
Analysing Design Approaches for the Power
Consumption in Cyber-Physical Systems
Patrizia Sailer1, Igor Ivkic1, 2, Markus Tauber1, Andreas Mauthe3, Antonios Gouglidis2

1University of Applied Sciences Burgenland - Eisenstadt, Austria
2Lancaster University - Lancaster, United Kingdom
3University of Koblenz-Landau - Koblenz, Germany

Abstract—The importance of Cyber Physical Systems (CPS)
and Internet of Things (IoT) applications is constantly increasing,
especially in the context of Industry 4.0. Architectural decisions
are crucial not just for performance, security and resilience
reasons but also regarding costs and resource usage. In this paper
we analyse two of the fundamental approaches to design control
loops (i.e. time-driven and event-driven), show how they can be
realised and evaluate their power requirements. Through this the
design criteria can be extended also considering the optimization
of energy related aspects.

Keywords—Cyber-Physical Systems, Internet of Things, Power
Consumption, Design Approaches

I. INTRODUCTION

In recent years, advances in computing technologies have
had a profound influence in the development of the fourth
industrial revolution [1]. The so-called Industry 4.0 is driven
by Cyber-Physical Systems (CPS) and the Internet of Things
(IoT), which are tightly integrated in and interacting with the
physical world [2] [3]. A CPS is formed by components that
are capable of communicating with each other, measuring their
environment, analysing those measurements and set actions to
change environmental conditions. The IoT could be considered
as the backbone of a CPS, which is responsible for connecting
IoT devices, sensors and actuators [4]. The combination of
components, sensors and actuators connected over the IoT
enables applications to be created to handle different tasks.

A CPS can have different functionalities, where several
metrics (e.g. utilization of hardware components) can be used
to measure, resulting in changing the physical environment. An
example could be measuring the distance between two objects.
A proximity sensor might measure the distance between a
person and an automated teller machine (ATM), based on
which, if it is less than 0.5 meters, the withdrawal is allowed.
Since such a proximity sensor is placed outdoors, it cannot
be connected to the power grid in all cases, thus a power
source must be found elsewhere. This can be achieved by
using an accumulator or battery. As illustrated in this example,
CPS may include devices that are constrained by limited
energy resources. Hence, it can be pointed out that a CPS
must be functional on the one hand to fulfil a certain task,
while on the other hand it has to perform well to ensure the
longest possible lifetime. To enable a CPS to complete a task,

various approaches exist on how to design the control loops
required. Each of those design approaches is specialized in
certain functionalities and comes along with advantages and
disadvantages. However, it is important to note that design
approaches of control loops are only one responsible part
of power consumption, as other factors such as hardware
selection, security or communication protocols used also con-
tribute. Therefore, we have addressed the issue of how power
consumption can be reduced and subsequently optimized by
choosing the most suitable design approach for control loops.

In order to answer the question regarding the relationship
between control loop design approaches and energy consump-
tion, a concept is preparing. To the best of our knowledge, we
found related work (see Section II) where design approaches
are compared, but none in context with power consumption
associated with a comparison of those approaches related
to control loops. In this paper we present an experimental
setup where we measure the power consumption of relevant
hardware components within a CPS, implementing two dif-
ferent design approaches (time-driven and event-driven). This
CPS consists of a sensor, an actuator and an IoT framework.
The purpose of the IoT framework is to control the way of
how new components enter the CPS. Furthermore, it manages
the interaction between already participating components to
measure and change the physical environment. In this case
the Arrowhead Framework is used as representational IoT
framework, as it is an open source project written in Java,
which can be extended with new functionalities to support
more use cases [5]. After the implementation of the proto-
type, measurements were taken to see if a difference in the
power consumption exists between the different approaches
for control loops. The motivation is to determine whether
power consumption savings can be achieved by specifically
implementing design approaches of control loops in CPS.

This paper builds on the work of Sailer [6] where the trade-
off between security and power consumption for a CPS was
investigated. Therefore, in this paper the experimental setup is
extended to enable the comparison of two design approaches,
while using a representative IoT framework. The aim of this
paper is to measure the power consumption of different design
approaches for implementing control loops in a simple use
case. The main focus is on the design approaches, therefore
other factors, such as the selection of protocols or security are978-3-903176-32-4 © 2021 IFIP

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/390060592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


not taken into account in these initial measurements, but are
planned for future work. In summary, the contribution of this
paper can be structured as follows:

• identification and analyses of two representative design
approaches

• development of a prototype using an IoT framework
• preliminary measurement of power consumption based on

identified design approaches and developed prototypes
The remainder of this paper is organized as follows: Section

II summarizes the related work in the field and points out
the background of this paper. Next, in Section III we present
an overview and a comparison of two approaches, based
on an initial literature review. Furthermore, it explains the
implementation of a prototype, followed by the presentation of
preliminary measurements and the discussion of those results.
Finally, Section IV gives an outline of future work in the field
and concludes this paper.

II. RELATED WORK

Many studies about designing a CPS have been conducted.
Gacrilescu et al. [7] carried out research on a framework repre-
senting an event-driven simulator to configure Programmable
System on Chip (PSoC) within a CPS. A classification of
a CPS in design (architecture, modelling, tools, simulator,
verification), aspects and issues (security, resiliency, reliabil-
ity, Quality of Services, real-time requirements), applications
(such as Vehicular systems, Medical systems, Smart homes,
Scheduling, Social network and gaming, Power Grid etc) and
challenges has been presented by Khaitan and McCalley [8].
The research of Mo et al. [9] focus on mobile actuators
by introducing a new event-driven method, which provides
a required level of control accuracy, simultaneously reducing
the energy consumption of the actuators, with restricted action
delay is guaranteed. However, up to this time research has
mainly been conducted in the field of stationary actuators, for
example with focus to the actuator control problem, in which
the requirements of control accuracy should be fulfilled [10].
If this is taken into account, the control quality can be further
increased by reducing the action delays [11] or the packet loss
rate [12]. Furthermore, inaccurate system parameters should be
identified to prevent them [13].

Further there are studies comparing event-driven and time
(scheduled)-driven approaches for CPS. While Albert et al.
[14] compare these and propose hybrid systems as solution,
Dai et al. [15] concentrate on time-stamped event execution
within industrial CPS for the IEC 61499 standard.

Regarding using an IoT framework a huge number of
studies exists. Commercially available ones are summarized
by Derhamy et al. [16], including Arrowhead [5], AllJoyn
[17] or IoTivity [18]. Ammar et al. [19] analysed among
other the IoT frameworks SmartThings Samsung [20], AWS
IoT Amazon [21] or Azure IoT Microsoft [22] focusing on
different properties like architecture components, hardware
and software dependencies, access control or communication.

Additionally, there are many studies looking at power
measurement in a CPS considering aspects like security, use

of Wireless Local Area Network (WLAN) vs. Local Area
Network (LAN) or different protocols. Carrara et al. [23]
focus on implementing an IoT-based management program to
collect temperature and humidity data, while Tauber et al. [24]
investigate energy efficiency and performance in a WLAN to
identify upper and lower bounds of energy efficiency due to
different data flow characteristics. The influence of different
security settings on the power consumption was investigated
by Sailer et al. [6] by showing the impact of strength of
security in regard to the power needed. An application model
with the possibility to describe the optimal schedule using
mathematical formulas to achieve maximum energy savings
was presented by Jiang et al. [25]. Shih et al. [26] present a
strategy for achieving power savings in battery-powered de-
vices and compared it with other strategy approaches. Further
research on energy consumption were carried out by Tauber
et al. [27], [28] and Kansal et al. [29]. Furthermore, there
are many papers dealing with the issue related to event vs.
time-driven energy performance, but their focus is mainly on
hardware issues, monitoring frameworks [30], [31] or are look-
ing at a specific scenario or application areas (e.g. smart grids)
[32]. In our extensive research we did not come across research
that is directly related to the proposed scheme. Therefore, with
our concept we would like to extend the existing studies of
comparisons of design approaches in control loops through
establishing a connection to the topic of power consumption.
For this purpose, the setup from previous work [6] will be
extended by control loops, which will be implemented using
existing design approaches. The result should be a ranking of
the power consumption of the different approaches of control
loops in the context of different use cases.

III. METHODOLOGY APPROACH

In this section we present the experimental setup for the
power consumption measurements within a CPS. To test our
concept, a CPS is built with the minimum requirements,
consisting of a single sensor, actuator and controller (IoT
framework). This means that one participant in this CPS
measures the physical environment, another changes it, while
the third is responsible for controlling the entire interaction
between the sensor and actuator. This setup represents the
smallest setup of interacting components that are needed
to form a CPS, measure and change the physical world.
After careful consideration, it was decided that this CPS was
sufficient to show whether a difference is made by selecting
a different design approach. It is also possible to extend the
CPS with additional components to gain complexity, ensuring
scalability. A measurement would be required for each ad-
ditional component, but the measurement method would not
change, regardless of the number of components within a CPS.
In summary, we have chosen this simple CPS to proof the
feasibility of the concept in the smallest possible CPS.

A. Use Case

In principle, a CPS consists of several components interact-
ing with each other, measuring and changing the environment



Fig. 1. Prototype architecture consists of Raspberry Pis and power measurement devices (PMD) to compare the time-driven and event-driven design approach.

conditions (if necessary). The minimum possible implemen-
tation of this definition would be to build a CPS with one
component including a sensor, one component including an
actuator and a IoT framework. The IoT framework manages
the communication and interaction of the sensor and the
actuator. For this purpose, authorisation rules are specified
to avoid connections between invalid components. To show
any difference in the power consumption between design
approaches of control loops, we have implemented a use
case with minimal requirements using two different design
approaches. Furthermore, Table I provides an overview of
possible actions to be performed in a CPS. For this purpose,
a sensor and an actuator were identified, followed by the
functionality they should perform.

These use cases are scenarios of real-world situations. Since
it is difficult to obtain perfect measurement conditions in the
real world, these use cases are simulated. This means the
sensor sends pre-defined data to the actuator, which simulates
an action, if required. Therefore, it is possible to repeat and
adjust the measurements to make the results comparable.

However, if sensors and actuators were actually used for the
measurements to compare the results, a laboratory experiment
would have to be carried out. A laboratory experiment offers
the possibility to specify perfect conditions for measurements
and to change them if necessary. To explain this with an
example, Use Case 1 from Table I is taken. In a real environ-
ment, it would not be possible to influence the measurement
values and the actions of the actuator to keep exactly the same
schedule twice. Measuring the temperature in a room for one
hour, it is probable to have different temperature values in
the following hour. Even if the measurements are taken at
the same time, the conditions are not identical because the
experimental setups cannot be set up in the same location. It
is highly possible that an experiment set up is placed closer
to the air-conditioning system. This was only one example of
the difficulty of comparing measurements in the real world.
The purpose of this paper is to show if there is an impact on
power consumption even in a minimal CPS by comparing only
two design approaches. These results can later be extended
by a range of factors, such as WLAN instead of LAN, other
protocols or different security settings, to generate an insight
into how these could be used in more complex environments.

TABLE I
OVERVIEW OF REPRESENTATIVE USE CASES

Actuator Sensor Action

Use
Case 1 Air Condition Temperature

Sensor Inside

Switch the air conditioning
system on/off by reaching
certain temperatures

Use
Case 2

Heating
System

Temperature
Sensor Outside

Switch the heating system
on/off by reaching certain
temperatures outside

Use
Case 3

Fan/
Humidifier

Humiditiy
Sensor

Switch the fan/humidifier
on/off by reaching certain
limits

Use
Case 4 Camera Motion Sensor Video surveillance of e.g.

pets at home

B. Design Approaches for Control Loop

In an initial literature review we identified two different
design approaches, time-driven and event-driven, which offer
different procedures since tasks are processed using various
strategies. Managing a CPS requires the use of design ap-
proaches for control loops to ensure the CPS is doing exactly
what it is supposed to do. This means the process for handling
tasks is predefined in terms of when a component should do
what. In order to manage such a system, appropriate rules for
these interactions need to be designed and established. The
challenge in designing control loops of CPS is to specify
the expected behaviour of the computing components and
their impact on the physical environment. Therefore, the
programming language has to be considered, since it has to
provide an integration of time-driven computation and event-
driven computation to enable an asynchronous dynamic [27].

In Fig. 1 two design approaches for control loops are
compared. The left one is the time-driven approach and the
right one is the event-driven approach. In the following, we
will explain the two selected approaches in more detail.

The time-driven approach focuses on a time frame and the
execution of different tasks at certain predefined times, which
are repeating. If this approach is considered with respect to
a real-time system, it can be claimed such a system has a
deterministic behaviour. In other words, it can be determined
in advance how this system has to behave. As a result, it
is possible to plan how the system or subsystem will be
executed, since this takes place periodically. When planning,
it is important the engineer is aware of that tasks that share a



resource cannot be executed simultaneously. Another impor-
tant issue is to distinguish whether a task is time critical (hard
time condition) or not (soft time condition). Fig. 1 shows the
process of time-driven approach, in which the actuator requests
the values of the sensor in a predefined time interval to detect
if an action is needed. This implies each measured value is sent
to the actuator via the IoT framework. To make such a system
work, the following four requirements must be fulfilled:

• Timeliness - correctness of the system is assumed by
implementing the logic for hard time conditions, since
result and time of the result creation are important

• Reliability - It is essential to ensure there is an emer-
gency solution in case of failure to prevent loss of life,
irreparable damage or material damage.

• Availability - It is expected the system will be operational
at the specified time.

• Predictability - All actions to be performed by time
interval must be known beforehand. This is necessary
to ensure trouble-free action scheduling by taking all
necessary precautions.

In contrast, with the event-driven approach, no predefined
interval exists for sending the measurement data, as this is
only transmitted from the sensor to the actuator when an
event occurs to activate the system. One characteristic of this
approach is the possibility that multiple events can occur at
the same time. In such a scenario the next upcoming event
is chosen for execution. Often event queues are used for this
purpose, which, if configured incorrectly, represent a high risk.
A further problem of event-driven systems can be the time
delay when several events are processed, which is shown in
Fig. 2. As a result, such systems can exhibit a jitter, which
means that a desired signal is delayed in time causing the
process to be delayed.

Fig. 2. Timeline indicator when processing various events, showing the time
of occurrence of an event, the duration and the end time.

This comparison shows how important it is to identify the
purpose of a CPS before creating it. Not every approach is
suitable for each use case. Since both design approaches for
control loops can be possible solutions for the implementation
of use cases, it should be investigated which of them consumes
less power. Especially in such a situation, power consumption
could be a criterion for deciding which approach to choose.

C. Experimental Setup

In this section we present the experimental setup for the
power consumption measurements. Although choice of hard-
ware can already have an influence on power consumption,
we selected same devices, equipped with identical operating
system, software and services. Therefore, to test our concept,

we chose three Raspberry Pis 3 Model B+, which are used to
deploy a CPS consisting of a sensor, an actuator and the IoT
framework Arrowhead. As operation system we chose Rasbian
Stretch Lite to reduce unnecessary factors like, e.g. resources
used for running Graphical User Interface (GUI). To avoid
network latency (or any unnecessary external influences) the
devices were connected via a switch in a LAN environment.
Each Raspberry Pi is equipped with a power measurement
device (PMD) to determine the energy consumption. We
decided to use the PiLogger One [33] as PMD, which can
be attached directly to a Raspberry Pi and will be connected
via Inter-Integrated Circuit (I2C) bus. An advantage of the
PiLogger One is the possibility to use time precise intervals
for the measurements, as it offers its own time base. The
measured values are stored and can be evaluated afterwards.
Based on Fig. 1 it is visible which Raspberry Pi assumes which
functionality in the experimental setup.

As shown in Fig. 1 the sensor and the actuator are con-
nected over an IoT framework. The Arrowhead Framework
[5] is used as a representative IoT framework to facilitate the
creation of local automation clouds, which includes devices,
various application-specific systems and services to perform
the automation tasks and provide a boundary to the open
internet and the outside activities. This way Arrowhead is
enabling local (on-site or private), real time performance and
security, paired with simple and cheap engineering, while
enabling scalability through multi-cloud interactions. Further
it provides an architecture composed of three mandatory core
systems: Service Registry System, Orchestration System and
Authorisation System.

In this use case the components sensor and actuator are
forming a CPS by using the Arrowhead Framework to become
part of it and controlling the interactions. Once the on-
boarding procedure has been completed successfully and the
two IoT-devices are part of the CPS their main purpose is to
measure the temperature of a physical room and to regulate its
temperature (if necessary). The experimental setup emulates
a network in which data is collected with a sensor and is
sent via an Ethernet switch to the Arrowhead local cloud by
using the the Hypertext Transfer Protocol (HTTP) protocol.
The components are explained in detail below:

• Actuator simulates an air-conditioning system to cool
down a physical room if necessary.

• Sensor measures temperature of a physical environment.
• Service Registry is responsible to register new services.
• Authorisation System is responsible for authorisation

rules, which regulate, which components are allowed to
interact with each other within the CPS. Every time a
component sends a request to the Arrowhead Framework,
it verifies if this component is allowed to do so.

• Orchestration System is responsible for handling any
request by any component. Every time a component needs
information about the CPS, the orchestration handles the
request and make sure that the right information is passed
to the requesting component.



It is necessary to deploy the Arrowhead Core Systems in a
local cloud environment and register the sensor and actuator
components before this CPS can work. After these steps have
been successfully performed, it is possible to execute the CPS
using each of the presented design approaches. The time-
driven approach uses a sensor to measure the temperature at
defined intervals, e.g. every ten minutes and send this value to
the Arrowhead Framework. Within the framework, the value
is first passed to the Orchestration System, which requests the
Service Registry to verify whether there is a suitable actuator.
After successful response, Authorisation System is used to
check whether the sensor is allowed to communicate with the
matching actuator. If this is confirmed, the value is forwarded
to the actuator, in this case the air condition, who subsequently
decides whether an action has to be set or not. This means
that this process is carried out continuously, irrespective of
the measured temperature value. On the contrary to this, the
event-driven approach offers the possibility of a prior check
whether the measured temperature value has been reached
or exceeded a predefined limit. If the value is below this
limit, no action is required and the measurement is repeated.
This action is continued until the value is above the limit,
which means the actuator has to be informed about performing
an appropriate action. In this case, the value is sent to the
Arrowhead Framework and the same procedure is performed
as in the time-driven approach.

To reinforce our presented concept, we have made prelim-
inary measurements including the two presented approaches.
Fig. 1 shows the experimental setup for both implementations
including the comparison of the approaches. A total of 22 test
runs with 100 measurements each were carried out, whereas
the measured values were predefined in order to be able to
reproduce each test run under the same conditions. In each
of the 100 measurements per test run, a predefined value
was read from an array containing 50 values below and 50
above a predefined limit, which was set at the value 25.
Therefore, measurements 1 to 50 do not activate the actuator,
in contrast to measurements 51 to 100. The first test run was a
warm-up and was not taken into account for the exploitation.
Furthermore, all unnecessary services on the Raspberry Pis
were turned off to avoid unnecessary power consumption.

D. Evaluation

The results of the measurements are summarized in Fig. 3,
whereby the time-driven approach is shown in blue and the
event-driven approach in green. The results show a significant
difference between the design approaches for the devices
representing the sensor and actuator. This is because the sensor
in the time-driven approach establishes a connection to the
IoT framework for each measurement in order to search for
the actuator. In the event-driven approach this connection was
only established when the specified value achieved a defined
limit. The test values were chosen regularly, whereby the first
half was below the limit and the second half was above it.
Further observation of the test runs showed that a test run in
the time-driven approach needed an average of 125 seconds

to take 100 measurements, while the event-driven approach
needed only 114 seconds, showing a time savings in addition
to the power savings.

In contrast, the measurements of the device with the Ar-
rowhead Framework gave a similar result, observing the time-
driven approach needs more power. However, it also shows
that in the event driven approach the framework has a high
dispersion, which implies that parts of the energy consumption
of both approaches overlap. At this stage, we have no clear
indication of this behaviour. Moreover, it was noticed in all
cases that the initial test runs consumed more power, which
can be interpreted as a result of the warm-up phase. Therefore,
a longer warm-up phase is planned for further measurements.
Summarising, these first measurements show that choosing a
specific design approach has direct impact on the resulting
power consumption. Our results show that the event-driven
approach consumed approximately 7% less power, compared
to the time-driven approach.

Fig. 3. Overview of the power consumption in Milliwattseconds (mWs) of
the testruns performed. To compare the time-driven and event-driven approach
the components Sensor, Actuator and Arrowhead Framework were measured.

IV. CONCLUSION AND FUTURE WORK

In this paper, we show the impact of the selection of
the design approach of control loops in a CPS on power
consumption. Therefore, we identified two design approaches
in an initial literature review, which were explained in detail.
In addition to that, we describe the minimum requirements
to build and measure the power consumption of design ap-
proaches of control loops of a CPS. Hence, we performed
power consumption measurements with the developed proto-
type using Raspberry Pi 3 Model B+ as devices, each equipped
with a PiLogger One as PMD. Furthermore, we presented
initial measurements of the power consumption by using the
time-driven and event-driven approach to design control loops.
Finally, our experimental study indicated that the event-driven
approach consumes 7% less power to process the same task
comparing with the time-driven approach.

The main contribution of this paper is the initial measure-
ments of the impact of power consumption on the selection
of design approaches for control loops. A difference in power



consumption by considering different design approaches has
been shown. This will be enhanced in future work by ad-
dressing further existing design approaches and implementing
other use cases to make additional measurements. Since the
results of the initial measurements of the IoT framework were
partly overlapping, an aspect of swinging in control loops will
be taken into account for future measurements, as well as
the extension of the warm-up phase. Furthermore, other IoT
devices, such as Arduino, can be used in order to examine
the connection to power consumption from the hardware
side as well. In addition, a more detailed investigation by
extending the protocols, security and algorithms will be carried
out in continuing work. Furthermore, a model for power
measurements should be developed in order to be generalized
for further research and to be used in industry.

In addition, we are considering how to conceptually use
the different design approaches of control loops to create a
dynamic and autonomic system. Such a system will be able to
identify the current situation regarding power consumption and
switch to the most suitable design approach for control loops.
For this purpose, all impacts on power consumption must
first be identified to enable the control loops to be adjusted
accordingly. To create a self-adaptable system, tools such as
the interactive framework Monitor-Analysis-Plan-Execute over
a shared Knowledge (MAPE-K) [34] can be used.

ACKNOWLEDGMENT

The research has been carried out in the context of the EFRE
project MIT 4.0 (FE02), funded by IWB-EFRE 2014-2020
coordinated by Forschung Burgenland GmbH.

REFERENCES

[1] A. W. Colombo, S. Karnouskos, O. Kaynak, Y. Shi, and S. Yin,
“Industrial cyberphysical systems: A backbone of the fourth industrial
revolution,” IEEE Industrial Electronics Magazine, vol. 11, no. 1, pp. 6–
16, 2017.

[2] M. Hermann, T. Pentek, and B. Otto, “Design principles for industrie 4.0
scenarios,” in System Sciences (HICSS), 2016 49th Hawaii International
Conference, pp. 3928–3937, 2016.

[3] F. Almada-Lobo, “The industry 4.0 revolution and the future of manufac-
turing execution systems (mes),” in Innovation Management, vol. 3(4),
pp. 16–21, 2016.

[4] L. Esterle and R. Grosu, “Cyber-physical systems: challenge of the
21st century,” in Elektrotechnik und Informationstechnik, vol. 133(7),
pp. 299–303, 2016.

[5] J. Delsing, Iot automation: Arrowhead framework. CRC Press, 2017.
[6] P. Sailer, C. Schmittner, and M. Tauber, “Managing the trade-off between

security and power consumption for smart cps-iot networks,” vol. 119,
pp. 23–24, ERCIM News, 2019.

[7] M. Gavrilescu, G. Magureanu, D. Pescaru, and A. Doboli, “A simulation
framework for psoc based cyber physical systems,” in 2010 Interna-
tional Joint Conference on Computational Cybernetics and Technical
Informatics, pp. 137–142, 2010.

[8] S. K. Khaitan and J. D. McCalley, “Design techniques and applications
of cyberphysical systems: A survey,” IEEE Systems Journal, vol. 9, no. 2,
pp. 350–365, 2014.

[9] L. Mo, P. You, X. Cao, Y. Song, and A. Kritikakou, “Event-driven
joint mobile actuators scheduling and control in cyber-physical systems,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 11, pp. 5877–
5891, 2019.

[10] L.-W. Yeh, C.-Y. Lu, C.-W. Kou, Y.-C. Tseng, and C.-W. Yi, “Au-
tonomous light control by wireless sensor and actuator networks,” IEEE
Sensors Journal, vol. 10, no. 6, pp. 1029–1041, 2010.

[11] L. Mo, X. Cao, Y. Song, and A. Kritikakou, “Distributed node co-
ordination for real-time energy-constrained control in wireless sensor
and actuator networks,” IEEE internet of things journal, vol. 5, no. 5,
pp. 4151–4163, 2018.

[12] X. Cao, J. Chen, Y. Xiao, and Y. Sun, “Building-environment control
with wireless sensor and actuator networks: Centralized versus dis-
tributed,” IEEE Transactions on Industrial Electronics, vol. 57, no. 11,
pp. 3596–3605, 2009.

[13] J. Chen, X. Cao, P. Cheng, Y. Xiao, and Y. Sun, “Distributed collabora-
tive control for industrial automation with wireless sensor and actuator
networks,” IEEE Transactions on Industrial Electronics, vol. 57, no. 12,
pp. 4219–4230, 2010.

[14] A. Albert et al., “Comparison of event-triggered and time-triggered
concepts with regard to distributed control systems,” Embedded world,
vol. 2004, pp. 235–252, 2004.

[15] W. Dai, V. Vyatkin, C. Pang, and J. H. Christensen, “Time-stamped
event based execution semantics for industrial cyber-physical systems,”
in 2015 IEEE 13th International Conference on Industrial Informatics
(INDIN), pp. 1263–1268, IEEE, 2015.

[16] H. Derhamy, J. Eliasson, J. Delsing, and P. Priller, “A survey of
commercial frameworks for the internet of things,” in In IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation:
08/09/2015-11/09/2015, IEEE Communications Society, 2015.

[17] A. Alliance, “Alljoyn framework. linux foundation collaborative
projects,” 2016.

[18] L. F. C. Projects, “Iotivity website,” 2019.
[19] M. Ammar, G. Russello, and B. Crispo, “Internet of things: A survey on

the security of iot frameworks,” vol. 38, pp. 8–27, Journal of Information
Security and Applications, 2018.

[20] SmartThings, “Smartthings classic developer documentation,” 2019.
[21] Amazon, “Aws iot framework,” 2019.
[22] Microsoft, “Azure iot solution accelerators,” 2019.
[23] M. Carrara, P. Catania, G. L. Re, M. Ortolani, and M. Vallone, “An

innovative system for vineyard management in sicily,” in Journal of
Agricultural Engineering, vol. 41(1), pp. 13–18, 2010.

[24] M. Tauber, S. N. Bhatti, and Y. Yu, “Application level energy and
performance measurements in a wireless lan,” IEEE/Green Computing
and Communications (GreenCom), 2011.

[25] W. Jiang, G. Xiong, and X. Ding, “Energy-saving service scheduling
for low-end cyber-physical systems,” in 2008 The 9th International
Conference for Young Computer Scientists, pp. 1064–1069, IEEE, 2008.

[26] E. Shih, P. Bahl, and M. J. Sinclair, “Wake on wireless: An event driven
energy saving strategy for battery operated devices,” in Proceedings
of the 8th annual international conference on Mobile computing and
networking, pp. 160–171, 2002.

[27] M. Tauber, S. N. Bhatti, and Y. Yu, “Towards energy-awareness in man-
aging wireless lan applications,” pp. 453–461, IEEE/Network Operations
and Management Symposium (NOMS), 2012.

[28] M. Tauber and S. N. Bhatti, “The effect of the 802.11 power save
mechanism (psm) on energy efficiency and performance during system
activity,” pp. 573–580, IEEE/Green Computing and Communications
(GreenCom), 2012.

[29] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya, “Virtual
machine power metering and provisioning,” pp. 39–50, Proceedings of
the 1sCM symposium on Cloud computing, 2010.

[30] T. S. Dillon, H. Zhuge, C. Wu, J. Singh, and E. Chang, “Web-of-things
framework for cyber–physical systems,” Concurrency and Computation:
Practice and Experience, vol. 23, no. 9, pp. 905–923, 2011.

[31] F. Makedon, Z. Le, H. Huang, E. Becker, and D. Kosmopoulos, “An
event driven framework for assistive cps environments,” SIGBED Rev.,
vol. 6, July 2009.

[32] X. Yu, C. Cecati, T. Dillon, and M. G. Simões, “The new frontier of
smart grids,” IEEE Industrial Electronics Magazine, vol. 5, no. 3, pp. 49–
63, 2011.

[33] G. Weiß-Engel, “Manual pilogger one,” 2018.
[34] T. A. Nguyen, M. Aiello, T. Yonezawa, and K. Tei, “A self-healing

framework for online sensor data,” in 2015 IEEE International Confer-
ence on Autonomic Computing, pp. 295–300, IEEE, 2015.


