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1 Introduction

A vast literature in behavioral economics studies markets with present-biased consumers

who underestimate their bias (“partial naiveté”). An important finding from this literature is

that the equilibrium is inefficient and regulation that accounts for internalities can increase

welfare.1 Models in this literature generally have only three periods, which is the minimum

needed for present bias to play a role. But this is an unrealistic assumption since, in these

models, periods are thought to be very short, typically no more than a day (O’Donoghue

and Rabin, 2015).

Our paper considers a general contracting model with partially naive present-biased

consumers and an arbitrary number of periods. We show that to exploit consumer naiveté

firms offer contracts with two options at each point in time: a “baseline” that provides high

consumption in the future in exchange for low consumption today, and an “alternative”

option that provides greater consumption today but less consumption in the future. In

every period, consumers think they will pick the baseline but pick the alternative option

instead, effectively postponing the reduction in consumption to the next period. As a result,

the equilibrium has smooth consumption in all but the last period. Because the relative

weight on the last period shrinks as the contracting horizon grows, the consumption on

the equilibrium path of present-biased consumers converges to the path that maximizes

their long-run preferences. Therefore, the welfare loss from present bias vanishes as the

contracting horizon grows.

This result can be interpreted in two ways. If one takes the models as currently formu-

lated as good approximations of reality, then it suggests that there is no role for regulation

that corrects for present bias as long as contractual relationships are long enough. If in-

stead, one believes that inefficiency is prevalent in markets with present-biased consumers,

then something must be missing from how these markets are often modeled. To understand

which features can prevent efficiency in markets with present-biased consumers, we extend

1See, for example, Gruber and Kőszegi (2001); O’Donoghue and Rabin (2003); DellaVigna and Mal-
mendier (2004); Heidhues and Kőszegi (2010).
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the model in several directions.

First, we drop the assumption that consumers can commit to long-term contracts. Such

“one-sided commitment” is prevalent in many markets (e.g., life insurance, long-term care,

annuities, mortgages, and car loans).2 For a fixed horizon, removing commitment power

can help present-biased consumers, who are tempted to overborrow. Since firms would not

lend to consumers who can walk away from contracts, removing commitment power limits

their ability to borrow, increasing welfare when consumers are sufficiently present biased.

We then generalize the vanishing inefficiency result for settings with one-sided commit-

ment, showing that the equilibrium converges to the path that maximizes the consumer’s

long-run preferences subject to non-lapsing constraints. Because the equilibrium with com-

mitment maximizes long-run preferences without these constraints, removing commitment

power cannot improve welfare when the contracting horizon is long enough.

Second, we show that the vanishing inefficiency result also holds when firms, rather

than consumers, have the bargaining power. However, the equilibrium converges to a dif-

ferent point on the Pareto frontier. In the limit, consumers are worse off (according to their

long-run preferences) than with their outside option and firms obtain higher profits than if

they were facing consumers who maximized their long-run preferences. Nevertheless, the

outcome is efficient and only distributional concerns would justify interventions.

Third, we study how private information affects the equilibrium. When firms do not

know the consumer’s naiveté, the equilibrium remains unchanged and, therefore, is still

asymptotically efficient. Adding a sophisticated type also does not affect the equilibrium

contract of naive consumers, so the inefficiency from their contracts still vanishes as the

horizon grows. However, when firms do not know the consumer’s present bias, they face an

adverse selection problem that leads them to provide insufficient savings to more present-

biased types, and the equilibrium is no longer asymptotically efficient.

Fourth, we assume that consumers can simultaneously sign contracts with multiple

2In long-term insurance markets – such as life insurance, long-term care insurance, or annuities – policy-
holders are allowed to cancel their policies at all times, but firms cannot drop them. In mortgages and other
credit markets, borrowers can prepay their debt, but debtors cannot force them to repay before the contract is
due.
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firms, so contracts are not exclusive. This is the case, for example, with credit cards and

many other loans. We show that contract non-exclusivity prevents any commitment from

being provided, so the equilibrium allocation remains inefficient no matter how long the

horizon is.

Fifth, we consider more general forms of present bias (beyond quasi-hyperbolic dis-

counting). Since quasi-hyperbolic discounting only distorts decisions involving the current

period, one might think that with more general discount functions, the efficiency result

would break. We characterize the equilibrium for general present-biased discounting and

show that this conjecture is incorrect.

And sixth, we study contracting over effort and show that, in that case, the equilibrium

path is determined by the agent’s short-run discount, so the equilibrium remains inefficient

regardless of the horizon. With effort, firms offer a baseline requiring all effort to be exerted

in the immediate future. On the equilibrium path, the agent keeps postponing some effort

one period into the future according to their short-run discount factor, which is lower than

their long-run discount factor due to present bias.

The main message of our paper is that the inefficiency of markets with present-biased

consumers crucially depends on the length of the relationship, on how easy it is to contract

with multiple firms, and on the information that firms have. When contracts are exclusive

and firms know the consumer’s present bias, the equilibrium is approximately efficient as

long as the contracting horizon is long enough.

The paper is organized as follows. In Section 2, we present the basic model. In Section

3, we discuss several extensions and their implications for welfare. Subsection 3.1 drops

the assumption that consumers can commit to long-term contracts, 3.2 assumes that the bar-

gaining power is on the firm’s rather than the consumer’s side, 3.3 introduces heterogeneity,

3.4 assumes that contracts are not exclusive, 3.5 relaxes the assumption of quasi-hyperbolic

discounting, and 3.6 considers contracting over effort. Then, Section 4 concludes.

Related Literature. Our paper fits into a recent literature on contracting with behavioral

agents, summarized in Kőszegi (2014) and Grubb (2015). The basic model in Section

3
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2 builds on the credit card model of Heidhues and Kőszegi (2010) by considering more

than two consumption periods and allowing for uncertainty. Our paper is also related to

a literature that studies commitment contracts with time-inconsistent agents (c.f. Amador

et al. (2006); Halac and Yared (2014); Galberti (2015); Bond and Sigurdsson (2017)).3

Subsection 3.1 is related to a literature on dynamic risk-sharing with one-sided commit-

ment. Several papers show that front-loaded payment schedules help mitigate a consumer’s

lack of commitment power. For example, Hendel and Lizzeri (2003) theoretically and em-

pirically examine how life insurers mitigate reclassification risk by offering front-loaded

policies. More recently, Handel et al. (2017) and Atal et al. (2018) show that front-loaded

long-term health insurance contracts can produce substantial welfare gains by insuring pol-

icyholders against reclassification risk. The main difference between these models and ours

is that consumers in our model are dynamically inconsistent.

2 Basic Model

There is one consumer (agent) and a finite number of firms. Time is discrete and finite. To

allow for arbitrary non-stationary settings, we model the stochastic environment as follows.

There is a finite state space St for each t ∈ N. The agent earns income w(st) at state st.

Let p(st|sτ ) denote the probability of reaching state st conditional on state sτ . We say that

state st follows state sτ if p(st|sτ ) > 0. A state specifies all previously realized uncertainty,

so a state cannot follow two different states. We consider the T -period truncation of this

setting; that is, an environment with state spaces St and conditional probabilities p(·|·) up

3There are two key differences between our paper and this literature. First, this literature considers sophis-
ticated agents, whereas our primary focus is on partially naive agents. Second, we study a different incentive
aspect. This literature studies the trade-off between commitment and flexibility (agents have commitment
power but, because they face an unverifiable taste shock, they value the flexibility to adjust to different taste
shocks), whereas, in Section 3.1, we study the agent’s incentive to lapse and re-contract with other firms.
Our paper is also related to Bisin et al. (2015), who study the interaction between government policy and pri-
vate commitments by present-biased voters, Heidhues and Strack (2019) who characterize stopping behavior
by time-inconsistent agents, and to Harris and Laibson (2001) and Cao and Werning (2018), who study the
Markov equilibria in infinite-horizon problems with sophisticated consumers and show there can be multiple
non-smooth equilibria. Multiplicity and non-smoothness do not arise in our setting because our model has a
finite (albeit arbitrary) horizon.
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to period T , at which point the game ends.

Without loss of generality, we assume that no uncertainty is realized before the initial

period: S1 = {∅}. LetE[·|st] denote the expectation operator conditional on state st and let

E[·] denote the unconditional (time-1) expectation. By taking degenerate distributions, our

framework allows for deterministic income paths. Also, since the probabilities of reaching

future states may depend on the current state, our framework also allows for persistent

shocks, which is important to encompass environments with reclassification risk.

Firms are risk neutral and can freely save or borrow at the interest rate R ≥ 1, so that

each firm maximizes its expected discounted profits. The expected profits at state sτ of a

firm that collects state-dependent payments {π(st)}t≥τ are

E

[∑
t≥τ

π(st)

Rt−τ

∣∣∣∣∣ sτ

]
.

The agent has quasi-hyperbolic discounting and needs a firm to transfer consumption

across states.4 At state sτ , the agent evaluates the state-dependent consumption {c(st)}t≥τ
according to

u(c(sτ )) + βE

[∑
t>τ

δt−su(c(st))

∣∣∣∣∣ sτ

]
, (1)

where β ∈ (0, 1), δ ∈ (0, 1] and u : R+ → R is continuous, strictly increasing, strictly

concave, and twice continuously differentiable in the interior of its domain.5 We are inter-

ested in time-inconsistent consumers who underestimate their bias – i.e., they are partially

naive as defined by O’Donoghue and Rabin (1999). Such a consumer believes that, in all

future periods, he will behave like someone with time-consistency parameter β̂ ∈ (β, 1].

For brevity, we refer to a partially naive time-inconsistent consumer simply as a time-

4The assumption that the agent cannot perfectly transfer resources across states without a firm is not
innocuous (see Subsection 3.4). As shown by Augenblick et al. (2015), it may also be related to why lab
experiments often fail to find evidence of present bias. This assumption is probably better suited for contracts
involving larger amounts (such as mortgages or life insurance policies) which cannot be easily financed
through other means.

5Continuity rules out utility functions that are unbounded from below, which is important for equilibrium
existence. One can incorporate unbounded utility functions by assuming that the consumer has a minimum
(subsistence) level of consumption and renormalizing that level to zero.
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inconsistent consumer.6 As a benchmark, we also consider the case of time-consistent

consumers (β̂ = β = 1). Following most of the literature, we take the agent’s long-run

preferences as the relevant ones in our welfare calculations.7 Therefore, consumers maxi-

mize welfare in the time-consistent benchmark but not when they are time-inconsistent.

For now, we assume that firms know the consumer’s preferences. We also assume

that the consumer has all bargaining power and that all parties can commit to long-term

contracts, so the consumer makes a take-it-or-leave-it offer of a contract in the first period,

which is honored until the game ends. These three assumptions are dropped in Section 3.

When an individual is not time consistent, his ranking of consumption streams depends

on when the stream is evaluated. As usual, we model the behavior of such an agent by

treating his decision in each period as if it was decided by a different “self.” Because the

consumer is naive, each self may mispredict how his future selves will choose. We consider

perception-perfect equilibria (O’Donoghue and Rabin, 1999, 2001), which require that: (i)

each self picks an optimal strategy given its prediction of how future selves will behave,

and (ii) predictions about the behavior of future selves must be consistent with how a future

self with time-consistency parameter β̂ would choose.8

2.1 Time-Consistent Consumers

As a benchmark, we first consider a time-consistent consumer. Because parties can commit

to long-term contracts, the equilibrium consumption maximizes the agent’s utility in period

1,

E

[
T∑
t=1

δt−1u (c (st))

]
, (2)

6Online Appendix D considers sophisticates, who fully understand their time inconsistency (β̂ = β).
7See, e.g., DellaVigna and Malmendier (2004); O’Donoghue and Rabin (1999, 2001).
8See Online Appendix E for a formal definition. As we show there, there is no loss of generality in restrict-

ing attention to pure strategies. Our game-theoretical equilibrium concept coincides with the non-strategic
competitive equilibrium of Heidhues and Kőszegi (2010). We formulate the model as a game because it can
be more straightforwardly generalized to settings with one-sided commitment (Subsection 3.1), monopoly
(3.2), private information (3.3), and contracting over effort (3.6).

6
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subject to the zero-profits constraint,

T∑
t=1

E

[
w (st)− c (st)

Rt−1

]
= 0. (3)

Indeed, no firm would accept a contract with negative expected profits. If profits were

positive, the agent would benefit by offering a contract with slightly higher consumption.

Because the objective function in (2) is strictly concave and (3) is a linear constraint, there is

a unique solution. So, any equilibrium of the game provides the same consumption, which

solves the program above. Let WC
T denote the equilibrium welfare of the time-consistent

consumer, which evaluates the objective (2) at the equilibrium consumption.

2.2 Time-Inconsistent Consumers

Before presenting a general analysis of equilibrium with time-inconsistent consumers, we

start with a simple illustrative example. There are T = 3 periods and there is no uncertainty.

The net interest rate is zero (R = 1) and the agent’s total income equals one (w1+w2+w3 =

1). The agent is fully naive (β̂ = 1), has discount factors β = 1
2

and δ = 1, and utility

function u(c) =
√
c.

Based on Subsection 2.1, one may think that the equilibrium consumption maximizes

the agent’s utility in period 1 subject to zero profits:

max
c1,c2,c3

√
c1 + β (

√
c2 +

√
c3) (4)

subject to

c1 + c2 + c3 = 1. (5)

We will show that this is not the case. To see this, first note that the solution to this program

is c1 = 2
3
, c2 = c3 = 1

6
, which gives the agent a utility of

√
3/2.

Suppose a firm decides to offer a contract that gives c1 = 8
27

in the first period and

allows the agent to pick between two different options in the second period: a baseline and

an alternative option. The baseline provides as little consumption as possible in the second

7
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period in exchange for a high consumption in the future: c2(B) = 0 and c3(B) = 50
27

. The

alternative option offers a smoother path: c2(A) = 8
27

and c3(A) = 7
81
.

Since the agent thinks that his future selves are perfectly patient, he believes that he

will pick the baseline option:

√
c2(B) +

√
c3(B) ≈ 1.36 > 0.84 ≈

√
c2(A) +

√
c3(A),

which gives him the same perceived utility as in the solution of program (4)-(5):

√
c1 + β

[√
c2(B) +

√
c3(B)

]
=
√

3/2.

Therefore, the agent accepts to switch to this new contract.

However, in period 2, the agent picks the alternative option instead of the baseline, since

√
c2(A) + β

√
c3(A) ≈ 0.69 > 0.68 ≈

√
c2(B) + β

√
c3(B).

And because the agent ends up with the alternative option, the firm makes a profit of

1− c1 − c2 (A)− c3 (A) ≈ 0.32.

That is, a flexible contract allows the firm to exploit the agent’s incorrect beliefs and make

positive profits. The firm exploits the difference in beliefs by offering a baseline option with

very low consumption in period 2 (c2(B) = 0) in exchange for a large future consumption

(c3(B) = 50
27

). And while the agent thinks that he will choose this baseline option, he ends

up switching to the alternative option, which has a lower NPV but a much higher immediate

consumption (c2(A) = 8
27
, c3(A) = 7

81
).

Having shown that we cannot have an equilibrium with inflexible contracts in this sim-

ple example, we now characterize the equilibrium in the general case.

2.2.1 Equilibrium

Any contract that is accepted with positive probability must maximize the consumer’s util-

ity in period 1 subject to two types of constraints: zero profits, which is the same as before,

8
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and incentive constraints, which are due to consumer naiveté.

Because the consumer mispredicts his future preferences, he may disagree with the firm

about the actions that his future selves will take. So we need to distinguish between what

the consumer thinks he will choose and what firms think that the consumer will choose

(which we interpret as the correct beliefs). This disagreement gives rise to two sets of in-

centive constraints. Following Heidhues and Kőszegi (2010), we refer to them as perceived

choice (PC) and incentive compatibility (IC) constraints.

PC requires the consumer to believe that his future selves will choose the actions that

maximize his perceived utility. IC requires firms to believe that the consumer’s future

selves will choose the actions that maximize the consumer’s true utility. The option that

the consumer thinks that his future selves will choose is called the baseline option (B). The

option that firms think that the consumer’s future selves will choose is called the alternative

option (A). In principle, these options can coincide, in which case the consumer and the

firms agree on which actions will be chosen. But we will show that, in equilibrium, these

options are always different.9

A time-t option history ht is a list of options chosen by the consumer up to time t:

h1 = ∅, h2 ∈ {(A), (B)}, h3 ∈ {(A,A), (A,B), (B,A), (B,B)}, etc. Since there are no

actions after the last period, there is no space for disagreement at t = T , so that hT = hT−1.

Figure 1 depicts the option histories when there are four periods.

A consumption vector specifies the agent’s consumption in all states that happen with

positive probability for all option histories:10

c ≡ {(c(s1), c(s2, h2), c(s3, h3), · · · , c(sT , hT )) : p(s2|s1)p(s3|s2) · · · p(sT |sT−1) > 0}.

A consumption path specifies the consumption that happens with positive probability using

9See Yildiz (2003) for another game in which different prior beliefs may cause players to disagree about
which actions will be taken in equilibrium.

10Since a state of the world encodes all previously realized uncertainty, the distribution over future states
conditional on st can only have full support in the trivial case in which no uncertainty is realized until state
st. We omit the subscript T from the consumption vector c to simplify notation.
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c1

c2(A)

c2(B)

c3(A,A)

c3(A,B)

c3(B,A)

c3(B,B)

c4(A,A)

c4(A,B)

c4(B,A)

c4(B,B)

Figure 1: Option histories with T = 4 and no uncertainty. The consumer initially believes he will choose
the baseline in each node, which would give him consumption (c1, c2(B), c3(B,B), c4(B,B)). In each node,
he switches to the alternative. In period 2, he receives c2(A) and thinks that he will get (c3(A,B), c4(A,B)).
Then, he switches to the alternative again in period 3, obtaining (c3(A,A), c4(A,A)). The consumption
vector consists of consumption in all nodes, whereas the consumption path is (c1, c2(A), c3(A,A), c4(A,A)).
With uncertainty, consumption also depends on the state of the world.

correct beliefs about the options that the consumer chooses:

cE ≡ {(c(s1), c(s2, A), c(s3, A,A), · · · , c(sT , A, ..., A)) : p(s2|s1)p(s3|s2) · · · p(sT |sT−1) > 0}.

Note that, unlike the consumption vector, the consumption path only includes outcomes

conditional on the consumer repeatedly picking option A.

The equilibrium program (P) is:

max
{c(st,ht)}

u(c(s1)) + βE

[
T∑
t=2

δt−1u(c(st, B,B, ..., B))

]
, (6)

subject to
T∑
t=1

E

[
w (st)− c (st, A,A, ..., A)

Rt−1

]
= 0, (Zero Profits)

u(c(sτ , (h
τ−1, B))) + β̂E

[∑
t>τ δ

t−τu (c (st, (h
τ−1, B,B, ..., B)))

∣∣ sτ]
≥ u(c(sτ , (h

τ−1, A))) + β̂E
[∑

t>τ δ
t−τu (c (st, (h

τ−1, A,B, ..., B)))
∣∣ sτ] , (PC)

10
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and

u(c(sτ , (h
τ−1, A))) + βE

[∑
t>τ δ

t−τu (c (st, (h
τ−1, A,B, ..., B)))

∣∣ sτ]
≥ u(c(sτ , (h

τ−1, B))) + βE
[∑

t>τ δ
t−τu (c (st, (h

τ−1, B,B, ..., B)))
∣∣ sτ] . (IC)

The following lemma establishes that the equilibrium program (P) characterizes the equi-

librium consumption vector:

Lemma 1. c is the consumption vector in a perception-perfect equilibrium if and only if it

solves program (P).

2.2.2 Auxiliary Program

Consider a dynamically consistent agent who differs from the one described in Subsection

2.1 in that he discounts consumption in the last period by an additional factor β. The

equilibrium consumption for this agent solves the following auxiliary program:

max
{c(st)}

E

[
T−1∑
t=1

δt−1u (c(st)) + βδT−1u (c(sT ))

]
, (7)

subject to the zero-profits constraint (3). The auxiliary program has a unique solution since

the objective function is strictly concave and the constraint is linear.

The following lemma establishes that the consumption path for time-inconsistent agents

coincides with the solution of the auxiliary program:

Lemma 2. cE is the consumption path in a perception-perfect equilibrium if and only if it

solves the auxiliary program.

The auxiliary program highlights that underweighting consumption in the last period is

the only distortion from time inconsistency in this model. To illustrate the lemma, suppose

there are four periods and income is constant (w). Because there is no uncertainty, we can

omit the state of the world from histories. The equilibrium contract solves:

max
{c(ht)}

u(c1) + β[δu(c2(B)) + δ2u(c3(B,B)) + δ3u(c4(B,B))], (8)

11
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subject to

c1 +
c2(A)

R
+
c3(A,A)

R2
+
c4(A,A)

R3
= w

(
1 +

1

R
+

1

R2
+

1

R3

)
, (9)

u(c2(B)) + β̂[δu(c3(B,B)) + δ2u(c4(B,B))] ≥ u(c2(A)) + β̂[δu(c3(A)) + δ2u(c3(A,B))],

(10)

u(c2(A)) + β[δu(c3(A,B)) + δ2u(c4(A,B))] ≥ u(c2(B)) + β[δu(c3(B,B)) + δ2u(c4(B,B))],

(11)

u(c3(A,B)) + β̂δu(c4(A,B)) ≥ u(c3(A,A)) + β̂δu(c4(A,A)), (12)

u(c3(A,A)) + βδu(c4(A,A)) ≥ u(c3(A,B)) + βδu(c4(A,B)), (13)

where (9) is the zero profits constraint, (10) and (12) are the PC constraints, and (11) and

(13) are the IC constraints in periods 2 and 3, respectively.

First, note that the IC constraints (11) and (13) must both bind. Otherwise, it would be

possible to achieve a higher utility by increasing c4(B,B) and c4(A,B). Substitute these

two binding constraints in the objective to eliminate c4(B,B) and c4(A,B):

u(c1)+δu(c2(A))+δ2u(c3(A,A))+βδ3u(c4(A,A))−(1−β)[δu(c2(B))+δ2u(c3(A,B))].

(14)

Use the binding ICs again to rewrite the PC constraints (10) and (12) as monotonicity

conditions:

c2(A) ≥ c2(B), (15)

and

c3(A,A) ≥ c3(A,B). (16)

So the program reduces to the maximization of (14) subject to zero profits (9) and the

monotonicity conditions (15) and (16). Because the objective function (14) is decreasing

in c2(B) and c3(A,B), the solution entails

c2(B) = c3(A,B) = 0. (17)

12
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Equation (17) implies that the monotonicity conditions (15) and (16) automatically

hold. Substitute c2(B) = c3(A,B) = 0 in the objective function (14) to obtain the auxiliary

program:

max
{c1,c2(A),c3(A,A),c4(A,A)}

u(c1) + δu(c2(A)) + δ2u(c3(A,A)) + βδ3u(c4(A,A)). (18)

subject to the zero-profit condition (9).

To understand why the baseline offers the lowest consumption possible in period 2,

consider the following perturbation argument. Starting from any interior c2(B), lower

u(c2(B)) by ε > 0 and raise u(c4(B,B)) by ε
βδ2

. This perturbation keeps the IC (11)

unchanged but increases the objective (8) by δβ
(

1
β
− 1
)
ε > 0. This is because the ob-

jective function evaluates consumption from the perspective of self 1, whereas the IC (11)

evaluates it according to self 2’s preferences. Since the agent is present biased, shifting

consumption into the future while keeping his self-2 utility constant increases his utility

from the perspective of self 1. Therefore, the solution of the program shifts as much con-

sumption as possible to the last period: c2(B) = 0.

To summarize, the consumer thinks he will pick the baseline option. Since he under-

estimates the present bias of his time-2 self, the baseline provides as little consumption

as possible in period 2 in return for higher future consumption. The firm accepts to offer

higher consumption in the future because it knows that the consumer’s future selves will not

pick the baseline. Instead, the firm offers an alternative option that induces the consumer’s

future self to switch.

With more than 4 periods, the consumer initially thinks that he will follow the option

path (B,B, ..., B). The firm designs the options to induce him to keep switching to the

alternative. Because each future self is more present biased than the consumer anticipates,

the cheapest way to induce switching from (B,B, ..., B) to (A,B, ..., B) is to postpone

the reduction in consumption from period 2 to period 3. The switching decision is made

by the period-2 self, which discounts the future starting at period 3 by an additional β.

Then, in period 3, the alternative option needs to again induce the agent to switch from
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(A,B,B, ..., B) to (A,A,B, ..., B), which is done by postponing the reduction in con-

sumption into period 4. That decision is made by the period-3 self, which discounts the

future starting at period 4 by an additional β. This argument proceeds until we reach pe-

riod T − 1, when the consumer can no longer push the reduction in consumption further

into the future. Since there is only one period left, consumer and firms can no longer dis-

agree about when the reduction in consumption will happen. Thus, on the equilibrium path

(A,A..., A), the factor β only applies to the last period. Intuitively, each self postpones

the reduction in consumption one period into the future (by choosing the alternative option

rather than the baseline) until the last period.

Recall that we used the binding ICs – equations (11) and (13) – and equation (17)

to eliminate the baseline options from the auxiliary program. Substituting the solution

of the auxiliary program back in these equations, we can recover the baseline options.

Since neither the auxiliary program nor these equations depend on the consumer’s naiveté

parameter, it follows that, in equilibrium, both the baseline and the alternative options are

not functions of β̂.

Corollary 1. There exists a perception-perfect equilibrium that does not depend on the

consumer’s naiveté β̂ ∈ (β, 1]. Moreover, any perception-perfect equilibrium has the same

consumption path, which is continuous in β ∈ (0, 1].

2.2.3 Vanishing Inefficiency

We now use Lemma 2 to obtain our main result. Let W I
T denote the equilibrium welfare

of the time-inconsistent consumer, which evaluates the consumption path according to the

agent’s long-run preferences (2), and recall that WC
T is the welfare of a time-consistent

consumer. Since the time-consistent consumer maximizes welfare, the welfare loss from

dynamic inconsistency is WC
T −W I

T ≥ 0.

Theorem 1. Suppose u is bounded and δ < 1. Then, limT↗+∞
(
WC
T −W I

T

)
= 0.

The theorem states that the welfare loss from dynamic inconsistency converges to zero
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as the contracting length grows. The assumption that u is bounded and δ < 1 ensures that

the discounted welfare converges.11

Recall that the only inefficiency from time inconsistency is underweighting the last

period. Because the effect of the last period vanishes as the number of periods grows,

the solution of the auxiliary program converges to the equilibrium consumption with time-

consistent consumers as T ↗ +∞. So, even though the time-inconsistent consumer does

not maximize his welfare function and has incorrect beliefs, in any equilibrium, he obtains

approximately the maximum welfare possible if the number of periods is large. In fact, it is

precisely the fact that the agent has incorrect beliefs that causes the inefficiency to vanish,

since the optimal way to exploit the agent’s naiveté is to offer contracts that postpone the

reduction in consumption until the last period. In Online Appendix D, we show that the

inefficiency does not vanish when the consumer is sophisticated.

3 Extensions and Limitations

3.1 One-Sided Commitment

We now assume that consumers cannot commit to long-term contracts. As argued in the

introduction, this type of one-sided commitment is common in many markets, including

life insurance, long-term care, annuities, mortgages, and car loans. Moreover, regulations

that allow consumers to terminate agreements at will are often motivated by an attempt to

protect them. However, in standard models, removing a rational consumer’s commitment

power can only hurt the consumer.

Our setting is a natural candidate for studying the effect of regulating commitment

power, because committing to future actions and lapsing on previous agreements are inher-

ently intertemporal decisions, and present bias is the most well-studied bias in intertempo-

ral decision-making. Moreover, there is evidence that present bias is an important feature

11Along with δ < 1, assuming bounded utility is sufficient to ensure that discounted welfare converges, but
can be substantially relaxed. When the discounted welfare does not converge, similar results can be obtained
using other criteria (see Subsection 3.5).
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in some credit markets where regulation prevents consumers from being able to commit to

long-term contracts, such as in mortgage or credit card markets.12

We keep the assumption that the consumer has all bargaining power and model one-

sided commitment as follows. The consumer offers a contract in each period. If a firm has

accepted a contract, the consumer decides whether to keep it or replace it with a new one.

If multiple firms accept a contract, the consumer picks each of them with some positive

probability.13

3.1.1 Benchmark: Time-Consistent Consumers

Consider first the benchmark case of a time-consistent consumer. With one-sided commit-

ment, the consumer can freely switch to a new contract (“lapse”) as long as he can find a

firm willing to provide such contract. To obtain the equilibrium consumption, there is no

loss of generality in restricting attention to contracts in which the consumer never lapses.14

Therefore the equilibrium consumption must satisfy non-lapsing constraints, which require

that the consumer’s outside option at any state does not exceed the value from keeping the

original contract.15

12See Schlafmann (2016), Ghent (2011) and Atlas et al. (2017) for evidence of present bias in mortgage
markets, and Meier and Sprenger (2010) for credit card markets. Our equilibrium pattern of repeatedly
postponing repayments is broadly consistent with the findings from Carter et al. (2017) on payday loans.
See also Sulka (2020), who calibrates a model of retirement saving and finds that present bias lowers the
representative household’s pension wealth by 10%.

13In this formulation, the only cost of walking away from a contract are the forgone payments made into
that contract. This assumption is appropriate to insurance settings, where policyholders are allowed to drop
coverage at no additional cost by stopping to pay their premiums (see Hendel and Lizzeri 2003; Handel et al.
2017). In some markets (such as mortgages or car loans), the cost also includes the loss of the collateral,
whereas in others there are also reputational costs. With present-biased preferences, the timing of these costs
matters. For example, with immediate costs, a naive consumer may think he will incur the cost and leave,
but end up deciding not to. With delayed costs, a naive consumer may think he will not walk away from a
contract, but end up doing so.

14To see this, consider an equilibrium in which the consumer lapses in some state of the world, replacing
the original contract with a contract from another firm. Since the other firm cannot lose money by offering
this new contract, the old firm could have accepted a contract that substituted the terms of the old contract
from this period on with the terms of the new contract, and the consumer would have remained with the old
firm.

15When a non-lapsing constraint binds, there are also equilibria in which the consumer lapses and recon-
tracts with another firm. These equilibria are equivalent to the one with no lapsing in the sense that the
consumer obtains the same consumption and all firms make the same profits.
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The outside option at state sτ is defined by the recursion:

V C(sτ ) ≡ max
{c(st)}

u (c(sτ )) + E

[∑
t>τ

δt−τu (c (st))

∣∣∣∣∣ sτ
]
, (19)

subject to
T∑
t=τ

E

[
w (st)− c (st)

Rt−τ

∣∣∣∣ sτ] = 0, (20)

and

u (c(sτ̃ )) + E

[∑
t>τ̃

δt−τ̃u (c (st))

∣∣∣∣∣ sτ̃
]
≥ V C(sτ̃ ), ∀sτ̃ with p(sτ̃ |sτ ) > 0. (21)

Equation (20) is the zero-profits condition and (21) is the non-lapsing condition of the new

contract. The equilibrium consumption with one-sided commitment solves this program at

period 1.

While one can use program (19)-(21) to obtain the equilibrium consumption by back-

ward induction, there is an easier approach when the consumer is time consistent. Consider,

instead, the program that replaces non-lapsing constraints by the requirement that, at each

point in time, the expected future income cannot exceed the expected future consumption:∑
t≥τ

E

[
w (st)− c (st)

Rt−τ

∣∣∣∣ sτ] ≤ 0, ∀sτ . (22)

We refer to (22) as front-loading constraints. Contracts satisfying (20) and (22) cannot

have negative accumulated profits at any time, so the consumer initially overpays the firm

and is repaid later. This overpayment discourages the consumer from switching contracts.

In general, front-loading constraints are weaker than non-lapsing constraints: if the

continuation contract gave positive expected profits at some state, a consumer would be

able to increase his utility by replacing it with another contract that gives zero profits. When

consumers are dynamically consistent, however, maximizing (19) subject to either (20) and

(21) or (20) and (22) gives the same solutions.16 Since (19) is a strictly concave function

16To see this, suppose a solution to the program subject to (20) and (22) did not satisfy the non-lapsing
constraints (21). Then, there would exist a continuation contract that gives zero profits while increasing the
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and (20) and (22) are linear constraints, consumption is the same in any equilibrium of the

game.

3.1.2 Time-Inconsistent Consumers

We now turn to the more interesting case of a time-inconsistent consumer. As with time-

consistent consumers, the equilibrium with one-sided commitment must satisfy non-lapsing

constraints. Yet, because the parties may disagree about which options will be chosen, we

need to distinguish between non-lapsing constraints according to the beliefs of the con-

sumer and the beliefs of firms. Equilibrium requires both of them to hold. To write down

these constraints, we first define the outside options recursively.

The actual outside option at state sτ given option history hτ is the highest utility that

the consumer can obtain at that state:

V I(sτ ) ≡ max
{c(st,htτ )}t≥τ

u (c(sτ , h
τ
τ )) + βE

[∑
t>τ

δt−τu (c(st, (h
τ
τ , B, ..., B)))

∣∣∣∣∣ sτ
]
,

subject to (PC), (IC), the zero-profits constraint

E

[∑
t≥τ

w(st)− c(st, (hττ , A,A, ..., A))

Rt−τ

∣∣∣∣∣ sτ
]

= 0, (23)

and the non-lapsing constraints

u
(
cτ (sτ̃ , (h

τ̃−1
τ , A))

)
+ βE

[∑
t>τ̃

δt−τ̃u
(
c(st, (h

τ̃−1
τ , A,B, ..., B))

)∣∣∣∣∣ sτ̃
]
≥ V I(sτ̃ ), (24)

u
(
cτ (sτ̃ , (h

τ̃−1
τ , B))

)
+ β̂E

[∑
t>τ̃

δt−τ̃u
(
c(st, (h

τ̃−1
τ , B,B, ..., B))

)∣∣∣∣∣ sτ̃
]
≥ V̂ I(sτ̃ ), (25)

for all sτ̃ following sτ and all hτ̃τ that are continuation histories of hτ , where V̂ is the

“perceived outside option,” which we define next.

The perceived outside option at state sτ given option history hτ is the highest utility

consumer’s continuation utility. Substituting the original continuation contract by this new one would then
increase the consumer’s utility while giving non-negative profits at t = 1, contradicting the optimality of the
original contract.
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that the consumer believes he will be able to achieve at that state:

V̂ I(sτ ) ≡ max
{c(st,htτ )}t≥τ

u (cτ (sτ , h
τ
τ )) + β̂E

[∑
t>τ

δt−τu (c(st, (h
τ
τ , B,B, ..., B)))

∣∣∣∣∣ sτ
]
,

subject to (PC), (IC), zero profits (23), and the non-lapsing constraints (24)-(25).

The equilibrium program with one-sided commitment (P’) adds the non-lapsing con-

straints to the program with two-sided commitment (P):

max
c(st,ht)

u(c(s1)) + βE

[
T∑
t=1

δt−1u(c(st, (B,B, ..., B)))

]
,

subject to (Zero Profits), (PC), (IC), the actual non-lapsing constraints,

u
(
c(sτ , (h

τ−1, A))
)

+ βE

[∑
t>τ

δt−τu
(
c(st, (h

τ−1, A,B, ..., B))
)∣∣∣∣∣ sτ

]
≥ V I(sτ ), ∀sτ ,

(NL)

and the perceived non-lapsing constraints,

u
(
c(sτ , (h

τ−1, B))
)

+ β̂E

[∑
t>τ

δt−τu
(
c(st, (h

τ−1, B,B, ..., B))
)∣∣∣∣∣ sτ

]
≥ V̂ I(sτ ), ∀sτ .

(PNL)

It may seem counter-intuitive to impose perceived non-lapsing constraints, since they

are associated with histories that are off the equilibrium path. But equilibrium requires the

consumer to pick his optimal actions given how he thinks his future selves will behave. If

(PNL) did not hold, the consumer would not expect his future selves to choose the baseline

option, and so the solution of program (P’) would not be an equilibrium consumption.

Lemma 3. c is the consumption vector of a perception-perfect equilibrium of the one-sided

commitment model if and only if it solves program (P’).

3.1.3 Auxiliary Program and Vanishing Inefficiency

We now show that, as in the model with two-sided commitment, the consumption path

coincides with the equilibrium with a dynamically consistent agent who discounts the last
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period by an additional factor β. Since this agent is dynamically consistent, we can replace

the non-lapsing constraints by front-loading constraints (as in Subsection 2.1). Therefore,

the auxiliary program with one-sided commitment maximizes (7) subject to the zero-profits

(3) and front-loading (22) constraints. This program has a unique solution since the objec-

tive function is strictly concave and the constraints are linear.

Lemma 4. cE is the consumption path in a perception-perfect equilibrium of the one-sided

commitment model if and only if it solves the auxiliary program with one-sided commit-

ment.

The proof of the lemma is similar to the proof of Lemma 2 with one additional step, in

which we verify that the perceived non-lapsing constraints do not bind and can therefore be

ignored. This step is needed for us to remove baseline consumption from the equilibrium

program. The fact that PNL does not bind follows from two observations. First, PNL

depends on the individual’s perceived time-consistency parameter β̂, while non-lapsing

constraints depend on the true β. So, holding a consumption stream constant, NL implies

PNL. Second, because the individual saves more in the baseline than in the alternative

option, whenever future consumption in the alternative option is large enough to ensure

that the agent does not lapse, future consumption in the baseline option must also be large

enough to prevent lapsing.17

As in the case of two-sided commitment, Lemma 4 implies that the welfare loss from

dynamic inconsistency vanishes as the contracting length grows. Let W ′C
T and W ′I

T denote

the equilibrium welfare of time-consistent (Subsection 3.1.1) and time-inconsistent (3.1.2)

consumers, respectively.

Theorem 2. Suppose u is bounded and δ < 1. Then, limT↗+∞

(
W ′C

T −W ′I
T

)
= 0.

To understand the welfare effect of removing commitment power, we now compare the

equilibrium with one- and two-sided commitment. Recall that a time-inconsistent agent

gets the same consumption path as a dynamically consistent agent who under-weights the
17In the Supplementary Appendix, we also generalize Corollary 1 to the one-sided commitment model.
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last period by an additional factor β. Commitment power allows him to smooth consump-

tion in the first T − 1 periods while leaving too little consumption for the last period. This

underconsumption in the last period is large when the consumer is sufficiently time in-

consistent (β is low), in which case the last period consumption is close to zero. So, if

underconsuming in the last period hurts the agent enough and β is low, the agent is better

off without commitment.18

As the contracting length grows, however, the relative weight of the last period shrinks

making it increasingly difficult for the time-inconsistent consumer to obtain higher welfare

without commitment. In fact, it follows from Theorems 1 and 2 that removing commitment

power cannot increase welfare if the contracting length is large enough. To see this, recall

that a time-consistent consumer with commitment power maximizes welfare subject to

zero profits. Removing commitment power is equivalent to introducing front-loading con-

straints, so his welfare with one-sided commitment cannot be higher. But, since the welfare

of time-inconsistent consumers converges to the welfare of the time-consistent consumer,

the same must be true for time-inconsistent consumers when T is large.

To summarize, while removing commitment power can help present-biased consumers

when the contracting horizon is small, it cannot help when the horizon is large.

3.2 Market Power

Our previous analysis assumes that the consumer had all the bargaining power. We now

consider the case in which the bargaining power is on the firm’s side. Since the firm can

commit to a long-term contract, there is no loss of generality in assuming that the firm

makes a take-it-or-leave it offer to the consumer at time 1. If the consumer rejects the

firm’s offer, he gets c ≡ {c(st) : st ∈ St, t = 1, ..., T}. This is the consumer’s outside

option, that is, his best way to smooth consumption if he turns down the firm’s offer.19 The

18See the supplementary appendix for a formal statement and proof.
19Specifying an outside option in terms of consumption rather than a reservation utility makes the compar-

ison between the allocations of individuals with different utility functions (in this case, time-inconsistent and
time-consistent individuals) more transparent.
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consumer accepts the firm’s offer if and only if his perceived utility from the contract is

weakly higher than the perceived utility from the outside option.

We assume that, for all T , the expected NPV of the agent’s income is bounded and

exceeds the NPV of his outside option:

E
T∑
t=1

c(st)

Rt−1 ≤ E

T∑
t=1

w(st)

Rt−1 < K, (26)

for someK > 0. The inequality on the left in (26) ensures that the firm can find a profitable

contract that the agent accepts, whereas the one on the right ensures that the expected NPV

of income converges as the horizon T goes to infinity. We also assume that the outside

option provides positive consumption in at least one state after the first period:20

c(st) > 0 for some st with t > 1 and p(st|∅) > 0. (27)

Conditions (26) and (27) ensure that there exists a non-trivial solution to the firm’s program.

Let ŴC
T (c) and Ŵ I

T (c) denote the equilibrium welfare of time-consistent and time-

inconsistent consumers, respectively, and let ΠC
T (c) and ΠI

T (c) denote the firm’s equilib-

rium profit when the consumer is time consistent and time inconsistent. Picking different

outside options for a time-consistent consumer (who maximizes welfare), we obtain differ-

ent points on the Pareto frontier. Formally, let PT ≡ {(ŴC
T (c′),ΠC

T (c′))}∀c′ denote the set

of consumer welfare and firm profits on the Pareto frontier. Let P∞ ≡ limT↗+∞PT denote

the limit of the Pareto frontier as the contracting horizon grows.

The theorem below presents the vanishing inefficiency result when the bargaining power

is on the firm’s side:

Theorem 3. Suppose u is bounded and δ < 1. Then:

1. limT↗+∞(Ŵ I
T (c),ΠI

T (c)) ∈ P∞,
20If condition (27) fails, the outside option provides all consumption in the first period, which gives the

same utility to naive and time-consistent consumers. In that case, in equilibrium, the agent will get the
same perceived consumption as his outside option in all but the last period. Then, as the horizon grows, the
equilibrium welfare of naive and time-consistent consumers will converge to the same point. That is, when
the agent’s outside option only pays in the first period, firms are be unable to “exploit” consumers (as will be
shown in Theorem 3).
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2. limT↗+∞ Ŵ
I
T (c) < limT↗+∞E

[∑
t≥1 δ

t−1u(c(st))
]
, and

3. limT↗+∞ΠI
T (c) > limT↗+∞ΠC

T (c).

Part 1 states that the equilibrium converges to an efficient allocation. However, un-

like when the bargaining power is on the consumer’s side, the limit is different from the

equilibrium of a time-consistent consumer with the same outside option. The consumer’s

welfare converges to a point below his opportunity cost, which is the equilibrium welfare

of a time-consistent consumer (Part 2), whereas the firm’s profits converge to a point above

what it would get if the consumer were time consistent (Part 3). Since the consumer has

incorrect beliefs about his future choices, he overestimates the value of the contract. The

firm then “exploits” the consumer’s naiveté, giving him a welfare below his outside option

and obtaining greater profits than it would get if the consumer maximized his long-run

preferences.

3.3 Consumer Heterogeneity

In Section 2, we assumed that firms know the consumer’s preferences. We now briefly de-

scribe what happens if firms do not know either the consumer’s naiveté or time-consistency

parameters. For a formal analysis, see Online Appendix A.

3.3.1 Unknown Naiveté

When firms do not know the consumer’s naiveté, all consumers get their full-information

contracts in any equilibrium. Suppose first that all consumers are naive and recall that

the naive consumer’s full-information contract does not depend on his naiveté (Corollary

1). Then, all consumers receive the same contract and their welfare loss vanishes as the

contracting horizon grows (as in Theorem 1).

Next, suppose there are also sophisticated consumers. Although naive and sophisticated

consumers have different full-information contracts, neither of them prefers someone else’s

contract. When faced with the naive consumer’s full-information contract, a sophisticated
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consumer understands that his future selves will pick the alternative options. Therefore,

he prefers his full-information contract, which does not give flexibility to his future selves.

Because naive consumers think they will stick with the baseline, they have a higher per-

ceived utility from their own full-information contract. Then, the welfare loss from time

inconsistency vanishes for all naive consumers as the contracting horizon grows (but not

for sophisticated ones).

3.3.2 Unknown Time Inconsistency

Suppose now that the firm does not know the consumer’s time-consistency parameter

β ∈ (0, β̂]. Note that the model allows some consumers to be sophisticated (when β̂ < 1)

or time consistent (β̂ = 1). When the contracting horizon is large enough, there is no equi-

librium in which multiple consumers get their full-information contracts. If multiple con-

sumers received their full-information contracts, the more time-consistent of them would

pick another consumer’s full-information contract and choose the baseline rather than the

alternative option. The firm offering this contract would lose money, since baseline options

are unprofitable decoys not meant to be chosen on the equilibrium path.

In the only equilibrium that survives the D1 criterion, consumers get the “least costly

separating allocation.” In this allocation, only the most time-consistent consumer gets his

full-information contract when the horizon is large. All other contracts are distorted to pre-

vent deviations by more time-consistent consumers, making them save less than with full

information. Moreover, this informational inefficiency does not vanish as the contracting

horizon grows. In particular, when there is a time-consistent consumer (β̂ = β = 1), he

is the only one who receives an efficient contract. When there is a sophisticated consumer

(β̂ = β < 1), no consumer gets an asymptotically efficient contract (since the welfare loss

of sophisticates does not vanish).

To summarize, with heterogeneous naiveté parameters, consumers receive their full-

information contract in any equilibrium, and the welfare loss from time inconsistency van-

ishes as the horizon grows. On the other hand, with heterogeneous time-consistency pa-
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rameters, only the most time-consistent consumer receives his full-information contract.

Because firms worry that consumers will pick the contracts designed for more present-

biased consumers and stick with the baseline, less time-consistent types get an allocation

with insufficient savings, and this informational inefficiency persists as the horizon grows.

3.4 Non-Exclusive Contracts

In Section 2, we assumed that the consumer cannot simultaneously contract with multiple

firms (i.e., contracts are exclusive). While, in Subsection 3.1 we allowed consumers to

drop contracts and recontract with other firms, we kept the exclusivity assumption. This is

a reasonable assumption in markets such as auto, property, or health insurance, where the

consumer cannot be reimbursed by multiple insurers for the same loss. In some other mar-

kets, such as credit cards or life insurance, consumers are able to simultaneously contract

with multiple firms – i.e., contracts are not exclusive. We now describe the equilibrium

with non-exclusive contracts (see Online Appendix B for all formal results).

With non-exclusivity, firms cannot add unprofitable options that naive consumers think

they will choose but end up not choosing. If offered the contract from Section 2, for ex-

ample, the consumer would borrow from another firm to finance the fees specified in the

baseline. Therefore, equilibrium contracts must make zero profits both along the equilib-

rium path and the consumer’s perceived path. Moreover, consumers are able to undo any

previous commitment.

Formally, we establish an equivalence between this model and a consumption-savings

problem with no illiquid assets. The consumer is endowed with the expected PDV of in-

come at the start. The only asset available is a risk-free bond that pays a gross return R.

The consumer chooses how much to save in each period. The perception-perfect equilib-

rium is obtained by backward induction taking into account how much each self thinks that

his future selves will save. This consumption-savings problem corresponds to a benchmark

case in which there are no commitment devices: savings in each period are decided by the
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individual’s current self given his incorrect beliefs about his future choices.21

The equilibrium with non-exclusive contracts is inefficient both because firms do not

provide commitment devices and because the individual has mistaken beliefs about his

future choices. It is straightforward to construct uniform bounds on consumer welfare in

this model, so the vanishing inefficiency result fails to hold.

3.5 General Discounting Functions

So far, we have assumed that consumers have quasi-hyperbolic discounting, which is the

most standard model of present bias. With quasi-hyperbolic discounting, there is a stark

distinction between now and the future. While, in each period, the individual has a higher

preference for consumption in that period, he agrees with his previous selves on how to

compare consumption in any two periods in the future. Psychologists have proposed a

different model of present bias, based on a hyperbolic functional form. With hyperbolic

discounting, the individual becomes gradually more impatient as a period approaches.

In this subsection, we consider the model from Section 2 with general present-biased

preferences. To simplify exposition, we assume that the consumer has a constant income

w in each period. At time τ , the agent evaluates a consumption stream {ct}t≥τ according

to the separable representation:
T∑
t=τ

Dt−τu(ct), (28)

where the discount factor Dt > 0 is strictly decreasing in t and D0 = 1.

It is well known that preferences represented by (28) are time consistent if and only

if Dt = Dt
1 (i.e., discounting is exponential). We assume, instead, that preferences are

present biased:
Dt+2

Dt+1

≥ Dt+1

Dt

, (29)

for all t = 0, 1, ..., with strict inequality for at least one t. Present bias means that the in-

21As pointed out by Laibson (1997) and Bisin et al. (2015), investing in illiquid assets is a way for individ-
uals to commit to a path of consumption.
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dividual becomes (weakly) more impatient as a period approaches, with at least one period

in which she becomes strictly more impatient.22 With quasi-hyperbolic discounting, (29)

holds as an equality in all but the first period, whereas the inequality is strict in all periods

with hyperbolic discounting.

Let (D̂1, D̂2, · · · ) denote the agent’s beliefs about the discount factor of his future

selves, where as before we normalize D̂0 = 1. A sophisticated agent knows that his future

selves will have the same discount factor as he has: D̂t = Dt for all t. A naive consumer

underestimates the present bias of his future selves:

D̂t+1

D̂t

≥ Dt+1

Dt

for all t = 0, 1, ... with strict inequality for at least one t. Note that, with quasi-hyperbolic

discounting, this inequality becomes the usual condition: β̂ > β.

The next proposition generalizes Lemma 2, characterizing the consumption path as the

solution to a simpler auxiliary program:

Proposition 1. The consumption path of a naive agent coincides with the equilibrium of

an agent with utility function:

u(c1) +
DT−1

DT−2
u(c2) +

DT−1

DT−3
u(c3) + · · ·+ DT−1

D1

u(cT−1) +DT−1u(cT ). (30)

To understand the coefficients in equation (30), consider the case of four periods and

no uncertainty as in Figure 1. For simplicity (and without loss of generality), let u(0) = 0.

The IC constraints are:

u(c2(A)) +D1u(c3(A,B)) +D2u(c4(A,B)) ≥ u(c2(B)) +D1u(c3(B,B)) +D2u(c4(B,B)),

u(c3(A,A)) +D1u(c4(A,A)) ≥ u(c3(A,B)) +D1u(c4(A,B)).

As in the sketch of the proof of Lemma 2, the baseline option shifts all intermediate con-

22See Prelec (1989) and DeJarnette et al. (2020). Note that (29) holds as an equality for all t if and only if
the discount function is exponential, so preferences are time consistent.
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sumption to the last period:

c2(B) = c3(B,B) = c3(A,B) = 0. (31)

Intuitively, because of present bias, self 1 benefits by shifting consumption to the future at

a rate that keeps his future selves indifferent (thereby preserving incentive compatibility).

Both ICs must bind (otherwise, the agent would benefit from increasing his baseline

consumption). Substituting (31) in the binding ICs and reorganizing terms to eliminate

c4(A,B), we obtain:

u(c2(A))

D2

+
u(c3(A,A))

D1

+ u(c4(A,A)) = u(c4(B,B)). (32)

Equation (32) specifies the period-2 utility needed to convince the agent to switch from the

baseline. Since self 2 discounts consumption in the last period by D2, for each increase

in the last-period perceived utility u(c4(B,B)), the firm must either raise u(c2(A)) by 1
D2

,

u(c3(A,A)) by 1
D1

, or u(c4(A,A)) by 1. But because the time-1 self discounts last-period

utility by D3, we must multiply these terms by D3 to obtain the consumer’s perceived

utility at the time of contracting as a function of the alternative options chosen by his future

selves. More generally, the coefficients in the objective function (30) are the ratio between

how the period-1 self and the period-t self value consumption in the last period. These

discount rates appear because the contract needs to convince each future self to switch

to the alternative, rather than sticking to the baseline and waiting until the last period to

consume.

Comparing the coefficients in (30) with the agent’s discount factor Dt, we find that the

equilibrium program assigns a lower weight on first-period consumption than the agent’s

utility function. The need to convince future selves to switch requires offering alternative

options that take the consumer’s future preferences into account. Since a sophisticated

consumer would maximize self-1’s utility subject to zero profits, it follows that a naive

consumer always saves more than a sophisticate in the first period.23

23See the supplementary appendix for a formal proof.
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Proposition 1 sheds light on how the shape of the discount function determines the

equilibrium. With quasi-hyperbolic discounting, (7) and (30) coincide. The example below

considers a generalization of quasi-hyperbolic discounting, which allows the immediate

future to be treated differently than a more distant future:

Example 1. Consider a consumer with discount function D1 = βδ and Dt = βγδt for

t ≥ 2, where 0 < β ≤ γ ≤ 1 and δ ∈ (0, 1). The consumer believes that in future

periods, he will behave as someone with parameters β̂ ≥ β and γ̂ ≥ γ, with at least one

of these two inequalities strict (so the consumer is naive). Note that this model reduces to

quasi-hyperbolic discounting when γ = γ̂ = 1.

From Proposition 1, the equilibrium consumption path maximizes:

T−2∑
t=1

δt−1u(ct) + γδT−2u(cT−1) + βγδT−1u(cT ),

subject to zero profits. Here, present bias leads to the underweighting of consumption in

the last two periods, with the last period being more distorted than the previous one. By

the same argument as in Theorem 1, the inefficiency from present bias vanishes as the

contracting horizon grows.

As the previous example illustrates, the vanishing inefficiency result generalizes to

smoother versions of quasi-hyperbolic discounting. We now turn to the case of hyperbolic

discounting:

Dt =
1

1 + kt
, (33)

where k ≥ 0 is the “time-inconsistency parameter.” The agent is time consistent if k = 0

and time inconsistent if k > 0. A naive agent has time-inconsistency parameter k > 0 but

believes that, in the future, he will behave as an agent with time-inconsistency parameter

k̂ ∈ [0, k).

To understand the key difference between hyperbolic and quasi-hyperbolic discounting,

consider how an individual discounts between periods t and t + 1. With quasi-hyperbolic

discounting, one util in t + 1 periods is worth the same as Dt+1

Dt
= δ utils in t periods for
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any t > 0. With hyperbolic discounting, one util in t + 1 periods is worth Dt+1

Dt
= 1+kt

1+k(t+1)

in t periods, which is increasing and converges to 1 as t goes to infinity. That is, with

hyperbolic discounting, the cost of waiting an additional period decreases as periods get

further into the future. Moreover, waiting an additional period is virtually costless as long

as that period happens far enough in the future.

Richer discount factors, such as hyperbolic, introduce two complications that are absent

in exponential or quasi-hyperbolic discounting. First, the welfare criterion is not obvious

when all selves disagree about how to discount the future. Second, the sum of discounted

utility typically does not converge as the horizon grows. For example, with hyperbolic

discounting, the discounted sum of any constant per-period utility u(c̄) > 0 diverges:

lim
τ↗+∞

τ∑
t=0

1

1 + k · t
u(c̄) = +∞.

To deal with these issues, we adopt the limit-of-means criterion. Let WH
T (c) ≡ u(c1) +

u(c2) + · · · + u(cT ) denote the welfare from consumption stream c = (c1, ..., cT ). This

welfare function corresponds to the utility of an individual evaluating outcomes from a

sufficiently distant past.24

From Proposition 1, the naive agent’s consumption path maximizes

u(c1) +
1 + (T − 2)k

1 + (T − 1)k
u(c2) +

1 + (T − 3)k

1 + (T − 1)k
u(c3) + · · ·+ 1

1 + (T − 1)k
u(cT ), (34)

subject to zero profits. Since, for any fixed k, limT↗∞
DT−1

DT−t
= limT↗∞

1+(T−t)k
1+(T−1)k = 1, the

objective function (30) converges to the undiscounted sum.

Let cH ≡ (cH1 , · · · , cHT ) denote the consumption path of a naive agent, and let c∗ ≡

(c∗1, · · · , c∗T ) denote the equilibrium consumption for time-consistent agents (k = 0). Note

24With quasi-hyperbolic discounting, the only disagreement between selves concerns immediate consump-
tion, which a person disapproves of at every other moment in the person’s life. Because of this, most of the
literature takes the agent’s long-run preferences as the relevant welfare criterion (see footnote 7). We do
not claim that, with hyperbolic discounting, undiscounted payoffs are the only normatively justifiable welfare
measure. A common alternative approach is to treat each self as a different person and adopt a Pareto optimal-
ity criterion. Unfortunately, the incompleteness of the Pareto relation often makes this criterion excessively
weak, especially when disagreement between selves is more pronounced.
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that time-consistent agents maximize the welfare function WH
T . We write W ∗

T = WH
T (c∗)

and WH,I
T = WH

T (cH) for the equilibrium welfare of time-consistent and time-inconsistent

agents, respectively.

We make the following technical assumption:

Assumption 1. The utility function satisfies lim supξ↗+∞
(u′(ξ) log(u′(ξ)))2

|u′′(ξ)| < +∞.

Assumption 1 says that u′′(·) does not go to zero too quickly as consumption grows. It

is satisfied, for example, by any CARA preference.25 The proposition below presents the

convergence result for consumers with hyperbolic discounting:

Proposition 2. Suppose Assumption 1 holds, u is bounded, and limc↘0 u
′(c) = +∞. Then,

lim
T↗+∞

WH,I
T −W ∗

T

T
= 0.

3.6 Effort

We have previously focused on contracts over consumption. In many applications, parties

contract over effort rather than money. This subsection shows that the predictions of the

model are remarkably different when contracting over effort.

Consider an agent who needs to complete a task in at most T ≥ 3 periods. In each

period t ∈ {1, ..., T}, the agent exerts effort et at a cost of C(et). The cost of effort

C : R+ → R+ is increasing, continuous, convex, and satisfies C(0) = 0. Completing the

task requires a total effort of at least ET > 0, so the agent faces the constraint:

T∑
t=1

et ≥ ET . (35)

For concreteness, we can think of effort as hours worked and ET as the time it takes to

complete the task. We hold the task fixed for simplicity here, although it is straightforward

to add an ex-ante stage in which the task is chosen, making ET endogenous.

25Assumption 1 holds for any CRRA utility with risk aversion greater than 1 and, more generally, for any

HARA utility, u(c) = γ
1−γ

(
a
γ c+ b

)1−γ
, with γ > 1.
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To highlight the role of the discount function, we consider the general setting from Sub-

section 3.5. As in that subsection, we assume that the firm knows the agent’s preferences,

that the agent has all bargaining power, and that parties can commit to long-term contracts.

Firms accept an effort plan as long as they believe that the task will be completed. A

sophisticated agent chooses an effort plan (e1, ..., eT ) that minimizes his discounted cost:

T∑
t=1

Dt−1C(et)

subject to (35). The next proposition characterizes the effort path of a naive agent:

Proposition 3. The effort path of a naive agent coincides with the equilibrium of a time-

consistent agent with discount factor D̃t = Dt
1.

Note that the time-consistent agent in the auxiliary program in Proposition 3 has expo-

nential discounting. Since he uses the one-period rate of a present-biased discount function,

(29) implies that he acts more impatiently than a sophisticated agent, who uses his true dis-

count factor {Dt}. In particular, with quasi-hyperbolic discounting, the auxiliary program

has discount factor D̃t = (βδ)t < βδt. Therefore, not only does the inefficiency from

present bias persist, but the naive agent acts even less patiently than a sophisticated agent.

Instead of maximizing his long-run preferences, the agent perpetually chooses according

to his short-run preferences.

Recall from Proposition 1 that in the consumption model, firms exploit naive agents by

offering a baseline option that postpones consumption until the last period. At the time of

contracting, self 1 uses the long-run discount factor DT−1 to decide how much to consume

now and how much to leave to the last period. Then, each of his future selves deviates from

the baseline, effectively bringing some of this future consumption to the present. Since the

t-period’s self discounts last-period utility by DT−t, the auxiliary program assigns weight
DT−1

DT−t
to actual consumption in period t < T . In particular, this weight equals δt−1 when

the agent has quasi-hyperbolic discounting.

With effort, the way to exploit naiveté is to offer a baseline option that requires zero
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effort after period 2. When designing the contract, self 1 uses the one-period discount

factor D1 to decide how much effort to exert immediately and how much to leave to period

2. Then, each of his future selves deviates from the baseline, effectively postponing some

effort into the following period, while thinking that he will not exert any effort afterwards.

Since, each self decides how much effort to do immediately and how much to leave to

the following period, along the equilibrium path, effort costs are discounted using the one-

period discount rate: D̃t = Dt
1.

More generally, with pleasant tasks (such as consumption), naive agents are exploited

by offering a baseline that postpones these tasks far into the future, making them act more

in line with their long-run discount factors. With unpleasant tasks (such as effort), they are

exploited by offering a baseline that concentrates all future effort in the next period, making

them act according to their short-run discount factors. This explains why the equilibrium

converges to the one that maximizes their long-run preferences in the former but maximizes

their short-run preferences in the latter.26

4 Conclusion

In this paper, we study contracting between firms and present-biased consumers. Our main

result is that the welfare loss from present bias vanishes as the contracting horizon grows.

Recall that the equilibrium does not depend on the consumer’s naiveté parameter as

long as the consumer is partially naive (β̂ > β) but jumps discontinuously as the consumer

becomes sophisticated (β̂ = β). But for sophisticated agents, the welfare loss from present

bias does not vanish as the horizon grows. Therefore, when T is large, the consumer’s

welfare jumps downwards at β̂ = β, meaning that the consumer is harmed by learning his

true present bias. This finding contrasts with a general intuition that educating behavioral

individuals about their biases would increase their welfare.
26This observation is related to Kőszegi (2005) and Gottlieb (2008), who find that, with 3 periods and

non-exclusive contracts, there is an asymmetry in the market’s ability to provide commitment for goods with
immediate benefits and delayed costs and those with immediate costs and delayed benefits.
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Learning one’s present bias in our model is hard. First, starting from any belief about

the time-consistency parameter (captured by the naiveté parameter β̂ > β), local updates

do not affect the equilibrium choices or payoffs.27 Second, because consumers who know

their true time-consistency parameter get a lower welfare, there are no incentives to learn.

Note also that under the conditions of Theorem 1, adding restrictions to the space of

contracts cannot benefit consumers if the contracting horizon is long. Under those condi-

tions, enforcing long-term contracts may be enough to ensure efficiency. We studied one

particular restriction: removing commitment power from consumers. Other examples of

regulations that try to protect consumers include limiting the fees that firms can charge and

allowing consumers to pull out of a contract under certain conditions.

The vanishing inefficiency result generalizes to when the bargaining power is on the

firm’s side or when firms do not know the consumer’s naiveté. However, it breaks down

when firms do not know the consumer’s present bias or when they cannot offer exclusive

contracts. When firms do not know the consumer’s present bias, firms face an adverse

selection problem and the equilibrium consumption corresponds to the least costly sep-

arating allocation, in which all but the most time-consistent type undersave. When they

cannot offer exclusive contracts, the equilibrium fails to provide any commitment devices.

Finally, when contracting over unpleasant rather than pleasant tasks (such as effort instead

of consumption), the equilibrium path caters to naive agents’ short-run rather than long-run

preferences, exacerbating instead of dissipating the inefficiency from present bias.

27The consumption path is discontinuous in the agent’s naiveté, with “almost sophisticated” agents getting
the same consumption as any other naive agent (which is bounded away from the consumption of a sophis-
ticated agent). However, the consumption path is continuous in the agent’s time-consistency, so “almost
time-consistent” agents get approximately the same consumption as a time-consistent agent.
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Appendix: Selected Proofs

Proof of Theorems 1 and 2. We establish the result for one-sided commitment (Theorem

2). The two-sided commitment case (Theorem 1) is similar and, therefore, omitted.

For each β, let V A
T (β) denote the maximum value attained by the solution of the auxil-

iary program with one-sided commitment. Notice that the feasible set is independent of β.

When β = 1, the auxiliary program becomes the time-consistent agent’s program, so that

V A
T (1) = W ′C

T . Note that limT↗∞(W ′I
T − V A

T (β)) = limT↗∞(1− β)EδT−1u(c(sT )) = 0.

Since the objective function is linear in β, it follows from the Envelope Theorem that
∂V AT (β)

∂β
= EδT−1u (c(sT )) ≥ δT−1u (0). Applying Lagrange’s Mean Value Theorem gives

V A
T (1)− V A

T (β) =
∂V A

T

∂β
(β′) · (1− β) ≥ δT−1u(0)(1− β),

V A
T (β)− V A

T (0) =
∂V A

T

∂β
(β′′) · β ≥ δT−1u(0)β,
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where β′ ∈ (β, 1) and β′′ ∈ (0, β). Taking T to infinity leads to:

lim inf
T↗∞

(V A
T (1)− V A

T (β)) ≥ 0, lim inf
T↗∞

(V A
T (β)− V A

T (0)) ≥ 0.

To obtain the theorem, it suffices to show that:

lim sup
T↗+∞

[V A
T (1)− V A

T (0)] ≤ 0.

If this is true, we obtain limT↗∞(V A
T (1)− V A

T (β)) = 0. It then follows that

lim
T↗+∞

(W ′C
T −W ′I

T ) = lim
T↗∞

(V A
T (1)− V A

T (β)) + lim
T↗∞

(V A
T (β)−W ′I

T ) = 0.

Consider the auxiliary program with one-sided commitment when β = 0, which attains

maximum value V A
T (0). Let c0 ≡ {c0(st) : st ∈ St(s1), 1 ≤ t ≤ T} denote a solution

to this program. Since the objective function does not depend on c(sT ) when β = 0, the

solution has the lowest possible value for c(sT ) that still satisfies the constraints: c0(sT ) =

w(sT ). Substituting this equality back, we obtain the same program that determines the

consumption of a time-consistent agent with a contracting horizon consisting of the first

(T − 1) periods.

Let cC denote the equilibrium consumption of a time-consistent agent. Since cC is in the

feasible set, income cannot exceed consumption for any last-period state: cC(sT ) ≥ w(sT ).

Therefore, by revealed preference (V A
T (0) maximizes expected utility in the first T − 1

periods and uses weakly higher resources), we must have

V A
T (0) = E

∑T−1
t=1 δt−1u (c0(st))

≥ E
∑T−1

t=1 δt−1u
(
cC(st)

)
= V A

T (1)− δT−1Eu
(
cC(sT )

)
,

where the first line uses the definition of V A
T (0), the second line uses revealed preference,

and the third line uses the definition of V A
T (1). Since δ < 1 and u is bounded, we have

lim
T↗+∞

δT−1Eu
(
cC(sT )

)
= 0,
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which establishes that lim supT↗+∞[V A
T (1)− V A

T (0)] ≤ 0.

Proof of Theorem 3. Let P∞ ≡ limT↗+∞PT . We will use the following result, which is

proved in the supplementary appendix:

Claim 1. Suppose u is bounded and δ < 1. Then, P∞ exists.

For any outside option c, the equilibrium profit with time-consistent consumers solves:

ΠC
T (c) := max

{c(st)}
E

T∑
t=1

w(st)− c(st)
Rt−1 ,

subject toE
∑T

t=1 δ
t−1u(c(st)) ≥ E

∑T
t=1 δ

t−1u(c(st)).With time-inconsistent consumers,

the equilibrium profit is determined by:

ΠI
T (c) := max

{c(·)}
E

T∑
t=1

w(st)− c(st, A, · · · , A)

Rt−1 ,

subject to (IC), (PC), and

u(c(s1)) + βE
∑
t>1

δt−1u(c(st, B, · · · , B)) ≥ U,

where U ≡ u(c(s1)) + βE
∑

t>1 δ
t−1u(c(st)). Consider the following auxiliary program:

ΠT,β ≡ max
{c(st)}

E
T∑
t=1

w(st)− c(st)
Rt−1 , (A1)

subject to

E

[
T−1∑
t=1

δt−1u(c(st)) + βδT−1u(c(sT ))

]
≥ U ′. (A2)

We claim that the equilibrium consumption for time-inconsistent consumers must solve the

auxiliary program with U ′ = U + (1− β)u(0)(δ + · · · + δT−2). To establish this result, it

is helpful to work with the dual program for the time-inconsistent agents:

max
{ct(·)}

u(c(s1)) + βE
T∑
t=2

δt−1u(c(st, B, · · · , B)),
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subject to (IC), (PC), and

E

T∑
t=1

w(st)− c(st, A, · · · , A)

Rt−1 ≤ V I
T (c).

Note that V I
T (c) is the maximum profit to the firm when the consumer gets utility U . We can

now follow the same steps as in the proof of Lemma 2 to simplify (IC) and (PC), obtaining

the following program:

max
{c(st)}

E

[
T−1∑
t=1

δt−1u(c(st)) + βδT−1u(c(sT ))

]
+ (1− β)u(0)(δ + · · ·+ δT−2),

subject to E
∑T

t=1
w(st)−c(st)

Rt−1 ≤ ΠI
T (c).

Note that this is the equilibrium program of a dynamically consistent agent who dis-

counts the last period by an extra β. Therefore, the consumption path solves the auxiliary

program with

U ′ = U + (1− β)u(0)(δ + · · ·+ δT−2). (A3)

We now obtain the convergence result. Since that the participation constraints must be

binding both in the auxiliary program and in the program for time-consistent consumers,

we must have:

E

[
T−1∑
t=1

δt−1u(cA(st, U
′)) + βδT−1u(cA(sT , U

′))

]
= U ′,

where cA := (cA(s1, U
′), · · · , cA(sT , U

′)) denotes the equilibrium consumption in the aux-

iliary program. Omitting the dependence of cA on U ′ for notational simplicity, we have:

Ŵ I
T (c) = E

T∑
t=1

δt−1u(cA(st))

= E

[
T−1∑
t=1

δt−1u(cA(st)) + βδT−1u(cA(sT )) + (1− β)δT−1u(cA(sT ))

]
= U ′ + E

[
(1− β)δT−1u(cA(sT ))

]
, (A4)

where the first line uses the definition of Ŵ I
T (c), the second line comes from algebraic
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manipulations, and the third line comes from (A2). Choose an outside option, c′, for a

time-consistent consumer such that the time-consistent consumer’s utility is given by U ′:

ŴC
T (c′) = E

T∑
t=1

δt−1u(c′(st)) = U ′. (A5)

The existence of c′ is guaranteed because we can pick c′1 = c1 and u(c′(st)) = βu(c(st)) +

(1− β)u(0),∀t ≥ 2. Moreover, since c′(st) ≤ c(st), condition (26) holds for c′.

Combining (A4) and (A5), we obtain:

Ŵ I
T (c) = ŴC

T (c′) + E
[
(1− β)δT−1u(cA(sT ))

]
,

and, since u bounded and δ < 1, it follows that

lim
T↗∞

|ŴC
T (c′)− Ŵ I

T (c)| = lim
T↗∞

|E
[
(1− β)δT−1u(cA(sT ))

]
| = 0.

We now turn to the firm’s profit in the program (A1). Let λ denote the Lagrangian

multiplier with the constraint (A2). The first-order condition gives

λδt−1u′(cA(st)) =
1

Rt−1 ,∀t = 1, · · · , T − 1,

and

λβδT−1u′(cA(sT )) =
1

RT−1 .

Note that

ΠT,β = E
T∑
t=1

w(st)− c(st)
Rt−1 + λE

[
T−1∑
t=1

δt−1u(c(st)) + βδT−1u(c(sT ))− U ′
]
.

Differentiating with respect to β leads to

∂ΠT,β

∂β
= E

[
λδT−1u(cA(sT ))

]
≥ λδT−1u(0),
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where the inequality uses cA(sT ) ≥ 0. Applying Lagrange’s Mean Value Theorem gives:

ΠT,1 − ΠT,β =
∂ΠT,β

∂β
|β=β′(1− β) ≥ λδT−1u(0)(1− β),

ΠT,β − ΠT,0 =
∂ΠT,β

∂β
|β=β′′(β − 0) ≥ λδT−1u(0)β,

where β′ ∈ (β, 1), β′′ ∈ (0, β). Note that λ is bounded because λ = 1
u′(cA(s1))

≤ 1
u′(K)

,

where the inequality uses cA(s1) ≤ K from Condition (26). As T ↗∞, we obtain

lim inf
T↗∞

(ΠT,1 − ΠT,β) ≥ 0, lim inf
T↗∞

(ΠT,β − ΠT,0) ≥ 0.

Note that ΠT,1 = ΠC
T (c′) and ΠT,β = ΠI

T (c). To show that limT↗∞(ΠT,1 −ΠT,β) = 0, it is

sufficient to show that lim supT↗∞(ΠT,1 − ΠT,0) = 0. The program for ΠT,0 is:

ΠT,0 = max
{ct}

E
T∑
t=1

w(st)− c(st)
Rt−1 ,

subject to E
∑T−1

t=1 δ
t−1u(c(st)) ≥ U ′.

Since c(sT ) does not appear in the constraint, c(sT ) = 0. The program reduces to:

ΠT,0 = max
{ct}

E

[
T−1∑
t=1

w(st)− c(st)
Rt−1

]
+ E

[
w(sT )

RT−1

]
,

subject to E
∑T−1

t=1 δ
t−1u(c(st)) ≥ U ′. Note that ΠT,0 maximizes the objective from the

(T−1)-period program with β = 1 (plus the constantE
[
w(sT )
RT−1

]
). By a revealed preference

argument,

ΠT,0 ≥ ΠT−1,1 + E

[
w(sT )

RT−1

]
. (A6)

Since the NPV of income is assumed to be bounded (Condition (26)), it follows that

limT↗∞E
[
w(sT )
RT−1

]
= 0. Then,

lim sup
T↗∞

(ΠT,1 − ΠT,0) ≤ lim sup
T↗∞

(
ΠT,1 − ΠT−1,1 − E

[
w(sT )

RT−1

])
= lim sup

T↗∞
(ΠT,1 − ΠT−1,1) = 0,
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where the first step comes from (A6), the second step comes from limT↗∞E
[
w(sT )
RT−1

]
= 0,

and the last step is because the limit of ΠT,1 exists (Claim 1). Since ΠT,1 is the problem for

time consistent consumers with the outside option c′ and ΠT,β is the problem for time incon-

sistent consumers with the outside option c, it follows that limT↗∞ |ΠC
T (c′)− ΠI

T (c)| = 0.

To recap, we have shown that there exists an outside option c′ such that

lim
T↗∞

|ŴC
T (c′)− Ŵ I

T (c)| = 0, lim
T↗∞

|ΠC
T (c′)− ΠI

T (c)| = 0.

This establishes that (Ŵ I
T (c),ΠI

T (c)) converges to a point on the Pareto frontier for time-

consistent consumers (first part of the theorem): limT↗∞(Ŵ I
T (c),ΠI

T (c)) ∈ P∞.

We now prove the second part of the theorem. Recall that a time-inconsistent con-

sumer’s welfare in the equilibrium limT↗∞ Ŵ
I
T (c) = limT↗∞ U

′, where

lim
T↗∞

U ′ = lim
T↗∞

[
u(c1) + βE

[∑
t≥2

δt−1u(c(st))

]
+ (1− β)(δ + · · ·+ δT−2)u(0)

]

≤ lim
T↗∞

E

[∑
t≥1

δt−1u(c(st))

]
,

where the equation comes from (A3) and the inequality comes from

βu(c(st)) + (1− β)u(0) ≤ u(c(st)),∀t.

The inequality is strict for at least one ct(st) because of condition (27). So a time-inconsistent

consume is worse off contracting with the firm in that he receives lower welfare in the equi-

librium than the welfare he would’ve received by consuming the outside option. The third

part follows from the definition of the Pareto frontier and the second part of the theorem.

Proof of Proposition 1. A naive agent’s equilibrium consumption vector solves

max
c(·)

T∑
t=1

Dt−1u(ct(B, · · · , B)),
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subject to the zero-profit condition, and

T∑
t=τ

Dt−τu(ct(A,B, · · · , B)) ≥
T∑
t=τ

Dt−τu(ct(B,B, · · · , B)), ∀τ ≥ 2, (A7)

T∑
t=τ

D̂t−τu(ct(B,B, · · · , B)) ≥
T∑
t=τ

D̂t−τu(ct(A,B, · · · , B)), ∀τ ≥ 2. (A8)

As in the proof of Lemma 2, there exists a solution in which the baseline option shifts

all intermediate consumption to the last period:

c2(B) = c3(B,B) = · · · = cT−1(B, · · · , B) = 0. (A9)

Otherwise, we could lower u(ct(B, · · · , B)) by ε
Dt−2

and increase u(cT (B, · · · , B)) by
ε

DT−2
, giving the naive agent a weakly higher utility since −Dt−1

Dt−2
+ DT−1

DT−2
≥ 0. If Dt−1

Dt−2
=

DT−1

DT−2
, the naive agent is indifferent between the original contract and this new one, and

both contracts have the same consumption path. Since we focus on the consumption path,

we can without loss of generality work with (A9). Using the same argument, self t ≥ 2’s

perceived consumption stream also features shifting all intermediate consumption to the

last period: ct+1(A, · · · , A︸ ︷︷ ︸
t−1

, B) = · · · = cT−1(A, · · · , A︸ ︷︷ ︸
t−1

, B, · · · , B︸ ︷︷ ︸
T−t−1

) = 0.

Substituting in the binding IC constraints (A7), we obtain the objective function in our

auxiliary program (up to a constant):
∑T

t=1
DT−1

DT−t
u(ct(A, · · · , A)).

Proof of Proposition 3. The effort path of the naive agent solves:

min
e

T∑
t=1

Dt−1C(et(B,B, ..., B))

subject to

T∑
t=1

et(A, ..., A) = ET , (A10)

T∑
t=τ

Dt−τC(et(A,B, · · · , B)) ≤
T∑
t=τ

Dt−τC(et(B,B, · · · , B)),∀τ ≥ 2, (IC)
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T∑
t=τ

D̂t−τC(et(B,B, · · · , B)) ≤
T∑
t=τ

D̂t−τC(et(A,B, · · · , B)),∀τ ≥ 2. (PC)

The (IC) at time τ = 2 must be binding (otherwise, we could decrease eT (B, · · · , B),

improving the objective). We claim that et(B, · · · , B) = 0 for t ≥ 3. Suppose otherwise

that et(B, · · · , B) > 0 for some t. Consider a perturbation that shifts effort in the baseline

from period t to period 2: C(e2(B)) + ε and C(et(B, · · · , B)) − ε
Dt−2

. This perturbation

keeps (IC) unchanged, relaxes (PC), and lowers the objective function by
(
D1 − Dt−1

Dt−2

)
ε ≤

0. By the same argument, self t ≥ 2’s perceived effort path also shifts all future effort to

period t+ 1:

et+2(A, · · · , A︸ ︷︷ ︸
t−1

, B,B) = · · · = eT−1(A, · · · , A︸ ︷︷ ︸
t−1

, B, · · · , B︸ ︷︷ ︸
T−t−1

) = eT (A, · · · , A︸ ︷︷ ︸
t−1

, B, · · · , B︸ ︷︷ ︸
T−t−1

) = 0.

Substituting in the objective function, we obtain:

T∑
t=1

Dt−1C(et(B,B, ..., B))

= C(e1) +D1C(e2(B))

= C(e1) +D1

(
T∑
t=2

Dt−τC(et(A,B, · · · , B))

)
= C(e1) +D1C(e2(A)) +D2

1C(e3(A,B))

= C(e1) +D1C(e2(A)) +D2
1

(
T∑
t=3

Dt−τC(et(A,B, · · · , B))

)

= · · · =
T∑
t=1

Dt−1
1 C(et(A, · · · , A)),

where the first and third equations come fromC(0) = 0, and the second and forth equations

come from the binding ICs for selves 2 and 3, respectively, the fifth and sixth equations

come from iterating the same procedure as in the first four equations.

It is straightforward to check that (PC) are slack and can be ignored, so the effort path of

a naive agent is the same as with a time-consistent agent with discount factor D̃t = Dt
1.
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Online Appendix

A Consumer Heterogeneity

In this appendix, we present the results summarized in Subsection 3.3. To simplify the

exposition, we assume that the consumer has a constant deterministic income w in each

period. The setting is the same as in Section 2, except that firms do not know the consumer’s

“type” (either β̂ or β). Instead, they have some prior distribution over the consumer’s

possible types.

This is a dynamic game with incomplete information, where the consumer’s contract

can signal his type to the firm. After seeing the contract offered by the consumer, the firm

must update its beliefs about the consumer’s type. We therefore incorporate the standard

consistency condition from perfect Bayesian equilibrium, which requires the firm’s beliefs

to be consistent with Bayes’ rule on histories that are reached with positive probability.

A pure strategy for type θ of the time-1 self is a consumption vector (“contract”) c(θ).

A pure strategy for the firm is a mapping d from the space of possible contracts to {0, 1},

which specifies whether the firm accepts (d = 1) or rejects (d = 0) each contract offered

by the time-1 self.

A time-t history describes all actions by the consumer and all uncertainty realized until

period t: ht = (c, ht, st), where ht ∈ {A,B}t−1 is an option history (as defined in Section

2). Let Ht denote the set of all possible time-t histories. A pure strategy for type θ of self

t ∈ {2, ..., T−1} is a mapping from the history of previous actions and realized uncertainty

to an action σt : Ht → {A,B}.28

We can now generalize the definition of perception-perfect equilibrium (see Appendix

E) to incorporate imperfect information. A “perception-perfect equilibrium with Bayesian

rationality on the firm side” (henceforth equilibrium) is a contract and a pair of strategies

28As in the model without heterogeneity, there is no loss of generality in assuming that there is only one
option in period T . Therefore, we do not need to include choices by self T .
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for each consumer type,

(c(θ), σ2(θ), ..., σT−1(θ)) and (σ̂2(θ), ..., σ̂T−1(θ)),

and a strategy d for the firm such that:

• For each θ, c(θ) maximizes the expected experienced utility (E1) of the time-1 self

of type θ under the assumption that each self r > 1 uses strategy σ̂r(θ) and the firm

uses strategy d.

• For each θ, history ht, and t > 1, the strategy σt(θ) maximizes the expected experi-

enced utility (E1) of the time-t self of type θ conditional on ht under the assumption

that selves r > t use strategy σ̂r(θ).

• For each θ, history ht, and t > 1, the strategy σ̂t(θ) maximizes the expected perceived

utility (E2) of the time-t self of type θ conditional on ht under the assumption that

selves r > t use strategy σ̂r(θ).

• For each c, the acceptance decision d(c) maximizes the firm’s expected discounted

profits given the firm’s beliefs about the consumer’s type θ under the assumption that

each type of the consumer uses strategy σt(θ) in all periods t > 1; and

• For any contract offered by some type c̃ ∈ c(Θ), the firm’s beliefs about the con-

sumer’s type θ are derived by Bayes’ rule.

A.1 Unknown Naiveté

In this subsection, we show that the results from Section 2 remain unchanged when the

firm does not know the consumer’s naiveté parameter β̂. Suppose the firm has a prior

distribution with full support over the non-degenerate type space Θ ⊆ (β, 1]. Note that the

type space may be discrete or continuous.

We refer to the equilibrium consumption in the model in which the firm knows the

consumer’s type (Section 2) as the “full-information contract.” We now show that any

equilibrium of this game has complete pooling at the full-information contract:
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Proposition 4. Suppose the firm does not know the consumer’s naiveté parameter. There

exists an equilibrium. Moreover, in any equilibrium, there is complete pooling at the full-

information contract.

The key intuition for Proposition 4 is that the equilibrium contract with full information

does not depend on β̂ (Corollary 1). Since that contract maximizes each type’s perceived

utility and gives zero profits, there are no beliefs by the firm about the consumer’s type that

would allow the consumer to obtain a higher perceived utility while not giving negative

profits to the firm.

Proposition 4 implies that, as in Theorem 1, the welfare loss from dynamic inconsis-

tency vanishes as the contracting horizon grows.

A.2 Adding Sophisticated Consumers

In the previous subsection, we assumed that, while the firm did not know the consumer’s

naiveté parameter β̂, it still knew that the consumer was (at least partially) naive, so that

β̂ > β for all types. We now introduce a sophisticated consumer type into the analysis.

Formally, consider the type space Θ ⊆ [β, 1] and suppose that the support of the firm’s

beliefs about the consumer’s naiveté parameter includes both the sophisticated type (β̂ = β)

and at least one naive type (β̂ > β). Note that, as before, the type space can be discrete or

continuous.

The proposition below shows that in the equilibrium of this game, all naive types get

the full-information contract:

Proposition 5. Suppose the support of the firm’s beliefs includes both the sophisticated type

and at least one naive type. Then, in any equilibrium, all types get their full-information

contract.

The intuition is as follows. When given the naive consumers’ full-information con-

tract, the sophisticated consumer understands that his future selves will pick the alterna-

tive, rather than the baseline option. So he prefers to offer his own full-information con-
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tract, which prevents his future selves from deviating. However, because naive consumers

believe they will pick the baseline option, they have a higher perceived utility from their

own full-information contract. And because they are each offered their full-information

contracts, there are no beliefs that firms can have about consumer types that would justify

them offering any other contract. Then, as in the model with full information, the ineffi-

ciency from time inconsistency vanishes for all naive consumers as the contracting horizon

grows (but not for the sophisticated consumer).

A.3 Unknown Time-Consistency Parameter

Suppose now that the firm does not know the consumer’s time-consistency parameter β.

The firm has a prior distribution with full support over the non-degenerate type space Θ ⊆

(0, β̂]. When β̂ ∈ Θ, the model allows for both a sophisticated time-inconsistent type

(β̂ = β < 1) and a time-consistent type (β̂ = β = 1). To avoid situations in which

consuming all resources in the first period maximizes welfare (which would coincide with a

present-biased consumer’s choice), we assume that limc↘0 u
′(c) = +∞ in this subsection.

We first show that, unlike when the consumer’s naiveté is not known, there is no equi-

librium in which multiple types get their full-information contracts:

Lemma 5. There exists T such that for all T > T , any equilibrium has at most one type

offering his full information contract.

The intuition of Lemma 5 is as follows. If more than one type offered their full-

information contracts, the more time-consistent one would pick the full-information con-

tract of the less time-consistent type and choose the baseline rather than the alternative

option. The firm offering this contract would lose money, since the baseline was an unprof-

itable decoy option not meant to be chosen on the equilibrium path.

Having shown that the full information contracts cannot be supported in equilibrium,

we now turn to the characterization of the equilibrium.29 As is common in signaling games,

29Although this appendix assumes that the consumer has the bargaining power, which leads to a signaling
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if we do not impose restrictions on beliefs that firms can have off the equilibrium path,

there are many equilibria. We adopt the D1 criterion (Banks and Sobel, 1987) to deal with

this multiplicity issue. For simplicity, we assume that there are only two types: βL with

probability q and βH with probability 1− q, where 0 < βL < βH ≤ β̂ ≤ 1. Note that when

βH = β̂ = 1, the model has one time-inconsistent type and one time-consistent type. It is

straightforward to extend our results to any finite number of types.

We will show that the allocation in the unique equilibrium that survives D1 corresponds

to the “least-costly separating allocation.” In this allocation, the high type gets the full-

information consumption, whereas the low type gets the allocation that maximizes his

perceived utility among those leaving zero profits to the firm and ensuring that the high

type does not wish to deviate. That is, the allocation of the high type solves program (6),

whereas the allocation of the low type solves the following program:

max
{c(st)}

u(c1) + βLE

[
T∑
t=2

δt−1u(ct(B,B, ..., B))

]
, (A1)

subject to zero-profit condition, (IC), (PC), and the constraint that requires type βH to

prefers his full-information contract over the contract for type βL, which choosing the base-

line options:

u(c1)+βHE

[
T∑
t=2

δt−1u(ct(B,B, ..., B))

]
≤ u(cH1 )+βHE

[
T∑
t=2

δt−1u(cHt (B,B, ..., B))

]
.

(A2)

From the previous lemma, it follows that (A2) must bind when T is large enough, so the

equivalence to the auxiliary program no longer holds for the low type.

The next lemma formally shows that the high type gets his full-information contract in

any equilibrium that survives D1 (i.e., there is no distortion at the top):

Lemma 6. In any equilibrium that survives D1, type βH gets his full-information contract.

We next show that there is an equilibrium that survives D1 in which consumers get the

model, a similar result can be shown when the bargaining power is on the firm side. In that case, the model
becomes one of screening. It can be shown that for generic income paths the full-information contract is not
incentive compatible as the contract length grows.
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least-costly separating allocation. Furthermore, we show that the equilibrium that survives

D1 is unique.

Lemma 7. There exists an equilibrium that survives D1 in which consumers get the least-

costly separating allocation. Furthermore, in any equilibrium surviving D1, the consumers

get the least costly separating allocation.

LetWL
T denote the equilibrium welfare of type βL, and recall thatWC

T is the equilibrium

welfare the time-consistent consumer (who maximizes welfare). The proposition below

establishes that in equilibrium, the less time-consistent type gets a contract in which he

consumes more than the full-information amount in the first period, thereby under-saving

for the future. Moreover, this informational distortion does not vanish as the contracting

length grows, so his equilibrium allocation does not converge to the Pareto frontier:

Proposition 6. Suppose limc↘0 u
′(c) = +∞. In any equilibrium satisfying D1:

• There exists T̄ such that, for all T > T̄ , type βL consumes more in the first period

than in his full-information contract.

• The welfare loss is uniformly bounded away from zero as the contracting horizon

grows: lim infT↗∞(WC
T −WL

T ) > 0.

B Non-Exclusive Contracts

This appendix considers the model in which contracts are not exclusive, so consumers can,

at any point in time, sign a new contract with another firm. As in the model with one-sided

commitment, to characterize the equilibrium consumption, there is no loss of generality in

restricting attention to equilibria in which the consumer never contracts with another firm.30

30We assume that contracting is costless. If the cost of contracting with another firm is large enough, we
return to the baseline model in which consumers can commit to long-term contracts. More generally, one
can envision situations in which the cost of contracting is positive but not too large, so consumers only have
partial commitment.
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When contracts are not exclusive, firms cannot add unprofitable baseline options that

naive consumers think they will choose but end up not choosing. If they offered such a

contract, the consumer would stick to the baseline and readjust consumption by contracting

with another firm. Therefore, any equilibrium contract must make zero profits both along

the consumer’s perceived path and the equilibrium (i.e., firm’s perceived) path. In fact, our

next lemma shows that, starting at any history, the expected PDV of future consumption

must be the same in all option histories:

Lemma 8. Suppose contracts are not exclusive. For any (st, h
t), the expected present

discounted value of consumption in any option history path following ht must be the same.

The proof is in the supplementary appendix, but its intuition is straightforward. With

non-exclusive contracts, the consumer can always smooth consumption by contracting with

a new firm. Therefore, he would always pick the option path with the highest PDV of

consumption.

Consider an (auxiliary) consumption-savings problem, in which the consumer is en-

dowed with the expected PDV of income {w(st)} in period 1. The only asset available is

a risk-free bond that pays a gross return R, and the consumer can freely save or borrow.

Since the consumer is time-inconsistent and naive, each period’s self decides how much

to consume and underestimates the present bias of future selves. As before, we focus on

perception-perfect equilibria of this game.

To obtain the equilibrium consumption, we need to specify both how much the agent

thinks his future selves will consumer and how much they actually consume. Let a1 denote

the asset available to the agent at time 1: a1 ≡ E
∑T

t=1
w(st)
Rt−1 . The agent, who has at asset

at time t and believes he will choose consumption in periods s > t according to ĉ(as),

believes that in period t, he will consume:

ĉt(at) ∈ arg max
c̃
u(c̃) + β̂

∑
s>t

δs−tu(ĉs(as)), (B1)
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subject to

c̃+
∑
s>t

ĉs(as)

Rs−t ≤ at, (B2)

at+1 = R(at − c̃), (B3)

as+1 = R(as − cs(as)) for all s > t. (B4)

However, in period t, he chooses to consume:

ct(at) ∈ arg max
c̃
u(c̃) + β

∑
s>t

δs−tu(ĉs(as)), (B5)

subject to (B2), (B3), and (B4).

The next proposition establishes the equivalence between non-exclusive contracts and

the consumption-savings problem.

Proposition 7. The problem with non-exclusive contracts is equivalent to the consumption-

saving problem. In particular, the consumption paths in the two problems are the same.

Lastly, we show that the welfare loss in the consumption-savings problem does not

vanish as the contracting horizon goes to infinity. Note that if in the welfare-maximizing

allocation the agent consumes all resources in the first period, leaving zero consumption in

all future periods, there is no scope for contracting with other firms after the first period.

Then, there is no welfare loss from non-exclusive contracting. To rule out this uninteresting

case, we proceed as in Subsection A.3 and assume that limc↘0 u
′(c) = +∞.

Proposition 8. Suppose contracts are not exclusive, u is bounded, δ < 1, and limc↘0 u
′(c) =

+∞. The welfare loss from time inconsistency is uniformly bounded away from zero as the

contracting horizon T goes to infinity.

C Effort

This appendix formally presents the analysis from Subsection 3.6, where we considered the

effort model. As in the consumption model, when the agent is naive, contracts involve two
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options in each period: a baseline effort (B) that the agent thinks his future selves will pick

and an alternative effort (A) that they end up picking. As before, let ht denote the options

chosen by the agent up to time t.

The effort path of the naive agent solves:

min
e

T∑
t=1

Dt−1C(et(B,B, ..., B)

subject to
T∑
t=1

et(A, ..., A) = ET , (C1)

T∑
t=τ

Dt−τC(et(A,B, · · · , B)) ≤
T∑
t=τ

Dt−τC(et(B,B, · · · , B)),∀τ ≥ 2, (C2)

T∑
t=τ

D̂t−τC(et(B,B, · · · , B)) ≤
T∑
t=τ

D̂t−τC(et(A,B, · · · , B)),∀τ ≥ 2. (C3)

That is, the agent minimizes his perceived discounted cost subject to the task-completion

constraint (C1), IC (C2), and PC (C3). This program is analogous to the one in the proof

of Proposition 1, except that the zero profits constraint is replaced by the task completion

constraint (C1) and the agent minimizes his discounted effort costs rather than maximizes

his discounted utility. As before, PC requires the agent to believe that his future selves pick

B, whereas IC requires them to switch to A instead.

Since the firm and the agent disagree on the options that the agent will pick, they have

different beliefs about the total effort that will be exerted on the equilibrium path. The firm

accepts a contract as long as it believes that the agent will complete the task, regardless of

what the agent believes. Therefore, as with the zero profits constraint in Proposition 1, the

task-completion constraint (C1) only needs to hold according to the firm’s beliefs.

We solve this program in the proof of Proposition 3 in the supplementary appendix.

Here we illustrate it by solving the case of three periods and quasi-hyperbolic discounting,

as we did in the text for Lemma 2. This illustration helps clarify the difference between
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contracting over consumption and over effort.

The equilibrium program becomes:

min
e
C(e1) + β

[
δC (e2 (B)) + δ2C (e3 (B))

]
subject to

e1 (A) + e2 (A) + e3 (A) = E3, (C4)

C (e2 (B)) + β̂δC (e3 (B)) ≤ C (e2 (A)) + β̂δC (e3 (A)) (PC)

C (e2 (A)) + βδC (e3 (A)) ≤ C (e2 (B)) + βδC (e3 (B)) (IC)

Note first that (IC) must bind. Otherwise, we could reduce the perceived cost in the ob-

jective function by reducing e3(B). Since (IC) binds, (PC) can be written as a monotonicity

constraint:

e3 (B) ≤ e3 (A) . (C5)

In words, because agents under-estimate their present bias, they think they will leave less

effort for the last period than they end up leaving. We ignore this monotonicity constraint

for now and verify that it holds later.

For each ε > 0 small, consider a perturbation to the baseline efforts ẽ2 (B) and ẽ3 (B)

that shifts effort from period 2 to period 3 according to self 2’s preferences:

C (ẽ2 (B)) = C (e2 (B)) + ε, C (ẽ3 (B)) = C (e3 (B))− ε

βδ
.

By construction, this perturbation preserves IC. Moreover, since the objective function

evaluates costs from the perspective of self 1, this perturbation improves the objective.

Thus, to minimize costs, the solution leaves as little effort as possible to the last period:

e3(B) = 0. (C6)

It follows directly from (C6) that the monotonicity condition (C5) holds. Substituting back
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in IC, we obtain:

C (e2 (B)) = C (e2 (A)) + βδC (e3 (A)) . (C7)

Substituting (C6) and (C7) in the objective function, we obtain

C(e1) + βδC (e2 (A)) + (βδ)2C (e3 (A)) ,

which is the cost of a time-consistent agent with discount factor βδ.

Note how the argument above differs from the one in Lemma 2. The way to exploit

naiveté in the consumption model is to postpone consumption in the baseline from period

2 to period 3. So, when deciding whether to consume now or to leave resources for the

future, self 1 decides according to his long-run discount rate βδ2. Then, self 2 deviates

from B to A, effectively bringing some consumption from c3(B) to period 2 (and reducing

the consumption left to self 3). Since self 2 discounts period-3 consumption by βδ, the rate

between u(c1) and u(c2(A)) is βδ2

βδ
= δ, as shown in the auxiliary program in Lemma 2.

On the other hand, the way to exploit naiveté in the effort model is to require all effort

in period 2, leaving zero effort for the future. Thus, self 1 decides how much effort to leave

to the future according to his 1-period discount βδ. Then, self 2 deviates from the baseline,

leaving some effort for period 3. He decides how much to leave for period 3 also based on

his 1-period discount βδ. Therefore, the rate between u(c1) and u(c3(A)) is (βδ)2.

D Sophisticated Agents

In Section 2, we characterized the equilibrium with either time-consistent or (partially)

naive present-biased consumers. We now consider the case of sophisticated consumers,

who correctly predict their future preferences (β̂ = β. We are interested in the asymptotic

welfare of sophisticated consumers as the contracting horizon grows.

Recall that the welfare function does not discount future periods by the additional term

β. Therefore, if consuming all resources in the first period maximizes welfare, the so-

phisticated agent must also consume all the resources in the first period. In this case, the
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equilibrium of the sophisticated agent trivially maximizes welfare. To rule out this uninter-

esting case, we proceed as in Subsection A.3 and assume that limc↘0 u
′(c) = +∞. We will

show that, when this is the case, the welfare loss from present bias of sophisticated agents

does not vanish.

A sophisticated agent evaluates future consumption according to (1) with β̂ = β. There-

fore, he fully understands that his future selves will behave like someone with the same

time-consistency parameter as his current self. As with time-consistent consumers, since a

sophisticated consumer agrees with the firm about his future preferences, there is no need

to allow for options in the contract. Therefore, there is no loss of generality in restricting

contracts to be vectors of state-dependent consumption. Because parties can commit to

long-term contracts, any contract that is accepted by a firm must maximize the utility of

the period-1 self subject to the zero-profits constraint. The equilibrium contract solves the

following program:

max
{c(st)}

u(c(s1)) + βE

[
T∑
t=2

δt−1u (c (st))

]
, (D1)

subject to the zero-profits constraint,

T∑
t=1

E

[
w (st)− c (st)

Rt−1

]
= 0. (D2)

Let W S
T denote the equilibrium equilibrium welfare of the sophisticated consumer,

which evaluates the consumption path according to the agent’s long-run preferences (2),

and recall that WC
T is the welfare in the benchmark case of a time-consistent consumer.

Since the time-consistent consumer maximizes welfare, the welfare loss from dynamic in-

consistency cannot be negative:

WC
T −W S

T ≥ 0.

We now show that unlike with partially naive agents, the consumption path of a sophisti-

cate does not converge to the welfare-maximizing path as the contracting horizon grows.

Therefore, the previous inequality is strict:
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Proposition 9. Suppose u is bounded, δ < 1, and limc↘0 u
′(c) = +∞. Then, the welfare

loss of a sophisticated consumer is uniformly bounded away from zero:

lim inf
T↗+∞

(
WC
T −W S

T

)
> 0.

Note that, in our model, the individual can consume in all periods, including when

contracts are signed. If, instead, contracting occurred before consumption (say, at period

0), sophisticated consumers would commit to the ex-ante optimal contract – see, DellaV-

igna and Malmendier (2004); Heidhues and Kőszegi (2010). The inefficiency with naive

consumers, as well as the asymptotic efficiency result, remains unchanged if we add a

contracting period with no consumption.

E Equilibrium Definition and Mixed Strategies

In this appendix, we present a formal definition of perception-perfect equilibria and show

that the results in the paper generalize to mixed strategy equilibria.

For each state-dependent consumption {c(st)}t≥τ , let

u(c(sτ )) + βE

[∑
t>τ

δt−τu(c(st))

∣∣∣∣∣ sτ

]
(E1)

denote self τ ’s “experienced utility,” and let

u(c(sτ )) + β̂E

[∑
t>τ

δt−τu(c(st))

∣∣∣∣∣ sτ

]
(E2)

denote self τ ’s “perceived utility.”

As described in the text, it is without loss of generality to focus on contracts that offer a

baseline (B) and an alternative (A) options in each period t = 2, ...T − 1. This is no longer

true with mixed strategies. We generalize the definitions to allow for arbitrary message

spaces when we consider mixed strategy equilibria.

Recall that we adopted the convention that each state describes all previous realization
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of uncertainty. A time-t history describes all actions by the consumer and all uncertainty

realized until period t: ht = (c, ht, st), where c is a contract offered by the time-1 self,

ht ∈ {A,B}t−1 is an option history (which lists the options taken by all previous selves as

defined in Section 2), and st is a state of the world at time t. Let Ht denote the set of all

possible time-t histories.

A pure strategy for the time-1 self is a consumption vector c. A pure strategy for the

firm is a mapping d from the space of possible consumption vectors to {0, 1} specifying

whether the firm accepts (d = 1) or rejects (d = 0) each consumption vector offered by the

time-1 self. A pure strategy for self t ∈ {2, ..., T − 1} is a mapping from the time-t history

to an option, that is, σt : Ht → {A,B}.31

Before stating the equilibrium definition, we need to specify each player’s payoffs. We

start with the firm, which has correct beliefs. Let Π(c, σ2, ..., σT−1, d̂) denote the firm’s

expected profits from accepting (d̂ = 1) or rejecting (d̂ = 0) the consumption vector c

when selves t > 1 of the consumer play σt.

Since the consumer has incorrect beliefs about his future preferences, we need to dis-

tinguish between the actions that the consumer thinks he will choose and the actions that he

ends up choosing. The agent’s perceived utility determines what he thinks he will choose in

the future, whereas the agent’s experienced utility determines what he will end up choosing

(see equations E1 and E2 in Appendix E).

• Let U1(c, σ2, ..., σT−1, d) denote the time-1 self’s expected experienced utility from

offering contract c if each future self r > 1 plays strategy σr and the firm plays d.

• For t > 1, let Ut(σt, ..., σT−1|ht) denote the expected experienced utility of the time-t

self conditional on history ht when each self r > t plays strategy σr.

• Let Ût(σt, ..., σT−1|ht) denote the expected perceived utility of the time-t self condi-

tional on history ht when each self r > t plays strategy σr.

31It is without loss of generality to focus on consumption vectors that do not offer any options to the time-
T self, since it would be a dominant strategy for him to pick the one with the highest consumption (both
according to the experienced and the perceived utility).
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Definition 1. A perception-perfect equilibrium is a consumption vector c, a pair of strate-

gies (σ2, ..., σT−1) and (σ̂2, ..., σ̂T−1) and an acceptance decision d such that:

• c maximizes self 1’s expected experienced utility under the assumption that his future

selves use strategy σ̂r and the firm uses strategy d:

U1(c, σ̂2, ..., σ̂T−1, d) ≥ U1(c
′, σ̂2, ..., σ̂T−1, d), ∀c′.

• For all t > 1 and all ht, σt(ht) maximizes self-t’s expected experienced utility under

the assumption that selves r > t use strategy σ̂r:

Ut(σt, σ̂t+1, ..., σ̂T−1|ht) ≥ Ut(σ
′
t, σ̂t+1, ..., σ̂T−1|ht), ∀σ′t.

• For all t > 1 and all ht, σ̂t(ht) maximizes the consumer’s time-t expected perceived

utility under the assumption that selves r > t use strategy σ̂r:

Ût(σ̂t, σ̂t+1..., σ̂T−1|ht) ≥ Ût(σ
′
t, σ̂t+1..., σ̂T−1|ht), ∀σ′t.

• For all c, d(c) maximizes the firm’s expected discounted profits under the assumption

that the consumer uses strategies σt for all t:

Π(c, σ2, ..., σT−1, d) ≥ Π(c, σ2, ..., σT−1, d
′), ∀d′.

We now generalize the definition of perception-perfect equilibrium to allow for mixed

strategies. In this case, we need to work with more general message spaces, since the

restriction to two possible messages is no longer without loss of generality.

Let M2 be a non-empty, compact space of possible messages in period 2 with generic

element m2. For each t ∈ {3, ..., T − 1}, let Mt(m2, ...,mt−1) be a non-empty, compact

space of possible messages in period t conditional on previous messages (m2, ...,mt−1).

Let M denote the space of all possible messages in all periods.32 A consumption vec-

tor (or “contract”) c specifies, for each period, the consumption conditional on all mes-

sages up to t and all realized uncertainty: c(m2, ...,mt−1,mt, st). A period-t history

32That is, M ≡ {M1, ...,MT−1(m1, ...,mT−2) : m1 ∈ M1, ..., (m1, ...,mT−1) ∈ M1 × ... ×
MT−1(m1, ...,mT−2)}.
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ht = (c,M,m2, ...,mt−1, st) consists of a consumption vector and a message space of-

fered at time 1, the messages sent in all previous periods, and the state of the world at t

describing all realized uncertainty.

With a slight abuse notation, we now allow σ to be a mixed strategy as well. A mixed

strategy for the time-1 self σ1 is a distribution over (compact and non-empty) message

spaces and contracts. A mixed strategy for the firm σfirm is a distribution over acceptance

decisions for each contract and message space offered by the time-1 self. A mixed strategy

for self t ∈ {2, ..., T − 1} specifies, for each period-t history, a distribution over messages:

σt(c,m2, ...,mt−1, st) ∈ ∆(Mt(m2, ...,mt−1)).

We now extend the payoffs to allow for mixed strategies:

• Let Π(σ1, ..., σT−1, σfirm) denote the firm’s expected profits from playing σfirm when

each consumer self plays strategy σ1.

• Let U1(σ1, ..., σT−1, σfirm) denote the expected experienced utility (E1) of the time-1

self from playing strategy σ1 if each future self r > 1 plays σr and the firm plays

σfirm.

• For t > 1 let Ut(σt, ..., σT−1|ht) denote the expected experienced utility (E1) of the

time-t self conditional on history ht when each self r > t plays strategy σr.

• For t > 1 let Ût(σt, ..., σT−1|ht) denote the expected perceived utility (E2) of the

time-t self conditional on history ht when each self r > t plays strategy σr.

We can now state the equilibrium definition:

Definition 2. A perception-perfect equilibrium in mixed strategies is a pair of strategies for

the consumer (c, σ2, ..., σT−1) and (σ̂2, ..., σ̂T−1) and a strategy for the firm σfirm such that:

• σ1 maximizes self 1’s expected experienced utility under the assumption that his

future selves use strategy σ̂r and the firm uses strategy σfirm:

U1(σ1, σ̂2, ..., σ̂T−1, σfirm) ≥ U1((c
′,M′), σ̂2, ..., σ̂T−1, σfirm), ∀c′,M′.
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• For all t > 1 and all ht, σt(ht) maximizes self-t’s expected experienced utility under

the assumption that selves r > t use strategy σ̂r:

Ut(σt, σ̂t+1, ..., σ̂T−1|ht) ≥ Ut(mt, σ̂t+1, ..., σ̂T−1|ht), ∀mt.

• For all t > 1 and all ht, σ̂t(ht) maximizes the consumer’s time-t expected perceived

utility under the assumption that selves r > t use strategy σ̂r:

Ût(σ̂t, σ̂t+1..., σ̂T−1|ht) ≥ Ût(mt, σ̂t+1..., σ̂T−1|ht), ∀mt.

• For all c, σfirm(c) maximizes the firm’s expected discounted profits under the assump-

tion that the consumer uses strategies σt in periods t > 1:

Π(c,M, σ2, ..., σT−1, σfirm) ≥ Π(c,M, σ2, ..., σT−1, d
′), ∀d′ = 0, 1.

We can now establish that our restriction to pure strategies in the text was without loss

of generality. The equilibrium program is:

max
{c(st,ht)}

u(c(s1)) + βE

[
T∑
t=2

δt−1u(c(st, σ̂2, σ̂3, ..., σ̂T−1))

]
, (E3)

subject to
T∑
t=1

E

[
w (st)− c (st, σ2, σ3, ..., σT−1)

Rt−1

]
= 0, (Zero Profits)

u(c(sτ ,
(
hτ−1, m̂τ

)
)) + β̂E

[∑
t>τ

δt−τu
(
c
(
st,
(
hτ−1, m̂τ , σ̂τ+1, ..., σ̂T−1

)))∣∣∣∣∣ sτ
]

(PC)

≥ u(c(sτ ,
(
hτ−1,m′τ

)
))+β̂E

[∑
t>τ

δt−τu
(
c
(
st,
(
hτ−1,m′τ , σ̂τ+1, ..., σ̂T−1

)))∣∣∣∣∣ sτ
]
,∀m̂τ ∈ supp(σ̂τ ),m′τ ∈Mτ

and

u(c(sτ ,
(
hτ−1,mτ

)
)) + βE

[∑
t>τ

δt−τu
(
c
(
st,
(
hτ−1,mτ , σ̂τ+1, ..., σ̂T−1

)))∣∣∣∣∣ sτ
]

(IC)

≥ u(c(sτ ,
(
hτ−1,m′τ

)
))+βE

[∑
t>τ

δt−τu
(
c
(
st, (h

τ−1,m′τ , σ̂τ+1, ..., σ̂T−1)
))∣∣∣∣∣ sτ

]
,∀mτ ∈ supp(στ ),m′τ ∈Mτ

The next lemma establishes that the consumption path for time-inconsistent agents still
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coincides with the solution of the auxiliary program when we allow for mixed strategies:

Lemma 9. In any perception-perfect equilibrium in mixed strategies, the consumption path

solves the auxiliary program (7).

The proof is in the supplementary appendix. To illustrate it, consider the case in which

T = 3 and the consumer has income w in each period. Suppose self 1 believes that self 2

will pick option B1 with probability θ1 and B2 with probability θ2. (PC) states that

u(c2(B1)) + β̂δu(c3(B1)) = u(c2(B2)) + β̂δu(c3(B2)) ≥ u(c2(A)) + β̂δu(c3(A)),

whereas (IC) requires

u(c2(A)) + βδu(c3(A)) ≥ u(c2(B1)) + βδu(c3(B1)),

u(c2(A)) + βδu(c3(A)) ≥ u(c2(B2)) + βδu(c3(B2)).

So self 1’s perceived utility is

u(c1) + βδ(θ1u(c2(B1)) + θ2u(c2(B2))) + βδ2(θ1u(c3(B1)) + θ2u(c3(B2))).

We claim that both ICs must bind. First, note that at least one of them must bind (otherwise,

we can raise c3(B1) and c3(B2) without affecting any other constraints). Suppose the IC

associated with B1 binds but not the one associated with B2:

u(c2(B1)) + βδu(c3(B1)) = u(c2(A)) + βδu(c3(A)) > u(c2(B2)) + βδu(c3(B2)).

Recall that self 1 perceives that self 2 will mix between optionB1 andB2, so self 1 believes

that self 2 must be indifferent:

u(c2(B1)) + β̂δu(c3(B1)) = u(c2(B2)) + β̂δu(c3(B2)).
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It follows that c2(B1) > c2(B2), c3(B1) < c3(B2). Together with the perceived-choice

constraints, it implies that

u(c2(B1)) + δu(c3(B1)) < u(c2(B2)) + δu(c3(B2)).

Consider an alternative contract by setting the consumption associated with optionB1 equal

to the consumption associated with option B2. This contract strictly increases self 1’s

perceived utility, a contradiction to the optimality of the original contract. So both IC

constraints are binding. Then, c2(B1) = c2(B2) and c3(B1) = c3(B2). Similar to the proof

of Lemma 2, c2(B1) = c2(B2) = 0. Substituting them back to the objective function leads

to the auxiliary program

u(c1) + δu(c2(A)) + βδ2u(c3(A)).

On the other hand, if the alternative options have more than one options, i.e., the program

is now

u(c1) + δ[θ1u(c2(A1)) + θ2u(c2(A2))] + βδ2[θ1u(c3(A1)) + θ2u(c3(A2))],

subject to the zero-profit condition

c1 +
θ1c2(A1) + θ2c2(A2)

R
+
θ1c3(A1) + θ3c2(A2)

R2
= w +

w

R
+

w

R2
.

If options A1 and A2 are different, by Jensen’s inequality and the strict concavity of u(·),

merging these two options A1 and A2 would strictly increase self 1’s payoff.
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Supplementary Appendix (Not For Publication)

Omitted Proofs

Proof of Lemmas 1 and 3. We consider the model with one-sided commitment (Lemma

3). The proof of the two-sided commitment case (Lemma 1), which follows similar steps

but is simpler, is omitted.

Suppose the period-t self of the consumer offers a contract C ′t. Specifically, a contract

at time t, C ′t, specifies consumption on each possible state in each future time τ ≥ t.

Denote the set of possible states by Kt,τ , in which the first subscript corresponds to the

time in which the contract is offered and the second subscript corresponds to the decision-

making time τ . The contract specifies consumption for each different income states, so

the contracting space is generally greater than the space of income states. In addition,

perception-perfect equilibrium imposes no restrictions on Kt,τ , i.e., Kt,τ can be arbitrary.

To keep analysis tractable, we assume thatKt,τ has a product structure and only depends on

decision making time τ . Otherwise, we can always add more states that are never reached

so that it has a product structure and the resulting equilibrium is outcome-equivalent to

the original equilibrium. Specifically, we write Kt,τ = Sτ × Hτ , in which Hτ consists

of all the possible income-independent messages/actions that the agent can send at time

τ . The income-independent messages can be arbitrary. One of the reasons that an income-

independent message can arise is from the consumer’s different beliefs. Since we allow any

contracts, we cannot impose what types of income-independent messages the consumer

can send. For simplicity, we call Hτ the income-independent history. Without loss of

generality, H1 = ∅. Denote ht a generic element in Ht. We call ht an income-independent

message. Denote Hτ (ht) the states that can be reached at time τ from an earlier history

ht ∈ Ht for τ > t.

Fix a contract, we next write down the agent’s strategy profile. Consider an agent

who makes a decision at time τ . Suppose the income-independent messages that has been

reached is hτ−1, which is an element in Hτ−1. At time τ , the agent learns the income state,
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i.e., sτ is realized. The agent needs to decide which message aτ ∈ ∆(Hτ (hτ−1)) to send,

where ∆(·) represents the set of lotteries. If there is one-sided commitment, the agent also

needs to decide whether he will lapse or not, in which case, the strategy can be summarized

by a pair (dτ , aτ ), where dτ ∈ ∆({0, 1}). If dτ = 1 with probability 1, then the agent stays,

otherwise the contract is lapsed with a positive probability.

As described in the body of the paper, the perception-perfect equilibrium is solved

by treating the agent’s decisions in each period as if it were taken by a different player

(i.e., a different “self”). The main claim is that for any perception-perfect equilibrium, the

consumption vector must solve the program (P’).

For the ease of exposition, we say that two perception-perfect equilibria are equiva-

lent if all selves of the consumers have same actual and perceived consumption. We will

establish the result through two separate claims:

Claim 2. Fix a perception-perfect equilibrium. There exists an equivalent perception-

perfect equilibrium in which the agent never lapses (dτ = 1,∀τ ).

Proof. Consider a perception-perfect equilibrium in which the agent lapses in some period

dτ = 0 with a positive probability, replacing it with a contract C ′′τ from another firm. Since

the other firm cannot lose money by offering this new contract, the old firm could have

accepted a contract that substituted the terms of the old contract from this period on with

the terms of the new contract, and the agent would have accepted to remain with the old

firm. The constructed new contracts together with the agent’s optimal decision forms a

perception-perfect equilibrium that is equivalent to the original one.

Claim 3. Fix a perception-perfect equilibrium. There is an equivalent perception-perfect

equilibrium that offers two options following any history: #|Ht(ht−1)| ≤ 2, for all ht−1 ∈

Ht−1, t ≥ 2.

Proof. From the previous claim, we can restrict attention to equilibria in which the agent

never lapses. Suppose t1 < t2 < t3. Note that self t1’s prediction about self t3’s decision

coincides with self t2’s prediction about self t3’s decision. Restricting Ht(ht−1) to two
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messages – one that the agent will choose and another one that the agent thinks that he

will choose – does not affect the actual consumption or the perceived consumption. Put

differently, if Ht(ht−1) has at least three messages, then there is at least one of them that

the agent never sends and the agent never believes other selves would send. Therefore, we

can restrict the income-independent message space to be at most two: one that the agent

actually choose, and one that the agent thought he would choose.

Given these two claims, a contract offered by self t, C ′t, must maximize the agent’s

utility subject to the zero profits, incentive compatibility, perceived choice, and non-lapsing

constraints, concluding the proof of Lemma 3.

Proof of Lemmas 2 and 4. In the text, we presented the proof for the case with two-sided

commitment when there is no uncertainty and T = 4. Here, we consider the model with

one-sided commitment case (Lemma 4), still assuming no uncertainty and T = 4. The

proof for stochastic income and arbitrary T is presented in the supplementary appendix.

There are two ICs:

u(c2(A)) + β[δu(c3(A,B)) + δ2u(c4(A,B))] ≥ u(c2(B)) + β[δu(c3(B,B)) + δ2u(c4(B,B))],

(sA1)

u(c3(A,A)) + βδu(c4(A,A)) ≥ u(c3(A,B)) + βδu(c4(A,B)). (sA2)

First, note that (sA1) must bind at an optimum (otherwise, we can raise c4(B,B), giving the

agent a higher utility). Substitute the binding (sA1) in the objective to eliminate c4(B,B):

u(c1) + δu(c2(A)) + β[δ2u(c3(A,B)) + δ3u(c4(A,B))] + (β − 1)δu(c2(B)).

Similarly, (sA2) must bind (otherwise, we can raise c4(A,B), increasing the agent’s utility).
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Use the binding (sA2) to rewrite the objective as:

u(c1)+δu(c2(A))+δ2u(c3(A,A))+βδ3u(c4(A,A))−(1−β)[δu(c2(B))+δ2u(c3(A,B))].

Since β < 1, we should pick c2(B) and c3(AB) as small as possible subject to the con-

straints. Substituting c2(B) = c3(AB) = 0 back in this expression concludes the proof

of Lemma 2. For the proof of Lemma 4, it remains to be verified that the non-lapsing

constraints imply perceived non-lapsing constraints if we set c2(B) = c3(A,B) = 0.

Let ĉ denote a solution to the perceived outside option program, and let V̂ I
2 = u(ĉ2) +

β̂(δu(ĉ3(B)) + δ2u(ĉ4(B))). We will use binding ICs constraints to obtain a lower bound

on the perceived payoff of keeping the contract and show that is greater than the perceived

outside option V̂ I
2 . We first use the the binding IC for self 2 to rewrite the perceived payoff:

u(c2(B)) + β̂(δu(c3(BB)) + δ2u(c4(BB))

= u(0) +
β̂

β
β(δu(c3(B,B)) + δ2u(c4(B,B))

= u(0) +
β̂

β

[
u(c2(A)) + β(δu(c3(A,B)) + δ2u(c4(AB)))− u(0)

]
=

(
1− β̂

β

)
u(0) +

β̂

β

[
u(c2(A)) + β(δu(c3(A,B)) + δ2u(c4(AB)))

]
,

where the first equality follows from c2(B) = 0 and the second uses the binding IC

constraint (sA1). From the non-lapsing constraint at time 2, we know that u(c2(A)) +

β(δu(c3(A,B)) + δ2u(c4(AB) ≥ V I
2 , giving a lower bound to the perceived payoff.

u(c2(B)) + β̂(δu(c3(BB)) + δ2u(c4(BB)) ≥

(
1− β̂

β

)
u(0) +

β̂

β
V I
2 .

Since V I
2 is the best possible outside option at time 2, in particular, it is greater than or
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equal to the utility provided by the contract ĉ, implying

u(c2(B)) + β̂(δu(c3(BB)) + δ2u(c4(BB))

≥

(
1− β̂

β

)
u(0) +

β̂

β

[
u(ĉ2) + β(δu(ĉ3(B)) + δ2u(ĉ4(B))

]
.

Rearranging,

u(c2(B)) + β̂(δu(c3(BB)) + δ2u(c4(BB))

=

(
1− β̂

β

)
u(0) +

(
β̂

β
− 1

)
u(ĉ2) +

[
u(ĉ2) + β̂(δu(ĉ3(B)) + δ2u(ĉ4(B))

]
≥ u(ĉ2) + β̂(δu(ĉ3(B)) + δ2u(ĉ4(B))) = V̂ I

2 ,

where the inequality comes from ĉ2 ≥ 0 and β̂ ≥ β and the last line comes from the

definition of V̂ I
2 . This shows that the perceived non-lapsing constraints hold.

We next verify that all the perceived choice constraints hold. Notice that

u(c3(A,B)) + β̂δu(c4(A,B)) = u(0) + β̂δu(c4(A,B))

=

(
1− β̂

β

)
u(0) +

β̂

β
(u(c3(A,A)) + βδu(c4(A,A)))

=

(
1− β̂

β

)
u(0) +

(
β̂

β
− 1

)
u(c3(A,A)) + u(c3(A,A)) + β̂δu(c4(A,A))

≥ u(c3(A,A)) + β̂δu(c4(A,A)), (sA3)

where the first line uses u(c3(A,B)) = 0, the second line uses the self 3’s binding IC

constraint (sA2), the third line comes algebraic manipulations, and the last line uses β̂ > β
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and c3(A,A) ≥ 0. Similarly,

u(c2(B)) + β̂[δu(c3(B,B)) + δ2u(c4(B,B))]

= u(0) + β̂[δu(c3(B,B)) + δ2u(c4(B,B))]

= (1− β̂

β
)u(0) +

β̂

β

[
u(c2(A)) + β[δu(c3(A,B)) + δ2u(c4(A,B))]

]
≥ u(c2(A)) + β̂[δu(c3(A,B)) + δ2u(c4(A,B))], (sA4)

where the first line uses c2(B) = 0, the second line uses the self 2’s binding IC constraint

(sA1), and the last line uses β̂ > β and c2(A) ≥ 0. So the perceived choice constraints

hold.

So far, we have shown that c2(B) = c3(AB) = 0 under the equilibrium contract. We

also showed that we can disregard the perceived choice constraints and perceived non-

lapsing constraints. Recall that cEt denotes the consumption on the equilibrium path at time

t. Substituting the binding ICs, the non-lapsing constraints on the equilibrium path can be

simplified to u(cEt ) + δu(cEt+1) + · · ·+ βδt−4u(cE4 ) ≥ V I
t .

Therefore, the original program reduces to the auxiliary program:

max
(c1,c2,c3,c4)

u(c1) + δu(c2) + δ2u(c3) + βδ3u(c4), (sA5)

subject to

4∑
t=1

ct
Rt−1 =

4∑
t=1

w

Rt−1 , (sA6)

u(ct) + δu(ct+1) + · · ·+ βδ4−tu(c4) ≥ V I
t ,∀2 ≤ t ≤ 4. (sA7)

Proof of Corollary 1. We can focus on the auxiliary program. Let x(st) ≡ u(c(st)) denote
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the agent’s utility from the consumption he gets in state st. We study the dual program:

max
{x(st)}

T∑
t=1

∑
st∈St

p(st|s1)
w(st)− u−1 (x(st))

Rt−1 , (sA8)

subject to

T−1∑
t=1

∑
st∈St

δt−1p(st|s1)x(st) + β
∑
sT∈ST

δT−1p(sT |s1)x(sT ) ≥ u. (sA9)

This program corresponds to the maximization of a strictly concave function over a convex

set, so that, by the Theorem of the Maximum, the solution is unique. Moreover, the con-

sumption path is continuous in β ∈ (0, 1]. Finally, the program does not involve β̂, so the

consumption path is not a function of the consumer’s naiveté.

Once we pin down the unique consumption path, the baseline options are either zero

or determined by the binding IC constraints, which do not depend on β̂ (see the proof of

Lemma 2). So the equilibrium consumption vector is not a function of the consumer’s

naiveté.

Proof of Claim 1 (from the proof of Theorem 3). First, the time consistent agent’s welfare

is exactly given by the outside option,

ŴC
T (c) = E

T∑
t=1

δt−1u(c(st)).

The limit of ŴC
T (c) exists by the root test:

lim sup
T↗∞

T
√
δT−1|u(c(sT ))| ≤ δ < 1.

Second, we show the limit of ΠC
T (c) exists using the Cauchy convergence criterion. Specif-
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ically, we claim that for sufficiently large T ,

E
w(sT )− c(sT )

RT−1 ≤ ΠC
T (c)− ΠC

T−1(c) ≤ E
w(sT )

RT−1 +
2δT−1 max{|u(·)|}

u′(K)
. (sA10)

The claim follows from a revealed-preference argument. Suppose (c′1, · · · , c′(sT−1)) solves

the program ΠC
T−1(c). Then (c′1, · · · , c′(sT−1), c(sT )) is in the feasible set of the program

ΠC
T (c). By the revealed-preference argument, it immediately follows that

ΠC
T (c) ≥ E

w(sT )− c(sT )

RT−1 + ΠC
T−1(c).

Suppose (c∗1, · · · , c∗(sT )) solves the program ΠC
T (c). We show that

(
c∗1 +

2δT−1 max{|u(·)|}
u′(K)

, c∗(s2), · · · , c∗(sT−1)
)

(sA11)

is in the feasible set of the program ΠC
T−1(c). To see that, note that from the Lagrange’s

Mean Value Theorem, it follows that

u

(
c∗1 +

2δT−1 max{|u(·)|}
u′(K)

)
− u(c∗1) = u′(ξ)

2δT−1 max{|u(·)|}
u′(K)

, (sA12)

where ξ ∈ (c∗1, c
∗
1 + 2δT−1 max{|u(·)|}

u′(K)
). For sufficiently large T , c∗1 + 2δT−1 max{|u(·)|}

u′(K)
< K. So

u′(ξ) ≥ u′(K). Going back to equation (sA12) leads to

u

(
c∗1 +

2δT−1 max{|u(·)|}
u′(K)

)
− u(c∗1) ≥ 2δT−1 max{|u(·)|}. (sA13)
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Then,

u

(
c∗1 +

2δT−1 max{|u(·)|}
u′(K)

)
+ E

T−1∑
t=2

δt−1u(c∗(st))

≥ 2δT−1 max{|u(·)|}+ E
T−1∑
t=1

δt−1u(c∗(st))

≥ 2δT−1 max{|u(·)|}+ E
T∑
t=1

δt−1u(ct)− EδT−1u(c∗(sT ))

= E
T−1∑
t=1

δt−1u(ct) +
(
δT−1 max{|u(·)|} − EδT−1u(c∗(sT ))

)
+
(
δT−1 max{|u(·)|}+ EδT−1u(cT )

)
≥ E

T−1∑
t=1

δt−1u(ct),

where the first inequality comes from (sA13), the second comes from noting that (c∗1, · · · , c∗(sT ))

solves program ΠC
T (c), the equality comes from algebraic manipulations, and the last step

uses the boundedness of u. So we have shown that (sA11) is in the feasible set of ΠC
T−1(c).

A revealed-preference argument implies that

ΠC
T−1(c) ≥ E

T−1∑
t=1

w(st)− c∗(st)
Rt−1 − 2δT−1 max{|u(·)|}

u′(K)
.

Recall that ΠC
T (c) = E

∑T
t=1

w(st)−c∗(st)
Rt−1 . Substituting it back to the previous inequality, we

obtain

ΠC
T−1(c) ≥ ΠC

T (c)− Ew(sT )− c∗(sT )

RT−1 − 2δT−1 max{|u(·)|}
u′(K)

,

establishing the right-hand-side of (sA10) because of c∗(sT ) ≥ 0. SinceE
∑T

t=1
w(sT )−c(sT )

RT−1

exists and δ < 1, for ∀ε, we can find T0 such that ∀T1, T2 > T0, |ΠC
T1

(c) − ΠC
T2

(c)| < ε.

This establishes that {ΠC
T (c)} satisfies the Cauchy convergence criterion, therefore the limit

exists.

Proof of Proposition 2. Since c∗ maximizes the welfare function WH
T (c), it immediately
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follows that WH,I
T ≤ W ∗

T ,∀T . Thus,

lim sup
T↗∞

WH,I
T −W ∗

T

T
≤ 0. (sA14)

Denote dt,T = DT−1

DT−t
,∀t = 1, · · · , T . The objective function in the naive agent’s auxiliary

program becomes
T∑
t=1

dt,Tu(ct). (sA15)

It follows that

WH,I
T =

T∑
t=1

u(cHt ) =
T∑
t=1

[dt,Tu(cHt ) + (1− dt,T )u(cHt )]

≥
T∑
t=1

[dt,Tu(c∗t ) + (1− dt,T )u(cHt )],

where the first line comes from the definition and algebraic manipulations and the last step

comes from the fact that cH maximizes (sA15) and that c∗ is feasible. Rearranging,

WH,I
T ≥

T∑
t=1

[
u(c∗t ) + (1− dt,T )[u(cHt )− u(c∗t )]

]
=

T∑
t=1

[
u(c∗t ) +

k(t− 1)

1 + k(T − 1)
[u(cHt )− u(c∗t )]

]

= W ∗
T +

T∑
t=1

k(t− 1)

1 + k(T − 1)
[u(cHt )− u(c∗t )], (sA16)

where the first line comes from algebraic manipulations, the second line uses the definition

of dt,T , and the last line comes from the definition of W ∗
T .

We next show a series of lemmas to bound the second term. Let λH denote the La-

grangian multiplier from the zero-profit condition in the naive agent’s program, and let λ∗

denote the Lagrangian multiplier from the time-consistent agent’s program. Note that the

solution must be interior solution since limc↘0 u
′(0) = +∞.
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Lemma 10. There exist λ, λ ∈ (0,+∞) such that

λ ≤ min(λH , λ∗) ≤ max(λH , λ∗) ≤ λ.

Proof. From the first-order-condition, we know that

λH = u′(cH1 ), λ∗ = u′(c∗1).

Note that the first period consumption must be between 0 and
∑∞

t=1
w

Rt−1 = w
1−R . The

lemma follows immediately by letting λ = u′(0) and λ = u′
(

w
1−R

)
.

Lemma 11. There exists a constant A > 0 such that |t(u(cHt )− u(c∗t ))| < A,∀t,∀T .

Proof. From the first-order-condition, we know that

λHdt,T
Rt−1 = u′(cHt ),

λ∗

Rt−1 = u′(c∗t )

Denote g(·) = (u′)−1(·). Inverting above equations to solve for cHt and c∗t ,

cHt = g

(
λHdt,T
Rt−1

)
, c∗t = g

(
λ∗

Rt−1

)
.

Note that du(g(x))
dx

= x
u′′(g(x))

. Applying Lagrangian Mean Value Theorem, there exists η,

where min(λ∗,λHdt,T )

Rt−1 ≤ η ≤ max(λ∗,λHdt,T )

Rt−1 , such that

|t(u(cHt )− u(c∗t ))| = t

∣∣∣∣u(g(λHdt,TRt−1

))
− u

(
g

(
λ∗

Rt−1

))∣∣∣∣ (sA17)

= t

∣∣∣∣ η

u′′(g(η))

(
λHdt,T
Rt−1 −

λ∗

Rt−1

)∣∣∣∣ . (sA18)

Using a change of variable x = 1
Rt−1 , then

xλdt,T ≤ xmin(λ∗, λHdt,T ) ≤ η ≤ xmax(λ∗, λHdt,T ) ≤ xλ.
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So x ≥ η

λ
. Note that dt,T = 1+k(T−t)

1+k(T−1) ≥
1

1+k(t−1) . So,

x ≤ η

λdt,T
≤ η(1 + k(t− 1))

λ
=
η(1− k log(x)

logR
)

λ
≤
η(1− k log(η)−log(λ)

logR
)

λ
. (sA19)

We can rewrite (sA18) as

|t(u(cHt )− u(c∗t ))| ≤
(
− log x

logR
+ 1

) ∣∣∣∣ η

u′′(g(η))

∣∣∣∣ 2λ

Rt−1

=

(
− log x

logR
+ 1

) ∣∣∣∣ η

u′′(g(η))

∣∣∣∣ 2λx
≤ 2

λ

λ

(
− log η − log(λ)

logR
+ 1

)(
1− k log η − log λ

logR

)
η2

|u′′(g(η))|

≤ constant ∗ (log η)2η2

|u′′(g(η))|
,

where the first line uses t = − log x
logR

+ 1 and Lemma 10, the second line uses x = 1
Rt−1 ,

the third uses (sA19), and the last line collects the first-order terms. Let ξ = g(η) and use

Assumption 1, so there exists A > 0 such that |t(u(cHt )− u(c∗t ))| < A.

Lemma 12.
∑T

t=1
1
t
≥ log(T ) for any T ≥ 1.

Proof. Note that log(t + 1) − log(t) =
∫ t+1

t
1
θ
dθ ≤ 1

t
. Sum over t from 1 to (T − 1) to

obtain: log(T ) ≤
∑T−1

t=1
1
t
≤
∑T

t=1
1
t
.

Lemma 13. There exists a constant A′ > 0 such that

T∑
t=1

k(t− 1)

1 + k(T − 1)
|u(cHt )− u(c∗t )| < A′,∀T
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Proof. Using Lemma 11, it follows that

T∑
t=1

k(t− 1)

1 + k(T − 1)
[u(cHt )− u(c∗t )] ≤

T∑
t=1

k(t− 1)

1 + k(T − 1)

A

t

≤
T∑
t=1

k

1 + k(T − 1)
A+

T∑
t=1

−k
1 + k(T − 1)

A
1

t

≤ kAT

1 + k(T − 1)
+

−k
1 + k(T − 1)

A log(T ),

where the first line comes from the lemma 11, the second line comes from algebraic ma-

nipulations, and the last line comes from k ≥ 0 and lemma 12. Note that as T ↗ ∞, the

first term converges to A, and the second term converges to 0. So there exists a constant

A′ > 0 such that
T∑
t=1

k(t− 1)

1 + k(T − 1)
[u(cHt )− u(c∗t )] < A′,∀T.

Returning to (sA16), we have

lim inf
T↗∞

WH,I
T −W ∗

T

T
≥ − lim inf

T↗∞

A′

T
= 0. (sA20)

Together with (sA14), it implies that limT↗∞
WH,I
T −W ∗T
T

exists, and

lim
T↗∞

WH,I
T −W ∗

T

T
= 0.

Proof of Proposition 4. It is easy to construct off-path beliefs that support the full-

information allocation as an equilibrium. We need to show that no other allocation can

be supported as an equilibrium. Suppose there exists a type β̂0 that does not pick the full

information contract in equilibrium. There are two possibilities: (i) β̂0 is separated in equi-

librium (i.e., no other type picks the same contract at β̂0), or (ii) β̂0 is pooled in equilibrium
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(i.e. there exists another type that picks the same contract as β̂0).

Consider case (i) first. Since β̂0 is the only type picking its contract, that contract must

satisfy IC, PC, and zero profits. Recall that the full information contract is the unique con-

tract that maximizes self 1’s perceived utility subject to IC, PC, and zero profits. Consider

a deviation in which type β̂0 offers the full-information contract in all histories except in

period 1, where it offers a slightly lower consumption than with full information. Note

that lowering c1 does not affect IC and PC and, by taking c1 arbitrarily close to the full-

information consumption, we ensure that the consumer gets a strictly higher perceived

utility while leaving strictly positive profits to the firm, contradicting the assumption that

the original allocation was part of an equilibrium.

Next consider case (ii), so there are at least two types pooled at a contract different from

the full information contract. If the firm breaks even on each consumer, then by the same

argument as before, all consumers would strictly benefit from deviating to offering the full

information contract (with a slightly lower c1), which also gives strictly positive profits

for the firm. If instead there is a cross subsidy between types, a type that is providing

a positive profit can strictly benefit from deviating to the full information contract (with

a slightly lower c1). Moreover, by taking c1 close enough to one in the full-information

contract (which maximizes the perceived utility and leaves zero profits), we ensure that

deviation is profitable.

Proof of Proposition 5. Suppose we have an equilibrium in which at least one naive type

does not pick the full-information contract. Using the same argument as in Proposition 4,

that type cannot be separated or pooled with other naive types only. Therefore, the only

remaining case is one where at least one naive type pools with the sophisticated type.

But note that the contract that a sophisticated type would offer under full information of-

fers a fixed consumption in each period (no alternative options), maximizing his perceived

utility at time 1 under the zero profits constraint. Therefore, he must be cross subsidized

in order to choose another contract (i.e., the firm must make strictly negative profits from

serving him). But since the firm would not accept a contract that makes negative profits,
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this means that the firm must make strictly positive profits on some naive type that is pool-

ing with the sophisticated type. But then this naive type would strictly profit from deviating

to full information contract, which maximizes his perceived utility at time 1 subject to the

zero profits constraint.

Proof of Lemma 5. Without loss of generality, we use the following normalization u(0) =

0 in our analysis below. The proof follows by contradiction. Suppose there is an equilib-

rium in which two types, βL and βH > βL, offer their full information contracts, CL and

CH . We show that these contracts cannot be part of an equilibrium when T is large enough

since type βH would deviate and pick CL, leaving the firm with negative profits.

Note that, by the binding IC constraint for type βL, if type βH picks CL, he ends up

choosing B rather than A. In this case, the firm offering CL makes negative profits. To see

this, suppose instead that the firm makes a non-negative profit from this contract. But this

would mean that the non-flexible contract that gives only the baseline consumption would

also solve type βL’s program, which contradicts Corollary 1.

Type βH’s perceived utility from CL equals:

u(cL1 ) + βH

T∑
t=2

δt−1u(cLt (B, · · · , B))

=
βL − βH
βL

u(cL1 ) +
βH
βL
u(cL1 ) + βH

T∑
t=2

δt−1u(cLt (B, · · · , B))

=
βL − βH
βL

u(cL1 ) +
βH
βL

[
u(cL1 ) + βL

T∑
t=2

δt−1u(cLt (B, · · · , B))

]

=
βL − βH
βL

u(cL1 ) +
βH
βL

[
T−1∑
t=1

δt−1u(cLt (A, · · · , A)) + βLδ
T−1u(cLT (A, · · · , A))

]

=
βL − βH
βL

u(cL1 ) +
βH
βL

T−1∑
t=1

δt−1u(cLt (A, · · · , A)) + βHδ
T−1u(cLT (A, · · · , A))

= u(cL1 ) +
βH
βL

T−1∑
t=2

δt−1u(cLt (A, · · · , A)) + βHδ
T−1u(cLT (A, · · · , A))
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>

T−1∑
t=1

δt−1u(cHt (A, · · · , A)) + βHδ
T−1u(cHT (A, · · · , A))

= u(cH1 ) + βH

[
T∑
t=2

δt−1u(cHt (B, · · · , B))

]
.

where the second, third, fifth, and sixth lines follow from algebraic manipulations, the

fourth line substitutes the binding (IC) for the low type, and the last line uses the binding

(IC) for the high type. The strict inequality on the seventh line uses the following facts:

βH > βL, ut(A,A..., A) ≥ 0 with strict inequality for at least one t, and, from Theorem

1, the welfare of time-inconsistent consumers converge to the welfare of time-consistent

consumers

lim
T↗∞

T−1∑
t=1

δt−1u(cLt ) + βHδ
T−1u(cLT ) = lim

T↗∞

T−1∑
t=1

δt−1u(cHt ) + βHδ
T−1u(cHT ).

Therefore, for T sufficiently large, the βH consumer would have an incentive to deviate and

choose βL consumer’s full-information contract while taking the baseline option.

Proof of Lemma 6. We argue by contradiction. Fix an equilibrium in which βH does not

get his full-information contract. First, suppose that firms make non-negative profits from

βH . Suppose βH deviates and offers his full-information contract. By a single-crossing

argument, if type βL got βH’s full-information contract, he would always choose option A,

so the firm would break even on both types under type βH’s full-information contract. Since

the full-information contract maximizes βH’s perceived utility among those that make zero

profits, βH has an incentive to deviate to it.

Suppose, instead, that the firm makes strictly negative profits on type βH . Then firm

optimality requires that both types pool on the same contract C and the firm makes strictly

positive profits on type βL. To generate different profits, these two types must be getting

different allocations on the equilibrium path.

We will construct a deviation contract C(ε) such that whenever the βH consumer weakly

benefits from the deviation, the βL consumer strictly benefits from the deviation. By D1
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criteria, we should assign zero weight to the type βH and all the weight to the type βL

consumer. Given that firms make positive profits from the βL consumer’s equilibrium con-

tract, firms would charge a price such that the βL consumer are better off with C(ε) than the

contract C, a contradiction. Since both types have the same naiveté parameter β̂, they both

believe they will choose the same options. Let (ĉ2, · · · , ĉT ) denote their perceived con-

sumption stream. Construct a perturbation of the equilibrium contract, C(ε), by decreasing

the last-period perceived consumption by ε and adjusting the other options so that (IC) and

(PC) hold for both types. Upon observing contract C(ε), the firm must assign full weight to

type βL. This is because whenever βH benefits from deviating to this contract (i.e., when

the firm’s price is lower than −βHδT−1 u
′(cT )
u′(c1)

ε, βL also benefits from this deviation (i.e.,

when the firm’s price is lower than −βLδT−1 u
′(cT )
u′(c1)

ε. Therefore, this candidate equilibrium

does not satisfy D1.

Proof of Lemma 7. To show that the proposed equilibrium survives D1, we show that if

βL can benefit from a deviation to C ′, then βH strictly benefits from the deviation as well.

Recall that they have the same perceived time-consistency parameter β̂, so their per-

ceived consumption from the contract C ′ are the same, denoted as (c′1, c
′
2, · · · , c′T ). Suppose

βL can benefit from the deviation:

u(c1) + βL

T∑
t=2

δt−1u(ct(B, · · · , B)) < u(c′1) + βL

T∑
t=2

δt−1u(c′t). (sA21)

By a single-crossing argument, since c solves βL’s program (and therefore his IC must

bind), type βH’s IC cannot hold:

u(cH1 ) + βH

T∑
t=2

δt−1u(cHt (B, · · · , B)) < u(c′1) + βH

T∑
t=2

δt−1u(c′t), (sA22)

so βH also benefits from this deviation. According to D1, we must assign zero weight on

βL and full weight on βH . Because βH gets his full-information contract in any equilibrium
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satisfying D1 (Lemma 6), we must have

u(cH1 ) + βH

T∑
t=2

δt−1u(cHt (B, · · · , B)) ≥ u(c′1) + βH

T∑
t=2

δt−1u(c′t), (sA23)

a contradiction to (sA22). So we have

u(c1) + βL

T∑
t=2

δt−1u(ct(B, · · · , B)) ≥ u(c′1) + βL

T∑
t=2

δt−1u(c′t), (sA24)

showing that βL does not have a profitable deviation and the proposed equilibrium survives

D1.

Next, we show that in any equilibrium satisfying D1, the consumption path corresponds

to the least costly separating allocation. Suppose there exists another equilibrium that sur-

vives D1. As we showed above, βH gets his full-information contract. Let C ′ denote βL’s

equilibrium contract, and the contract is different from the leastly costly separation allo-

cation (A1). Suppose βL deviates and offers a contract that coincides with the solution to

(A1) except that it reduces consumption in the first period by a small ε > 0. By the IC

constraint, the βH consumer is strictly worse off by choosing this new contract instead of

his full-information contract. By D1, firms must assign full weight to βL. By choosing ε

small enough, βL strictly benefits from the deviation.

Proof of Proposition 6. From the previous lemmas, the equilibrium is given by the least-

costly separation. The equilibrium-path consumption for the low type solves the following

program:

maxu(c1) + l(c1),

subject to

u(c1) +
βH
βL
l(c1) = V H , (sA25)
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where l(·) is defined as

l(c1) = max
(c2,c3,··· ,cT )

T−1∑
t=2

δt−1u(ct) + βδT−1u(cT ).

subject to
T∑
t=2

ct
Rt−1 =

T∑
t=1

w

Rt−1 − c1.

Note that by substituting (sA25) to the objective function, maximizing u(c1) + l(c1) is

equivalent to maximizing c1. If βL’s full-information contract cannot be sustained in a

equilibrium (as must be the case if T is large), it means that

u(cL1 ) +
βH
βL
l(cL1 ) > V H . (sA26)

Evaluating c1 at
∑T

t=1
w

Rt−1 implies that the

u

(
T∑
t=1

w

Rt−1

)
+
βH
βL
δl

(
T∑
t=1

w

Rt−1

)
= u

(
T∑
t=1

w

Rt−1

)
< V H . (sA27)

By the intermediate value theorem, it follows that the maximal root of (sA25) must be

greater than the first period consumption in the full-information contract: c1 > cL1 . This

completes the first part of the proposition.

We next show that the welfare loss must be bounded below away from 0. We argue by

contradiction. Suppose there exists a subsequence {Tn : n ∈ N} such that limn↗∞(WC
Tn
−

WL
Tn

) = 0. To be clear that our variables now depends on Tn, we write variables as a
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function of Tn. Note that

lim
n↗∞

(WC
Tn −W

L
Tn) = lim

n↗∞
(V H(Tn)−WL

Tn)

= lim
n↗∞

(
V H(Tn)− u(c1(Tn))− l(c1(Tn))

)
= lim

n↗∞

(
V H(Tn)− u(c1(Tn))− (V H(Tn)− u(c1(Tn)))

βL
βH

)
= lim

n↗∞

(
V H(Tn)− u(c1(Tn))

)(
1− βL

βH

)
,

where the first equality comes from the vanishing inefficiency result for the βH consumer,

the second equality comes from the definition of l(c1) and (1 − β)δT−1u(c(sT )) → 0, the

third equality comes from (sA25), and the fourth equality comes from algebraic manipula-

tions.

It follows that limn↗∞
(
V H(Tn)− u(c1(Tn))

)
= 0. From the vanishing inefficiency

result for the βH consumer, it implies that

lim
n↗∞

(
WL
Tn − u(c1(Tn))

)
= lim

n↗∞

(
WC
Tn − u(c1(Tn))

)
= lim

n↗∞

(
V H(Tn)− u(c1(Tn))

)
= 0.

(sA28)

Note that WL
Tn

=
∑Tn

t=1 δ
t−1u(ct(Tn)). We obtain

lim
n↗∞

Tn∑
t=2

δt−1u(ct(Tn)) = 0.

Recall that we normalize u(0) = 0, so u(c) ≥ 0,∀c ≥ 0. We must have limn↗∞ ct(Tn) =

0,∀t. By the zero-profits condition, the βL consumer consumes everything in the first pe-

riod in the limit: limn↗∞ c1(Tn) =
∑∞

t=1
w

Rt−1 . This consumption stream cannot achieve

the first-best welfare (i.e., WC
T ), as shifting some consumption to future periods can strictly

improves welfare since limc↘0 u
′(c) = +∞. Specifically, fix a small ε0 > 0, it is straight-
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forward to show that

u

(
∞∑
t=1

w

Rt−1

)
< u

(
∞∑
t=1

w

Rt−1 − ε0

)
+ δu(Rε0) ≤ lim

T↗∞
WC
T .

This is a contradiction to (sA28) that limn↗∞
(
WC
Tn
− u(c1(Tn))

)
= 0.

So the welfare loss does not vanish as the contracting horizon grows: lim infT↗∞(WC
T −

WL
T ) > 0.

Proof of Lemma 8. To prove the lemma, we argue by contradiction. There exist two op-

tion history paths of consumption stream starting with (st, h
t) that have different expected

present discounted values. Without loss of generality, assume that one path, denoted as ĉ,

has a higher expected present value than the other path, denoted as c̃.

We note that since c is the equilibrium consumption vector, it must satisfy the no addi-

tional contracting constraints. Given that the present value of ĉ is higher than the present

value of c̃. There are two possibilities, either c̃ starts with the baseline option or c̃ starts

with the alternative option. In either case, we show that the no additional contracting con-

straints would be violated. First, suppose c̃ starts with the baseline option. In this case,

the baseline option would not be the consumer’s perceived consumption, because the con-

sumer perceives that he has an incentive to recontract with another firm, who can give the

consumer slightly higher consumption in the baseline option. Specifically, consider another

contract c′, which has the same term as c except that we increase ε in the consumption in

the baseline option of c̃. Similarly, if c̃ starts with the alternative option, the consumer can

recontract with another firm, who gives him slightly higher consumption in the alternative

option.

Proof of Proposition 7. Note first that uncertainty over states plays no role in the program

with non-exclusive contracts. Starting from any allocation in which consumption within a

period is random, the agent increase his perceived utility by signing a contract with another

firm to smooth consumption in that period. So we can without loss of generality substitute

each period’s income by its expected value. Using Lemma 8, we find that the program with
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non-exclusive contracts becomes identical to the consumption-savings problem.

Proof of Proposition 8. Consider a problem with a sophisticated consumer who has the

commitment power and whose time-consistency parameter is β

β̂
. Without loss of gener-

ality, we assume that there is no uncertainty. Recall that a1 is the PDV of income. The

sophisticate’s program is

cS = max
{c(·)}

u(c1) +
β

β̂

T∑
t=2

δt−1u(ct),

subject to
T∑
t=1

ct
Rt−1 = a1.

We claim that the welfare in the above program is an upper bound of the welfare in the

consumption-savings problem for the naive consumer. Let c1 denote the first-period con-

sumption in the consumption-savings problem. We will show that the naive agent consumes

strictly more than the sophisticated agent: c1 ≥ cS1 .

The proof proceeds through four lemmas. The first one adapts arguments from Harris

and Laibson (2001).

Lemma 14. The perceived consumption functions (ĉ2(·), · · · , ĉT (·)) satisfy:

(δR)t−1u′(ĉt) = (δR)tu′(ĉt+1)
[
1− ĉ′t+1(at+1) + β̂ĉ′t+1(at+1))

]
, ∀1 < t < T,

where at+1 = R(at − ĉt(at)).

Proof. The proof follows by induction, starting at period T − 1. The last period consump-

tion is cT (aT ) = aT . Consumption in the penultimate period is:

ĉT−1(aT−1) = arg max
c̃
{u(c̃) + β̂δu(ĉT (aT )) subject to aT = R(aT−1 − c̃)}.
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Since limc↘0 u
′(c) = +∞, the unique solution must be interior and satisfy the FOC:

u′(ĉT−1) = β̂δRu′(ĉT ).

Since ĉ′T (aT ) = 1, the statement in the lemma holds for t = T − 1.

Moving to the induction step, suppose the statement holds for τ < T and recall that:

ĉτ (aτ ) = arg max
c̃
{u(c̃) + β̂

T∑
t=τ+1

δt−τu(ĉt(at)) subject to (B2), (B3), and (B4)}.

The unique solution must be interior and satisfy the FOC:

u′(ĉτ ) + β̂
T∑

t=τ+1

δt−τu′(ĉt(at))
∂ĉt(at)

∂ĉτ
= 0.

Substitute

∂ĉt(at)

∂ĉτ
= ĉ′t(at)

∂at
∂ĉτ

= ĉ′t(at)
∂at
∂at−1

· · · ∂aτ+1

∂ĉτ

= −Rt−τ ĉ′t(at)(1− ĉ′t−1(at−1)) · · · (1− ĉ′τ+1(aτ+1)),

to rewrite the FOC as:

u′(ĉτ ) = β̂
T∑

t=τ+1

(δR)t−τu′(ĉt(at))ĉ
′
t(at)(1− ĉ′t−1(at−1)) · · · (1− ĉ′τ+1(aτ+1)).

The FOC at τ + 1 is:

u′(ĉτ+1) = β̂

T∑
t=τ+2

(δR)t−τ−1u′(ĉt(at))ĉ
′
t(at)(1− ĉ′t−1(at−1)) · · · (1− ĉ′τ+2(aτ+2)).

Multiply both sides by δR(1 − ĉ′τ+1(aτ+1)) and substitute back in the equation for u′(ĉτ )
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to verify that the statement in the lemma also holds for t = τ :

u′(ĉτ ) = β̂(δR)u′(ĉτ+1)ĉ
′
τ+1(aτ+1) + (δR)u′(ĉτ+1)[1− ĉ′τ+1(aτ+1)].

Lemma 15. The first-period consumption c1 satisfies:

u′(c1) = δRu′(ĉ2)
β

β̂

[
1− ĉ′2(a2) + β̂ĉ′2(a2)

]
,

where a2 = R(a1 − c1).

Proof. Similar to the proof of last lemma,

u′(c1) = β
T∑
t=2

(δR)t−1u′(ĉt(at))ĉ
′
t(at)(1− ĉ′t−1(at−1)) · · · (1− ĉ′2(a2)).

The FOC at t = 2 gives to

u′(ĉ2) = β̂
T∑
t=3

(δR)t−2u′(ĉt(at))ĉ
′
t(at)(1− ĉ′t−1(at−1)) · · · (1− ĉ′3(a3)).

Multiply by δR(1 − ĉ′2(a2)) on both sides, and substitute back to the equation for u′(c1),

then we obtain

u′(c1) = βδRu′(ĉ2)ĉ
′
2(a2) +

β

β̂
δRu′(ĉ2)(1− ĉ′2(a2)).

Lemma 16. (δR)t−1u′(ĉt(at)) ≥ β̂
β
u′(c1) for all t > 1.

Proof. It is straightforward to see that ĉ′t(at) ∈ [0, 1],∀t > 1. It follows that 1 − ĉ′t(at) +
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β̂ĉ′t(at) ∈ [β̂, 1]. From the previous two lemmas, we have

(δR)t−1u′(ĉt(at)) ≤ (δR)tu′(ĉt+1(at+1)),∀1 < t < T.

u′(c1) ≤
β

β̂
δRu′(ĉ2).

It immediately follows that (δR)t−1u′(ĉt(at)) ≥ β̂
β
u′(c1),∀t > 1.

Lemma 17. The naive agent consumes weakly more than the sophisticated agent in the

first period: c1 ≥ cS1 .

Proof. We argue by contradiction. Suppose c1 < cS1 . Then u′(c1) > u′(cS1 ). From the FOC

of the sophisticate’s problem, we know that

u′(cS1 ) =
β

β̂
(δR)t−1u′(cSt ).

Together with the previous lemma, we obtain

β

β̂
(δR)t−1u′(ĉt(at)) >

β

β̂
(δR)t−1u′(cSt ).

Thus, ĉt(at) < cSt , which is a contradiction because of the zero-profits condition

c1 +
T∑
t=2

ĉt(at)

Rt−1 = a1 =
T∑
t=1

cSt
Rt−1 .

We are now ready to show the proposition. Let c = (c1, · · · , cT ) denote the naive con-

sumer’s equilibrium allocation. Since c also satisfies the zero-profit condition, a revealed-

preference argument applied to the sophisticate’s program gives:

u(cS1 ) +
β

β̂

T∑
t=2

δt−1u(cSt ) ≥ u(c1) +
β

β̂

T∑
t=2

δt−1u(ct). (sA29)
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The naive consumer’s welfare is:

T∑
t=1

δt−1u(ct) =

(
1− β̂

β

)
u(c1) +

β̂

β
u(c1) +

T∑
t=2

δt−1u(ct)

=

(
1− β̂

β

)
u(c1) +

β̂

β

[
u(c1) +

β

β̂

T∑
t=2

δt−1u(ct)

]

≤

(
1− β̂

β

)
u(c1) +

β̂

β

[
u(cS1 ) +

β

β̂

T∑
t=2

δt−1u(cSt )

]

=

(
1− β̂

β

)
u(c1) +

β̂

β
u(cS1 ) +

T∑
t=2

δt−1u(cSt )

≤ u(cS1 ) +
T∑
t=2

δt−1u(cSt ),

where equalities come from algebraic manipulation, the first inequality comes from (sA29),

and the last inequality comes from the previous lemma c1 ≥ cS1 . So the naive consumer’s

welfare is bounded above by the sophisticate’s welfare, which does not converge to the

time-consistent consumer’s welfare (Proposition 9), establishing the result.

Proof of Proposition 9. We argue by contradiction. Suppose instead that

lim inf
T↗+∞

(
WC
T −W S

T

)
= 0,

so that there exists a subsequence {Tn : n ∈ N} with limn↗+∞
(
WC
Tn
−W S

Tn

)
= 0.

Let cS = (cS1 (T ), · · · , cS(sT , T )) denote the equilibrium consumption for the sophisti-

cated agent in the (truncation of the) model with T periods. Let cC = (cC1 (T ), · · · , cC(sT , T ))

denote the equilibrium consumption for the time-consistent agent in the (truncation of the)

model with T periods. Passing to subsequences, we can assume both limits limn↗∞ c
S
1 (Tn)

and limn↗∞ c
C
1 (Tn) exist.33

33That is, there exists a subsequence {Tnm
} of {Tn} such that the limit of cS1 (Tnm

) exists. Similarly, con-
sider the sequence {cC1 (Tnmk

)}. Again, pick a subsequence {Tnmo
} of {Tnm

} such that the limit cC1 (Tnmk
)

exists. For notational simplicity, and with no loss of generality, we can replace the original sequence {Tn}
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We first claim that the sophisticate consumes strictly more in the first period than the

time-consistent consumer in the limit: limn↗∞ c
S
1 (Tn) > limn↗∞ c

C
1 (Tn). Suppose instead

that limn↗∞ c
S
1 (Tn) ≤ limn↗∞ c

C
1 (Tn). The FOCs of the time-consistent consumer’s pro-

gram give:

u′(cC1 (Tn)) = (δR)t−1Eu′(cC(st, Tn)), u′(cS1 (Tn)) = β(δR)t−1Eu′(cS(st, Tn)).

We claim that lim infn↗∞(cS(st, Tn) − cC(st, Tn)) < 0,∀t > 1. Otherwise, there exists

t > 1 and lim infn↗∞(cS(st, Tn) − cC(st, Tn)) ≥ 0. Passing to subsequences, we can

assume that limn↗∞ c
S
t (st, Tn) and limn↗∞ c

C
t (st, Tn) exist.

It follows that

lim
n↗∞

(δR)t−1Eu′(cS(st, Tn)) > lim
n↗∞

β(δR)t−1Eu′(cS(st, Tn))

= lim
n↗∞

u′(cS1 (Tn))

≥ lim
n↗∞

u′(cC1 (Tn))

= lim
n↗∞

(δR)t−1Eu′(cC(st, Tn))

≥ lim
n↗∞

(δR)t−1Eu′(cS(st, Tn)),

where the first inequality is strict because of β < 1, the second equation comes from

the sophisticate’s FOC, the third comes from limn↗∞ c
S
1 (Tn) ≤ limn↗∞ c

C
1 (Tn), the fourth

comes from the time-consistent consumer’s FOC, the last comes from lim infn↗∞(cS(st, Tn)−

cC(st, Tn)) ≥ 0. This is a contradiction. So lim infn↗∞(cS(st, Tn)− cC(st, Tn)) < 0,∀t >

1. But then it violates the zero-profit condition since

0 = lim inf
n↗∞

Tn∑
t=1

E(cS(st, Tn)− cC(st, Tn))

Rt−1 < 0.

What we have shown now is that in the first period the sophisticate consume strictly more

with this last subsequence {Tnmo
}.
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than the time consistent consumer in the limit: limn↗∞ c
S
1 (Tn) > limn↗∞ c

C
1 (Tn).

Define lT (c1) as

lT (c1) = max
c(s2),··· ,c(sT )

T∑
t=2

δt−1u(c(st)),

subject to E
∑T

t=2
c(st)
Rt−1 = E

∑T
t=1

w(st)
Rt−1 − c1. We claim that l′′T (c1) < 0. Let λl denote the

Lagrangian on the zero-profit constraint.

lT (c1) =
T∑
t=2

δt−1u(c(st)) + λl

(
E

T∑
t=1

w(st)

Rt−1 − c1 − E
T∑
t=2

c(st)

Rt−1

)
.

Taking derivative with respect to c1: l′T (c1) = −λl. Then, l′′T (c1) = −λ′l.

Taking derivative on the both sides of FOC, δt−1u′(ct) = λl
Rt−1 , with respect to c1:

∂ct
∂c1

=
λ′l

(δR)t−1u′′(ct)
.

Taking derivative with respect to c1 on the zero-profit condition:

−1 =
T∑
t=2

∂ct
∂c1

Rt−1 =
T∑
t=2

λ′l
(δR)t−1u′′(ct)

.

Thus, λ′l > 0 because u′′ < 0. So l′′T (c1) = −λ′l < 0.

It implies that u(c1) + lT (c1) is a concave function of c1 for any T . Since u is bounded

and δ < 1, we can use dominated convergence theorem. Taking limit of T to infinity,

lim supT↗∞ u
′′(c1) + l′′T (c1) ≤ lim supT↗∞ u

′′(c1) < 0, since we assume strict concavity

of u. So limT↗∞[u(c1) + lT (c1)] is a strict concave function of c1. Together with our first

claim that limn↗∞(cS1 (Tn)−cC1 (Tn)) > 0 and the fact that cC1 (T ) maximizes u(c1)+lT (c1),

it follows that

lim
n↗+∞

(
u(cC1 (Tn)) + lT (cC1 (Tn))− u(cS1 (Tn))− lT (cS1 (Tn))

)
> 0,

i.e. limn↗+∞
(
WC
Tn
−W S

Tn

)
> 0, a contradiction. So the welfare loss for sophisticated
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agents is bounded below away from 0.

Proof of Lemma 9. We first show that the (IC) constraints for self-2 must be binding for

all m2 ∈ supp(σ2) and m′2 ∈ supp(σ̂2). We note that the (IC) must be binding for at least

onem′2, because otherwise we can increase consumption on the perceived path and increase

the self 1’s payoff. Now suppose there exists m2 ∈ supp(σ2) and m′′2 ∈ supp(σ̂2) such that

the corresponding (IC) is slack. In this case, we show that from self 1’s perspective, the

perceived path m′′2 gives a higher payoff than the perceived path m′2 (using a coefficient

of 1). To see that, notice that from (PC) constraint, the perceived self-2 is indifferent

between m′2 and m′′2 (using a coefficient of β̂), but self-2 strictly prefers m′2 over m′′2 (using

a coefficient of β). By the single crossing property, it implies that m′′2 gives a strictly higher

payoff than m′2 in calculating self 1’s perceived payoff (using a coefficient of 1). Then,

replacing terms in options m′2 with terms in options m′′2 would not affect any constraints,

but it would increase self 1’s perceived payoff, a contradiction to the optimality of the

original contract.

Next we show that c2(s2, m̂2) = 0,∀m̂2 ∈ supp(σ̂2). Otherwise, consider a pertur-

bation in which lowers u(c2(s2, m̂2)) by βε and increases u(cT (sT , m̂2, σ̂3, · · · , σ̂T−1)) by

ε. This perturbation preserves the IC constraints and maintains all other constraints, but

increases self 1’s perceived payoff.

Substituting the binding IC constraint into the objective function, we obtain (up to a

constant):

max
{c(st,ht)}

u(c(s1)) + δEu(c(s2, σ2)) + βE

[
T∑
t=3

δt−1u(c(st, σ2, σ̂3, ..., σ̂T−1))

]
.

Repeating the same analysis, we have a new program (up to a constant):

max
{c(st,ht)}

Eδt−1u(c(st, σ2, · · · , σT−1)) + βE
[
δt−1u(c(sT , σ2, σ3, ..., σT−1))

]
.

subject to the zero-profit condition.
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Our final step is showing that the equilibrium path σ2, σ3, ..., σT−1 involves only one

option. This is because of Jensen’s inequality and the strict concavity of u(·). If there

are multiple options in the στ , then merging those options can strictly increase self 1’s

perceived payoff. This completes the proof.

Proof of Lemma 2 for General Income Distributions and Arbitrary T

This appendix establishes the equivalence between the naive agent’s program and the aux-

iliary program for general income distributions and arbitrary T . As in the text, we consider

the one-sided commitment case. With two-sided commitment, one can ignore the non-

lapsing constraints in the proof below.

Recall that the naive agent’s program is

max
c(st,ht)

u(c(s1)) + βE

[
T∑
t=2

δt−1u(c(st, (B,B, ..., B)))

]
,

subject to
T∑
t=1

E

[
w (st)− c (st, (A,A, ..., A))

Rt−1

]
= 0, (Zero Profits)

u(c(sτ ,
(
hτ−1, B

)
)) + β̂E

[∑
t>τ

δt−τu
(
c
(
st,
(
hτ−1, B,B, ..., B

)))∣∣∣∣∣ sτ
]

(PCC)

≥ u(c(sτ ,
(
hτ−1, A

)
)) + β̂E

[∑
t>τ

δt−τu
(
c
(
st,
(
hτ−1, A,B, ..., B

)))∣∣∣∣∣ sτ
]
,

and

u(c(sτ ,
(
hτ−1, A

)
)) + βE

[∑
t>τ

δt−τu
(
c
(
st,
(
hτ−1, A,B, ..., B

)))∣∣∣∣∣ sτ
]

(IC)

≥ u(c(sτ ,
(
hτ−1, B

)
)) + βE

[∑
t>τ

δt−τu
(
c
(
st, (h

τ−1, B,B, ..., B)
))∣∣∣∣∣ sτ

]
,
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and non-lapsing constraints:

u
(
c(sτ , (h

τ−1, A))
)

+ βE

[∑
t>τ

δt−τu
(
c(st, (h

τ−1, A,B, ..., B))
)∣∣∣∣∣ sτ

]
≥ V (sτ ), ∀sτ ,

(NL)

and

u
(
c(sτ , (h

τ−1, B))
)

+ β̂E

[∑
t>τ

δt−τu
(
c(st, (h

τ−1, B,B, ..., B))
)∣∣∣∣∣ sτ

]
≥ V̂ (sτ ), ∀sτ .

(PNL)

We first note that the incentive compatibility constraints (IC) must be binding on the

equilibrium path, because otherwise we can increase c(sT , hτ , B,B, ..., B) without affect-

ing all other constraints while weakly increase the agent’s perceived utility. Given incentive

constraints are binding, we can simplify (PC) as

u(c(sτ , (h
τ−1, B))) ≤ u(c(sτ , (h

τ−1, A))). (sA30)

Substituting the binding IC constraints in the objective gives

E
T−1∑
t=1

δt−1u(c(st, A, · · · , A)) + βδT−1u(c(sT , A, · · · , A)) + (β − 1)δt−1u(c(st, A, · · · , A,B)).

Since β < 1, we want to choose c(st, A, · · · , A,B) as small as possible (subject to the

constraints). We now show that under the optimal contract, c(st, A, · · · , A,B) = 0. We

need to verify that setting c(st, A, · · · , A,B) = 0 would not violate all other constraints.

First, PC holds because (sA30) holds.

We then verify that PNL holds if NL holds. Suppose {ĉ(st, htτ ) : t ≥ τ} solves the

perceived outside option program V̂ I(sτ ). So we have

V̂ I(sτ ) = u(ĉ(sτ , h
τ
τ )) + β̂E[δt−τu(ĉ(st, (h

τ
τ , B, · · · , B)))|sτ ]. (sA31)

We next verify the perceived non-lapsing constraint at (sτ , (h
τ−1, B)) = (sτ , (A, · · · , A,B)).
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Other perceived non-lapsing constraints can be similarly verified. Note that

u(c(sτ , (h
τ−1, B))) + β̂E

[∑
t>τ

δt−τu(c(st, (h
τ−1, B, · · · , B)))

∣∣∣∣∣ sτ
]

=

(
1− β̂

β

)
u(0)) +

β̂

β
u(c(sτ , (h

τ−1, B))) + β̂E

[∑
t>τ

δt−τu(c(st, (h
τ−1, B, · · · , B)))

∣∣∣∣∣ sτ
]

(sA32)

=

(
1− β̂

β

)
u(0) +

β̂

β

(
u(c(sτ , (h

τ−1, A))) + βE

[∑
t>τ

δt−τu(c(st, (h
τ−1, A,B, · · · , B)))

∣∣∣∣∣ sτ
])

(sA33)

≥

(
1− β̂

β

)
u(0) +

β̂

β
V I(sτ ) (sA34)

≥

(
1− β̂

β

)
u(0) +

β̂

β

(
u(ĉ(sτ , h

τ
τ )) + βE

[∑
t>τ

δt−τu(ĉ(st, h
τ
τ , B, · · · , B))

∣∣∣∣∣ sτ
])
(sA35)

=

(
1− β̂

β

)
u(0) +

β̂

β
u(ĉ(sτ , h

τ
τ )) + β̂E

[∑
t>τ

δt−τu(ĉ(st, h
τ
τ , B, · · · , B))

∣∣∣∣∣ sτ
]

(sA36)

=

(
1− β̂

β

)
u(0) + (

β̂

β
− 1)u(ĉ(sτ , h

τ
τ )) + V̂ I(sτ ) (sA37)

≥ V̂ I(sτ ), (sA38)

where (sA32) follows from c(sτ , (h
τ−1, B)) = 0, (sA33) from (IC), (sA34) from the actual

non-lapsing constraints (NL), (sA35) follows from a revealed preference argument since ĉ

is also feasible in program V (sτ ), (sA36) follows from simple algebra, (sA37) uses (sA31),

and (sA38) follows from ĉ(sτ , h
τ
τ ) ≥ 0.

By the previous argument, the perceived choice constraints and the perceived non-

lapsing constraints can be ignored, so the program reduces to:

maxE
T−1∑
t=1

δt−1u(c(st, (A, · · · , A))) + βδT−1u(c(sT , (A, · · · , A))),
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subject to the zero-profit condition and the non-lapsing constraints. Since the objective is

the same as the utility of a dynamically consistent consumer, we can replace the non-lapsing

constraints by front-loading constraints. So c1E = c1A.

Corollary 1 with One-Sided Commitment

This appendix generalizes Corollary 1 for settings with one-sided commitment, as men-

tioned in footnote 17:

Corollary 2. Consider the model with one-sided commitment. There exists a perception-

perfect equilibrium that does not depend on the consumer’s naiveté β̂ ∈ (β, 1]. Moreover,

any perception-perfect equilibrium has the same consumption path, which is continuous in

β ∈ (0, 1].

Proof. By Lemma 4, we can focus on the auxiliary program with one-sided commitment.

Let x(st) ≡ u(c(st)) denote the agent’s utility from the consumption he gets in state st,

and consider the dual program:

max
{x(st)}

T∑
t=1

∑
st∈St

p(st|s1)
w(st)− u−1 (x(st))

Rt−1 , (sC1)

subject to

T−1∑
t=1

∑
st∈St

δt−1p(st|s1)x(st) + β
∑
sT∈ST

δT−1p(sT |s1)x(sT ) ≥ u, (sC2)

and

∑
t≥τ̃

∑
st∈St

δt−τ̃p(st|sτ̃ )x(st) + β
∑
sT∈ST

δT−τ̃p(sT |sτ̃ )x(sT ) ≥ V A
T (sτ̃ ) ∀sτ̃ ∈ Sτ̃ (sτ ), ∀τ,

(sC3)

This program corresponds to the maximization of a strictly concave function over a convex

set, so, by the Theorem of the Maximum, the solution is unique and continuous in β ∈
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(0, 1]. Moreover, since the program does not involve β̂, the equilibrium consumption path

is not a function of the consumer’s naiveté.

Once we pin down the unique consumption path, the baseline options are either zero

or determined by the binding IC constraints and non-lapsing constraints (See the proof of

Lemma 4). In particular, these constraints do not depend on the consumer’s naiveté. So the

equilibrium consumption vector is not a function of the consumer’s naiveté.

Removing Commitment Power

This appendix presents the formal analysis of the welfare effect of removing commitment

power, as described in Subsection 3.1. We show that, for a fixed contract length, removing

commitment power can make the consumer better off. To formalize the argument given

in the text, let VST denote the agent’s welfare from smoothing consumption perfectly in the

first T − 1 periods and consuming zero in the last period:

VST ≡ max
{c(st)}

T−1∑
t=1

E
[
δt−1u (c(st))

]
+ δT−1u(0),

subject to
T−1∑
t=1

E

[
c(st)

Rt−1

]
≤

T∑
t=1

E

[
w(st)

Rt−1

]
.

Let VNST denote the agent’s welfare from consuming the endowment in each state:

VNST ≡
T∑
t=1

E
[
δt−1u (w(st))

]
.

Proposition 10. Suppose agents are time inconsistent and VNST > VST . There exists β̄ > 0

such that if β < β̄, the welfare with one-sided commitment is greater than the welfare with

two-sided commitment.

Proof. First, note that the welfare with two-sided commitment approaches to VS as β ap-

proaches to zero. It suffices to show that the welfare with one-sided commitment is bounded
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below by VNS . In the remainder of the proof, we will therefore focus on the equilibrium

with one-sided commitment.

We claim that for β close to zero, the equilibrium consumption equals the endowment

in all last-period states: c(sT ) = w(sT ),∀sT ∈ ST (s1). To see this, consider a pertur-

bation that shifts consumption from a state in the last period to the preceding state, that

is, it increases c(sT−1) by ε > 0 and reduces c(sT ) by εR
p(sT |sT−1)

for some sT ∈ ST with

p(sT |sT−1) > 0. Let WsT denote the future value of all income up to state sT . The amount

WsT is how much the agent would be able to consume at state sT if he saves all his income

from all periods for the last one. It therefore gives an upper bound on how much the agent

can consume in the last period. Since there are finitely many states and WsT < ∞ for all

sT , we can take the uniform bound W ≡ maxsT WsT . This perturbation affects the LHS of

the non-lapsing constraint at state st by

p(sT−1|st) [u′(c(sT−1))− βRδu′(c(sT ))] δT−1−tε

> p(sT−1|st) [u′(0)− βRδu′(WsT )] δT−1−tε,

which is positive whenever
u′(0)

Rδu′(W )
> β. (sC1)

The perturbation has exactly the same effect on the objective function (scaled down by δt

and multiplied by the probability of reaching state sT−1). Thus, as long as β satisfies (sC1),

the equilibrium will have the smallest consumption possible in the last period, which is

determined by the non-lapsing constraint.

Substituting c(sT ) = w(sT ) in the auxiliary program, it becomes analogous to the

program of a time-consistent agent except that the contracting problem ends at period T−1

instead of period T :

max
{c(st)}

T−1∑
t=1

∑
st∈St(s1)

δt−1p(st|s1)u (c(st)) ,
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subject to
T−1∑
t=1

∑
st∈St(s1)

p(st|s1)
w(st)− c(st)

Rt−1 = 0,

and
T−1∑
t=τ̃

∑
st∈St(sτ̃ )

δt−τ̃p(st|sτ̃ )u (c(st)) ≥ (V ′)C(sτ̃ ) for all sτ̃ ,

for all τ̃ = 2, ..., T , where (V ′)C(sτ̃ ) denotes the outside option for the time-consistent

agent in this (T − 1)-period economy.

It is straightforward to verify that (V ′)C(s1) is bounded below by the utility from con-

suming the endowment in all states. If the endowment already satisfies the non-lapsing

constraints, then the result follows from revealed preference because the endowment also

satisfies zero profits. If the endowment does not satisfy the non-lapsing constraints, any

renegotiation of the endowment satisfies the zero-profits condition and gives the time-

consistent agent a strictly higher utility conditional on that state. So, replacing the en-

dowment by the solution of the continuation program in all states where the non-lapsing

constraints are violated leads to a profile of consumption that satisfies the constraints and

gives a utility greater than the utility of consuming the endowment in each period. It thus

follows by revealed preference that the solution of the program also gives a higher utility

than consuming the endowment in all states.

Since the solution of a naive agent coincides with the solution of this auxiliary program,

their welfare is also bounded below by the welfare from consuming their endowment in all

periods VNS when (sC1) holds. Therefore, by continuity, if VNS > VS , there exists β̄N

such that if β < β̄N , the welfare with one-sided commitment dominates the welfare with

two-sided commitment.

Notice that for generic endowment paths, the condition that VNST > VST fails when

T is large enough. So, as the contracting length grows, it becomes increasingly hard to

satisfy the conditions for the time-inconsistent consumer to obtain higher welfare without

commitment, as described in the text.
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Proof of Claim in Section 3.5

In this appendix, we establish that a naive agent saves more than a sophisticate in the first

period. Given a vector x = (x1, x2, · · · , xT ) with x1 = 1 consider the program:

max
(c1,··· ,cT )

T∑
t=1

xtu(ct), (sD1)

subject to
T∑
t=1

ct
Rt−1 =

T∑
t=1

w

Rt−1 . (sD2)

The first-order conditions of this program are:

Rt−1xtu
′(ct) ≤ λ, ∀t, (sD3)

where λ is the Lagrangian multiplier on the zero-profits condition (sD2). The inequality

becomes equality whenever ct > 0.

The consumption path of a naive agent solves this program for

xN =

(
1,
DT−1

DT−2
,
DT−1

DT−3
, · · · , DT−1

D1

, DT−1

)
,

whereas the consumption path of a sophisticated agent solves this program for vector

xS = (1, D1, D2, · · · , DT−1) .

Let λN and λS denote the Lagrangian multiplier in the case of a naive agent and a sophis-

ticated agent, respectively. Recall from equation (29), xNt ≥ xSt for all t = 2, · · · , T .

We argue by contradiction and suppose the naive agent consumes strictly more than the

sophisticate in the first period, i.e., cN1 > cS1 . We claim that cNt ≥ cSt ,∀t. Then the claim

together with cN1 > cS1 would violate the zero-profits condition.

To prove the claim, first note that the claim trivially holds if cSt = 0. Now suppose

cSt > 0, then Rt−1xSt u
′(cSt ) = λS ≥ u′(cS1 ). Since cN1 > cS1 ≥ 0, the FOC at cN1 is an
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equality: u′(cN1 ) = λN .

Note that for any t = 2, · · · , T ,

Rt−1xSt u
′(cSt ) = λS ≥ u′(cS1 ) ≥ u′(cN1 ) = λN ≥ Rt−1xNt u

′(cNt ) ≥ Rt−1xSt u
′(cNt ),

where the last inequality comes from xNt ≥ xSt . It follows that u′(cSt ) ≥ u′(cNt ), i.e., cNt ≥

cSt ,∀t = 2, · · · , T . Together with cN1 > cS1 , it contradicts to the zero-profits condition. As

a result, the naive agent must consume weakly less than the sophisticate in the first period

(i.e., the naive agent saves weakly more than the sophisticate in the first period).

Moreover, the naive agent must consume strictly less than the sophisticate in the first

period if limc↘0 u
′(c) = +∞. In this case, we have an interior solution, and (sD3) becomes

equality because consumption is always strictly positive. To see that cN1 < cS1 , we need

to show that there is a contradiction when cN1 = cS1 . We recall that xNt > xSt for all

t = 2, · · · , T − 1. Now for t = 2, · · ·T − 1,

Rt−1xSt u
′(cSt ) = u′(cS1 ) = u′(cN1 ) = Rt−1xNt u

′(cNt ) > Rt−1xSt u
′(cNt ),

which implies that cNt > cSt , for 2 ≤ t ≤ T −1. We still have cNT ≥ cST . Together, we have a

contradiction to the zero-profits condition. So if limc↘0 u
′(c) = +∞, the naive agent must

consume strictly less than the sophisticated agent in the first period.
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