.084 ions on 0 <u>SE b</u> 0.103 0.146 0.145	$\begin{array}{r} \textbf{ine) vs. Non-com}\\ \textbf{utonomy Threat}\\ \hline \textbf{99\% CI}\\ \hline 4.368 - 4.674\\ -1.8211.387\\ -1.8831.451\\ \hline \textbf{line) vs. Non-com}\\ \hline \textbf{General Anger}\\ \hline \textbf{99\% CI}\\ \hline 2.483 - 3.013\\ -0.8830.131\\ -0.384 - 0.365\\ \end{array}$	<i>t</i> 76.140 -19.044 -19.901 manding <i>t</i> 26.706 -3.473 -0.068	<i>p</i> <.001 <.001 <.001 and Con <i>p</i> <.001 .001 .001 .946	$ f^2 2.958 0.185 0.202 trol f^2 0.364 0.006 <0.001 $		
Variable (Constant) Non-commanding Control Model 5: Impact of Constant) Non-commanding (Constant) Non-commanding Control Model 5: Impact of Constant) Non-commanding Control Model 6: Impact of Constant	Conditio b 4.521 -1.604 -1.667 mmandin Conditi b 2.748 -0.507 -0.010 mmandin	ns on At <u>SE b</u> 0.059 0.084 0.084 ng (base) 0.103 0.146 0.145 ng (base)	$\begin{array}{r} \textbf{une) vs. Non-com}\\ \textbf{utonomy Threat}\\ \hline \textbf{99\% CI}\\ \hline 4.368 - 4.674\\ -1.8211.387\\ -1.8831.451\\ \hline \textbf{line) vs. Non-com}\\ \hline \textbf{General Anger}\\ \hline \textbf{99\% CI}\\ \hline 2.483 - 3.013\\ -0.883 - 0.131\\ -0.384 - 0.365\\ \hline \textbf{line) vs. Non-com}\\ \hline line) vs. Non-com line vs. $	<i>t</i> 76.140 -19.044 -19.901 manding <i>t</i> 26.706 -3.473 -0.068 manding	<u>p</u> <.001 <.001 <.001 and Con <u>p</u> <.001 .001 .946 and Con	$ f^2 2.958 0.185 0.202 trol f^2 0.364 0.006 <0.001 trol $		
Variable (Constant) Non-commanding Control Model 5: Impact of Constant) Non-commanding (Constant) Non-commanding Control Model 6: Impact of Constant	Conditio b 4.521 -1.604 -1.667 mmandin Conditi b 2.748 -0.507 -0.010 mmandin Conditi	ns on Au <u>SE b</u> 0.059 0.084 0.084 0.084 ions on C <u>SE b</u> 0.103 0.146 0.145 ng (basel ions on N	utonomy Threat 99% CI 4.368 – 4.674 -1.821 – -1.387 -1.883 – -1.451 line) vs. Non-com General Anger 99% CI 2.483 – 3.013 -0.883 – -0.131 -0.384 – 0.365 line) vs. Non-com	<i>t</i> 76.140 -19.044 -19.901 manding <i>t</i> 26.706 -3.473 -0.068 manding	<i>p</i> <.001 <.001 <.001 and Con <i>p</i> <.001 .001 .001 .946 and Con	$ f^{2} 2.958 0.185 0.202 dtrol f^{2} 0.364 0.006 <0.001 dtrol $		
Variable (Constant) Non-commanding Control Model 5: Impact of Constant) Non-commanding (Constant) Non-commanding Control Model 5: Impact of Constant) Non-commanding Control Model 6: Impact of Constant Variable	Conditio b 4.521 -1.604 -1.667 ommandin Conditi b 2.748 -0.507 -0.010 ommandin Conditi b	Ig (base) ns on At <u>SE b</u> 0.059 0.084 0.084 ng (base) ions on C <u>SE b</u> 0.103 0.146 0.145 ng (base) ions on N <u>SE b</u> ions on N	utonomy Threat 99% CI 4.368 – 4.674 -1.821 – -1.387 -1.883 – -1.451 line) vs. Non-com General Anger 99% CI 2.483 – 3.013 -0.883 – -0.131 -0.384 – 0.365 line) vs. Non-com Message Anger 99% CI	<i>t</i> 76.140 -19.044 -19.901 manding <i>t</i> 26.706 -3.473 -0.068 manding <i>t</i>	<i>p</i> <.001 <.001 <.001 and Con <i>p</i> <.001 .001 .001 .946 and Con <i>p</i>			
Variable (Constant) Non-commanding Control Model 5: Impact of Constant Non-commanding (Constant) Non-commanding Control Model 6: Impact of Constant Model 6: Impact of Constant Variable (Constant) Non-commanding Control Model 6: Impact of Constant (Constant)	Conditio b 4.521 -1.604 -1.667 mmandin Conditi b 2.748 -0.507 -0.010 mmandin Conditi b 3.526	Ig (base) ns on Au <u>SE b</u> 0.059 0.084 0.084 ions on C <u>SE b</u> 0.103 0.146 0.145 ng (base) ions on N <u>SE b</u> 0.062	utonomy Threat 99% CI 4.368 – 4.674 -1.821 – -1.387 -1.883 – -1.451 line) vs. Non-com General Anger 99% CI 2.483 – 3.013 -0.383 – -0.131 -0.384 – 0.365 line) vs. Non-com Versage Anger 99% CI 3.366 – 3.685	t 76.140 -19.044 -19.901 manding t 26.706 -3.473 -0.068 manding t 56.944	<i>p</i> <.001 <.001 <.001 and Con <i>p</i> <.001 .001 .001 .946 and Con <i>p</i> <.001 .946	$ f^{2} 2.958 0.185 0.202 ttrol f^{2} 0.364 0.006 <0.001 ttrol f^{2} 1.654 $		
Variable (Constant) Non-commanding Control Model 5: Impact of Constant) Non-commanding Control Model 6: Impact of Constant) Non-commanding Control Model 6: Impact of Constant) Non-commanding Control Non-commanding (Constant) Non-commanding (Constant) Non-commanding	Conditio b 4.521 -1.604 -1.667 ommandin Condit b 2.748 -0.507 -0.010 ommandin Conditi b 3.526 -1.185	Ig (base) ns on Au <u>SE b</u> 0.059 0.084 0.084 ions on C <u>SE b</u> 0.103 0.146 0.145 ng (base) ions on N <u>SE b</u> 0.062 0.088	$\begin{array}{r} \textbf{une) vs. Non-com}\\ \textbf{utonomy Threat}\\ \hline \textbf{99\% CI}\\ \hline 4.368 - 4.674\\ -1.8211.387\\ -1.8831.451\\ \hline \textbf{line) vs. Non-com}\\ \hline \textbf{General Anger}\\ \hline \textbf{99\% CI}\\ \hline 2.483 - 3.013\\ -0.8830.131\\ -0.384 - 0.365\\ \hline \textbf{line) vs. Non-com}\\ \hline \textbf{Message Anger}\\ \hline \textbf{99\% CI}\\ \hline 3.366 - 3.685\\ -1.4120.959\\ \end{array}$	t 76.140 -19.044 -19.901 manding t 26.706 -3.473 -0.068 manding t 56.944 -13.493	<i>p</i> <.001 <.001 <.001 and Con <i>p</i> <.001 .001 .946 and Con <i>p</i> <.001 .946 and Con	$ f^{2} 2.958 0.185 0.202 ttrol f^{2} 0.364 0.006 <0.001 ttrol f^{2} 1.654 0.093 $		
Variable (Constant) Non-commanding Control Model 5: Impact of Commanding (Constant) Non-commanding Control Model 6: Impact of Commanding Control Model 6: Impact of Commanding Control Non-commanding Control Constant) Non-commanding Control	Conditio b 4.521 -1.604 -1.667 mmandin Conditi b 2.748 -0.507 -0.010 mmandin Conditi b 3.526 -1.185 -1.080	Ig (base) Is on At SE b 0.059 0.084 0.084 Ing (base) 0.103 0.146 0.145 Ing (base) 0.145 Ing (base) 0.062 0.088 0.087	$\begin{array}{r} \textbf{une) vs. Non-com}\\ \textbf{utonomy Threat}\\ \hline \textbf{99\% CI}\\ \hline 4.368 - 4.674\\ -1.8211.387\\ -1.8831.451\\ \hline \textbf{line) vs. Non-com}\\ \hline \textbf{General Anger}\\ \hline \textbf{99\% CI}\\ \hline 2.483 - 3.013\\ -0.8830.131\\ -0.384 - 0.365\\ \hline \textbf{line) vs. Non-com}\\ \hline \textbf{Message Anger}\\ \hline \textbf{99\% CI}\\ \hline 3.366 - 3.685\\ -1.4120.959\\ -1.3060.855\\ \hline \end{array}$	<i>t</i> 76.140 -19.044 -19.901 manding <i>t</i> 26.706 -3.473 -0.068 manding <i>t</i> 56.944 -13.493 -12.367	p <.001	$ f^2 2.958 0.185 0.202 trol f^2 0.364 0.006 <0.001 trol f^2 1.654 0.093 0.078 $		
Variable (Constant) Non-commanding Control Model 5: Impact of Commanding (Constant) Non-commanding Control Model 6: Impact of Commanding Control Model 6: Impact of Commanding (Constant) Non-commanding (Constant) Non-commanding (Constant) Non-commanding (Constant) Non-commanding Control Model 7: Impact of Commanding Control	Conditio b 4.521 -1.604 -1.667 ommandin Conditi b 2.748 -0.507 -0.010 ommandin Conditi b 3.526 -1.185 -1.080 ommandin	Ig (base) Is on At SE b 0.059 0.084 0.084 0.084 ions on C SE b 0.103 0.146 0.145 ions on N SE b 0.062 0.088 0.087 Ing (base)	utonomy Threat 99% CI 4.368 – 4.674 -1.821 – -1.387 -1.883 – -1.451 line) vs. Non-com General Anger 99% CI 2.483 – 3.013 -0.883 – -0.131 -0.384 – 0.365 line) vs. Non-com Vessage Anger 99% CI 3.366 – 3.685 -1.412 – -0.959 -1.306 – -0.855 line) vs. Non-com	<i>t</i> 76.140 -19.044 -19.901 manding <i>t</i> 26.706 -3.473 -0.068 manding <i>t</i> 56.944 -13.493 -12.367 manding	p <.001	$ f^{2} 2.958 0.185 0.202 dtrol f^{2} 0.364 0.006 <0.001 dtrol f^{2} 1.654 0.093 0.078 dtrol $		
Variable (Constant) Non-commanding Control Model 5: Impact of Commanding (Constant) Non-commanding Control Model 6: Impact of Commanding Control Model 6: Impact of Commanding Control Model 6: Impact of Commanding Control Model 7: Impact of Commanding Control	Conditio b 4.521 -1.604 -1.667 mmandin Conditi b 2.748 -0.507 -0.010 mmandin Conditi b 3.526 -1.185 -1.080 mmandin ditions on	Ig (base) Is on At <u>SE b</u> 0.059 0.084 0.084 ions on C <u>SE b</u> 0.103 0.146 0.145 ions on N <u>SE b</u> 0.062 0.088 0.087 ing (base) ions on SE 0.088 0.087 ing (base) ing (base) 0.088 0.087 ing (base) 0.087 ing (base) 0.088 0.087 ing (base) 0.087 ing (bas) 0.087 ing (bas) 0.087 ing (bas) 0.087 ing (bas) 0.087 ing (bas) 0.	$\begin{array}{r} \textbf{une) vs. Non-com}\\ \textbf{utonomy Threat}\\ \hline \textbf{99\% CI}\\ \hline \textbf{4.368} - \textbf{4.674}\\ -1.8211.387\\ -1.8831.451\\ \hline \textbf{line) vs. Non-com}\\ \hline \textbf{General Anger}\\ \hline \textbf{99\% CI}\\ \hline \textbf{2.483} - \textbf{3.013}\\ -0.8830.131\\ -0.384 - 0.365\\ \hline \textbf{line) vs. Non-com}\\ \hline \textbf{Message Anger}\\ \hline \textbf{99\% CI}\\ \hline \textbf{3.366} - \textbf{3.685}\\ -1.4120.959\\ -1.3060.855\\ \hline \textbf{line) vs. Non-com}\\ \hline \textbf{general Scheme Thom}\\ \hline \textbf{general Anger}\\ \hline \textbf{99\% CI}\\ \hline \textbf{3.366} - \textbf{3.685}\\ -1.4120.959\\ -1.3060.855\\ \hline \textbf{line) vs. Non-com}\\ \hline \textbf{general Scheme Thom}\\ \hline \textbf{general Scheme Thom}\\ \hline \textbf{general Anger}\\ \hline \textbf{99\% CI}\\ \hline \textbf{3.366} - \textbf{3.685}\\ -1.412 - 0.959\\ -1.306 - 0.855\\ \hline \textbf{line) vs. Non-com}\\ \hline \textbf{general Scheme Thom}\\ \hline \textbf{general Scheme Thom Scheme Thom}\\ \hline general Scheme Thom Scheme Tho$	<i>t</i> 76.140 -19.044 -19.901 manding <i>t</i> 26.706 -3.473 -0.068 manding <i>t</i> 56.944 -13.493 -12.367 manding ghts	p <.001			
Variable (Constant) Non-commanding Control Model 5: Impact of Commanding (Constant) Non-commanding Control Model 6: Impact of Commanding Control Model 6: Impact of Commanding Control Model 7: Impact of Commanding Control Variable	Conditio b 4.521 -1.604 -1.667 ommandin Conditi b 2.748 -0.507 -0.010 ommandin Conditi b 3.526 -1.185 -1.080 ommandin ditions on b	Ig (base) Is on At <u>SE b</u> 0.059 0.084 0.084 0.084 ions on C <u>SE b</u> 0.103 0.146 0.145 ions on N <u>SE b</u> 0.062 0.088 0.087 ing (base) ions on SE 0.088 0.087 ing (base) ions on SE ions on SE i	line) vs. Non-com utonomy Threat 99% CI 4.368 – 4.674 -1.821 – -1.387 -1.883 – -1.451 line) vs. Non-com General Anger 99% CI 2.483 – 3.013 -0.883 – -0.131 -0.384 – 0.365 line) vs. Non-com Message Anger 99% CI 3.366 – 3.685 -1.412 – -0.959 -1.306 – -0.855 line) vs. Non-com ge Negative Thou 99% CI	t 76.140 -19.044 -19.901 manding t 26.706 -3.473 -0.068 manding t 56.944 -13.493 -12.367 manding t	p <.001			
Variable (Constant) Non-commanding Control Model 5: Impact of Commanding (Constant) Non-commanding Control Model 6: Impact of Commanding Control Model 6: Impact of Commanding Control Model 6: Impact of Commanding Control Model 7: Impact of Commanding Control Model 7: Impact of Commanding Control	Conditio b 4.521 -1.604 -1.667 ommandin Conditi b 2.748 -0.507 -0.010 ommandin Conditi b 3.526 -1.185 -1.080 ommandin ditions on b 3.495	Ig (base) Is on At SE b 0.059 0.084 0.084 0.084 ions on C SE b 0.103 0.146 0.145 ions on N SE b 0.062 0.088 0.087 ing (base) ions on SE 0.088 0.087 ing (base) ions on SE 0.088 0.087 ing (base) ions on SE 0.065 0.	utonomy Threat 99% CI 4.368 – 4.674 -1.821 – -1.387 -1.883 – -1.451 line) vs. Non-com General Anger 99% CI 2.483 – 3.013 -0.883 – -0.131 -0.384 – 0.365 line) vs. Non-com Vessage Anger 99% CI 3.366 – 3.685 -1.412 – -0.959 -1.306 – -0.855 line) vs. Non-com ge Negative Thou 99% CI 3.326 – 3.663	t 76.140 -19.044 -19.901 manding t 26.706 -3.473 -0.068 manding t 56.944 -13.493 -12.367 manding t 56.944 -13.493 -12.367 manding t 53.367	p <.001			

Control	-0.611	0.092	-0.8490.373	-6.614	<.001	0.022				
Model 8: Impact of Commanding (baseline) vs. Non-commanding and Control										
Conditions on Hostility Toward the Present Study										
Variable	b	SE b	99% CI	t	р	f^2				
(Constant)	2.495	0.100	2.237 - 2.752	25.012	<.001	0.319				
Non-commanding	-0.071	0.141	-0.436 - 0.294	-0.503	.615	< 0.001				
Control	-0.177	0.141	-0.540 - 0.186	-1.257	.209	0.001				

Model 9: Commanding (baseline) vs. Non-commanding and Control Conditions and the Five Mediators as Predictors of the Intentions to Comply with Self-selected

	Keconniendeu Denaviour									
Variable	b	SE b	99% CI	t	р	f^2				
(Constant)	8.491	0.226	7.909 – 9.074	37.560	<.001	0.722				
Non-commanding	-0.276	0.172	-0.719 - 0.167	-1.604	.109	0.001				
Control	-1.497	0.174	-1.9461.049	-8.610	<.001	0.038				
Autonomy Threat	-0.307	0.062	-0.4660.148	-4.975	<.001	0.013				
General Anger	0.054	0.029	-0.020 - 0.128	1.894	.058	0.002				
Message Anger	-0.347	0.076	-0.5440.151	-4.567	<.001	0.011				
Message Negative Thoughts	-0.041	0.059	-0.193 - 0.111	-0.692	.489	< 0.001				
Hostility	-0.060	0.025	-0.126 - 0.006	-2.351	.019	0.003				

Note. Model 1 $R^2 = .007$; Model 2 $R^2 = .432$; Model 3 $R^2 = .056$; Model 4 $R^2 = .205$; Model 5 $R^2 = .008$; Model 6 $R^2 = .103$; Model 7 $R^2 = .044$; Model 8 $R^2 = .001$; Model 9 $R^2 = .130$. In parallel mediation analysis for Study 2 (Models 1-3), 1718 participants were used because 1 participant did not select a behaviour on which they wanted to focus regarding compliance. In parallel mediation analysis for Study 3 (Models 4-9), 1963 participants were used because 6 participants did not select a behaviour on which they wanted to focus regarding compliance. In all models, the commanding condition regarding COVID-19 is the reference category. Given that Study 2 (Models 1-3) had 4 conditions, each regression model contains 3 dummy variables. However, the focus of the mediation analysis is on the COVID-19 conditions, and the health conditions are not considered. Overall, the key pathways that yielded significant mediated effects are highlighted in grey. f^2 refers to Cohen's f^2 effect size (Cohen, 1988): effects ≤ 0.02 are considered small.

Moderation Analyses

To examine whether the commanding (vs. control or non-commanding) COVID-19 conditions interacted with any of the moderators (Table 1) in influencing reactance variables, we first computed the interaction effects using linear regressions and then examined the patterns of significant interactions using the Johnson-Neyman technique (Hayes, 2018; Esarey & Sumner, 2018; Johnson & Fay, 1950). The interaction effects were deemed significant only if they passed the FDR (Benjamini & Hochberg, 1995) correction (SM, pp.142-146). Twenty-one initially significant interactions emerged (two in Study 2 and 19 in Study 3). Nineteen of them, however (all in Study 3), did not pass the FDR correction and are therefore reported in SM (pp.157-200).

The two moderation analyses that remained significant despite FDR and covariates (SM, pp.147-156) are reported in Table 8, and the interaction patterns are further presented in Figure 1. For both interactions, the moderator in question was societal consequences, and the interaction patterns indicated that the differences between the commanding versus control conditions regarding compliance intentions and autonomy threat were becoming smaller as the moderator scores increased (Figure 1). These patterns are broadly consistent with reactance theory, according to which people should feel it is more justified for someone to restrict their behaviour when the negative consequences of this behaviour for society could potentially be severe, in which case the type of language used to communicate behavioural restrictions (e.g., commanding or non-commanding) should therefore be less relevant (Rosenberg & Siegel, 2018). Despite the broadly consistent interaction patterns, however, as aforementioned the direction of influence of the commanding (vs. control) condition on the compliance intentions was inconsistent with reactance theory, given that commands would be expected to decrease compliance intentions.

Table 8

Influence of Interaction between Commanding versus Control COVID-19 Conditions and Societal Consequences (SC) on Intentions to Comply with Self-selected Recommended Behaviour (Model 1) and Autonomy Threat (Model 2) in Study 2

Model 1: DV = Intentions to Comply with Self-selected Recommended Behaviour									
Variable	b	SE b	95% CI	t	р	f^2			
(Constant)	4.346	0.415	3.532 - 5.161	10.466	<.001	0.064			
Control COVID-19	-2.415	0.556	-3.5051.325	-4.345	<.001	0.011			
Control Health	-1.077	0.522	-2.1000.053	-2.063	.039	0.002			
Commanding Health	-0.477	0.537	-1.529 - 0.576	-0.888	.375	< 0.001			
SC	0.255	0.056	0.145 - 0.364	4.562	<.001	0.012			
Control COVID-19 * SC	0.246	0.076	0.097 - 0.394	3.240	.001	0.006			
Control Health * SC	0.061	0.079	-0.094 - 0.216	0.771	.441	< 0.001			
Commanding Health * SC	0.013	0.078	-0.140 - 0.167	0.170	.865	< 0.001			

Model 2: DV = Autonomy Threat							
Variable	b	SE b	95% CI	t	р	f^2	
(Constant)	5.233	0.206	4.830 - 5.636	25.462	<.001	0.379	
Control COVID-19	-2.750	0.275	-3.2902.211	-10.001	<.001	0.058	
Control Health	-3.234	0.258	-3.7412.728	-12.523	<.001	0.092	
Commanding Health	-0.242	0.266	-0.763 - 0.279	-0.912	.362	< 0.001	
SC	-0.074	0.028	-0.1290.020	-2.696	.007	0.004	
Control COVID-19 * SC	0.087	0.038	0.013 - 0.160	2.309	.021	0.003	
Control Health * SC	0.114	0.039	0.037 - 0.190	2.909	.004	0.005	
Commanding Health * SC	0.062	0.039	-0.014 - 0.138	1.597	.110	0.001	

Note. Model 1 $R^2 = .112$. Model 2 $R^2 = .436$. In Model 1, 1718 participants were used in statistical analyses because 1 participant did not select a behaviour on which they wanted to focus regarding compliance. In Model 2, all 1719 participants were used in statistical analyses. SC = Societal Consequences. The commanding COVID-19 language condition is the reference category. Given that Study 2 had four conditions, the regression models contain dummy variables for COVID-19 and general health conditions. However, the interactions with general health conditions are not of interest in the present research, and the key analyses testing the interaction terms between the commanding versus control COVID-19 condition and societal consequences are highlighted in grey. f^2 refers to Cohen's f^2 effect size (Cohen, 1988): effects ≤ 0.02 are considered small.

Meta-Analysis

Random-effects meta-analysis (Table 9) examining the impact of commanding (vs. other) conditions on reactance variables probed in more than one study (including Study 1) was tested using "esci" (Cumming & Calin-Jageman, 2016). As indicated in Table 9, autonomy threat and intentions to comply with self-selected recommended behaviour were generally higher in the commanding (vs. control) condition, whereas other variables yielded no significant differences.

Table 9

Random-effects Meta-Analysis Probing the Impact of Commanding (Vs. Other) Conditions on

Reactance Variables Tested in More Than One Study

	Con	nmanding vs. Cont	rol	Commanding vs. Non-commanding			
Variable	$M_{ m diff}$	95% CI	р	$oldsymbol{M}_{ ext{diff}}$	95% CI	р	
DV1 (0-4)	-0.039	-0.198 - 0.119	.626	0.022	-0.344 - 0.387	.907	
DV2 (0-4)	-0.014	-0.053 - 0.025	.481	0.013	-0.027 - 0.053	.525	
DV3 (0-10)	-0.686	-0.9600.413	<.001	-	-	-	
DV4 (0-10)	-0.055	-0.292 - 0.182	.649	-0.218	-0.785 - 0.348	.450	
DV5 (1-7)	-1.897	-2.3801.415	<.001	-	-	-	

Note. DV1 = Compliance with Self-selected Recommended Behaviour, DV2 = Compliance with Other Recommended Behaviours; DV3 = Intentions to Comply with Self-selected Recommended Behaviour; DV4 = General Anger; DV5 = Autonomy Threat. M_{diff} = Mean Difference. For "Commanding vs. Control", M_{diff} refers to the difference in means regarding control minus commanding condition. For "Commanding vs. Noncommanding", M_{diff} refers to the difference in means regarding non-commanding minus commanding condition. Numbers in parentheses next to DVs indicate the possible range of values for each DV.

Figure 1. The influence of commanding versus control COVID-19 condition on intentions to comply with self-selected recommended behaviour (Panel A) and autonomy threat (Panel B) at different levels of societal consequences (Study 2). Moderator levels in the figures were selected arbitrarily for effective visualization; detailed output of the Johnson-Neyman analyses depicting the interaction patterns is available in Supplementary Materials (pp.147-156). Error bars correspond to the 95% CIs.

General Discussion

The present research investigated psychological reactance toward commanding messages regarding COVID-19. Because our studies constitute arguably the most comprehensive examination of reactance theory concerning message language to date, here we discuss the findings in relation to the theory. We showed that commanding condition (vs. control or non-commanding) influenced compliance intentions and several cognitive-affective indicators of reactance. In this regard, there are two main insights that go beyond previous research.

First, a cognitive-affective measure may be more likely to capture reactance if it is phrased in relation to the messages rather than generally. Indeed, whereas we detected robust reactance effects for measures phrased concerning the messages (message anger, autonomy threat, and message negative thoughts), this was not the case for general anger not directed specifically at the messages. On a conceptual level, these findings indicate that reactance-related cognitive and affective states are experienced specifically in relation to the messages rather than as general states. Whereas previous studies to our knowledge did not address this subtle distinction, it may have important implications for how reactance influences decision making. For example, we know that emotions (e.g., anger) induced in one context can influence people's decisions in other

contexts (Andrade & Ariely, 2009). In that regard, if commanding (vs. other) messages evoke general emotions, it would be plausible that they may impact decisions on topics not targeted by the messages. If, however, these emotions are message specific, then it is plausible that they may shape only decisions that have direct relevance to the messages, but not other decisions. We encourage researchers to attempt to test this premise more directly in future research.

The second main insight of the present research is that, whereas commanding messages decreased intentions to comply with self-selected recommended behaviour versus noncommanding messages, they increased the intentions compared to control, which would not be expected based on reactance theory. Previous research on reactance, however, generally compared commanding and non-commanding messages but failed to probe a control condition where no behavioural instructions were given. The present research therefore indicates that, even if people may feel threatened in response to the type of commanding messages regarding COVID-19 we used in the present research, they may be more likely to intend to comply with the recommended behaviours than if given no behavioural prompts.

Concerning the influence of messages on actual behaviour, which has not been previously tested in the context of reactance evoked via commanding language (Rosenberg & Siegel, 2018), we did not find evidence that commanding versus other conditions would impact COVID-19 compliance, either in individual studies or after meta-analysing the behavioural effects tested in more than one study. One of the main conclusions of the present research is therefore that, even if commanding messages influence intentions and cognitive-affective variables that have implications for behaviour, they may not be sufficiently strong to convincingly change behaviour that people undertake over several days after receiving the messages. This finding is in line with previous research on intention-behaviour gap, especially given that intentions are less likely to

spawn behaviours that require self-control, such as COVID-19 compliance (Sheeran & Webb, 2016; Wallace, Paulson, Lord, & Bond Jr, 2005).

In relation to the psychological mechanisms we examined, the present research showed that the negative influence of commanding (vs. non-commanding) messages on compliance intentions is explained by autonomy threat and message anger. This is aligned with reactance theory, even if the theorizing more comprehensively focused on anger as the core mechanism (Rosenberg & Siegel, 2018). Moreover, although we observed that commands (vs. control) had a negative indirect effect on compliance intentions via autonomy threat and message anger, their actual effect on the intentions was positive. The most plausible explanation is therefore that the commanding (vs. control) condition did activate reactance regarding compliance intentions, but the explicit prompts to change the behaviour that were given only in this condition, but not in control, overcame the negative reactance effect. Finally, concerning moderation analyses, out of all potential moderators of the influence of commanding (vs. other) messages we tested, only two significant interactions involving societal consequences were robust. This moderator also produced the largest number of significant interactions if other initially significant interactions that did not pass the FDR correction are considered (SM, pp.157-200). Whereas this suggests that societal consequences may be the main moderator of messages on reactance, our research generally indicates that further theoretical and empirical work needs to be done to uncover the most important moderators, given that we failed to detect consistent moderation effects.

Limitations

One of the main limitations of this research concerns ecological validity (Coolican, 2009). The messages we tested were not officially published by the government, and it is possible that people did not react to them as they would to official governmental communication. Most

previous studies investigating reactance regarding commanding messages were, however, conducted in ecologically non-valid settings (Rosenberg & Siegel, 2018); this has not been an obstacle to detecting reactance. It is thus unlikely that the absence of evidence of behavioural effects in our research can be attributed to ecological validity. Another limitation is that, despite the large sample sizes, we did not recruit participants representative of the UK population. For example, it is possible that the participants we tested differed from the general population on personality traits such as conscientiousness and agreeableness that shape compliance with COVID-19 recommendations (e.g., Clark, Davila, Regis, & Kraus, 2020), and that their responses to our messages may have therefore been different to some degree. It is thus not given the present findings would generalize across the population. Nevertheless, it is important to point out that online participants tend to be reasonably representative of the general population in terms of psychological characteristics (e.g., McCredie & Morey, 2019; Mullinix, Leeper, Druckman, & Freese, 2015; Redmiles, Kross, & Mazurek, 2019), thus suggesting that generalizability may not be a major limitation of the present research.

Conclusion

Overall, although people experienced more anger and negative thoughts toward commanding (vs. control or non-commanding) messages and found them threatening to their autonomy, there was no convincing evidence that these messages would hinder COVID-19 compliance behaviours. In fact, commands increased the intentions to comply compared to control. When communicating COVID-19 policies to the public, policy makers may therefore be better off using either commanding or non-commanding language relative to no behavioural prompts to increase people's intentions, but it will be crucial for them to provide appropriate support that could translate these intentions to behaviour.

References

- Andrade, E. B., & Ariely, D. (2009). The enduring impact of transient emotions on decision making. Organizational Behavior and Human Decision Processes, 109, 1-8.
- Aust, F., Diedenhofen, B., Ullrich, S., & Musch, J. (2013). Seriousness checks are useful to improve data validity in online research. *Behavior Research Methods*, 45, 527-535.
- Barari, S., Caria, S., Davola, A., Falco, P., Fetzer, T., Fiorin, S., ... & Kraft-Todd, G. (2020). Evaluating COVID-19 public health messaging in Italy: Self-reported compliance and growing mental health concerns. Manuscript submitted for publication.
- BBC (2020, March). Coronavirus: 'You must stay at home', Boris Johnson orders. BBC News, Retrieved from https://www.bbc.co.uk/news/av/uk-52012581/coronavirus-you-must-stayat-home-boris-johnson-orders
- Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society: series B* (*Methodological*), 57, 289-300.
- Brehm, J. W. (1966). A theory of psychological reactance. Oxford, UK: Academic Press.
- Brehm, S. S., & Brehm, J. W. (2013). Psychological reactance: A theory of freedom and control. New York, NY: Academic Press.
- Clark, C., Davila, A., Regis, M., & Kraus, S. (2020). Predictors of COVID-19 voluntary compliance behaviors: An international investigation. *Global Transitions*, *2*, 76-82.
- Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed.). Hillsdale, NJ: Lawrence Earlbaum Associates.
- Coolican, H. (2009). *Research methods and statistics in psychology*. London, United Kingdom: Hodder.

- Cumming, G., & Calin-Jageman, R. (2016). *Introduction to the new statistics: Estimation, open science, and beyond*. New York, NY: Routledge.
- Dillard, J. P., & Shen, L. (2005). On the nature of reactance and its role in persuasive health communication. *Communication Monographs*, 72, 144-168.
- Dolan, P., & Galizzi, M. M. (2015). Like ripples on a pond: behavioral spillovers and their implications for research and policy. *Journal of Economic Psychology*, 47, 1-16.
- Esarey, J., & Sumner, J. L. (2018). Marginal effects in interaction models: Determining and controlling the false positive rate. *Comparative Political Studies*, *51*, 1144-1176.
- Fetzer, T. R., Witte, M., Hensel, L., Jachimowicz, J., Haushofer, J., Ivchenko, A., ... & Gómez, M. (2020). *Global Behaviors and Perceptions at the Onset of the COVID-19 Pandemic* (No. w27082). National Bureau of Economic Research. Retrieved from https://www.nber.org/papers/w27082
- Galasso, V., Pons, V., Profeta, P., Becher, M., Brouard, S., & Foucault, M. (2020). Gender differences in COVID-19 attitudes and behavior: Panel evidence from eight countries. *Proceedings of the National Academy of Sciences*, *117*, 27285-27291.
- Hayes, A. F. (2018). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach, 2nd Edition. New York, NY: Guilford Press.
- Johnson, P. O., & Fay, L. C. (1950). The Johnson-Neyman technique, its theory and application. *Psychometrika*, *15*, 349-367.
- Krpan, D., Galizzi, M. M., & Dolan, P. (2019). Looking at Spillovers in the Mirror: Making a Case for "Behavioral Spillunders". *Frontiers in Psychology*, 10, 1142.
- Levkovich, I. (2020). The Impact of Age on Negative Emotional Reactions, Compliance With Health Guidelines, and Knowledge About the Virus During the COVID-19 Epidemic: A

Longitudinal Study From Israel. *Journal of Primary Care & Community Health*, *11*, 2150132720981540.

- MacKinnon, D. P., Fairchild, A. J., & Fritz, M. S. (2007). Mediation analysis. *Annual Review of Psychology*, 58, 593-614.
- McCredie, M. N., & Morey, L. C. (2019). Who are the Turkers? A characterization of MTurk workers using the personality assessment inventory. *Assessment*, *26*, 759-766.
- Meade, A. W., & Craig, S. B. (2012). Identifying careless responses in survey data. *Psychological Methods*, *17*, 437-455.
- Miller, C. H., Lane, L. T., Deatrick, L. M., Young, A. M., & Potts, K. A. (2007). Psychological reactance and promotional health messages: The effects of controlling language, lexical concreteness, and the restoration of freedom. *Human Communication Research*, 33, 219-240.
- Miron, A. M., & Brehm, J. W. (2006). Reactance theory-40 years later. *Zeitschrift für Sozialpsychologie*, *37*, 9-18.
- Mullinix, K. J., Leeper, T. J., Druckman, J. N., & Freese, J. (2015). The generalizability of survey experiments. *Journal of Experimental Political Science*, *2*, 109-138.
- Nezlek, J., & Brehm, J. W. (1975). Hostility as a function of the opportunity to counteraggress 1. *Journal of Personality*, *43*, 421-433.
- Quick, B. L., & Considine, J. R. (2008). Examining the use of forceful language when designing exercise persuasive messages for adults: A test of conceptualizing reactance arousal as a two-step process. *Health Communication*, 23, 483-491.
- Rains, S. A. (2013). The nature of psychological reactance revisited: A meta-analytic review. *Human Communication Research*, 39, 47-73.

- Rains, S. A., & Turner, M. M. (2007). Psychological reactance and persuasive health communication: A test and extension of the intertwined model. *Human Communication Research*, 33, 241-269.
- Redmiles, E. M., Kross, S., & Mazurek, M. L. (2019). How well do my results generalize?
 Comparing security and privacy survey results from MTurk, web, and telephone samples.
 In 2019 IEEE Symposium on Security and Privacy (SP), Vol. 00 (pp. 227–244). IEEE.
- Rosenberg, B. D., & Siegel, J. T. (2018). A 50-year review of psychological reactance theory:Do not read this article. *Motivation Science*, *4*, 281-300.
- Sheeran, P., & Webb, T. L. (2016). The intention–behavior gap. Social and Personality Psychology Compass, 10, 503-518.
- Sibony, A. L. (2020). The UK COVID-19 Response: A Behavioural Irony? *European Journal of Risk Regulation*, 1-8.
- Wallace, D. S., Paulson, R. M., Lord, C. G., & Bond Jr, C. F. (2005). Which behaviors do attitudes predict? Meta-analyzing the effects of social pressure and perceived difficulty. Review of General Psychology, 9, 214-227.