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Input uncertainty is an aspect of simulation model risk that arises when the driving input distributions are

derived or “fit” to real-world, historical data. While there has been significant progress on quantifying and

hedging against input uncertainty, there has been no direct attempt to reduce it via better input modeling.

The meaning of “better” depends on the context and the objective: our context is when (a) there are one

or more families of parametric distributions that are plausible choices; (b) the real-world historical data

are not expected to perfectly conform to any of them; and (c) our primary goal is to obtain higher-fidelity

simulation output rather than to discover the “true” distribution. In this paper we show that frequentist

model averaging can be an effective way to create input models that better represent the true, unknown

input distribution, thereby reducing model risk. Input model averaging builds from standard input modeling

practice, is not computationally burdensome, requires no change in how the simulation is executed nor any

follow-up experiments, and is available on The Comprehensive R Archive Network (CRAN). We provide

theoretical and empirical support for our approach.
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1. Introduction

At a high level, stochastic simulations consist of inputs and logic: The inputs are

the basic sources of uncertainty that defy further explanation; they are represented

by fully specified probability models (e.g., exponential distribution with rate λ=

7.2). The logic consists of rules and algorithms that transform realizations of the

inputs into sample paths of system performance (e.g., waiting times in queues);

estimating system properties from these sample paths or “outputs” is the reason

a simulation experiment is performed. The fidelity of the outputs in representing

the performance of a real or conceptual system clearly depends—often in a very

complex way—on the fidelity of the input models. In this paper we consider input

models that are tuned or “fit” to samples of real-world, historical data. We refer

to this activity as input modeling, and we propose a better way to do it.

Beyond the availability of good software, methods used for input modeling in the

stochastic simulation practice community have not advanced much in the last 30

years.1 Here is the recipe found in many textbooks (e.g., Banks et al. (2010), Law

and Kelton (1991)) for fitting a marginal distribution F to describe an independent

and identically distributed (i.i.d.) input process:

1. Given: x1, x2, . . . , xN an i.i.d. sample from some unknown input distribution

F c, with “c” denoting “correct” or “true” distribution.

2. Fit q≥ 1 candidate parametric distributions F = {F1, F2, . . . , Fq} using meth-

ods such as maximum likelihood estimation (MLE), least squares, or moment

matching. This yields a set of fitted distributions, say F̂ =
{
F̂1, F̂2, . . . , F̂q

}
. The

number of choices in current software ranges from q= 10 to 40.

1 Many new input models have been invented, particularly for multivariate and nonstationary inputs; the
lack of progress to which we refer is in methods for fitting these models to data.
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3. Rank the choices using one or more summary measures of fit. Standard mea-

sures are hypothesis-test statistics such as chi-squared, Kolmogorov-Smirnov and

Anderson-Darling, and likelihood-based statistics such as AIC and BIC.

4. From among the top choices, evaluate the fit, e.g., via p-values of the hypoth-

esis tests or graphically via Q-Q plots or other tools.

5. Select F̂ = Best Choice
{
F̂1, F̂2, . . . , F̂q

}
. Alternatively, use the (possibly

smoothed) empirical distribution of x1, x2, . . . , xN if nothing fits well.

Although this recipe can and should be made smarter, for instance by using

the physical basis of the real input process to suggest an appropriate family of

distributions, in practice Step 5 is often automated by selecting the distribution

with, say, the minimum AIC statistic for each input process, bypassing Step 4. This

approach is understandable because it is neither obvious to simulation practitioners

how to do better, nor how much the choice actually matters. Our proposal adopts

Step 2, but rather than selecting one element of F , it instead creates an “input

model average” that often leads to a better input model.

Our work is motivated by the current interest in simulation model risk due

to input uncertainty, which is the uncertainty resulting from having only a finite

sample N of real-world data from which to fit F̂ . However, the input-uncertainty

literature has emphasized either quantifying the variability in the simulation output

due to the sampling variability in F̂ , or selecting a defensive F̂ , which means a

distribution that is plausible with respect to the given data but leads to the worst-

case (maximum or minimum) simulation output performance; see for instance Lam

(2016). Our objective is to reduce input uncertainty through our choice of F̂ via a

rethinking about how the input models are created. Our work is heavily motivated

by recent advances in the statistics literature on using model averaging within

the frequentist paradigm to improve parameter estimation efficiency and forecast

accuracy (e.g., Hjort and Claeskens (2003), Hansen (2007), Wan et al. (2010) and

Liang et al. (2011)).
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What do we want in an input modeling solution?

• It should work within the framework of current input-modeling software, and

in particular Step 2 above where we have a collection of candidate distributions,

and impose only a modest additional computational burden.

• It should not require any change in how we actually execute the simulation,

other than generating inputs from a different F̂ . Thus, input modeling remains an

upfront step in the simulation experiment (input uncertainty quantification, on the

other hand, often requires additional follow-up experiments).

• It should improve simulation output fidelity when the true distribution is not

in F—so no single choice can be fully correct—but also tends to favor a single

candidate model when it is close to F c. This is consistent with the “view through the

queue” criterion coined by Whitt (1981), which evaluates an input approximation

by how well it reproduces the desired output, rather than whether it discovers the

true input.

More pointedly, our model averaging approach is not a better way to discover

the “true” real-world distribution when it is a member of the candidate set F ,

either individually or as a mixture. In fact, our asymptotic analysis specifically

assumes that F c 6∈ F , and shows that, under some assumptions on the candidate set

of distributions F , our model-average distribution gets as close as possible to the

real-world distribution using only the component distributions in F . Thus, model

averaging is not generally consistent for F c; however, if we include the empirical

distribution (ED) as a candidate, then the model average places all weight on

the ED as the sample size N →∞. Further, under very weak assumptions, the

empirically optimal model-average distribution exists and is easily found.

In the end, we will recommend the following: Reduce the size of the candidate set

F (if large) by using prior knowledge of the input process physics or by screening

out poor choices using something like AIC or BIC; always include the ED in F ; and



Nelson et al.: Input Model Averaging
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2017-01-OA-012 5

then do model averaging. However, model averaging can be applied in a completely

automated fashion to a large candidate set, and the ED need not be included (say

if a continuous F̂ is desired).

The paper is organized as follows. We describe the problem and context more

fully in Section 2, and our input model averaging method in Section 3. An empirical

evaluation follows in Section 4. Proofs of the some results are found in Appen-

dices A–B of the online supplement.

2. Background and Examples

In this paper we focus on univariate input models, but the method extends natu-

rally to random vectors. Generically, X and Y denote input and output random

variables, respectively, and x and y are realized values. We use FY to refer to the

(typically unknown) distribution of Y .

The following examples will be used to evaluate our methods; they were chosen

because they mimic three distinct classes of problems found in simulation studies,

and because we expect that different aspects of the inputs X (e.g., mean, variance,

tail behavior) will affect the fidelity of their outputs Y . That is, even though the

examples themselves are simple, they manifest complex and differing input-to-

output behavior. The examples are important because we rely solely on empirical

evaluation to establish the potential reduction in input uncertainty.

2.1. Stochastic Activity Network (SAN)

Stochastic activity networks are used in project planning when there is interest in

the time to complete the project; an early paper on simulating such networks is

Burt and Garman (1971). A realistic problem might have several hundred activities,

constrained resources, etc., but as an illustration we consider one with five activities

where the time to complete the project is

Y = max{X1 +X4,X1 +X3 +X5,X2 +X5}. (1)
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Figure 1 A small stochastic activity network.

See Figure 1. Thus, simulation of the SAN requires five input distributions for

X1,X2, . . . ,X5. Properties of Y that are of interest include E(Y ), Pr{Y > c}, F−1
Y (p)

or the entire distribution. The natural experiment design for the simulation is to

make R replications yielding i.i.d. outputs Y1, Y2, . . . , YR. Each replication requires

random activity-time inputs X1,X2, . . . ,X5. Because activity times are summed,

path durations tend to be normally distributed for realistically large projects, but

for this small example the specific distributions of the Xi should matter.

2.2. GI/G/1 Queue

The GI/G/1 queue has a renewal arrival process of customers, some non-negative

service-time distribution, and a single server; see for instance Gross et al. (2008).

Let Yi be the delay in queue of the ith arriving customer when the system starts

empty. Then

Yi = max{0, Yi−1 +X2,i−1−X1,i}, i= 1,2, . . . (2)
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with Y0 =X2,0 = 0. There are two input distributions, the interarrival-time distri-

bution of X1 and the service-time distribution of X2; successive interarrival times

and service times are individually and jointly independent.

Under certain conditions it can be shown that Yi
D→ Y as i→∞, and properties

of Y , a specific Yi, or the set {Yi, i≤ T} for some stopping time T , are of interest.

Thus, the experiment design could be a single, long replication, or multiple shorter

ones, and the number of inputs X1,i and X2,i needed may be fixed or random.

The E(Y ) is tractable if the interarrival times are exponentially distributed and

it depends only on the mean and variance of the service times X2; the entire

distribution of Y is tractable if the service time is also exponential. In general

the distributions of Yi and Y are not known. In our evaluation we focus on the

distribution of Y5, the wait of the 5th arriving customer, since the effect of the

service-time distribution beyond its mean and variance should not yet have washed

out.

2.3. Highly Reliable System (HRS)

Systems that are repairable or have signficant redundancy are designed to be highly

reliable, meaning that system failure is rare. Let Y be the time of system failure.

The following algorithm mimics a HRS for which a failure is avoided if a backup

component is repaired (time to repair X1) before the active component fails (time

to failure X2); it does not actually model such a system, but allows us to control

the rarity of failure through the distributions of X1 and X2.

1. Y = 0; i= 1

2. until X2,i <X1,i do

Y = Y +X2,i

i= i+ 1

loop

3. return Y = Y +Xi,1
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If E(X1)�E(X2) then the system will be highly reliable; just how reliable it is

is characterized by properties of Y , such as its mean or a tail probability. In our

example Xi,1 and Xi,2 are individually and jointly independent.

2.4. Input Uncertainty

To present our method we focus on a single, univariate input distribution F c for

which we have an i.i.d. sample x1, x2, . . . , xN of real-world data. Because it is a real-

world process, there is no expectation that F c is a member of any standard family

of parametric distributions, including those in our set F , although some may be

close.

The distribution of our generic output Y depends upon the choice of input dis-

tribution F ; thus we write

Y ∼ FY (y | F ).

Based on the input data we fit a distribution denoted by F̂ ; thus, the simulation

generates observations of

Ŷ ∼ FY (y | F̂ ).

Ideally FY (y | F̂ ) = FY (y | F c), but in practice we will be satisfied if the distributions

are close in some relevant sense (e.g., have nearly the same mean). Notice that what

matters is the implied output distribution; the input distribution F c itself is of less

interest. We let Y c ∼ FY (y | F c) denote the ideal output.

Research on input uncertainty addresses the problem that

FY (y | F̂ ) 6= FY (y | F c)

often by focusing on the error in using Ŷ as an estimator of E(Y c). See, for instance,

the surveys in Barton (2012), Lam (2016) and Song et al. (2014). One reasonable

objective is to form a confidence interval or a Bayesian credible interval for E(Y c)

that accounts for error in using F̂ as an estimator of F c as well as the stochastic
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error from observing the simulated output Ŷ rather than E(Ŷ ). There has been

significant success in attacking this and related problems, including Cheng and

Holland (1997), Cheng and Holland (1998), Chick (2001), Zouaoui and Wilson

(2004), Ankenman and Nelson (2012), Barton et al. (2013), Corlu and Biller (2013),

Fan et al. (2013), Xie et al. (2014), Song and Nelson (2015), Ghosh and Lam (2015),

Zhou and Xie (2015), Song et al. (2015), Glynn and Lam (2018) and Lam and Qian

(2018), to name a few. Notice that none of these papers attempt to reduce input

uncertainty; instead they try to quantify it or hedge against it.

Unfortunately, experience has shown that the added error due to input uncer-

tainty can be substantial, sometimes overwhelming, even when we have a significant

quantity of real-world data. Therefore, in this paper we look to reduce the input-

uncertainty error by our choice of F̂ , a reduction which would then be reflected in

reduced measurements of it using the methods described in the papers cited above.

We are not attempting to create a defensive choice F̂worst, and in fact our approach

would be an impediment to such robust analysis (see Lam (2016) for an excellent

survey of these methods).

Reducing the effect of input-model uncertainty on the simulation output is chal-

lenging for obvious reasons: The standard families of distributions used in sim-

ulations are often supported by process physics, they are flexible meaning that

they can assume a variety of shapes, and they are accompanied by provably effi-

cient parameter-estimation methods, such as MLE. Improving upon the standard

approach universally would be impossible, but we will demonstrate empirically

that substantial improvements are possible in some situations, especially when the

real-world input data do not perfectly conform to any known parametric distribu-

tion, as is frequently the case in practice. For completeness we also evaluate our

model-average distribution F̂ against F c, which we can do because we will create

the input data.
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3. Input Model Averaging

To motivate the method that follows, recall that we have a set F of q candidate

parametric distributions for F c; for instance, F could contain

1. Exponential: f1(x) = θe−xθ, x∈ [0,∞),

2. Normal: f2(x) = 1
(2πσ2)1/2

e−(x−µ)2/(2σ2), x∈R,

3. Shifted Gamma: f3(x) = βα

Γ(α)
(x− ξ)(α−1)e−(x−ξ)β, x∈ (ξ,∞)

where fm(x),m= 1,2,3, are density functions for F = {F1, F2, F3}, and θ,σ,β,α > 0

and µ, ξ ∈R are unknown parameters.

Let F̂m(x) and f̂m(x) be the estimators of F c(x) and f c(x) under the mth can-

didate distribution, and let w = (w1,w2, . . . ,wq)
T be a weight vector belonging to

the set W = {w ∈ [0,1]q :
∑q

m=1wm = 1}. The model-average estimator of F c(x) is

F̂ (x,w) =

q∑
m=1

wmF̂m(x) (3)

and taking its derivative with respect to x we have the model average estimator of

f c(x)

f̂(x,w) =

q∑
m=1

wmf̂m(x). (4)

Clearly F̂ (x,w) includes each of the individual candidate distributions as a spe-

cial case of w, but it increases flexibility by allowing averages. A good choice of w

is one that makes F̂ (x,w) close to F c(x) in a comprehensive way that we define

precisely below. Of course, F c(x) is unknown, but the ED with cdf

F̄ (x) =N−1

N∑
i=1

I(xi ≤ x)

is unbiased and consistent for it, so we use F̄ as a stand-in for F c in fitting. Finally,

to guard against overfitting we use cross-validation (CV) with F̄ (x) to select w;

we describe the CV method in the next section. Given the CV-estimated weight
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ŵ, variate generation is easy: Each time a value of X is needed, generate integer

M ∼ ŵ to select the distribution, then generate X ∼ F̂M .

Remark 1. Averaging distributions as dissimilar as exponential, normal and

shifted-gamma may not seem sensible. However, practitioners often use software

that fits a long list of distributions, and as we show later we can easily find the

empirically optimal model average even for such heterogeneous cases.

Remark 2. The model-average distribution F̂ (x,w) is clearly a mixture distri-

bution, but it is different in spirit from mixing a finite number of distributions from

a common family, which is a well-known distribution fitting approach (McLachlan

and Peel 2004). We can, in fact, exploit finite mixtures of a common distribution

by including such models in the candidate set F provided we have a method for

fitting them.

3.1. Cross-Validation for Input Model Averaging

Let xN = (x1, x2, . . . , xN) be the real-world data, which we model as i.i.d. copies

of the random variable X ∼ F c. Here we develop a “frequentist model averaging”

approach to estimate F c(x) by F (x,w) using J-fold CV to tune w to xN ; it is

in the spirit of the Jackknife model average (JMA) of Hansen and Racine (2012),

developed originally for improving the efficiency of estimators in a heteroscedastic

linear regression model. Hansen and Racine (2012) proved that the JMA estimator

of the regression coefficients has the smallest asymptotic expected squared errors

among a large class of linear estimators including the least squares, ridge, Nadaraya-

Watson and spline estimators. They also showed that the JMA estimator frequently

outperforms the AIC and BIC model selection estimators, and Hansen (2007)’s

Mallows model average estimators in finite samples. Zhang et al. (2013) showed

that the merits of the JMA estimator carry over to models that admit a lagged

dependent variable as a regressor and a non-diagonal error covariance structure.

To implement the JMA scheme for input modeling in stochastic simulation, we

partition the data set xN into J groups, such that for each group we have S =N/J
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observations. For the jth group, the observations are labelled as x(j−1)S+1, . . . , xjS,

where j = 1,2, . . . , J . Let F̃
(−j)
m (x) be the estimator (e.g., via MLE) of F c(x) with

the observations of the jth group removed from the data set for the mth candi-

date distribution. Correspondingly, the model average estimator with the jth group

removed is

F̃ (−j)(x,w) =

q∑
m=1

wmF̃
(−j)
m (x).

The ED estimator of F c(x) using only the jth group is

F̄(j)(x) = S−1

S∑
s=1

I(x(j−1)S+s ≤ x) (5)

and it is well known that E
(
F̄(j)(x)

)
= F c(x). Our J-fold CV criterion is formulated

to be

CVJ(w) =
J∑
j=1

S∑
s=1

{
F̃ (−j)(x(j−1)S+s,w)− F̄(j)(x(j−1)S+s)

}2

.

In other words, we consider the squared difference between the model-average esti-

mator constructed without the jth group of real-world data, and the ED constructed

from only the jth group, summed across all groups. The empirically optimal weight

vector resulting from this criterion is

ŵ = argminw∈WCVJ(w)

leading to the model average estimator F̂ (x, ŵ) of F c(x).

The optimization problem we need to solve to find ŵ can be formulated as a

quadratic program (QP); see Jiang and Nelson (2018) for the formulation, and

Nocedal and Wright (2006) for solving QPs. Specifically,

minimize: CVJ(w) =

J∑
j=1

S∑
s=1

{
F̃ (−j)(x(j−1)S+s,w)− F̄(j)(x(j−1)S+s)

}2

=
J∑
j=1

S∑
s=1

{
q∑

m=1

wm

(
F̃ (−j)
m (x(j−1)S+s)− F̄(j)(x(j−1)S+s)

)}2
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=

J∑
j=1

S∑
s=1

{
q∑

m=1

wmcmjs

}2

=
J∑
j=1

S∑
s=1

w>Cjs w = w>Cw

subject to:

q∑
m=1

wm = 1

wm ≥ 0, m= 1,2, . . . , q

where the matrices Cjs and C are defined in the obvious way. If the q × q

matrix C is positive definite, then the objective function is strictly convex and

the QP has a unique optimal solution; we refer to this as the empirically opti-

mal model average. That each matrix Cjs is positive semi-definite is clear from

their construction. When X is continuous-valued and at least one of the candi-

date distributions is continuous, we show in Appendix C of the online supplement

that the probability of there existing a w′ 6= 0 for which (w′)>Cw′ = 0 is zero;

therefore, C is positive definite almost surely. The QP is easily solved via stan-

dard methods (Nocedal and Wright 2006). Notice that the construction of C is

a one-time calculation, and that QPs of such small size (q ≤ 40) can be solved

very efficiently. The fitting algorithm is implemented in our R package FMAdist

(https://cran.r-project.org/package=FMAdist).

Remark 3. Model averaging is intuitively appealing, as it enlarges the space of

input model choices beyond F while still including the individual candidate distri-

butions in F as special cases; it employs cross-validation as a robust method for

fitting; and the empirically optimal solution is easy to find under weak assumptions.

Under more restrictive assumptions we show in Section 3.3 that this empirically

optimal choice is in fact the best possible choice as N →∞.
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3.2. Relationships to Other Input Modeling Methods

The greatest progress in input uncertainty quantification to date has been when the

distribution family of F c is assumed known (e.g., gamma(α,β)), so that the only

uncertainty comes from the parameter estimates (e.g., α̂, β̂). In our opinion, it is not

universally the case that real-world data both conform perfectly to a parametric

distribution and are measured to sufficient precision to be indistinguishable, even

though parametric distributions are often good approximations.

There has been some work on input uncertainty quantification that allows for

distribution family uncertainty, specifically Chick (2001) and Zouaoui and Wil-

son (2004). Both papers take a Bayesian perspective, placing a prior distribution

on the correct model family (e.g., exponential, Weibull, gamma), as well as each

distributions’ parameters, and derive the posterior distributions given xN . While

variate generation of inputs is identical to our method—first choosing the distri-

bution family from the posterior, then generating variates—their goal is to fully

represent input uncertainty in the posterior predictive distribution of the output

Y , rather than trying to reduce it as we do; in fact we provide no estimate of input

uncertainty.

Another appealing solution is to use a parametric function F̂ that has the flexi-

bilty to get close to any F c, and many distributions have been created for this pur-

pose, including the generalized lambda distribution (Karian and Dudewicz 2000)

to match moments or percentiles, and the Bézier distribution (Wagner and Wilson

1996) that can have an arbitrary number of parameters. However, these distri-

butions were created to be flexible, rather than to conform to particular process

physics, leading to the possibility of overfitting or manifesting unusual features that

are not consistent with the data. There is, after all, a reason that the standard

arsenal of normal, lognormal, logistic, Weibull, gamma, Pareto, etc. continue to be

used: their existence is implied by theory that can hold approximately in practice.
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As described in the previous section, the input model averaging approach allows

us to exploit these tried-and-true families, but to extend their reach through aver-

aging. To resist overfitting we use CV to select the weights; CV insures that the

weights do not give an average that is inconsistent with the distribution of the

data, and the empirically optimal weights are unique and easily found.

3.3. Asymptotic Properties of Input Model Averages

In this section we establish asymptotic properties of the empirically optimal model

average under certain restrictions on the true distribution F c, the individual can-

didate distributions in F , and whether or not the ED F̄ is in F : As N →∞, (a)

for certain classes of candidate distributions F , when neither F c nor F̄ are in F

individually, the empirically optimal model-average weights become the squared-

error-optimal weights; and (b) when F̄ is included in F , then its weight converges

to 1. The first result implies that under certain conditions cross validation provides

the best-possible weights when no candidate distribution fits perfectly, while the

second implies that it is consistent for F c if we include the ED as a candidate.

We first establish the restrictions. Let βm be the unknown parameter vector in

the mth candidate distribution, and let β̂m be its MLE for m = 1,2, . . . , q, which

we assume exists. It is worth noting that β̂m (1≤m≤ q) is determined from each

candidate distribution individually, and not by the optimized linear combination

of distributions. Further, let β̂ =
(
β̂

T

1 , . . . , β̂
T

q

)T

with dimension κ. We require that

the size q of the candidate set is finite. Furthermore, we assume that the following

conditions hold:

(i) For each x ∈ R, the density function fm(x;βm) of the mth candidate distri-

bution is continuous at every βm in the corresponding compact parameter space

Θm.

(ii) E[logf c(x)] exists and |logfm(x;βm)| < l(x), where l(x) is integrable with

respect to F c.



Nelson et al.: Input Model Averaging
16 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2017-01-OA-012

(iii) There exists a vector β∗m at which the Kullback-Leibler information∫
R log[f c(x)/fm(x;βm)]|f c(x)dx attains a unique minimum.

Under these conditions β̂→ β∗ =
(
β∗T1 , . . . ,β∗Tq

)T
almost surely as N →∞, i.e.,

the MLEs converge even when the distributions are misspecified. White (1982)

further showed that

β̂−β∗ =Op(N
−1/2). (6)

We assume that (6) is in force. The validity of (6) depends on Conditions (i)–(iii)

as well as Assumptions A4, A5 and A6 of White (1982).

Remark 4. The canonical parameter space for many standard distributions is

not compact, as assumed in (i); e.g., for the normal distribution σ > 0. However,

as a practical matter assuming that there exists a large, but compact space in

which each parameter lies, e.g., σ ∈ [10−10,1010], is reasonable since there is no

requirement that the bound be known. In this sense all of the distributions that

have a density in the examples in Section 4 below satisfy this condition.

We next define the notations needed to state our main results. Let F0 =

(F c(x1), . . . , F
c(xN))T, the values of the true cdf evaluated at the data points, and

F̂m = (F̂m(x1), . . . , F̂m(xN))T, the corresponding quantity for the mth candidate

fitted distribution, for m= 1,2, . . . , q. We assume the ED is not one of the q can-

didates. For any fixed w, define a corresponding vectors of values for the averaged

distribution, with parameters fitted from data, F̂(w) = (F̂ (x1,w), . . . , F̂ (xN ,w))T,

and with the limiting parameters F∗(w) = F̂(w) |β̂=β∗.

Recall that CV leaves out sets of S consecutive data values in turn. In

F̃(w) = (F̃ (−1)(x1,w), . . . , F̃ (−1)(xS,w), F̃ (−2)(xS+1,w), . . . , F̃ (−J)(xN ,w))T we col-

lect the cdf values for each data point based on the model average that excludes

it; F̄ = (F̄(1)(x1), . . . , F̄(1)(xS), F̄(2)(xS+1), . . . , F̄(J)(xN))T is the corresponding vector

using the ED. We assume J is fixed, so that S→∞ as N →∞.
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Finally, define the discrepancy L∗N(w) = ‖F∗(w) − F0‖2, and let ξN =

infw∈W L
∗
N(w) (with all weights assigned to distributions other than the ED).

For proving the results, we need the following regularity conditions:

Condition 1 There exists a neighborhood N of β∗ such that

sup
β̃∈N

∥∥∥∥∥∂F̂ (xi,w)

∂β̂

∣∣∣β̂=β̃

∥∥∥∥∥=Op(1)

uniformly for i= 1,2, . . . ,N and w ∈W.

Condition 2 For all w ∈W, N−1/2‖F̂(w)− F̃(w)‖2 =Op(1), and N−1/2{F̂(w)−
F̃(w)}T{F̂(w)− F̄}=Op(1).

Condition 3 When N →∞, there exists a sequence cN → 0 such that ξ2
N ≥N/cN

almost surely.

Condition 3 is well-defined even if F c is a nontrivial mixture of two or more elements

of the candidate set F . It can be seen that

F̂(w)− F̃(w) =

(
q∑

m=1

wm

{
F̂m(x1)− F̃ (−1)

m (x1)
}
, . . . ,

q∑
m=1

wm

{
F̂m(xS)− F̃ (−1)

m (xS)
}
,

q∑
m=1

wm

{
F̂m(xS+1)− F̃ (−2)

m (xS+1)
}
, . . . ,

q∑
m=1

wm

{
F̂m(xN)− F̃ (−J)

m (xN)
})T

. (7)

Hence Condition 2 requires the difference between the regular and leave-S out

estimators to decrease sufficiently quickly as N increases. On the other hand, Con-

dition 3 requires that ξN grows at a rate no slower than N 1/2. This in turn implies

that the correct input distribution F c must not be among the candidate distribu-

tions in the model average.

Theorem 1. If F c 6∈ F , F̄ 6∈ F , and Conditions 1–3 hold, then as the real-world

sample size N →∞ ∑N
i=1

[
F̂ (xi, ŵ)−F c(xi)

]2

infw∈W
∑N

i=1

[
F̂ (xi,w)−F c(xi)

]2

P−→ 1. (8)
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The proof is in Appendix A of the online supplement. Notice that the numerator

and denominator are the sum of squared deviations of the model average estimator

from the true distribution, a comprehensive measure of fit. In the numerator the

weight ŵ is obtained via J-fold CV with the empirical distribution; while in the

denominator the minimum possible squared deviation weight is chosen. The result

shows that as the sample size increases, J-fold CV yields error no larger than

the minimum possible error with the given set of candidate distributions, which

we would expect to be smaller than choosing any one distribution from F when

F c 6∈ F . Notice that the condition “F c 6∈ F” does not prohibit F c from being a

nontrivial mixture of two or more elements of F .

Theorem 1 does not establish that F̂ (xi, ŵ) is asymptotically consistent for F c.

However, as noted earlier, the ED is unbiased and consistent for F c, Therefore, we

also consider including F̄ in the candidate set F for model averaging. While (8) no

longer holds, model averaging becomes consistent in the sense that in the limit all

of the weight is on the ED.

Theorem 2. If F c 6∈ F but F̄ ∈ F , and if Conditions 1–3 hold, then ŵED
P→ 1

as N →∞.

The proof is in Appendix B of the online supplement. The effect of including F̄

is that the other parametric distributions smooth the ED and provide better tail

behavior. This is important because the ED being unbiased does not imply that the

output Ȳ ∼ FY (y | F̄ ) has the same distribution, or even the same mean, as the ideal

output Y c because the simulation is in general a highly nonlinear transformation

of inputs to outputs. See the commentary in Song et al. (2015). Nevertheless, we

will show empirically that the ED of the entire data set, F̄ , is often a good choice

when the criterion is recovering the distribution of Y c, and model averaging with

the ED can be superior to either the ED alone or model averaging of parametric

distributions.
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Remark 5. Among the list of possible candidates F could be kernel density

estimators and the more-recent log-concave density estimators (Kim et al. 2016,

Cule et al. 2010). These semi-parametric methods do not leverage process physics—

an advantage of our approach—but do have excellent convergence rates to the

true distribution. However, we would expect our fits to be smoother for small to

moderate N . That said, these methods are not natural candidates for our model

averaging because they directly estimate the density, while we require the cdf.

4. Experiments

In this section we evaluate our proposal empirically. Recall that our interest is

in how properties of the simulation output Ŷ ∼ FY (y | F̂ ) compare to the ideal

output Y c ∼ FY (y | F c) (Section 4.1), and also how our fitted model-average dis-

tribution F̂ (x; ŵ) compares to the distribution that generated the input data F c

(Section 4.2). The assessments in this section are quantitative; see Jiang and Nel-

son (2018) for some graphical illustrations of the attained fits and the online data

supplement for additional documentation

We reach the following broad conclusions: Model averaging, especially including

the ED as a candidate, is often substantially superior to any single choice from F ,

and typically no worse. Given a large number q of candidate distributions it is best

to screen out obviously poor choices first and do model averaging over a smaller

subset of F . When either the size of the real-world data sample N is large, or none

of the candidate distributions has the capability to fit well (e.g., data are multi-

modal but choices in F are all unimodal), then the weight on the ED, ŵED, tends

to be large. Thus, the ED provides protection against a badly chosen candidate

set (which can occur when using the built-in set in a software package) as well

as providing the consistency established by Theorem 2. Although not specifically

targeted in our experiments, it seems clear that employing a candidate set with

common, appropriate support, and containing candidates that are well justified by
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process physics when available, is helpful. Finally, we found no systematic difference

from using J = 5 or 10 folds for CV; we would never use more than 10 folds, and

recommend J = 5 when N is small.

4.1. Evaluation of the Output Distribution

To evaluate the various methods with respect to the output distribution, we use the

relative distribution method of Handcock and Morris (2006). A brief explanation

of the method follows: Let the distributions of Ŷ and Y c be denoted by FŶ (y) and

FY c(y), respectively. Define the grade transformation of Ŷ to Y c as

U = FY c(Ŷ ), (9)

obtained by transforming Ŷ by FY c. The CDF of U can be expressed as

G(u) = FŶ (F−1
Y c (u)) (10)

for 0≤ u≤ 1, where F−1
Y c (u) = inf{y | FY c(y)≥ u} is the quantile function of FY c.

It is easily seen that if Ŷ
D
= Y c, then the CDF of U is a 45◦ line. When Ŷ

D
6= Y c,

then the closer G(u) is to the 45◦ line, the better the fit provided by Ŷ . In our

analysis, we use the unsigned area between G(u) and the 45◦ line over 0≤ u≤ 1 to

evaluate the effectiveness of the method. We denote the gap by A(u) = |G(u)−u|,

so that the area is A =
∫ 1

0
A(u)du. Clearly we could compare a list of individual

properties, such as the mean and variance, but A provides a comprehensive measure

of performance. The relative distribution method is in the same spirit as the tail-

probability plot method (see, for instance, Heyde and Kou (2004)). When the true

distribution of Y c is not available, as in most of our examples, then it is represented

by a very large sample from FY c ; this is possible for us because the distributions of

the inputs F c are known. To implement the relative distribution analysis we used

the codes at https://csde.washington.edu/~handcock/RelDist/Software/R/.

The following are features of our empirical evaluation:
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• We apply input model averaging to cases of the SAN, GI/G/1 and HRS sim-

ulations as described in Sections 2.1–2.3, for different quantities of real-world data,

N , used to fit the input models. We generate the “real-world data” from fully

specified distributions.

• We consider instances in which the candidate set F does, or does not, contain

the true input distributions F c. The single “best fit” distribution, which represents

common input-modeling practice, is selected from this set both by minimum AIC

and minimum BIC.

• We refer to our frequentist model averaging method as JFCV (for J-fold cross-

validation). The ED is considered both as an individual input distribution method,

and a candidate within the JFCV model average. We refer to the JFCV method

that includes the ED as a default candidate as the JFCV(ED) method. Thus, our

five competing methods are AIC, BIC, ED, JFCV and JFCV(ED).

• When evaluating the performance of the methods we consider both the area

A discussed above and the tail area Atail =
∫ 1

0.9
A(u)du. We are interested in Atail

because there is a common belief that the ED, which does not model the tail of

the distribution beyond the largest data point in the real-world sample, may be

an inferior method when interest centers on the tail of the simulation output Y .

Each experiment is repeated for 100 macroreplications and the results reported

are averages of A or Atail across these 100 macroreplications. When presenting the

results we usually normalize the average area (of A or Atail depending on the focus

of interest) generated by the JFCV method to 1 although in some cases we also

present the raw average area. Hence, if the relative average area produced by a

method is larger than 1 then it is inferior to JFCV, and vice versa, based on this

metric. All results are displayed to statistically meaningful digits of precision. We

also examine how the JFCV weight ŵ changes as N increases.

• For the SAN experiment we also very precisely estimate the mean squared

error (MSE) of a point estimate for the probability of late project completion.
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4.1.1. SAN Experiment We begin with the SAN described in Section 2.1, for

which there are five input distributions for the five activity times, X1,X2, . . . ,X5.

For Cases I–III the true distributions are made up of mixture distributions that are

not contained in any of the candidate sets; whereas Cases IV–V includes distribu-

tions that are contained in the candidate sets. Results for Cases I–V are reported

in Appendix D of the online supplement. Here we report Case VI, which uses a

candidate set F that is common to all commercial distribution fitting products:

F4 = {normal, lognormal,beta, exponential,gamma,Weibull} plus possibly the ED.

In addition to the candidate set F4, we also consider a smaller subset within it

containing the “best” three based on minimum AIC and BIC selections. We refer

to this subset as F (3)
4 and apply the JFCV methods under this subset as well as

the full set F4. In the event that AIC and BIC do not lead to the same set of best

distributions, averaging under F (3)
4 will involve more than three distributions.

The true activity-time distributions are Pareto, Rayleigh and loglogistic, as

shown in Table 1. In each case the mean activity time is approximately 1. None of

these are contained in the candidate set.

The results are displayed in Table 2. JFCV is superior to any single choice made

via best AIC or BIC, and JFCV(ED), which includes the ED in the candidate set,

is substantially better than JFCV alone. In this example selecting a subset of the

top 3 distributions before modeling averaging has little or no effect; however, in

Appendix D of the online supplement we show it can be useful in other scenarios for

the SAN, as well as in our distribution-to-distribution comparisons in Section 4.2.

Although A provides a comprehensive measure of output-distribution perfor-

mance, we also display some results for the MSE of a point estimate of Pr{Y c >

6.65}, since the probablity of completing beyond a due date is often important in

project planning; 6.65 is the 0.9 quantile (based on a side experiment with 1 million

replications). This case is to give a sense of the effect of modeling averaging on
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Table 1 True activity-time distributions for Case VI SAN example.

Activity Distribution Parameters CDF
X1 Rayleigh σ= π/2 1− exp(x2/(2σ2)), x≥ 0

X2 Pareto µ= 1/4, σ= 3/16, ξ = 3/4 1− (1 + ξ(x−µ)/σ)−1/ξ, x≥ µ

X3 Pareto µ= 1/2, σ= 1/4, ξ = 1/2 1− (1 + ξ(x−µ)/σ)−1/ξ, x≥ µ

X4 loglogistic α= 0.23, β = 1.21
1

1 + (x/α)−β
, x≥ 0

X5 loglogistic α= 2/π,β = 2
1

1 + (x/α)−β
, x≥ 0

Table 2 Numerical results for SAN experiment Case VI.

Actual Average A Relative Average A

Scenario JFCV AIC BIC ED JFCV(ED) JFCV AIC BIC ED JFCV(ED)

F4 0.05 0.06 0.06 0.06 0.04 1.00 1.07 1.07 1.06 0.77

F (3)
4 0.06 0.06 0.06 0.06 0.04 1.00 1.05 1.05 1.05 0.76

Table 3 MSE results for SAN experiment, Case VI,
for estimating Pr{Y c > 6.65}.

N R Candidates MSE SE(MSE)
100 1000 ED 0.00254 4.8E-05
100 1000 Best AIC 0.00116 1.6E-05
100 1000 F4 + ED 0.00079 1.8E-05

1000 1000 ED 0.00016 2.9E-06
1000 1000 Best AIC 0.00093 8.2E-06
1000 1000 F4 + ED 0.00015 3.1E-06

point-estimator performance. Table 3 displays results for real-world sample sizes

N = 100,1000 and R= 1000 replications of the SAN; a large number of replications

are required so that point estimator variance does not overwhelm the bias reduc-

tion we hope to be revealed. The MSE is estimated from 5000 macroreplications

of the entire experiment, and the standard error of the estimate is also displayed.

We see that when N is small, model averaging yields substantial improvement

over the ED or best AIC choices; when N is larger the ED and model average are

indistinguishable.

4.1.2. GI/G/1 Experiment Next we examine results for two cases of the

GI/G/1 queue described in Section 2.2: An M/M/1 queue (Case VII), meaning
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exponential interarrival and service times, and a GI/G/1 queue with balanced

hyperexponential interarrival times

X1 ∼

 exponential(1) with probability 1/2

exponential(20) with probability 1/2

and service times that follow the mixture distribution,

X2 ∼

unif(10,20) with probability 2/5

gamma(2.875,1/2) with probability 3/5

which we label as Case VIII. In both cases the implied traffic intensity is

E(X2)/E(X1) = 0.9, and the output we consider is the waiting time of the 5th

arrival Y5. We consider candidate sets

F1 = {truncated normal, beta, gamma}

F2 = F1 ∪{lognormal, Weibull}

F3 = F2 ∪{negative binomial,discrete uniform,Poisson, continuous uniform, loglogistic,

inverse Gaussian,Pareto,binomial}

Tables 4 and 5 contain the M/M/1 results for relative average A and Atail,

respectively. For capturing the entire output distribution of Y5 as measured by A,

JFCV and JFCV(ED) tend to be better than AIC, BIC and ED, even though the

true exponential distribution is in all candidate sets F1–F3 in the form of the gamma

distribution, and again in sets F2–F3 in the form of the Weibull distribution. AIC

and BIC improve substantially in capturing the tail behavior as measured by Atail,

but do not beat JFCV(ED).

Tables 6 and 7 present corresponding results for the GI/G/1. When interest

centers on A, the JFCV(ED) method is the clear favorite, followed by the ED,

which has an edge over the JFCV that in turn delivers better performance than
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Table 4 Numerical results for M/M/1 queue with N = 100.

Relative Average A
Case Scenario JFCV AIC BIC ED JFCV(ED)

VII

F1 1.00 1.04 1.04 1.00 0.98
F2 1.00 1.04 1.04 1.01 0.98
F3 1.00 1.00 0.99 0.96 0.94

F (3)
3 1.00 1.09 1.08 1.05 1.00

F (6)
3 1.00 1.07 1.06 1.02 0.98

Table 5 Numerical results for M/M/1 queue, tail estimation,
with N = 100.

Relative Average Atail

Case Scenario JFCV AIC BIC ED JFCV(ED)

VII

F1 1.00 0.74 0.74 1.24 0.84
F2 1.00 0.71 0.71 1.17 0.71
F3 1.00 0.43 0.42 0.65 0.47

F (3)
3 1.00 0.82 0.81 1.26 0.77

F (6)
3 1.00 0.53 0.53 0.82 0.51

Table 6 Numerical results for GI/G/1 queue with N = 100.

Relative Average A
Case Scenario JFCV AIC BIC ED JFCV(ED)

VIII

F1 1.00 0.94 0.94 0.90 0.83
F2 1.00 1.05 1.05 0.96 0.88
F3 1.00 1.15 1.16 0.81 0.78

F (3)
3 1.00 1.30 1.31 0.92 0.84

F (6)
3 1.00 1.24 1.25 0.88 0.82

AIC and BIC in the majority of cases. When interest centers on Atail, JFCV(ED)

remains the best, the ED can yield worse performance than the JFCV, and AIC

and BIC selections can be particularly bad when there is a large set of candidate

distributions.

4.1.3. HRS Experiment Finally, we consider the HRS example of Section 2.3.

We consider the following setup, labelled as Case IX in our subsequent presentation

of results. Let the inputs be

X1 ∼

unif(0,1), with probability 0.5

exponential(1), with probability 0.5
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Table 7 Numerical results for GI/G/1 queue, tail estimation,
with N = 100.

Relative Average Atail

Case Scenario JFCV AIC BIC ED JFCV(ED)

VIII

F1 1.00 0.64 0.64 0.99 0.58
F2 1.00 0.82 0.82 1.35 0.67
F3 1.00 1.40 1.42 0.68 0.37

F (3)
3 1.00 2.49 2.54 1.22 0.59

F (6)
3 1.00 1.66 1.69 0.81 0.38

Table 8 Numerical results for HRS with N = 100.

Relative Average A
Case Scenario JFCV AIC BIC ED JFCV(ED)

IX

F1 1.00 1.00 1.00 0.58 0.37
F2 1.00 0.73 0.73 0.64 0.41
F3 1.00 1.26 1.27 1.27 0.75

F (3)
3 1.00 1.17 1.18 1.18 0.70

F (6)
3 1.00 1.29 1.31 1.30 0.79

X2 ∼

N(100,100), with probability 0.5

gamma(20,0.2), with probability 0.5.

Notice that E(X1) = 1 and E(X2) = 100. Recall that Y is thought of as the time to

failure.

Tables 8 and 9 present the results. This is a very difficult problem for which

the distribution of Y is very sensitive to the input distributions. This makes the

performance of JFCV(ED) impressive as it is clearly the best across all cases. The

performance of the JFCV, AIC, BIC and ED methods is rather diverse. AIC’s

performance is either on a par with, or slightly better than, BIC. None of the

JFCV, AIC, BIC and ED can strictly dominate the others, although JFCV tends

to be the winner when considering A.

4.2. Evaluation of the Input Distribution

In this section we present results that directly assess the quality of the model

average fit F̂ (x; ŵ) with respect to the true distribution F c. In the unlikely event
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Table 9 Numerical results for HRS, tail estimation, with
N = 100.

Relative Average Atail

Case Scenario JFCV AIC BIC ED JFCV(ED)

IX

F1 1.00 1.00 1.00 0.66 0.55
F2 1.00 0.85 0.85 0.70 0.57
F3 1.00 0.74 0.75 0.70 0.51

F (3)
3 1.00 1.20 1.22 1.13 0.82

F (6)
3 1.00 0.83 0.85 0.79 0.61

that F c ∈F , one should not expect model averaging to do better since an empirical

weight of precisely 1 assigned to any particular distribution, including F c, is a

probability 0 outcome. Therefore, we focus on cases in which F c 6∈ F .

Specifically, our candidate set is all or part of

F = {normal, lognormal, exponential,Weibull,gamma,ED}

while F c is Rayleigh, Pareto, generalized lambda (Karian and Dudewicz 2000),

hyperexponential, or mixtures of these. For measures of fit, we compared the mean

and variance of the fitted distributions to those of F c (as a sanity check), but more

importantly compute

Kolmogorov-Smirnov distance (K-S): max
x

∣∣∣F̂ (x; ŵ)−F c(x)
∣∣∣

Cramér von-Mises distance (Cv-M):

∫ [
F̂ (x; ŵ)−F c(x)

]2

dF c(x)

Anderson-Darling distance (A-D):

∫ [
F̂ (x; ŵ)−F c(x)

]2

F c(x)(1−F c(x))
dF c(x).

K-S examines the largest absolute gap between the cdfs; Cv-M and A-D are like-

lihood weighted squared areas between them, with A-D further emphasizing dif-

ferences in the tails. We also recorded the weights assigned to each distribution in

the model average. Real-world sample sizes of N = 100,1000 were employed, and

all results were averaged over 1000 macroreplications of the experiment.

We present results that represent the more-favorable and less-favorable perfor-

mance of model averaging from this large number of cases. Not surprisingly, no
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approach dominates on all instances and all measures, so “favorable” is somewhat

subjective. Overall, we found the following:

• Model averaging can improve over any single choice from F , and the best

model average tends never to be worse.

• Including the ED in F is almost always valuable for measures other than K-S;

ED alone often has the poorest K-S performance, which makes sense as it is a

discrete approximation to a continuous F c.

• Reducing the size of F to the top AIC/BIC choices before model averaging

improves fit; often model averaging the single best fit and the ED is the concensus

best choice.

• The more distinct F c is from any other choice in F , the more weight is applied

to the ED; for instance, this occurred when we created a bimodel true distribution

F c via a mixture (all of the candidates in F are unimodal).

• In a targeted test to study the effect of nested distributions, we found

that using F = {exponential,Weibull,gamma} for model averaging when F c is

exponential leads to a noticably poorer fit than choosing any one of the candidates.

A tentative recommendation is to avoid nesting, such as including exponential and

Erlang in a set that already includes Weibull and gamma.

4.2.1. More-favorable Performance Here F c is Rayleigh with parameter

0.5 from which we have N = 1000 observations, with full candidate set F =

{normal, lognormal, exponential,gamma,ED}, and we use J = 5 folds for fitting the

weights. The gamma distribution is always the best AIC fit. Results are shown in

Table 10. Either gamma+ED or using all of F provide arguably the best fits based

on our three performance measures. For the same experiment with only N = 100

“real-world” observations, gamma+ED was the best choice, and better than model

averaging larger sets. This suggests that when the quantity of input data is small

it is even more important to first screen the larger set F before model averaging.
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Table 10 Results from 1000 macroreplications for N = 1000 observations from a
Rayleigh distribution F c.

Distributions w K-S Cv-M A-D

gamma 1 0.034 0.501 3.137
ED 1 0.028 0.172 1.021
gamma+ED (0.257, 0.743) 0.026 0.182 1.080
F (0.387, 0.052, 0.017, 0.479, 0.065) 0.018 0.148 1.941

Table 11 Results from 1000 macroreplications for N = 100 observations from a Pareto distribution
F c.

Distributions w K-S Cv-M A-D

lognormal 1 0.065 0.203 1.256
gamma 1 0.064 0.206 1.259
Weibull 1 0.054 0.144 0.931
ED 1 0.085 0.164 0.990
logn+ED (0.748, 0.252) 0.064 0.164 1.002
Weibull+ED (0.678 0.322) 0.060 0.137 0.849
gamma+ED (0.407, 0.593) 0.071 0.152 0.914
logn+Weibull+ED (0.571, 0.312, 0.117) 0.056 0.143 0.875
logn+gamma+Weibull+ED (0.575, 0.217, 0.098, 0.110) 0.056 0.142 0.872
F (0.073, 0.668, 0.039, 0.118, 0.103) 0.060 0.154 1.261

For a second favorable example, F c is Pareto with location parameter 1 and

shape parameter 3 from which we have N = 100 observations, with full candidate

set F = {normal, lognormal,gamma,Weibull,ED}, and we use J = 5 folds for fitting

the weights. Either the gamma, lognormal or Weibull distribution was chosen as

the best AIC fit in some macroreplication, so we included them all as individual

choices. Results are shown in Table 11. Individually the Weibull provides a good

fit in this case, yet improvement is still possible by model averaging a smaller set

of distributions than the full set.

Although not shown here because the result is obvious, model averaging includ-

ing the ED had very favorable performance relative to any single choice when F c

was obtained by a mixture (e.g., of two Rayleigh’s with different parameters) so

as to create a bimodel distribution; in such cases the ED received a weight of

around 0.9. This illustrates that model averaging with the ED provides protection

against a poorly chosen candidate set, which might occur if distribution fitting
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Table 12 Results from 1000 macroreplications for N = 100 observations from a generalized lambda
distribution F c.

Distributions w K-S Cv-M A-D

logn 1 0.090 0.266 4.119
logn+ED (0.170, 0.830) 0.080 0.162 1.079
logn+gamma+normal (0.810, 0, 0.190) 0.096 0.269 4.164
logn+gamma+normal+ED (0.091, 0, 0.011, 0.8) 0.079 0.163 1.091
F (0.014, 0.381, 0.130, 0.008, 0.008, 0.459) 0.111 0.231 9.118

was automated. Of course, bimodal and mixture distributions can be included as

candidates.

4.2.2. Less-favorable Performance In all of our experiments there was some

model average distribution that did as well or better than any single choice, but in

a few cases this was very sensitive to the distributions chosen as candidates; the

most extreme case follows.

In this example F c is a generalized lambda distribution with λ1 = 3, λ2 = 2, λ3 =

1.5 and λ4 = 0.5. With these choices the density has a bathtub shape. On each of

1000 macroreplications, we obtained N = 100 observations, with full candidate set

F = {normal, lognormal, exponential,gamma,Weibull,ED}, and used J = 5 folds

for fitting the weights. The lognormal was chosen as the best AIC fit, but we

explored other combinations as well. Results are shown in Table 12. Notice that

averages of lognormal+ED and lognormal+gamma+normal+ED offer significant

improvement on all measures over the single lognormal choice, but lognormal +

gamma + normal and the full set F have inferior A-D statistics.

5. Conclusions

Model risk due to input uncertainty arises because the fitted input distribution

F̂ deviates from the true distribution of the input data F c. When F c is known

to belong to a certain parametric family, then it makes sense to use statistically

efficient parameter estimates, which would often be the MLEs. Many methods for
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quantifying the impact of input parameter uncertainty on simulation performance

estimates for this case have been proposed.

However, at best we should expect a standard parametric family to be a good

approximation for F c, which means that there is error that does not disappear even

as the real-world input sample size N →∞. When the input data are also used to

select the family, as is common practice, then the possible error is compounded.

In this paper we proposed using frequentist model averaging as an innovative way

to construct better input models, meaning input models that yield more faithful

output performance. Since the optimal weights are unknown, we estimated them

using J-fold cross-validation. We showed that under mild conditions the empirically

optimal model average is unique and easily obtained; and under more restrictive

conditions the empirically optimal weights yield the best possible weighted average

distribution as the sample size increases. This method augments current input

modeling practice, and requires no alternation of the simulation model or additional

simulation runs.

We also observed that the empirical distribution (ED) is frequently a very good

input-modeling choice when the objective is to get close to the ideal output dis-

tribution, FY c; this seems not to be very well known. Including the ED in the

candidate set F for model averaging hedges against possible inadequacy of the

ED, as occurred in some of our examples, especially when tail behavior of Y is of

interest. The JFCV(ED) input models were often the best by a significant margin,

were always very good performers in our experiments and seem to be a powerful

addition to the standard input modeling pallet.
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Online Supplement

Appendix A: Proof of Optimality

We first provide the lemma below that is useful for proving the main results that follow. This lemma

is based on the idea of Li (1987).

Lemma 1. Assume that the random functions Ln(w) and an(w) are continuous in w, and Rn(w)

is a real-valued function, where w ∈W and W is a compact set in Rq. Let

ŵ = argmin
w∈W

{Ln(w) + an(w)} .

If Ln(w)> 0 and Rn(w)> 0 almost surely for large n, and

sup
w∈W

|an(w)|
Rn(w)

P−→ 0 (11)

and

sup
w∈W

∣∣∣∣Ln(w)

Rn(w)
− 1

∣∣∣∣ P−→ 0, (12)

then

Ln(ŵ)

infw∈WLn(w)

P−→ 1.

Proof. Our proof is a modification of Gao et al. (2019). From the definition of infimum, for any

fixed n, there exist a non-negative sequence ϑn,m and a weight vector sequence wn,m ∈W such that

as m→∞, ϑn,m→ 0 and

inf
w∈W

Ln(w) =Ln(wn,m)−ϑn,m inf
w∈W

Ln(w).

So we have,

0 ≤ 1−
inf

w∈W
Ln(w)

Ln(ŵ)
=
Ln(ŵ) + an(ŵ)− an(ŵ)−Ln(wn,m) +ϑn,m inf

w∈W
Ln(w)

Ln(ŵ)

=
min
w∈W

[Ln(w) + an(w)]− an(ŵ)−Ln(wn,m) +ϑn,m inf
w∈W

Ln(w)

Ln(ŵ)

≤
Ln(wn,m) + an(wn,m)− an(ŵ)−Ln(wn,m) +ϑn,m inf

w∈W
Ln(w)

Ln(ŵ)

≤ |an(wn,m)|
Ln(ŵ)

+
|an(ŵ)|
Ln(ŵ)

+ϑn,m

≤ |an(wn,m)|
inf

w∈W
Ln(w)

+
|an(ŵ)|
Ln(ŵ)

+ϑn,m
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=
|an(wn,m)|/Ln(wn,m)

1−ϑn,m inf
w∈W

Ln(w)/Ln(wn,m)
+
|an(ŵ)|
Ln(ŵ)

+ϑn,m

≤
sup
w∈W
{|an(w)|/Ln(w)}

1−ϑn,m inf
w∈W

Ln(w)/Ln(wn,m)
+ sup

w∈W

|an(w)|
Ln(w)

+ϑn,m.

Letting m→∞ on both sides of the equation above we obtain

0≤ 1−
inf

w∈W
Ln(w)

Ln(ŵ)
≤ 2× sup

w∈W

|an(w)|
Ln(w)

. (13)

In the following, we will show that

sup
w∈W

|an(w)|
Ln(w)

P−→ 0. (14)

Together with (13), this proves Lemma 1.

Now, it is clear that

sup
w∈W

|an(w)|
Ln(w)

≤ sup
w∈W

|an(w)|
Rn(w)

× sup
w∈W

Rn(w)

Ln(w)
.

By (11), it suffices to show that

sup
w∈W

Rn(w)

Ln(w)
=Op(1). (15)

It can be verified that

− sup
w∈W

∣∣∣∣Ln(w)

Rn(w)
− 1

∣∣∣∣≤ inf
w∈W

Ln(w)

Rn(w)
− 1≤ sup

w∈W

∣∣∣∣Ln(w)

Rn(w)
− 1

∣∣∣∣,
which, together with (12), implies that∣∣∣∣ inf

w∈W

Ln(w)

Rn(w)
− 1

∣∣∣∣≤ sup
w∈W

∣∣∣∣Ln(w)

Rn(w)
− 1

∣∣∣∣= op(1).

Thus, we have

inf
w∈W

Ln(w)

Rn(w)
= 1 + op(1),

which shows that (15) is true. This completes the proof of the lemma. �

Proof of Theorem 1. Recall from Section 3.3 that βm is the unknown parameter vector in

the mth candidate distribution, m = 1,2, . . . , q, β̂m its MLE that we assume exists, and β̂ =(
β̂

T

1 , . . . , β̂
T

q

)T
with dimension κ and q being finite. As stated in Section 3.3, from White (1982),

under some regularity conditions, there exists a vector β∗ such that

β̂−β∗ =Op(N
−1/2), (16)

as N →∞. In other words, the MLEs converge even when the distributions are misspecified. Our

asymptotic results hold when (16) and Conditions (i)–(iii) are in force.
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In addition to the notation in Section 3.3, define the κ×1 vector νi(w, β̃i) = ∂F̂ (xi,w)/∂β̂|β̂=β̃i
,

where β̃i is a κ−dimensional vector, i = 1,2, . . . ,N . Further, write Q(w) = Q(w, β̃1, . . . , β̃N) =(
ν1(w, β̃1), . . . ,νN(w, β̃N)

)T
, and denote LN(w) = ||F̂(w)−F0||2.

First, using the notations in Theorem 1, the conditions of Ln(w)> 0 and Rn(w)> 0 almost surely

given in Lemma 1 are implied by

inf
w∈W

LN(w)> 0 (a.s.) and ξN > 0 (a.s.) (17)

for largeN . The second part of (17) holds automatically for largeN (sayN ≥N0) under Condition 3,

which implies that ξN has a non-zero lower bound (a.s.) for large N . To explain the first part of (17),

recognizing that LN(w) is continuous and W is compact, we can write inf
w∈W

LN(w) = LN(w(N)),

where w(N) = (w
(N)
1 , · · · ,w(N)

q )T ∈W and the superscript (N) means that the corresponding sample

size is N . If

inf
w∈W

LN(w) = 0 a.s. (infinitely often)

then there is a subsequence of {N}, say {Nl}, such that LNl
(w(Nl)) = 0 (a.s.), l= 1,2, · · · . That is,

for Nl (l= 1,2, · · · ), the following holds almost surely:

||F̂(w(Nl))−F0||2 = 0

⇔
Nl∑
i=1

[
F̂ (xi,w

(Nl))−F c(xi)
]2

= 0

⇔
Nl∑
i=1

[ q∑
m=1

w(Nl)
m Fm(xi, β̂

(Nl)

m )−F c(xi)
]2

= 0

⇔
q∑

m=1

w(Nl)
m Fm(xi, β̂

(Nl)

m ) = F c(xi), i= 1, · · · ,Nl. (18)

Because w(Nl) = (w
(Nl)
1 , · · · ,w(Nl)

q )T is a bounded sequence in Rq and q is fixed, there is a subse-

quence
{

wNl,k

}
(k= 1,2, · · · ), which is convergent. Without loss of generality, we let w(Nl)→w∗ =

(w∗1, · · · ,w∗q )T . It is clear that w∗ ∈W.

Now, from (16) and (18) and the continuity of Fm in βm, we have

q∑
m=1

w∗mFm(xi,β
∗
m) = F c(xi), i= 1, · · · ,N0. (a.s.)

Thus,

ξN0
≤ ||F∗(w∗)−F0||2

=
[ q∑
m=1

w∗mFm(x1,β
∗
m)−F c(x1)

]2
+ · · ·+

[ q∑
m=1

w∗mFm(xN0
,β∗m)−F c(xN0

)
]2
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= 0, (a.s.)

which contradicts the fact that ξN0
> 0 (a.s.). Therefore, inf

w∈W
LN(w) = 0 (a.s.) holds only for finitely

many sample sizes, and hence the first part of (17) is satisfied.

Next, we prove (8). Let us decompose LN(w) and CVJ(w) as follows.

LN(w) =
∥∥∥F̂(w)−F0

∥∥∥2
= L∗N(w) +

∥∥∥F̂(w)−F∗(w)
∥∥∥2 + 2{F∗(w)−F0}T

{
F̂(w)−F∗(w)

}
≡ L∗N(w) + ΠN(w)

and

CVJ(w) =
∥∥∥F̃(w)− F̄

∥∥∥2
= LN(w) +

∥∥∥F̂(w)− F̃(w)
∥∥∥2− 2

{
F̂(w)− F̃(w)

}T{
F̂(w)− F̄

}
+2
{

F̂(w)− F̃(w)
}T

(F0− F̄) + 2F̃(w)T(F0− F̄)− (F0 + F̄)T(F0− F̄)

≡ LN(w) + ΞN(w)− (F0 + F̄)T(F0− F̄).

Note that the last term in the expression above is independent of the weight vector w, so

ŵ = argminw∈W {LN(w) + ΞN(w)} .

Hence, from Lemma 1, to prove (8), it suffices to prove

sup
w∈W

|ΞN(w)|
L∗N(w)

= op(1) (19)

and

sup
w∈W

|ΠN(w)|
L∗N(w)

= op(1). (20)

From (16) and assuming that Condition 1 holds, we have, uniformly for all w ∈W,

N−1/2
∥∥∥Q(w)(β̂−β∗)

∥∥∥2
≤ N−1/2

∥∥∥β̂−β∗
∥∥∥2 λmax

{
QT(w)Q(w)

}
= N−1/2Op(N

−1)Op(N)

= Op(N
−1/2), (21)

where λmax(·) denotes the maximum eigenvalue of a matrix; recognizing also that the elements of

vector |F∗(w)−F0| are uniformly upper bounded by 2. Then

N−1/2 {F∗(w)−F0}T Q(w)(β̂−β∗) =N−1/2Op(N
1/2) =Op(1). (22)
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By the Taylor-series expansion,

F̂(w)−F∗(w) = Q(w)(β̂−β∗). (23)

From (21)–(23), Condition 3, and recognizing that any element of the vector |F∗(w)−F0| is upper

bounded by 2, we have

sup
w∈W

|ΠN(w)|
L∗N(w)

≤ ξ−1N sup
w∈W

∥∥∥F̂(w)−F∗(w)
∥∥∥2 + 2ξ−1N sup

w∈W

∣∣∣{F∗(w)−F0}T
{

F̂(w)−F∗(w)
}∣∣∣

=
N1/2

ξN
N−1/2 sup

w∈W

∥∥∥Q(w)(β̂−β∗)
∥∥∥2 + 2

N1/2

ξN
N−1/2 sup

w∈W

∣∣∣{F∗(w)−F0}T Q(w)(β̂−β∗)
∣∣∣

= op(1),

which is (20). Similarly, from Conditions 2 and 3, we have

sup
w∈W

∣∣∣∣∥∥∥F̂(w)− F̃(w)
∥∥∥2− 2

{
F̂(w)− F̃(w)

}T{
F̂(w)− F̄

}
+ 2
{

F̂(w)− F̃(w)
}T

(F0− F̄)

∣∣∣∣
L∗N(w)

= op(1). (24)

Now, consider F0(x)− F̄(j)(x). Note that the Kolmogorov-Smirnov statistic (Billingsley 1968),

√
S sup

x

|F0(x)− F̄(j)(x)|

is convergent in distribution. Hence, for any x, from (5), we have

F0(x)− F̄(j)(x) = F0(x)−S−1
S∑
s=1

I(x(j−1)S+s ≤ x) =Op(S
−1/2),

and thus,

max
i∈{1,2,...,N}

|F0(xi)− F̄(j)(xi)| ≤ sup
x

|F0(x)− F̄(j)(x)|=Op(S
−1/2),

which, along with the fact that x1, . . . , xN are i.i.d., implies that, uniformly for i∈ {1,2, . . . ,N},

F0(xi)− F̄(j)(xi) =Op(S
−1/2). (25)

From cN → 0, (25), and recognizing that any element of |F̂m| is upper bounded by 1, we obtain, for

any j ∈ {1,2, . . . , J},

c1/2N S−1/2

∣∣∣∣∣
S∑
s=1

F̃ (−j)
m (x(j−1)S+s)

{
F0(x(j−1)S+s)− F̄(j)(x(j−1)S+s)

}∣∣∣∣∣
≤ c1/2N S−1/2

S∑
s=1

∣∣∣F̃ (−j)
m (x(j−1)S+s)

{
F0(x(j−1)S+s)− F̄(j)(x(j−1)S+s)

}∣∣∣
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≤ c1/2N S−1/2
S∑
s=1

∣∣F0(x(j−1)S+s)− F̄(j)(x(j−1)S+s)
∣∣

= op(1),

which, along with Condition 3 and the assumption that J is finite, implies that

ξ−1N sup
w∈W

∣∣∣F̃(w)T(F0− F̄)
∣∣∣

≤
q∑

m=1

N1/2

ξN
N−1/2

∣∣∣F̃T
m(F0− F̄)

∣∣∣
=

q∑
m=1

J−1/2
N1/2

ξN

∣∣∣∣∣
J∑
j=1

S−1/2
S∑
s=1

F̃ (−j)
m (x(j−1)S+s)

{
F0(x(j−1)S+s)− F̄(j)(x(j−1)S+s)

}∣∣∣∣∣
≤

q∑
m=1

J−1/2c1/2N

∣∣∣∣∣
J∑
j=1

S−1/2
S∑
s=1

F̃ (−j)
m (x(j−1)S+s)

{
F0(x(j−1)S+s)− F̄(j)(x(j−1)S+s)

}∣∣∣∣∣
=

q∑
m=1

J−1/2

∣∣∣∣∣
J∑
j=1

c1/2N S−1/2
S∑
s=1

F̃ (−j)
m (x(j−1)S+s)

{
F0(x(j−1)S+s)− F̄(j)(x(j−1)S+s)

}∣∣∣∣∣
≤

q∑
m=1

J−1/2
J∑
j=1

c1/2N S−1/2
S∑
s=1

∣∣∣F̃ (−j)
m (x(j−1)S+s)

{
F0(x(j−1)S+s)− F̄(j)(x(j−1)S+s)

}∣∣∣
≤

q∑
m=1

J−1/2
J∑
j=1

c1/2N S−1/2
S∑
s=1

∣∣F0(x(j−1)S+s)− F̄(j)(x(j−1)S+s)
∣∣

≤ qJ−1/2
J∑
j=1

c1/2N S−1/2 ·S max
i∈{1,2,...,N}

|F0(xi)− F̄(j)(xi)|

= c1/2N ·Op(1) (26)

= op(1). (27)

From (24) and (27), we obtain (19) and this completes the proof. �

Appendix B: Convergence of the Weight on ED

Proof of Theorem 2. Here we show that when we employ JFCV(ED) the weight on the ED

converges to 1 as the real-world sample size N →∞. This is important because the ED is unbiased

and asymptotically consistent for F c, so as the sample size increases the incorrect choices in F

should not enter into the average. The following result shows that this is indeed the case when the

weights are estimated via J-fold CV.

Because the proof is easier to follow, we begin with the case of q = 2 candidate distributions,

the first being a misspecified parametric distribution and the second being the ED. Denote their

weights chosen by the proposed cross-validation criterion as ŵ1 and ŵED respectively and write
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ŵ = (ŵ1, ŵED)T. We will prove that ŵED → 1 in probability as N →∞. To facilitate the proof,

consider the weight vector w̃ = (0,1)T. From the proof in Appendix A and Condition 2, we know

that

CVJ(w̃) =Op(1) (28)

and

CVJ(ŵ) =Op(N
1/2) + ŵ2

1

∥∥∥F̂1− F̄
∥∥∥2

as N →∞. These yield

ŵ2
1 =

∥∥∥F̂1− F̄
∥∥∥−2CVJ(ŵ)−

∥∥∥F̂1− F̄
∥∥∥−2Op(N1/2). (29)

Since ŵ = argminw∈WCVJ(w), we have CVJ(w̃)≥CVJ(ŵ), which, along with (28), implies

CVJ(ŵ) =Op(1). (30)

By (29) and (30), we have

ŵ2
1 =Op(N

1/2)
∥∥∥F̂1− F̄

∥∥∥−2 ,
We now establish the relationship between ||F̂1 − F̄|| and ξN . Let w(1) = (1,0)T . Then F̂1 can be

written as F̂(w(1)). Hence we have

||F̂1− F̄||= ||F̂(w(1))− F̄||

≥ ||F∗(w(1))−F0|| − ||F̂(w(1))−F∗(w(1))|| − ||F0− F̄||

≥
√
ξN − ||F̂(w(1))−F∗(w(1))|| − ||F0− F̄||.

From equations (21) and (23), it is seen that

||F̂(w(1))−F∗(w(1))||=Op(1),

which, together with ||F0− F̄||=Op(1), implies that

||F̂1− F̄|| ≥
√
ξN +Op(1).

Recognising this relationship between ||F̂1− F̄|| and
√
ξN , and using Condition 3, we obtain

N−1/4||F̂1− F̄|| ≥ (ξ2N/N)1/4 + op(1)≥ c−1/4N + op(1).

As cN → 0, we have N1/4||F̂1− F̄||−1 = op(1). Hence, ŵ1 = op(1) and thus

ŵED→ 1
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in probability, as N →∞.

Next we consider the general case of q ≥ 2 candidate distributions with the first q − 1 being

misspecified parametric distributions and the qth being the ED. Denote their weights chosen

by the proposed cross-validation criterion by ŵ1, ŵ2, · · · , ŵq−1, ŵED respectively and write ŵ =

(ŵ1, ŵ2, · · · , ŵq−1, ŵED)T. We will prove that ŵED → 1 in probability as N →∞. Consider the

weight vector w̃ = (0,0, · · · ,0,1)T, w̄ = (w1/(1−wED),w2/(1−wED), · · · ,wq−1/(1−wED),0)T and̂̄w = (ŵ1/(1− ŵED), ŵ2/(1− ŵED), · · · , ŵq−1/(1− ŵED),0)T. Let F̄ED = (F̄ (x1), . . . , F̄ (xN))T. Note

that

LN(w) =
∥∥∥F̂(w)−F0

∥∥∥2
=
∥∥∥(1−wED)F̂(w̄) +wEDF̄ED −F0

∥∥∥2
=
∥∥∥(1−wED)(F̂(w̄)−F0) +wED(F̄ED −F0)

∥∥∥2
= (1−wED)2

∥∥∥F̂(w̄)−F0

∥∥∥2 +w2
ED

∥∥F̄ED −F0

∥∥2
+2(1−wED)wED(F̂(w̄)−F0)T(F̄ED −F0).

Together with the proof in Appendix A and Condition 2, and recognizing that ||F0 − F̄||=Op(1)

and ||F0− F̄ED||=Op(1), we have

CVJ(w̃) =Op(1)

and

CVJ(ŵ) =Op(N
1/2) + (1− ŵED)2

∥∥∥F̂( ̂̄w)−F0

∥∥∥2
as N →∞. As ŵ = argminw∈WCVJ(w), we have CVJ(w̃) ≥ CVJ(ŵ), which, along with the two

results given above, implies that

(1− ŵED)2 =Op(N
1/2)

∥∥∥F̂( ̂̄w)−F0

∥∥∥−2 . (31)

By the definition of ξN , we know that∥∥∥F̂( ̂̄w)−F0

∥∥∥ ≥ ∥∥F∗( ̂̄w)−F0

∥∥−∥∥∥F̂( ̂̄w)−F∗( ̂̄w)
∥∥∥

≥
√
ξN −

∥∥∥F̂( ̂̄w)−F∗( ̂̄w)
∥∥∥ (32)

almost surely. From equations (19) and (21), it is seen that

||F̂( ̂̄w)−F∗( ̂̄w)||=Op(1),
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which, together with (32), implies that

||F̂( ̂̄w)−F0|| ≥
√
ξN +Op(1).

Together with (31) and Condition 3, this implies

1− ŵED = op(1),

and thus

ŵED→ 1

in probability, as N →∞. �

Appendix C: Uniqueness of the Model-Average Weight

Recall that

CVJ(w) =

J∑
j=1

S∑
s=1

{
F̃ (−j)(x(j−1)S+s,w)− F̄(j)(x(j−1)S+s)

}2

=

J∑
j=1

S∑
s=1

{
q∑

m=1

wm

(
F̃ (−j)
m (x(j−1)S+s)− F̄(j)(x(j−1)S+s)

)}2

=

J∑
j=1

S∑
s=1

{
q∑

m=1

wmcmjs

}2

=

J∑
j=1

S∑
s=1

w>Cjs w = w>Cw

and we need to establish that C is positive definite (it is clearly at least positive semi-definite).

Without loss of generality, assume that within each fold j, the data are sorted so that x(j−1)S+1 <

x(j−1)S+2 < · · ·< xjS. Then for C to be only positive semi-definite, there must be a weight vector

w′ 6= 0 such that
q∑

m=1

w′mcmjs =

q∑
m=1

w′m

(
F̃ (−j)
m (x(j−1)S+s)−

s

S

)
= 0.

Therefore,
q∑

m=1

w′mF̃
(−j)
m (x(j−1)S+s) =

s

S

for each j = 1,2, . . . , J and s = 1,2, . . . , S. If X has a density, then x(j−1)S+s and x(j′−1)S+s are

distinct with probabilty 1 when j 6= j′, and we would expect F̃ (−j)
m (·) to be distinct for each j,m

(although not required in our argument). Since any continuous F̃ (−j)
m is increasing, the existence of

w′ has probability 0.
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Appendix D: Additional SAN Empirical Evaluation

This appendix summarizes a large collection of empirical results for the SAN problem that further

explore the use of model averaging. We employed the following candidate sets of distributions for

this evaluation:

F1 = {truncated normal, beta, gamma}

F2 = F1 ∪{lognormal, Weibull}

F3 = F2 ∪{negative binomial, discrete uniform, Poisson,

continuous uniform, loglogistic, inverse Gaussian, Pareto, binomial}

See Table 13 for the true distribution cases of X1,X2, . . . ,X5.

We start with Cases I–III, for which F c is not in the candidate set. We can see from Table 14 that

for these cases, applying model averaging without including the ED in the candidate set does not

always lead to an improvement in efficiency relative to the AIC and BIC choices. The JFCV method

results in improved efficiency over the AIC and BIC choices only in a small number of situations.

Although there are exceptions, AIC and BIC typically yield the same performance. The ED method

invariably results in the most accurate outcomes among the JFCV, AIC, BIC and ED methods.

Significantly, when the ED is included as a candidate distribution in the model average, then the

resultant JFCV(ED) estimator has a very clear advantage over all of the methods considered and

outperforms the ED convincingly. The JFCV(ED) estimator may be viewed as a smoothed variant

of the ED. The superior performance of the JFCV(ED) method indicates that there is an advantage

to smoothing the ED using the other candidate distributions as “smoothers.”

For Cases IV–V the true activity-time distributions are included in the candidate sets, except

under F1. The JFCV(ED) method is not found to be superior to the AIC and BIC model selections,

which generally result in the best estimation outcomes; however, the performance of JFCV(ED)

is close to AIC and BIC. The ED usually performs worse than AIC, BIC and JFCV, and the

JFCV(ED) remains superior to the JFCV for the majority of situations. The less compelling per-

formance of JFCV and JFCV(ED) for Cases IV–V is attributed to the fact that the true input

distributions, namely the lognormal and Weibull distributions, are contained in the candidate sets

F2 and F3. These are distinctive distributions and it comes as no surprise that the AIC and BIC

methods successfully identify them as the true distributions. On the other hand, under F1, the can-

didate set does not contain the true input distributions, and the ranking of the various estimators

is very similar to that observed for Cases I–III.
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We also investigate the impact of varying the sample size on the performance of the various

methods. We focus on Case I, and vary N from 20 to 1000. Table 15 presents the results. To evaluate

the effect of a change in N on the actual difference between G(u) produced by a given method and

the 45◦ line, we also report the actual average area A in addition to the relative average area for

each method. The results show that with few exceptions, other things being equal, an increase in N

has the effect of bringing the distribution of Ŷ closer to the distribution of Y c. For the comparisons

in terms of relative area, the pattern of results observed for N=100 in Table 14 also apply in broad

terms for other values of N . Specifically, for all values of N considered, JFCV(ED) is always the

best of all methods; with few exceptions, ED yields more efficient estimates than the JFCV, which

can have an advantage over AIC and BIC selection although the converse can also be true.

In addition, we examine the change in the empirical weight ŵED for the ED in the JFCV(ED)

estimator as N varies, using Case I as an example. The results, also reported in Table 15, show

that other things being equal, an increase in N is invariably accompanied by an increase in ŵED.

When N=1000, ŵED is very close to unity under all candidate sets. This finding corroborates the

theoretical result in Appendix B which shows that ŵED converges in probability to unity as N

approaches infinity.

In experiments not reported here, we also varied the number of CV folds J = 5,10 for sample

sizes N = 100,1000 and found the conclusions above to be robust to the choice of J .

The results above are for the average area, A. Table 16 reports the results when interest centers on

Atail. At a high level, notice that the ED can perform quite badly when tail behavior of the output

is of interest, and that AIC and BIC perform better when the true distribution is in the candidate

set, but JFCV(ED) is quite close. Under Cases I–III, the JFCV(ED) estimator usually delivers the

best outcome; exceptions occur under F1 for Cases I and II, where it is found that the JFCV(ED)

estimator can have slightly worse performance than the JFCV estimator. Again, the AIC and BIC

selection methods are not always inferior strategies; in fact, they yield better estimates than the

JFCV method, although worse estimates than the JFCV(ED) for most situations in Cases I–III.

Similar to the situation when interest focuses on A, for Cases IV–V AIC and BIC generally yield

the best estimates except under F1. Comparing Tables 14 and 16, there is an apparent deterioration

in the relative performance of the ED method when interest is shifted to Atail. As noted previously,

one deficiency of the ED method is that it takes no account of information beyond the largest

data point in the real-world sample, and as such it may fail to accurately generate the tail of the

simulation output. The worse performance of the ED observed in Table 16 for Cases IV–V is likely

a reflection of this deficiency.
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Table 14 Numerical results for SAN Experiment with N = 100.

Relative Average A
Case Scenario JFCV AIC BIC ED JFCV(ED)

I

F1 1.0000 1.0001 1.0001 0.9624 0.7999
F2 1.0000 1.2277 1.2277 0.8090 0.7236
F3 1.0000 0.5916 0.5916 0.3880 0.3526

F (3)
3 1.0000 0.9653 0.9653 0.6332 0.5435

F (6)
3 1.0000 0.9101 0.9101 0.5969 0.5073

II

F1 1.0000 0.9384 0.9384 0.7343 0.5675
F2 1.0000 0.6593 0.6593 0.4628 0.3743
F3 1.0000 0.7619 0.7619 0.5538 0.4653

F (3)
3 1.0000 0.7843 0.7843 0.5700 0.4515

F (6)
3 1.0000 0.9185 0.9185 0.6676 0.5185

III

F1 1.0000 0.6655 0.6655 0.8816 0.6590
F2 1.0000 1.0312 1.0312 0.7109 0.5333
F3 1.0000 0.6552 0.6588 0.4309 0.3556

F (3)
3 1.0000 0.7628 0.7670 0.5016 0.3845

F (6)
3 1.0000 0.7619 0.7661 0.5010 0.3883

IV

F1 1.0000 0.8947 0.8947 1.1735 0.8293
F2 1.0000 0.6306 0.6306 0.9502 0.6783
F3 1.0000 0.9363 0.9363 1.4419 0.9736

F (3)
3 1.0000 0.9836 0.9836 1.5148 1.0275

F (6)
3 1.0000 0.9850 0.9850 1.5168 1.0096

V

F1 1.0000 0.6587 0.6587 0.8005 0.5806
F2 1.0000 0.5111 0.5111 0.7192 0.6207
F3 1.0000 0.7800 0.7800 1.0957 0.8384

F (3)
3 1.0000 0.8921 0.8921 1.2531 0.9462

F (6)
3 1.0000 0.9126 0.9126 1.2819 0.9691
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Table 15 Numerical results for SAN experiment Case I with varying N .

Actual Average A Relative Average A Weight

Sample
Size

Scenario JFCV AIC BIC ED
JFCV
(ED)

JFCV AIC BIC ED
JFCV
(ED)

on the ED
in JFCV(ED)

20

F1 0.0602 0.0576 0.0576 0.0756 0.0593 1.0000 0.9559 0.9559 1.2561 0.9856 0.9564
F2 0.0666 0.0719 0.0719 0.0756 0.0598 1.0000 1.0807 1.0807 1.1365 0.8980 0.9290
F3 0.0863 0.0806 0.0806 0.0756 0.0629 1.0000 0.9337 0.9337 0.8760 0.7279 0.9123

F (3)
3 0.0775 0.0806 0.0806 0.0756 0.0615 1.0000 1.0402 1.0402 0.9759 0.7928 0.9276

F (6)
3 0.0784 0.0806 0.0806 0.0756 0.0610 1.0000 1.0284 1.0284 0.9649 0.7780 0.9154

50

F1 0.0357 0.0357 0.0357 0.0469 0.0344 1.0000 1.0000 1.0000 1.3151 0.9650 0.9741
F2 0.0401 0.0517 0.0517 0.0469 0.0362 1.0000 1.2894 1.2894 1.1712 0.9020 0.9583
F3 0.0841 0.0530 0.0530 0.0469 0.0421 1.0000 0.6298 0.6298 0.5579 0.5005 0.9347

F (3)
3 0.0564 0.0530 0.0530 0.0469 0.0351 1.0000 0.9395 0.9395 0.8323 0.6220 0.9393

F (6)
3 0.0603 0.0530 0.0530 0.0469 0.0352 1.0000 0.8785 0.8785 0.7782 0.5836 0.9374

100

F1 0.0338 0.0338 0.0338 0.0325 0.0270 1.0000 1.0001 1.0001 0.9624 0.7999 0.9796
F2 0.0402 0.0493 0.0493 0.0325 0.0291 1.0000 1.2277 1.2277 0.8090 0.7236 0.9699
F3 0.0838 0.0496 0.0496 0.0325 0.0295 1.0000 0.5916 0.5916 0.3880 0.3526 0.9474

F (3)
3 0.0514 0.0496 0.0496 0.0325 0.0279 1.0000 0.9653 0.9653 0.6332 0.5435 0.9575

F (6)
3 0.0545 0.0496 0.0496 0.0325 0.0276 1.0000 0.9101 0.9101 0.5969 0.5073 0.9541

200

F1 0.0252 0.0252 0.0252 0.0230 0.0187 1.0000 1.0000 1.0000 0.9105 0.7428 0.9904
F2 0.0274 0.0489 0.0489 0.0230 0.0194 1.0000 1.7831 1.7831 0.8375 0.7062 0.9785
F3 0.0916 0.0487 0.0485 0.0230 0.0222 1.0000 0.5315 0.5298 0.2505 0.2423 0.9585

F (3)
3 0.0521 0.0487 0.0485 0.0230 0.0185 1.0000 0.9339 0.9310 0.4402 0.3550 0.9718

F (6)
3 0.0497 0.0487 0.0485 0.0230 0.0181 1.0000 0.9791 0.9761 0.4616 0.3646 0.9680

500

F1 0.0213 0.0213 0.0213 0.0123 0.0097 1.0000 1.0000 1.0000 0.5778 0.4564 0.9937
F2 0.0234 0.0491 0.0491 0.0123 0.0098 1.0000 2.1043 2.1043 0.5280 0.4202 0.9885
F3 0.0853 0.0485 0.0486 0.0123 0.0121 1.0000 0.5686 0.5696 0.1445 0.1413 0.9752

F (3)
3 0.0506 0.0485 0.0486 0.0123 0.0100 1.0000 0.9588 0.9606 0.2437 0.1981 0.9838

F (6)
3 0.0465 0.0485 0.0486 0.0123 0.0107 1.0000 1.0440 1.0459 0.2653 0.2308 0.9809

1000

F1 0.0205 0.0205 0.0205 0.0105 0.0069 1.0000 1.0000 1.0000 0.5129 0.3346 0.9969
F2 0.0240 0.0503 0.0503 0.0105 0.0070 1.0000 2.0927 2.0927 0.4376 0.2923 0.9929
F3 0.0904 0.0507 0.0508 0.0105 0.0082 1.0000 0.5611 0.5618 0.1163 0.0906 0.9827

F (3)
3 0.0521 0.0507 0.0508 0.0105 0.0077 1.0000 0.9736 0.9748 0.2018 0.1478 0.9913

F (6)
3 0.0478 0.0507 0.0508 0.0105 0.0077 1.0000 1.0622 1.0636 0.2201 0.1618 0.9894
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Table 16 Numerical results for SAN experiment, tail estimation, with
N = 100.

Relative Average Atail

Case Scenario JFCV AIC BIC ED JFCV(ED)

I

F1 1.0000 1.0055 1.0055 1.3160 1.0107
F2 1.0000 2.3594 2.3594 1.2719 0.9784
F3 1.0000 0.8978 0.8978 0.4734 0.4049

F (3)
3 1.0000 0.7232 0.7232 0.3813 0.3253

F (6)
3 1.0000 0.7113 0.7113 0.3751 0.3168

II

F1 1.0000 1.0055 1.0055 1.3160 1.0107
F2 1.0000 2.3594 2.3594 1.2719 0.9784
F3 1.0000 0.8978 0.8978 0.4734 0.4049

F (3)
3 1.0000 0.7232 0.7232 0.3813 0.3253

F (6)
3 1.0000 0.7113 0.7113 0.3751 0.3168

III

F1 1.0000 0.9838 0.9838 1.0550 0.8540
F2 1.0000 1.0795 1.0795 1.0658 0.8150
F3 1.0000 0.8768 0.8909 0.7875 0.6275

F (3)
3 1.0000 0.7930 0.8058 0.7123 0.5508

F (6)
3 1.0000 0.8536 0.8673 0.7667 0.6033

IV

F1 1.0000 0.9543 0.9543 1.3362 0.6634
F2 1.0000 0.6131 0.6131 1.4322 0.6836
F3 1.0000 0.7875 0.7875 1.9576 0.9596

F (3)
3 1.0000 0.9548 0.9548 2.3735 1.1548

F (6)
3 1.0000 0.9460 0.9460 2.3515 1.1396

V

F1 1.0000 0.9250 0.9250 0.8011 0.4883
F2 1.0000 0.7296 0.7296 1.3324 0.8154
F3 1.0000 0.6188 0.6188 1.1271 0.7072

F (3)
3 1.0000 0.6621 0.6621 1.2059 0.6789

F (6)
3 1.0000 0.7137 0.7137 1.2999 0.7856
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