
Citation:
Ramachandran, M (2018) SEF-SCC: Software engineering framework for service and cloud com-
puting. In: Fog Computing: Concepts, Frameworks and Technologies. Springer, pp. 227-248. ISBN
9783319948898 DOI: https://doi.org/10.1007/978-3-319-94890-4_11

Link to Leeds Beckett Repository record:
http://eprints.leedsbeckett.ac.uk/id/eprint/7420/

Document Version:
Book Section (Accepted Version)

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Leeds Beckett Repository 

https://core.ac.uk/display/390060172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.leedsbeckett.ac.uk/id/eprint/7420/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk


SEF-SCC: Software Engineering Framework 
for Service and Cloud Computing 

 
Muthu Ramachandran 
 
School of Computing, Creative Technologies, and Engineering 
Leeds Beckett University 
Headingley Campus 
Leeds LS6 3QS UK 
M.Ramachandran@leedsbeckett.ac.uk 
 

 
 
Keywords: Software Engineering Framework for Service and Cloud 
Computing (SEF-SCC), Cloud Software Engineering, Service-Oriented 
Architecture (SOA), Service Computing, Reference Architecture, Service Reuse, 
Service Component Based Software Engineering (SCBSE), Software Engineering 
for Service and Cloud Computing (SE-Cloud), Business Process Driven Service 
Development Lifecycle (BPD-SDL), Business Process Modelling Notation 
(BPMN), Service-Oriented Architecture Modelling Language (SoaML), Quality of 
Service (QoS) 
 
 
 
Abstract 
Service computing and cloud computing have emerged to address the need for  more 
flexible and cost-efficient computing systems where software delivered as a service. 
To make this more resilient and reliable, we need to adopt software engineering 
principles and best practices that exist for the last 50 years of experience. Therefore, 
this chapter proposes a Software Engineering Framework for Service and Cloud 
Computing (SEF-SCC) to address the need for a systematic approach to design and 
develop robust, resilient, and reusable services. This chapter presents SEF-SCC 
methods, techniques, and a systematic engineering process supporting the 
development of service-oriented software systems and Software as a Service 
paradigms. SEF-SCC has been successfully validated for the past ten years based 
on a large scale case study on British Energy Power & Energy Trading (BEPET). 
 
 

mailto:M.Ramachandran@leedsbeckett.ac.uk


1 INTRODUCTION 

Service oriented software engineering and cloud software engineering have 
emerged to address software as a set of services which deal with user needs. At the 
same time, we have seen a large number of downfalls due to software failures. This 
was in part due to the lack of adopting well designed software engineering practices. 
Now, there is a need to revise these practices given the emergence of service and 
cloud computing, which will revolutionize the next generation of software 
engineering.  

Software engineering reinforces the application of engineering principles to 
software development. The major difference between software engineering and 
other branches of engineering is that software is intangible. However, if there is any 
malfunction in a software system, it can have tangible effects. Nowadays with the 
use of software systems and/or software as a service system (SaaS), for high 
integrity applications such as airborne, financial cloud to medical IoTs, which lead 
to a very high possibility of a software failure and cyber-attack causing loss of life 
and financial instability. These software systems are used to conduct our day to day 
activities and run businesses.  With the possibility of a system overload and hackers, 
this system is far from being secure and safe.  Therefore, it is very important to build 
software which is reliable and trustworthy.  Some of the reasons why systems and 
software fail are: 

 
• Increasing complexity of software systems are cloud driven and 

distributed as services 
• Failure to use software engineering methods, techniques, and process 
• Lack of adopting Building Security In (BSI) 
• Lack of adopting secure software engineering practices (SSE) 

 
As new software engineering techniques help us to build larger, more complex 

systems that demand changes rapidly and on-the-fly. Systems have to be built and 
delivered more quickly; larger, even more complex systems are required; systems 
have to have new capabilities that were previously thought to be impossible. 

Software can be written without using software engineering methods and 
techniques. However, experience shows that many software failures and breach of 
security have happened quite often in recent years. Many companies have drifted 
into adopting software development practices as their products and services have 
evolved. They do not use software engineering methods in their everyday work. 
Consequently, their software is often more expensive and less reliable than it should 
be.  

The following are some of the important reasons why Software Engineering 
needs to be used in Service and Cloud Computing viz: 

• Produce clean code which can be easily understood by everyone on the 
team. With understandability comes readability, changeability, 
extensibility and maintainability. 

• Technical debt in a project should not be accumulated 



• Growing complexity of information systems 
• Systems and software complexity in terms of design and code is 

increasing 
 
This chapter presents our approach to evolving a systematic software engineering 
paradigm known as SEF-SCC which offers new service and cloud software 
engineering method, process, reference architecture, and techniques and addresses 
to some of the key research questions using BPMN modelling and simulation during 
requirements engineering for service computing: 
 

• How do we predict the proposed business requirements and processes will 
perform efficiently? 

• How do we model and simulate business processes? 
• How long does it take to find a composable service? 
• What is the optimum allocation of services and resources? 
• Does the process work well against a large number of service requests? 

 
This is where BPMN modelling and simulation tool helps us to model the business 
processes and study their performance effectiveness. 

2 SERVICE AND CLOUD COMPUTING PARADIGMS 
SOA is a formalized way of integrating applications existing (traditional 
applications and legacy systems) into an enterprise architecture and hence 
suitability for connecting IOEs. In simple terms, it can be defined as an architecture 
based on reusable, well defined services implemented by IT components where the 
components are loosely coupled.  Some of the advantages are- minimizes impact of 
change, platform independence, technology independence, language independence, 
flexibility to design new solutions from existing IT solutions regardless of where 
they reside or how they were created. 
 
Service Providers build services and offer them via an intranet or Internet. They 
register services with service brokers and publish them in distributed registries. 
Each service has an interface, known as contract and functionality, which is kept 
separate from the interface. The Service Consumers search for services based on 
some criteria and when found, a dynamic binding is performed. In this case, the 
service provides the consumer with the contract details and an endpoint address. 
The consumer then invokes the service.  
Services, implemented as Web Services (WS) are delivered using technologies such 
as eXtensible Markup Language (XML), Web Services Description Language 
(WSDL), Simple Object Access Protocol (SOAP) and Universal Description 
Discovery and Integration (UDDI). Enterprise Service Buses (ESBs) build on 
MOM (message-oriented middleware) to provide a flexible, scalable, standards-
based integration technology for building a loosely coupled, highly-distributed 
SOA. ESBs contain facilities for reliable messaging, web services, 
data and message transformation, content-based ‘straight through’ routing. Along 



with web services, ESBs are proving to be the major technical enablers for actual 
SOA projects. Figure 1 shows the benefits of service and cloud computing. It 
supports multitude of devices, provides distributed services, seamless data, service 
intelligence, and platform integration. It also allows us to make business decision 
and predictions based on the performances.  
 
 

 
 

Figure 1 Service and cloud computing benefits 

 
SOA is founded on the notion of Services and each service is characterized by three 
distinct layers: 

• Policies & Service level agreements (SLAs) 
• Service Interface and 
• Service Implementation, with the first two forming what is 

generally referred as Service Contract 
 
Every service supports the business/functional capability assigned to it through a 
set of well- defined operations that are offered on the interface of the service under 
the specified SLAs (often called QoS Parameters). These operations consist of a set 
of messages that are exchanged between the consumers and providers during 
service invocation. 
 
A service is an implementation of a clearly defined business function that operates 
independent of the state of any other service. It has a well defined set of platform-
independent interfaces and operates through a pre-defined contract with the 
consumer of the service. Services are loosely coupled – a service need not know the 

SOA and 
Cloud 

Services

Multitude of 
Devices, 

Software, 
Systems and 

Services

Predictions

Platform 
Integration

Seamless 
Data and 

Intelligence



technical details of another service in order to work with it – all interaction takes 
place through the interfaces. 
 
Data between the consumer and the service are passed in XML format over a variety 
of protocols. The main protocols that web services use today are SOAP (Simple 
Object Access Protocol) and REST (Representational State Transfer). While REST 
uses the existing internet infrastructure (HTTP), SOAP is independent of the 
network layer and can use a variety of network protocols like HTTP, SMTP and the 
like. 
 
However, lack of building trust in internet-based technologies remains an 
outstanding issue for software engineering researchers which has been witnessed 
the fear of cyber-attacks globally. In addition, the lesson learned from software 
failures is the lack of application of established key software engineering principles 
and practices across the lifecycle. Therefore, this chapter presents a novel software 
engineering paradigm, methods, framework, and tools for service (SOA) and cloud 
computing. This chapter also distinguishes between software engineering for 
service and cloud computing and cloud software engineering in the following 
section. The proposed SEF-SCC method is also applicable to cloud based IoT, fog 
and edge computing paradigms [1-3].  

2.1 SE for Cloud Computing vs Cloud SE 
SE for Cloud should focus on engineering approaches to service development 
process, methods, developing reusable services, systematic approaches to 
cloud deployment, management, pricing, design for scalability and elasticity that 
needs to be build-in, tested and deployed by cloud providers. 
 
Cloud SE should focus on engineering approach to developing new services 
offered by a cloud with emphasis on build-in for scalability, service reusability, and 
elasticity. Some challenges for Cloud Software Engineering mentioned by 
Sommerville [4] are: 
 

• Build a software development environment that radically simplifies 
hosting scientific applications on a range of clouds 

• Build applications that make use of the cloud providers Platform as a 
Service (PaaS) APIs (PaaS) to access common services. 

• Challenge in using existing PaaS APIs for computationally-
intensive applications, programming models for developing cloud services 

• Systems are set up to support web-based applications 
• Investigate how to adapt applications that are computation/data intensive 

to run within the constraints set by the PaaS interfaces from cloud 
providers 

• Application architecture is designed for the cloud: Underlying 
infrastructure management is done in the program itself, depending on 
performance and cost requirements, abstractions needed for this etc. 



• Need for innovative programming models for the cloud  
• Building a PaaS for high performance /throughput computing 
• Cloud-aware software development environments 

In addition, it is also the key foundation to innovate new abstraction of a service, 
similar to objects, components, and packages. There are other key challenges such 
as software engineering approaches to, green cloud computing, in other words, to 
reduce the amount of power consumed by cloud data centres, emerging IoT and Fog 
computing applications. It is quite important to make this distinction as the cloud 
service provider will be able to follow strict engineering principles when they 
design and install a new cloud service. Our earlier work on designing cloud services 
using service component models and the design of an independent security service 
component model can be used as a plug-in [5-6]. This work has also demonstrated 
the issue of design for software security as a service (SSaaS) [5 & 7]. Therefore, for 
these above reasons of engineering and achieving required Quality of Service (QoS) 
(Accuracy, Trustworthy, Safe and Secure), SEF-SCC has been developed and 
applied to various applications and presented in the following sections. 

3 SOFTWARE ENGINEERING FRAMEWORK FOR 
SERVICE AND CLOUD COMPUTING (SEF-SCC) 

 
SEF-SCC has evolved from various research projects on software components, 

reuse, and cloud security framework. We believe by adopting a systematic 
framework for service and cloud computing, the trust in service and cloud 
computing will increase and be sustainable for all variety of applications from social 
media, entertainment, medical, financial, and migrating IT systems to the cloud. 
Figure 2 shows the SEF-SCC framework which consists of methods and design 
principles supporting service component model, the process, reference architecture, 
tools, SE-SCC Services, SEF-SCC adoption models, and evaluation & applications. 

 
 



 
Figure 2 Software Engineering Framework for Service and Cloud Computing (SEF-SCC) 

 
Methods and Design Principles: Service component based method and design 
strategies using UML components and SoaML have been developed and 
demonstrated as part of the Business Process Driven Service Development 
Lifecycle (BPD-SDL). This has been demonstrated with key design principles of 
separation of concerns, service components, component based architectures, 
interface design, reuse by service composition for Amazon EC2 case study which 
involved re-engineering EC2 architecture from the document review process with 
user guides and published research chapters [5-6] & Software Project Management 
as a Service (SPMaaS) design with SoaML [9]. 
 
Process which provides a full life cycle support starting with service requirements 
with BPMN modelling and simulation. SEF-SCC provides a Business Process 
Driven Service Development Lifecycle (BPD-SDL). 
 
Reference Architecture which explicitly supports SOA based design and therefore 
provides concrete design principles to be sustained for the product line of services. 
 
Tools: a set of tools are proposed such as Visual Paradigm, Bizaghi, and Bonitasoft 
BPMN modelling and simulation tool for capturing service requirements and to 
validate business process and performances. 
 
SEF-SCC services: Software Engineering as a Service (SEaaS): Software project 
management as a Service (SPMaaS) [9], Software Process Improvement as a 
Service (SPIaaS), Software Security Requirements Engineering Management as a 
Service (SSREMaaES) [6-7], Cloud Computing Adoption Framework for Financial 
Cloud (CCAFaaS) [8], SE for BD, SE for IoT, SE for Cyber-Physical Systems. 

Methods and Design Principles: Business Process Driven Service 
Development Lifecycle (BPD-SDL) and Service Component Model 

The Process: Business Process Driven Service Development Lifecycle 
(BPD-SDL) 

Reference Architecture 

Tools 

SE Services: SEF-SCC Core Services: Software Engineering as a Service (SEaaS): 
SPMaaS, SPIaaS, SSREMaaES, CCAFaaS, SE for BD, SE for IoT, SE for Cyber-Physical 

Systems 

Adoption Models 

Evaluation & Applications 



 
Adoption models supporting domain-specific application areas based on SEF-SCC 
has been developed and demonstrated for cloud computing, enterprise security and 
improvement models. For example, we have developed a Cloud Computing 
Adoption Framework (CCAF) for cloud security and resiliency framework [10], 
Enterprise security framework [17], and a framework for internet security [20]. 
 
Applications: a set of applications such as Software project management as a 
Service (SPMaaS) [9], SOA for Big Data Analytics and Business Intelligence [16], 
SOA for E-Gov [18], have been applied to validate the framework.  
 
Service computing requires multi-disciplinary skills from computing, social 
science, engineering, and other disciplines to understand what it involves 
developing a service rather than traditional software which is often not experienced 
by computer science and software engineering experts. In addition, there are three 
key challenges in service computing: service development, service security, and 
service reuse. In this context, this chapter proposes three integrated frameworks for 
service computing as shown in Figure 3. Service development aims to provide the 
development of a secure, safe, reusable, accurate, correct Quality of Service (QoS) 
based on engineering lifecycle development stages whereas the service security 
engineering focuses on Building Security In (BSI) base on the principles of secure 
service requirements techniques such as application of misuse and abuse service 
requirements process to the selected service requirement processes using BPMN 
modelling and simulation to validate consistent processes. The service reuse 
engineering provides design for reusable services, design with reusable services, 
application of commonality and variability analysis techniques to selected BPMN 
services. 
 
 

 
Figure 3 SEF-SCC: Service-Security-Reuse – A Three Integrated Service Engineering 

Framework 

Se
rv

ic
e 

De
ve

lo
pm

en
t • secure and reusable services, 

Accuracy, Correctness & QoS, 
Adhere to service design 
principles, and adhere to BPD-
SDL

• Service RE with BPMN and 
Simulation

• Service Design with Service 
Components (SoaML)

• Service Development (any 
platform)

• Service Testing & Deployment & 
Continuous Delivery

Se
rv

ic
e 

Se
cu

rit
y 

En
gi

ne
er

in
g

• Building Security In (BSI), 
Resiliency, Fault-Tolerance 
Design Principles

• Service Security RE with Misuse 
& Abuse Use cases for all 
identified services

• Threat Modelling
• Design for Security
• Building Security In & Resiliency, 

Fault-tolerance,
• Software security testing

Se
rv

ic
e 

Re
us

e 
En

gi
ne

er
in

g • Design for Reuse & Design with 
Reuse, Composable, Scalable 
Design Principles

• Reuse RE (Commonality & 
Variability Analysis of secured 
requirements on selected BPMN 
& Secured use cases)

• Design for reuse approaches
• Reuse Development 

(Implementing composable
services)

• Testing for reuse, composition & 
integration testing strategies



The three-tier integrated framework aims in emphasising the key service design 
principles of engineering service development, service reuse, and service security 
by supporting: 

 
• Secure and reusable services,  
• Accuracy, Correctness & QoS,  
• Adhere to service design principles,  
• Adhere to BPD-SDL stages 
 
Each framework can be run in parallel for achieving engineering service 

development systematically, design for service reuse and design for service 
security. However, this chapter aims to focus mainly on the service development 
framework. 

3.1 SEF-SCC Process: Business Process 
Driven Service Development Lifecycle 
(BPD-SDL) 

As part of the SEF-SCC service development lifecycle, we have developed a 
Business Process Driven Service Development Lifecycle (BPD-SDL) as shown in 
Figure 4. The BPD-SDL is a key development in addressing the need for a modern 
software engineering for service and cloud computing (SE-Cloud) and it consists of 
the following stages which can be iterative and agile, however, BDP-SDL reinforces 
the engineering approach: 

1. Service Requirements – This stage consists of eliciting service 
requirements from various stakeholders, modelling service 
requirements using BPMN, conduct simulation, and validate service 
requirements. Also identify service requirements into functional and 
non-functional services which forms a set of criteria for performance 
evaluation of the acquired services. The performance evaluation of 
time. cost, and resources are the key aspects of service computing and 
they will be deployed in a cloud which needs to meet those performance 
criteria. During this stage, it is also a good idea to classify business 
processes into various business to consumer matrix according to Chen 
[23]: B2B (Business to Business), B2C (Business to Consumer), C2C 
(Consumer to consumer), etc. this will be useful to maintain 
requirements traceability and consistency. 

 



 
Figure 4 Business Process Driven Service Development Lifecycle (BPD-SDL) 

2. Conduct BPMN workflows – This stage consists of categorising 
services into following classes as shown in Table 1 such as task and 
entity, and enterprise-oriented services 

 
   Service   Types     
 Business Types 

Task-
Oriented 
Services 

Entity-
Oriented 
Services 

Enterprise 
Services 
(B2B) 

Utility Services    

Service 
Requirements 

Engineering with 
BPMN modelling 
and simulation & 

Identify Functional 
and non-Functional 

Service 
Requirements 

Conduct BPMN 
workflows: 

Classify 
Services: 
Utility, 

Business, 
Coordination 

Services

Interface 
Identification 

and 
specification 
using WSDL

Service Design 
with SoaML: 

service contract, 
Service 

Component 
Interface design, 

and SOA

Service cost 
estimations using 

service 
component 

interfaces (Gupta 
2013) and 

modified cloud 
COCOMO model 

(Guha 2013)

Service 
Implementation: 
RESTful based 

services

Service 
Testing

Service 
Delivery/De

ployment



Business 
Services 

   

Co-ordinations 
and 
choreographic 
services 

   

Human services    

Table 1 Categorising and classifying service requirements workflows 

This table is very useful in managing service requirements and to specify detailed 
WDSL description in the following stage on service interface identification and 
specification. 

3. Service Interface Identification and specification using WSDL – WSDL 
provides clear template for specifying message-oriented service 
interface abstractions (InMessage, Operations, OutMessage), Port Type 
(The bindings) which provides the details of the location and its 
binding. 

4. Service Design with SoaML: SoaML has been developed for service 
computing by extending the standard UML. SoaML provides different 
dimensions of the design aspects: Service Contract, Service Component 
Interface design, and SOA. This is illustrated in the following section 
on service design. 

5. Service cost estimations using service component interfaces (Gupta 
2013) and modified COCOMO model for cloud computing (Guha 
2013). This stage aims to develop service effort estimation based on 
sum of the number of interfaces plus adding weighting factors. The 
second method is a modified form of COCOMO model of cost 
estimation. 

6. Service Implementation - RESTful based services provide a lightweight 
implementation for service based systems.  

7. Service Testing - Service testing should include traditional testing 
techniques such as unit testing, boundary value analysis testing, 
integration, and acceptance testing. In addition, for test cloud services 
as well as SOA, testing should include performance testing, model 
based testing, Symbolic Execution, Fault Injection Testing, Random 
Testing, and in particular Privacy Aware Testing as proposed by 
Priyanka, Chana, and Rana [22] 

8. Service Delivery/Deployment – This stage aims to deploy and capture 
expected QoS and performances as predicted during service 
requirements simulation using BPMN models. 

 
The BPD-SDL provides a comprehensive set of guidelines based on the 

principles of service computing and the detailed service elicitation, elaboration, and 
specification supports consistent design, implementation, testing, and deployment 
of services. 



 

3.2 SEF-SCC Design: Service Component 
Based Design Method with SoaML and SOA 
Based Reference Architecture 

SEF-SCC design principles are based on the key concept of separation of 
concerns as part of the domain modelling process, design for service reusability, 
and design for service security. To achieve this, SEF-SCC design proposes to use 
high level abstractions such as virtual machines, service components, and 
packaging. These design concepts are a natural extension of a software component 
concept by supporting the notion of provider and requires interfaces. Similarly, the 
concept of microservices, containers, and serverless programming abstractions, all 
are based on service components abstraction, as shown in Figure 5. 

 

 
Figure 5 Design Abstraction Principles 

SEF-SCC approach to service design emphasises is building on the foundation 
of design principles such as high level abstraction to achieve loose coupling 
required for implementing cloud services and SOA based reference architecture. In 
addition, in order to maximise reuse, scalability, and elasticity, SEF-SCC 
emphasises on component based design as it provides a natural extension of a 
software component to implement message-oriented architecture which is required 
for service and cloud computing. To support, service computing software engineers, 
SEF-SCC provides a design rationale for selecting appropriate design abstraction 

De
sig

n 
Ab

st
ra

ct
io

ns

VM

Service components

Microservice components

Packaging

Containers

Serverless Programming 
abstractions

Resource-oriented 
programming abstraction



based on established set of design criteria, as shown in Table 2. We believe this is 
important for making design decisions based on the fundamentals of software 
engineering to achieve developing a trustworthy cloud service. The design rationale 
are understanding the definitions of abstractions, loose coupling vs. simpler 
abstraction, lightweight vs. heavyweight design, implementation, response time, 
interoperability of multi-clouds and cloud federation, infrastructure support, 
stateless vs. stateful, end-to-end application vs. flexible packaging, and more 
efficient cloud resources. 

 
Table 2 Design rationale for selecting suitable design abstraction 

As discussed earlier, component based design of cloud as well as web services 
provides a natural dimension to design which incorporates most of the design 
foundations that are required such as interface based design, high level abstraction 
of supporting cohesion and loose coupling through separation of concern and 
flexibility of interface coupling and decoupling to achieve and maximise reuse 
through service composition. A simple service component model for implementing 
SEF-SCC as a service (SEFaaS) is shown in Figure 6, as a plugin service component 
model, and SEF-SCC Service security as a Service (S3aaS) service component 
model is shown in Figure 7, as a Plugin Service Security Component Model. 
 



 
Figure 6 SEF-SCC Service component model (SEF-SCC as a Service (SEFaaS): A Plugin 

service component model 

As shown in Figure 6, a conceptual service design component model, SEFaaS 
service component model, can be packaged as a container in the cloud environment 
providing service interfaces (application services) for various SEF-SCC 
applications discussed earlier such as IClassicalSEaas which aims to provide 
traditional software engineering as a service on requirements engineering, cost 
estimation, software project management, design (structured, object-oriented, and 
software components, and packaging), and testing methods such as unit, integration, 
and acceptance. Service interface on ISEF-SCC as a service (I3SEaaS) aims to 
provide SEF-SCC as a service. Service interface on ISEforBigData as a Service 
which aims to provide software engineering for big data services of streaming, 
analysing, evaluating, pruning, visualising, analytics, and predictions.  

Cost estimation for service computing is relatively a new area which remains 
unexplored in research. However, Gupta [14] has proposed a service point 
estimation model which aims to calculate the sum of service component interfaces 
with some weighting factor. Therefore, the service interface, 
IServicePointCostEstimation as a Service (ISPCEaaS) aims to provide an 
autonomic service for computing the service cost and therefore achieving the 
estimation of service complexity analysis before actual implementation and the 
performance characteristics can also be evaluated and measured against initial 
BPMN simulations. In addition, Guha [21] has proposed a modified cloud 
COCOMO model with weighting for cloud computing projects are: a = 4, b = 1.2, 
c = 2.5, d = .3. Therefore, the effort and cost estimation equations are: 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝐶𝐶𝑐𝑐𝑐𝑐𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑝𝑝𝐶𝐶𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐 𝑝𝑝𝑒𝑒𝑒𝑒𝐶𝐶𝑝𝑝𝑐𝑐 𝑎𝑎𝑐𝑐𝑐𝑐𝐶𝐶𝑐𝑐𝑝𝑝𝐶𝐶 (𝐸𝐸𝐸𝐸) = 𝑎𝑎 ×

(𝑆𝑆𝑝𝑝𝑝𝑝𝑆𝑆𝑐𝑐𝑐𝑐𝑝𝑝 𝑃𝑃𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃)𝑏𝑏 (𝐻𝐻𝐶𝐶𝑐𝑐𝑎𝑎𝑐𝑐 𝑀𝑀𝐶𝐶𝑐𝑐𝑐𝑐ℎ𝑃𝑃)     ---- (1) 
 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝐶𝐶𝑐𝑐𝑐𝑐𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐶𝐶𝑝𝑝𝑆𝑆𝑝𝑝𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝 (𝐶𝐶𝑐𝑐) = 𝑐𝑐 ×
(𝐸𝐸𝑒𝑒𝑒𝑒𝐶𝐶𝑝𝑝𝑐𝑐 𝐸𝐸𝑐𝑐𝑐𝑐𝐶𝐶𝑐𝑐𝑝𝑝𝐶𝐶)𝑑𝑑 (𝑀𝑀𝐶𝐶𝑐𝑐𝑐𝑐ℎ𝑃𝑃)     ---- (2) 
 
𝑁𝑁𝐶𝐶𝑐𝑐𝑁𝑁𝑝𝑝𝑝𝑝 𝐶𝐶𝑒𝑒 𝑆𝑆𝑝𝑝𝑝𝑝𝑆𝑆𝑐𝑐𝑐𝑐𝑝𝑝 𝐷𝐷𝑝𝑝𝑆𝑆𝑝𝑝𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑃𝑃 𝑅𝑅𝑝𝑝𝑅𝑅𝐶𝐶𝑐𝑐𝑝𝑝𝑝𝑝𝐶𝐶 =

𝐸𝐸𝑒𝑒𝑒𝑒𝐶𝐶𝑝𝑝𝑐𝑐 𝐸𝐸𝑐𝑐𝑐𝑐𝐶𝐶𝑐𝑐𝑝𝑝𝐶𝐶 (𝐸𝐸𝐸𝐸) 𝐷𝐷𝑝𝑝𝑆𝑆𝑝𝑝𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐 𝑇𝑇𝑐𝑐𝑐𝑐𝑝𝑝 (𝐶𝐶𝑐𝑐)⁄     ---- (3) 
 



The equations 1-3 provide cloud project effort and cost estimations based on service 
points which is the sum of all interface function points. 

 
Similarly, the service interface, ISoftwareProjectManagement as a Service 

(ISPMaaS) aims to provide support for classical project management activities such 
as requirements management, scheduling, planning, managing resources, and 
efficient resource management. 

In addition, the best practice service component design principles are:  
• Use port concept to define all interfaces 
• Always follow best practice guidelines on interface design principles with 

service components which is a natural extension of a service 
 
 

 
Figure 7 SEF-SCC Service security as a Service (S3aaS): A Plugin Service Security 

Component Model 

As shown in Figure 7, a conceptual service design component model, SEF-SCC 
Service security as a Service (S3aaS) service component model, can be packaged 
as a container in the cloud environment provides service interfaces (provider 
application services) for various SEF-SCC service security applications such as 
IAutentication&Authrisation, IIdentityManagement, IFirewallManagement, 
ICryptograhyManagement, and ICyberSecurityManagement for services against 
malware, adware, and DDoS attacks, etc. 

As part of our best practice design guidelines, BPMN modelling and simulation 
for capturing and validating requirements, SOA design method consists of 
designing service components, designing SOA based reference architecture and 
designing SoaML SOA, and finally mapping service components to SOA reference 
architecture. The following section presents SOA based SEF-SCC architecture 
design and best practices. 



3.3 SEF-SCC SOA Based Reference 
Architecture 

SOA is a design method based on service provider, service consumer, and service 
directory model which has been established as a proven design method for service 
computing. One of the key importance of proposing SEF-SCC reference 
architecture is to standardise the evolution of SOA based software products, and 
cloud based services for all software as a service paradigm design and 
implementation. SEF-SCC architecture best practice guidelines are: 

 
 
In addition, a reference software architecture provides a generic structure for a 

class of software systems and software product line engineering to achieve a 
standard practice [24]. Similarly, NIST reference architecture for cloud computing 
defines to provide an overall framework and to communicate accurately across 
cloud services and hence providing support for vendor-neutral design [25]. In this 
context, SEF-SCC has developed a reference architecture based on SOA framework 
(RAG-SCC) as shown in Figure 8. 

 
 

 
Figure 8 Reference Architecture for Generic Service and Cloud Computing (RAG-SCC) 

RAG-SCC follows the design principles of SOA, provides three layers 
architectural model, the top layer is orchestration and coordination services which 
focuses on new service composition for new business creation & choreography, the 
middle layer is known as the business layer which provides container for all 
business services components and their connections and focus on user-centric 
business services such as secure access, Business Utility and Co-ordination Services 
(task-oriented, entity-oriented & enterprise-oriented services), the enterprise service 
bus which is the back bone of SOA architecture by providing common 



communication pathway (supporting the concept of unified modelling) for all 
services from various layers, and the bottom layer is known as the infrastructure 
layer which provides Core infrastructure services, Infrastructure utility Services, 
Infrastructure co-ordination services. We also recommend service security are 
build-in security components as plugins and in all layers in the reference 
architecture. 

The next step in the SEF-SCC design process involves designing SOA design 
with SoaML which is one of the best practice for providing a completed design as 
shown in Figure 9 for all SEF-SCC services such as the consumer are multi-cloud 
users, the provider is multi-cloud agent with cloud software engineers, there are 
SLAs for both parties to connect and communicate for using and composing new 
services, the sample services are: 

• Cloud Project Management as a Service (CPLaaS) 
• Cloud Reuse patterns as a Service 
• Software Security engineering as a Service 
• CloudML as a service 
• Software Process Improvement as a service 
• Cloud RE as a Service 
• Cloud Project Cost Estimation as a Service 
• Design for Service Reuse as a Service 
• Cloud Testing as a Service 
• BPMN as a service 
• Continuous Delivery as a Service 
• Cloud Service Design as a Service 

 
There are plenty of services that can be co-ordinated and composed for new 

services and therefore it is one of the best practices for service design offered by 
SEF-SCC design approach. 

 
 



 
Figure 9 SOA Design for SEF-SCC Services with SoaML 

After SOA design with SoaML, the final step in the design process is to compose 
the classified service as shown in Table 1 and map them into the reference 
architecture as shown in Figure 10. 

 
Figure 10 Mapping Services to SEF-SCC Reference Architecture 

 
The mapping of services into the SOA architecture requires architectural design 

skills to evolve the design rules that can be embedded into the services and the 
architectural layers. The following section shows a proposed automated CASE tool 
for developing secure cloud services based on the best practice guidelines presented 
in this chapter. 



3.4 Autonomic CASE Tool for Service 
Computing 

Autonomic service computing is emerging faster as they are SOA based which 
supports autonomic computing using reuse of knowledge and services. For 
example, Bellur [26] proposes an autonomic service-oriented middleware for IoT 
based systems (AUSOM) by applying MAPE-K loop (monitor, analyse, plan, act 
using stored knowledge). Similarly, Bocciarelli [27] proposed the design of 
Business process modelling and simulation as a Service (MSaaS). Therefore, with 
the emergence of AI, we believe, we can develop an autonomic system as shown in 
Figure 11 based on Model services, Design and develop services, Test and Deploy 
Services using stored knowledge, best practices of SEF-SCC, and reuse of services 
by composition. 

 

 
Figure 11 Service CASE Tool for Developing Cloud Services 

As shown in Figure 11, SEF-SCC CASE aims to provide support for a complete 
business driven service development lifecycle discussed in this chapter (BD-SDL) 
with service requirements modelling and simulation with BPMN engine, knowledge 
discovery engine provides best practices on service development, and service 
component reuse. 

4 SEF-SCC FRAMEWORK EVALUATION CASES 
STUDY ON BEPET AND SEF-SCC APPLICATIONS 

This section aims to provide how BD-SDL and SEF-SCC best design practices 
have been evaluated using a case study on BEPT over ten-year period with more 



than 12 software engineers who are trained on the method and have been strict to 
use the BD-SDL principles. The chart 1 and 2 shows the empirical evaluation of the 
method proposed in this chapters. 

 

 
Chart 1 Evaluation Results on the Applicability of SEF-SCC Service Development 

Lifecycle 

Chart 2 shows the number of service components developed for SPMaaS, 
SSEREaaS, SPIaaS, and SEaaS applications designed as part of the SEF-SCC 
applications. 

 

 
 
Chart 2 Number of service and service security components for SPMaaS, SSEREaaS, 

SPIaaS, and SEaaS 

There are further research challenges ahead in developing autonomic CASE 
presented in this chapter as well as developing numerous applications as a service. 

0

10

20

30

40

50

SPMaaS SSEREaaS SPIaaS SEaaS

Number of service and security components

No. of service components No. of Service Security Components



Conclusion 
Service computing has emerged to offer greater business flexibility and globalising 
economy as well as social mobility by connecting and communicating with people. 
This chapter presented our approach to Software Engineering Framework for 
Service and Cloud Computing (SEF-SCC) to address the need for a systematic 
approach to design and develop robust, resilient, and reusable services. This chapter 
presented SEF-SCC methods, techniques, and a systematic engineering process 
supporting the development of service-oriented software systems and Software as a 
Service paradigm. As part of the SEF-SCC design process and its best practice 
design guidelines have been valuable assets for creating an engineered approach to 
SOA and cloud services and also have been used to train software engineers for 
more than 10 years for developing their skills in service computing. 

References 
1. Hu, P., et al. (2017) Survey on fog computing: architecture, key technologies, applications 

and open issues, Journal of Network and Computer Applications 98 (2017) 27–42. 
2. Mahmud, R., Ramamohanarao, K., Buyya, R (2010) Latency-aware Application 

Module Management for Fog Computing Environments, ACM Transactions on 
Embedded Computing Systems, Vol. 9, No. 4, Article 39, March 2010 

3. Subramanya, T., et al. (2017) A practical architecture for mobile edge computing, IEEE 
Conference on Network Function Virtualization and Software Defined Networks (NFV-
SDN) 

4. Sommerville, I (2012) Challenges for cloud software engineering, 
http://pire.opensciencedatacloud.org/talks/Cloud-Software-Challenges.pdf 

5. Ramachandran, M (2011) Software components for cloud computing architectures and 
applications, Springer, Mahmood, Z and Hill, R (eds.) Cloud Computing for Enterprise 
Architectures, www.springer.com/computer/communication+networks/book/978-1-
4471-2235-7 

6. Ramachandran, M (2012) Software Security Engineering: Design and Applications, 
Nova Science Publishers, New York, USA, 2011, ISBN: 978-1-61470-128-6, 
https://www.novapublishers.com/catalog/product_info.php?products_id=26331 

7. Ramachandran, M (2016) Software Security Requirements Engineering and 
Management as an Emerging Cloud Service, International Journal of Information 
Management,  36(4), 2016, Elsevier, Volume 36, Issue 4, August 2016, Pages 580–590, 
doi:10.1016/j.ijinfomgt.2016.03.008 

8. Ramachandran, M and Chang, V (2014) Modelling Financial SaaS as Service 
Components, Intl workshop on Emerging Software as a Service and Analytics (ESaaSA 
2014), The 4th International Conference on Cloud Computing and Services Science, 
CLOSER 2014, 3-5th April, Barcelona, Spain 

9. Ramachandran, M and Chuagle, V (2016) Software Project Management as a Service 
(SPMaaS): Perspective and Benefits, Software Project Management for Distributed 
Computing: Life-Cycle Methods for Developing Scalable and Reliable Tools, 
Mahmood, Z (ed.), Springer, 2016 

10. Chang, V and Ramachandran, M (2016) Towards achieving Cloud Data Security with 
the Cloud Computing Adoption Framework, IEEE Transaction on Service Computing, 
Issue No.01 - Jan.-Feb. (2016 vol.9), pp: 138-151. 

http://pire.opensciencedatacloud.org/talks/Cloud-Software-Challenges.pdf
https://www.novapublishers.com/catalog/product_info.php?products_id=26331


11. Delgado, A., et al. (2011) Business Process Service Oriented Methodology (BPSOM) 
with Service Generation in SoaML, Advanced Information Systems Engineering - 23rd 
International Conference, CAiSE 2011, London, UK, June 20-24, 2011. Proceedings 

12. Savage, N (2018) Going Serverless, Communications of the ACM, February 2018, Vol. 
61, No. 2 

13. Leung, A., Spyker, A., and Bozarth, T (2018) Titus: Introducing containers to the Netflix 
cloud, Communications of the ACM, February 2018, Vol. 61, No. 2 

14. Gupta, D (2013) Service Point Estimation Model for SOA Based Projects, 
http://servicetechmag.com/system/application/views/I78/1113-1.pdf 

15. Mahmood, Z and Saeed, D (eds) (2013) Software Engineering Framework for Cloud 
Computing Paradigm, Springer, 2013 

16. Ramachandran, M (2016) Service-Oriented Architecture for Big Data and Business 
Intelligence Analytics in the Cloud, Computational Intelligence Applications in 
Business Intelligence and Big Data Analytics” Sugumaran, V. Sangagaiah, A and 
Thangavelu, A (eds), CRC Press, (Taylor & Francis Group) 

17. Ramachandran, M (2014) Enterprise Security Framework for Cloud Data Security, 
Book chapter "Delivery and Adoption of Cloud Computing Services in Contemporary 
Organizations, Chang, V (ed.) IGI Global 

18. Ramachandran, M., Zaigham, M., and Pethu, R (2014) Service Oriented Architecture 
for E-Government Applications, Emerging Mobile and Web 2.0 Technologies for 
Connected E-Government, IGI Global. 

19. Ramachandran, M (2013) Business Requirements Engineering for Developing Cloud 
Computing Services, Springer, Software Engineering Frameworks for Cloud 
Computing Paradigm, Mahmood, Z and Saeed, S (eds.), 
http://www.springer.com/computer/communication+networks/book/978-1-4471-5030-
5 

20. Ramachandran, M and Mahmood, Z (2011) A framework for internet security 
assessment and improvement process, chapter 13, Knowledge Engineering for Software 
Development Life Cycles: Support Technologies and Applications (ed. Ramachandran, 
M), IGI Global Publishers, USA, ISBN-13 978-1609605094.  

21. Guha, R (2013) Cloud COCOMO/Modified COCOMO for Cloud Service Cost and 
Effort Estimation Technique: Impact of Semantic Web and Cloud Computing Platform 
on Software Engineering, Mahmood, Z and Saeed, D (eds) (2013) Software Engineering 
Framework for Cloud Computing Paradigm, Springer, 2013 

22. Prinyanka, Chana, I., and Rana, I (2012) Empirical evaluation of cloud-based testing 
techniques: a systematic review, ACM SIGSOFT Software Engineering Notes, May 
2012 Volume 37 Number 3 

23. Chen, S (2005) Strategic Management of e-Business, Wiley, 2nd Edition 
24. Angelov, S Paul Grefen, Danny Greefhorst, (2012) A framework for analysis and design 

of software reference architectures, Information and Software Technology 54 (2012) 
417–431 

25. Liu, F (2011) NIST Cloud Computing Reference Architecture, NIST Special 
Publication 500-292 

26. Bellur, U (2017) AUSOM: Autonomic Service-Oriented Middleware for IoT-Based 
Systems, IEEE 13th World Congress on Services 

27. Bocciarelli, P. et al (2017) Business process modeling and simulation: state of the art 
and MSaaS opportunities, SummerSim '17 Proceedings of the Summer Simulation 
Multi-Conference, Bellevue, Washington — July 09 - 12, 2017 

 
Park, S., Lee, S., and Park, Y.B (2015) Best Practices in Software Engineering for SaaS-

Cloud Era, Park, J.J. et al (eds) Computer Science and its Applications: Ubiquitous 
Information Technologies, Springer, DOI: 10.1007/978-3-662-45402-2_31 



 


	SEF-SCC: Software Engineering Framework for Service and Cloud Computing
	1 INTRODUCTION
	2 service and cloud computing paradigms
	2.1 SE for Cloud Computing vs Cloud SE

	3 Software Engineering Framework for Service and Cloud Computing (SEF-SCC)
	3.1 SEF-SCC Process: Business Process Driven Service Development Lifecycle (BPD-SDL)
	3.2 SEF-SCC Design: Service Component Based Design Method with SoaML and SOA Based Reference Architecture
	3.3 SEF-SCC SOA Based Reference Architecture
	3.4 Autonomic CASE Tool for Service Computing

	4 SEF-SCC Framework evaluation cases study on BEPET and SEF-SCC Applications
	Conclusion
	References

