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32 Abstract 
 

33 Early pregnancy is characterised by elevated circulating levels of vitamin D binding protein (DBP). 
 

34 The impact of this on maternal and fetal health is unclear but DBP is present in the placenta, and 
 

35 DBP gene variants have been linked to malplacentation disorders such as preeclampsia. A 
 

36 functional role for DBP in the placenta was investigated using trophoblastic JEG3, BeWo and 
 

37 HTR8 cells. All three cells lines showed intracellular DBP, with increased expression and nuclear 
 

38 localisation of DBP in cells treated with the active form of vitamin D, 1,25-dihydroxyvitamin D 
 

39 (1,25D). When cultured in serum from mice lacking DBP (DBP-/-), JEG3 cells showed no 
 

40 intracellular DBP indicating uptake of exogenous DBP. Inhibition of the membrane receptor for 
 

41 DBP, megalin, also suppressed intracellular DBP. Elimination of intracellular DBP with DBP-/- 
 

42 serum or megalin inhibitor suppressed matrix invasion by trophoblast cells, and was associated 
 

43 with increased nuclear accumulation of G-actin. Conversely, treatment with 1,25D enhanced 
 

44 matrix invasion. This was independent of the nuclear vitamin D receptor but was associated with 
 

45 enhanced ERK phosphorylation, and inhibition of ERK kinase suppressed trophoblast matrix 
 

46 invasion. When cultured with serum from pregnant women, trophoblast matrix invasion correlated 
 

47 with DBP concentration, and DBP was lower in first trimester serum from women who later 
 

48 developed preeclampsia. These data show that trophoblast matrix invasion involves uptake of 
 

49 serum DBP and associated intracellular actin binding and homeostasis. DBP is a potential marker 
 

50 of placentation disorders such as preeclampsia and may also provide a therapeutic option for 
 

51 improved placenta and pregnancy health. 
 

52 
 

53 Word count: 250 
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58 Introduction 
 

59 Vitamin D binding protein (DBP) is a serum globulin associated with systemic transport of vitamin 
 

60 D metabolites (Chun 2012). Glomerular filtration of DBP and its primary cargo, the main circulating 
 

61 form of vitamin D, 25-hydroxyvitamin D (25D), play a pivotal role in vitamin D endocrinology. 
 

62 Recovery of the DBP-25D complex from glomerular filtrate by proximal convoluted tubular cells 
 

63 of the kidney occurs via endocytic uptake of DBP utilising the megalin receptor. This recovery of 
 

64 25D from glomerular filtrates faciltates renal conversion of 25D to active 1,25-dihydroxyvitamin D 
 

65 (1,25D) (Nykjaer, et al. 1999), via the vitamin D-activating enzyme 1α-hydroxylase (CYP27B1), 
 

66 which is also expressed by proximal tubule cells (Zehnder, et al. 1999). Although only 5% of DBP 
 

67 molecules have vitamin D metabolites bound at any given time, megalin-mediated uptake of DBP 
 

68 in proximal tubules also functions to maintain circulating levels of 25D. Mice with knockout of the 
 

69 DBP (Gc) (Safadi, et al. 1999) or megalin (Lrp2) genes (Nykjaer et al. 1999) have extremely low 
 

70 serum levels of 25D, and single nucleotide polymorphisms (SNPs) of the human DBP gene (GC) 
 

71 are major contributors to the genetic component of serum 25D status (Wang, et al. 2010). 
 

72 
 

73 Megalin is present at several extra-renal sites (Lundgren, et al. 1997), including the placenta 
 

74 (Burke, et al. 2013), where its expression is coincident with DBP (Ma, et al. 2012). Both maternal 
 

75 decidua and fetal trophoblast also express CYP27B1 and the intracellular vitamin D receptor 
 

76 (VDR) for 1,25D (Zehnder, et al. 2001). Thus, the placenta, like the kidney, has a significant 
 

77 capacity for vitamin D metabolism that may be supported by megalin-mediated DBP transport. 
 

78 Circulating levels of 1,25D (Kumar, et al. 1979) and DBP (Jorgensen, et al. 2004) are increased 
 

79 during early pregnancy but the precise function of DBP in the placenta is unclear and may involve 
 

80 known vitamin D-independent functions of DBP. These include a potential role as a macrophage- 
 

81 activation factor (Benis and Schneider 1996), and in fatty acid transport (Calvo and Ena 1989). 
 

82 DBP also binds the monomeric, globular, form of actin (G-actin) with high affinity, allowing DBP 
 

83 to compete with other established actin-regulating factors such as gelsolin which incorporates G- 
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84 actin into filamentous actin (F-actin)(Otterbein, et al. 2002). In this way, DBP can also function as 
 

85 a systemic actin-scavenger, with a potential role in protecting against tissue damage due to 
 

86 systemic F-actin accumulation (Luebbering, et al. 2020), although the DBP-actin complex may 
 

87 also fulfil a pro-inflammatory role as a neutrophil chemotactic factor (Kew 2019). 
 

88 
 

89 Variations in serum vitamin D metabolites (Bodnar, et al. 2007; Wei, et al. 2013) and SNPs for 
 

90 GC (Baca, et al. 2018; Naidoo, et al. 2019) have been linked to adverse events in pregnancy such 
 

91 as the malplacentation disorder preeclampsia but the mechanisms underpinning these 
 

92 associations remain unclear. In particular, although DBP and vitamin D metabolites are abundant 
 

93 in the placenta, their role in placental development has yet to be defined. In the current study we 
 

94 show that trophoblast cells internalize extracellular DBP and that this process is essential for 
 

95 trophoblast matrix invasion. Decreased cellular uptake of DBP was associated with increased 
 

96 nuclear accumulation of G-actin and decreased capacity for trophoblast matrix invasion. The 
 

97 concentration of DBP in serum from pregnant women correlated with capacity for trophoblast 
 

98 matrix invasion in ex vivo assays, and DBP levels in first trimester pregnancy serum samples 
 

99 were significantly lower in women who developed preeclampsia later in pregnancy. These data 
 

100 indicate that serum DBP is a crucial circulating factor in early pregnancy. Trophoblast uptake of 
 

101 maternal DBP may be pivotal to early placental development, with dysregulation of this process 
 

102 leading to associated disorders of placentation such as preeclampsia. 
 

103 103 
 

104 Materials and methods 
 

105 Cell culture and reagents 
 

106 Choriocarcinoma trophoblastic cells lines JEG3 and BeWo (European Collection of Authenticated 
 

107 Cell Cultures), non-neoplastic first trimester extravillous like trophoblasts cells HTR8 (a kind gift 
 

108 from Dr S. Gross, Aston University) were routinely cultured at 37°C and 5% CO2 in MEM (Sigma 
 

109 Aldrich), DMEM/F12 Ham (1:1) with HEPES (Thermo Fisher Scientific), and RPMI-1640 Medium 
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110 W/L-Glutamine (Thermo Fisher) respectively, each supplemented with 10% fetal bovine serum 
 

111 (FBS) (Thermo Fisher Scientific). Thyroid papillary carcinoma (TPC) cell line (a kind gift from 
 

112 Prof. CJ McCabe, University of Birmingham) was cultured in RPMI-1640 Medium W/L-Glutamine 
 

113 (Thermo Fisher) supplemented with 10% FBS. Cells were cultured on growth factor reduced 
 

114 Matrigel pre-coated transwell plates (Corning® BioCoat™ Matrigel®, 8.0 micron). All cells were 
 

115 treated for 2-72 hours (h) with vehicle (0.1% ethanol), 1,25D (1-100 nM) (Enzo Lifesciences), DBP 
 

116 (East Coast Bio) (3 µM), the megalin inhibitor receptor associated protein (RAP), (1 µM) Enzo 
 

117 Life Sciences) or the ERK-inhibitor U0126 (1 µM) (Cell Signalling). 
 

118 118 
 

119 Cell proliferation 
 

120 All cells were seeded at a concentration of 5x103 cells/ well in a 24-well plate, and proliferation 
 

121 assessed by quantification of nuclear incorporation of 5-bromo-2-deoxyuridine (BrdU) using a 
 

122 BrdU assay kit as per manufacturer’s instructions (Cell Signalling Technology). 
 

123 123 
 

124 Matrix invasion 
 

125 Cell invasion of matrix was evaluated using growth-factor-reduced Matrigel-coated transwells. All 
 

126 cells were treated with pre-warmed culture medium containing 2% FBS for 24 h prior to passage. 
 

127 Cell were then trypsinised, re-suspended in 2% FBS culture medium and 5x104 cells per well 
 

128 seeded onto transwell inserts in the upper chamber of each well. Complete media (with 10% FBS) 
 

129 was added to the lower chamber of each transwell. Immediately after seeding cells were treated 
 

130 according to specific experiments for a further 48 h. The lower surface of the transwell inserts was 
 

131 then washed with PBS then 95% ethanol and stained with Haematoxylin (Sigma), followed by 
 

132 washing with Scott’s water, and further staining with Eosin-Y (VWR chemicals). After further 
 

133 washes with 70% ethanol and 99% ethanol, transwell Matrigel inserts were dried at room 
 

134 temperature, and the lower surface of each insert imaged using a microscope (Leica DM ILM 
 

135 inverted) at x10 magnification. Under blinded conditions, 5 images per well were taken for each 
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136 well and the number of invaded cells were manually counted for each image. Each transwell was 
 

137 imaged 5 times at 5 different image quadrants. 
 

138 138 
 

139 In some experiments, quantification of invaded cells in the Matrigel transwell assays was carried 
 

140 out using Crystal violet (Sigma) to stain the invading cells, and acetic acid to solubilise the 1% 
 

141 Crystal violet stain. Cell seeding and incubation were carried out as described above. Invaded 
 

142 cells on the transwell were washed twice with PBS, then stained with 1% crystal violet for 10min, 
 

143 and then washed again with PBS. Following this, transwell inserts were left to dry at room 
 

144 temperature. Images of each insert were taken for counting (5 quadrants per transwell as 
 

145 explained above). Transwell inserts were then immersed in 400 µl 30% acetic acid (in 24 well 
 

146 plate) and shaken for 10 min at room temperature. Following this, 100 µl of the blue stained acetic 
 

147 acid solution was pipetted into triplicate wells in a 96 well plate and absorbance measured at 590 
 

148 nm and 405 nm (OD value) using an ELISA plate reader (SpectraMax ABS, Molecular devices, 
 

149 San Jose). Each experiment was repeated multiple times as indicated and values reported as 
 

150 percentage (%). The total number of cells invading through transwell was calculated by converting 
 

151 absorbance values to cell numbers using a standard curve with known cell numbers. Percentage 
 

152 invasion was obtained by dividing the number of cells invaded by the number of cells seeded. 
 

153 153 
 

154 Quantitative RT-PCR 
 

155 Total RNA was extracted from cell cultures using Trizol reagent (Sigma Aldrich, Lot no. 
 

156 BCBV4616) as per manufacturer’s instructions. For each sample, 200-400 ng RNA was then 
 

157 reverse transcribed using a Reverse Transcription Kit (Thermo Fisher Scientific, 4368814) 
 

158 according to the manufacturer’s instruction, and cDNAs amplified for the following genes: vitamin 
 

159 D receptor (VDR) (Thermo Fisher, Hs00172113_m1); 24-hydroxylase (CYP24A1) (Thermo 
 

160 Fisher, Hs00167999_m1); vitamin D binding protein (DBP/Gc) (Thermo Fisher, 
 

161 Hs00167096_m1); Matrix metalloproteinase 2 (MMP2) (Thermo Fisher, Hs01548727_m1); 
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162 Tissue inhibitor of metalloproteinase 1 (TIMP1) (Thermo Fisher, Hs01092512_g1); megalin/LRP2 
 

163 (Thermo Fisher Hs00189742_m1); Beta-actin (Hs01060665_g1), GAPDH (Hs02758991_g1) and 
 

164 18S rRNA (Hs99999901_s1) were used as housekeeping internal standards. cDNA amplification 
 

165 was carried out using GoTaq qPCR MasterMix (ThermoFisher, 4318157) in a thermocycler 
 

166 (GeneAmp PCR System 2700, ThermoFisher Scientific) with amplification at 50 °C for 2 min and 
 

167 95 °C for 10 min followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min. Differences in mRNA 
 

168 expression were assessed statistically using raw δCt values VDR mRNA Where δCt= Ct target 
 

169 gene – Ct housekeeping gene. Expression of mRNA was expressed visually as 1/ δCt. 
 

170 170 
 

171 Western Blot Analysis 
 

172 Whole cell protein lysates were extracted using radioimmunoprecipitation assay (RIPA) buffer 
 

173 (with Tris-EDTA) with protease and phosphatase inhibitor. Cytoplasmic and nuclear proteins were 
 

174 fractionated using NE-PER nuclear and cytoplasmic extraction reagents (Thermo Fisher 
 

175 Scientific), per manufacturer instructions. Proteins were separated using SDS-polyacrylamide 
 

176 (10%) gel electrophoresis, transferred to nitrocellulose membranes, and probed with various 
 

177 antibodies using chemiluminescence (Pierce ECL Plus, Thermo Fisher Scientific). Proteins 
 

178 quantified by Western blotting were: VDR (Santa Cruz, D-6), DBP (Abcam), ERK1/2 
 

179 (ThermoFisher, MA5-15134, K.913.4), pERK 1/2 (ThermoFisher,MA5-15173, S.812.9). β-actin 
 

180 (Abcam) was used as housekeeping control protein for whole cell lysates and cytoplasmic 
 

181 proteins (Supplemental Table 1). Lamin B1 (Abcam) was used as a housekeeping protein for 
 

182 nuclear lysates, and Na-K-ATPase (Abcam) was used as a housekeeping protein for membrane 
 

183 lysates. Secondary antibodies used were goat anti-mouse HRP (Abcam), and goat anti-rabbit 
 

184 HRP (Abcam). 
 

185 185 
 

186 Immunofluorescence analysis of cellular protein expression 

https://www.sciencedirect.com/topics/medicine-and-dentistry/messenger-rna
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187 Cells were cultured on coverslips or Matrigel transwell inserts using 2% FBS culture medium. The 
 

188 resulting monolayers were washed x3 with PBS and fixed in 3% paraformaldehyde at room 
 

189 temperature for 20 min. Cells were then incubated for 10 min in chilled 100% methanol or Triton 
 

190 X-100 (Sigma) according to the antibody used. This was followed by a PBS wash and blocking 
 

191 with 10% neonatal calf serum (N4637) for 30 min. Incubation with primary antibody 
 

192 (Supplemental Table 1) in 1% bovine serum albumin (Merck) in PBS was then carried out for 1 
 

193 h at room temperature, followed x3 washes with PBS. Preparations were then incubated with 
 

194 secondary antibody or Hoechst stain for nucleus (Invitrogen) at 1:1000 dilution, mixed with 1% 
 

195 neonatal calf serum and 1% bovine serum albumin. Secondaries used were Alexa Fluor 488 - 
 

196 conjugated goat anti-mouse IgG (ThermoFisher) and Alexa Fluor 594 -conjugated goat anti-rabbit 
 

197 IgG (ThermoFisher, A11037) at 1:250 dilution, for each coverslip. Following this, the conjugated 
 

198 antibodies were mixed with 1% neonatal calf serum and 1% bovine serum albumin, and the 
 

199 samples were incubated for 1 h in these antibodies. This was followed by washing 3 times with 
 

200 PBS. The coverslips and the Matrigel transwell base were then mounted on Thermo Fisher 
 

201 ProLong™ Diamond Antifade Mountant media (ThermoFisher). Slides were imaged with Confocal 
 

202 Microscope Zeiss LSM 780, and analysed and quantified using ImageJ Fiji (NIH, USA). 
 

203 Expression levels for target proteins were determined using ImageJ Fiji software (NIH, USA) by 
 

204 measuring “area of fluorescence colour” subtracted from “integrated density”, then multiplied by 
 

205 “average background area”, and reported as corrected total cell fluorescence (CTCF). 
 

206 206 
 

207 siRNA knockdown of VDR 
 

208 VDR siRNA was used to knockdown VDR mRNA expression in JEG3 and TPC cells. ON- 
 

209 TARGETplus Human VDR (7421 siRNA (Dharmacon, L-003448-00-0010) was used for VDR 
 

210 knockdown at a concentration of 100 nM. A scrambled sequence siRNA (Ambion, 4390843) (100 
 

211 nM) was included as a negative control. Transfections were performed in transwells (24 wells) 
 

212 coated with Matrigel. In an Eppendorf tube, 250 µl of Opti-MEM reduced serum medium (Gibco 
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213 ThermoFisher) and  6μl  Lipofectamine RNAiMAX  transfection  reagent (ThermoFisher)  were 
 

214 combined and incubated for 5 min at room temperature. Following this, 2.5 μl of siRNA per well 
 

215 was added to the solution and incubated for 20 minutes. 500μl of the above final solution was 
 

216 then added to each well (100 nM siRNA concentration, from a stock solution of 40 µM) and cells 
 

217 incubated for 48 h. All transfections were performed with 10,000 cells seeded on Matrigel and 
 

218 cultured for 48 h. Transfection medium was then replaced with respective regular cell culture 
 

219 medium prior to immunofluorescence and/or invasion assay. Each experiment was carried out in 
 

220 triplicate and repeated multiple times. 
 

221 221 
 

222 Analysis of serum DBP concentrations 
 

223 Human serum samples from pregnant women were obtained from two sources. The first set of 
 

224 samples were obtained as part of previous studies of maternal serum and placental/ decidual 
 

225 concentrations of vitamin D metabolites and DBP in 1st, 2nd and 3rd trimester pregnancies (Ethics: 
 

226 14/WM/1146, obtained from West Midlands - Edgbaston Research Ethics Committee) (Tamblyn, 
 

227 et al. 2017). For these samples, serum, placental and decidual human DBP concentrations were 
 

228 previously determined (Tamblyn et al. 2017), and serum samples were used to prepare patient 
 

229 specific JEG3 Matrigel invasion assays. The second set of samples were obtained from University 
 

230 of Cork, Cork, Ireland as part of a study to assess vitamin D metabolite concentrations in serum 
 

231 and urine from pregnant women at 1st trimester of pregnancy, 50% of whom went on to develop 
 

232 preeclampsia (Clinical Research Ethics Committee of the Cork Teaching Hospital: 
 

233 ECM5(10)05/02/08), amendment 14/WM/1146 - RG_14-194 2 and material transfer agreement 
 

234 15.04.2016 15-1386)(Tamblyn, et al. 2018). Using these samples, an ELISA (Enzyme-linked 
 

235 Immune Sorbent Assay) Kit (K2314, Immundiagnostik, Bensheim was used to quantify serum 
 

236 concentrations of DBP as previously reported (Tamblyn et al. 2017). 
 

237 237 
 

238 Statistics 
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239 All experiments were carried out in replicate wells according to experiment and repeated 3 to 4 
 

240 times with separate cultures as indicated. One-Way ANOVA and t-test (parametric data) was 
 

241 performed with mean and the 95% confidence interval (GraphPad PRISM (Version 8.0, La Jolla, CA). A p- 
 

242 value of <0.05 was considered statistically significant. 
 

243 243 
 

244 Results 
 

245 DBP and VDR are present in trophoblasts cultured on Matrigel 
 

246 VDR and DBP were detectable in JEG3, BeWo and HTR8 trophoblasts, as well as TPC thyroid 
 

247 carcinomas cells (Figure 1A). VDR expression was significantly lower in TPC cells compared to 
 

248 trophoblastic cells (Figure 1B), but increased in these cells with 1,25D. Both trophoblast and TPC 
 

249 cells showed significant induction of DBP expression with 1,25D (Figure 1B). 
 

250 250 
 

251 1,25D promotes trophoblast matrix invasion 
 

252 Although trophoblasts expressed VDR, mRNA for the VDR-target gene CYP24A1 was 
 

253 undetectable in JEG3, BeWo and HTR8 cells even in the presence of 1,25D (Figure 2A). By 
 

254 contrast, vehicle-treated TPC cells showed low CYP24A1 mRNA, which increased dramatically 
 

255 with 1,25D. TPC cells also showed a significant antiproliferative response to 1,25D, whereas 
 

256 JEG3, BeWo and HTR8 cells showed no response (Figure 2B). For JEG3, BeWo and HTR8 cell 
 

257 Matrigel invasion increased significantly following treatment with 1,25D, whilst 1,25D inhibited 
 

258 matrix invasion by TPC cells (Figure 2C). Pro-invasive effects of 1,25D on trophoblast cells were 
 

259 associated with increased expression of MMP2 and decreased expression of its inhibitor, TIMP1. 
 

260 By contrast, the anti-invasion effect of 1,25D (100 nM) on TPC cells was associated with 
 

261 decreased MMP2 and increased TIMP1 expression (Figure 2D). 
 

262 262 
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263 Knockdown of VDR protein (Figure 3A and 3B) using siRNA had no effect on JEG3 Matrigel 
 

264 invasion in the presence or absence of 1,25D (Figure 3C). In TPC cells, knockdown of VDR 
 

265 suppressed Matrigel invasion significantly, but treatment with 1,25D did not suppress invasion in 
 

266 VDR knockdown TPC cells. These data indicate that the stimulation of trophoblast matrix invasion 
 

267 by 1,25D is not dependent on VDR expression. 
 

268 268 
 

269 Intracellular expression of DBP is due to uptake of serum DBP 
 

270 JEG3 cells cultured in medium supplemented with serum from wild type (DBP+/+) mice showed 
 

271 low levels of expression of the gene for DBP (GC) and the DBP membrane receptor megalin 
 

272 (LRP3) (Figure 4A). Expression of mRNA for GC and LRP2 was enhanced significantly following 
 

273 treatment with 1,25D. JEG3 cells cultured in medium supplemented with serum from DBP 
 

274 knockout (DBP-/-) mice showed lower baseline expression of GC and LRP2 relative to cells 
 

275 cultured with DBP+/+ serum. Expression of LRP3 in JEG3 cells cultured with DBP-/- serum was 
 

276 enhanced by treatment with 1,25D in a similar fashion to DBP+/+ cells (Figure 4A). DBP+/+ 
 

277 serum-cultured JEG3 cells also expressed protein for DBP and megalin, but DBP protein 
 

278 expression was significantly decreased in cells cultured with DBP-/- serum (Figure 4B and 4C). 
 

279 By contrast, megalin protein levels increased in DBP-/- JEG3 cells (Figure 4C). These data 
 

280 suggest that although JEG3 cells express low levels of mRNA for GC and LRP2, the presence of 
 

281 DBP protein in these cells is dependent on uptake of exogenous DBP from serum. 
 

282 282 
 

283 JEG3 cells cultured in medium with serum from DBP-/- mice showed significantly lower matrix 
 

284 invasion than cells cultured with DBP+/+ serum (p=0.0007). Unlike DBP+/+ cells, cells cultured in 
 

285 DBP-/- serum showed no enhanced invasion response when treated with 1,25D (Figure 4D). 
 

286 Decreased invasion by JEG3 cells cultured in DBP-/- medium was characterised by decreased 
 

287 expression of mRNA for matrix metalloproteinase 2 (MMP2) and, unlike DBP+/+ cultures, DBP-/- 
 

288 cells showed no MMP2 response to 1,25D (Figure 4E). Conversely, DBP-/- cultures of JEG3 cells 



 Page 11 of 35 

11 

 

 

 
 
 
 

289 showed higher levels of mRNA for tissue inhibitor of metalloproteinase-1 (TIMP1) than DBP+/+ 
 

290 cells. Both DBP+/+ and DBP-/- cultures showed suppressed TIMP1 in the presence of 1,25D. 
 

291 291 
 

292 JEG3 cells treated with the megalin inhibitor RAP showed decreased expression of DBP (Figure 
 

293 4F and 4G). Although RAP acts to inhibit endocytic internalisation of megalin-DBP, it also 
 

294 suppressed cellular expression of megalin (Figure 4F and 4G), consistent with previously 
 

295 reported studies (Birn, et al. 2000). JEG3 cells incubated with the megalin-inhibitor RAP also 
 

296 showed significantly lower levels of Matrigel invasion relative to vehicle-treated cells (Figure 4H). 
 

297 These data indicate that inhibition of cellular uptake of DBP via megalin profoundly suppresses 
 

298 matrix invasion by JEG3 cells. 
 

299 299 
 

300 Effects of DBP and 1,25D on trophoblast matrix invasion involve ERK phosphorylation 
 

301 Previous studies have shown that enhanced matrix invasion by trophoblasts following treatment 
 

302 with 1,25D involves intracellular ERK signalling (Kim, et al. 2018). JEG3, BeWo and HTR8 
 

303 trophoblasts showed increased nuclear phosphorylated ERK (pERK) following treatment with 
 

304 1,25D (Figure 5A), and cytoplasmic and nuclear pERK were blocked when the cells were 
 

305 incubated with the ERK inhibitor U0126 in the presence or absence of 1,25D (Figure 5A and 5B). 
 

306 U0126 also blocked intracellular uptake of DBP into JEG3 cells but had no effect on VDR 
 

307 expression (Figure 5C). Co-treatment with 1,25D partially abrogated suppressive effects of 
 

308 U0126 on intracellular DBP in JEG3 cells (Figure 5C). Similar results were also obtained for 
 

309 BeWo and HTR8 cells (Supplemental Figure 1). In JEG3, BeWo and HTR8 cells U0126 
 

310 suppressed Matrigel invasion, and this was unaffected by co-treatment with 1,25D (Figure 5D). 
 

311 In TPC cells, U0126 had no effect on matrix invasion by TPC cells with or without 1,25D. 
 

312 312 
 

313 Intracellular DBP in trophoblasts acts to regulate accumulation of nuclear G-actin 
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314 DBP binds vitamin D metabolites with high affinity but is also a potent scavenger of G-actin 
 

315 (Delanghe, et al. 2015). Immunofluorescence analysis of F-actin and G-actin in JEG3 and HTR8 
 

316 cells cultured in medium supplemented with either DBP+/+ or DBP-/- serum showed different 
 

317 patterns of intracellular actin. In the presence of extracellular DBP (DBP+/+ serum) cells showed 
 

318 only low levels of G-actin but this increased significantly in cells cultured without DBP (DBP-/- 
 

319 serum) (Figure 6A and 6B). Lack of DBP was also associated with decreased cellular F-actin in 
 

320 JEG3 and HTR8 cells (Figure 6B). In the absence of DBP, the ratio of G-actin/F-actin increased 
 

321 from 0.62 to 2.19 in JEG3 cells and 0.18 to 0.60 in HTR8 cells (Figure 6C). 
 

322 322 
 

323 Serum concentrations of DBP and 1,25D define matrix invasion by trophoblasts 
 

324 Serum concentrations of maternal 1,25D and DBP increase during pregnancy but vary 
 

325 considerably within cohorts (Tamblyn et al. 2017). To assess the impact of these two factors on 
 

326 trophoblast matrix invasion, serum from 14 women in the first trimester of pregnancy was used to 
 

327 generate individual JEG3 Matrigel invasion cultures. Data in Figure 7A showed that serum DBP 
 

328 concentrations correlate significantly with Matrigel invasion by JEG3 cells. There was also a trend 
 

329 for correlation between invasion and serum levels of 1,25D (Figure 7B), but no correlation with 
 

330 serum 25D (Figure 7C). When normalised to serum levels of 1,25D, DBP concentrations showed 
 

331 an even stronger correlation with trophoblast invasion (Figure 7D), but no similar effect was 
 

332 observed when DBP was normalised to 25D concentrations (Figure 7E). 
 

333 333 
 

334 These data indicate that serum levels of both DBP and 1,25D can influence trophoblast matrix 
 

335 invasion. To determine possible clinical implications of this observation, concentrations of DBP 
 

336 were analysed in serum samples from a cohort of first trimester pregnancies in which 50% of 
 

337 women went on to have normal healthy deliveries, whilst 50% went on to develop the hypertensive 
 

338 disorder preeclampsia. Data in Figure 7F showed that women with healthy pregnancies had 
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339 significantly higher serum DBP (mean: 869.5 ng/ml, 95% CI: 812.7 – 919.1) than women who 
 

340 developed preeclampsia (mean: 691.4 ng/ml, 95% CI: 647.2 – 735.6). 
 

341 341 
 

342 Discussion 
 

343 We have shown previously that placental levels of DBP correlate directly with maternal circulating 
 

344 DBP across gestation (Tamblyn et al. 2017). In the current study, we show that although 
 

345 trophoblast cells express low levels of GC mRNA, the presence of DBP protein in these cells is 
 

346 due primarily to megalin-mediated endocytic uptake. Megalin and its co-receptor cubilin have 
 

347 been shown to be expressed by trophoblastic tissues within the placenta (Akour, et al. 2013), by 
 

348 primary cultures of trophoblasts (Longtine, et al. 2017), and by trophoblast cell lines cultured on 
 

349 Matrigel (Akour, et al. 2015). Interestingly, preliminary analysis of trophoblastic cells cultured 
 

350 using conventional plasticware indicates that these cells do not exhibit intracellular DBP 
 

351 (Supplemental Figure 2). Thus, interaction with matrix components may be a key factor in 
 

352 cellular acquisition of DBP, presumably via enhanced expression of megalin. Although the 
 

353 promiscuous nature of megalin-mediated endocytosis means that it is involved in the placental 
 

354 transport of a wide range of potential ligands (Akour et al. 2013), its role in DBP uptake by placenta 
 

355 cells is still not clear. Here we show that inhibition of DBP uptake by either ablation of DBP in 
 

356 serum, or inhibition of megalin suppressed Matrigel invasion by JEG3 cells, highlighting an 
 

357 entirely new function for DBP as an intracellular regulator of cell invasion. 
 

358 358 
 

359 Trophoblastic uptake of DBP may facilitate the cellular movement and metabolism of vitamin D 
 

360 within the placenta. The transfer of 25D and 1,25D from mother to fetus is thought to occur by 
 

361 passive diffusion of these lipid soluble molecules across the placenta (Ryan and Kovacs 2020). 
 

362 However, the presence of megalin in placental tissues (Burke et al. 2013; Ma et al. 2012), 
 

363 suggests that transport of vitamin D metabolites across the placenta may be facilitated by binding 
 

364 of DBP and its cargo to megalin. In the current study, we have highlighted an additional potential 
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365 consequence of placental uptake of DBP. In the circulation serum DBP also functions as a potent 
 

366 actin-binder (Otterbein et al. 2002) protecting against tissue damage due to systemic F-actin 
 

367 accumulation (Gomme and Bertolini 2004). In recent studies using alpha-cells of the Islets of 
 

368 Langerhans we have shown that cytoplasmic DBP also participates in intracellular actin 
 

369 homeostasis, with concomitant effects on glucagon secretion (Viloria, et al. 2020). We therefore 
 

370 postulated that DBP in trophoblast cells interacts with intracellular actin in a similar fashion. The 
 

371 cellular actions of G- and F-actin are complex, and actin homeostasis plays a crucial role in 
 

372 regulating cell differentiation and function (Skruber, et al. 2018). A reduced G-/F-actin ratio has 
 

373 been associated with increased matrix invasion by trophoblast giant cells (Chakraborty and Ain 
 

374 2018). In the current study we show that in the absence of DBP there is a 4-5-fold increase in the 
 

375 G-/F-actin ratio for JEG3 and HTR8 cells, and this is associated with decreased matrix invasion 
 

376 by these cells. Our data also suggest that the increased intracellular G-actin and decreased matrix 
 

377 invasion in the absence of DBP specifically reflect increased nuclear G-actin expression. Nuclear 
 

378 actin is known to regulate cell differentiation and function (Misu, et al. 2017), but it remains to be 
 

379 determined if this plays a role in trophoblast cell biology and, in particular, matrix invasion. It is 
 

380 also possible that DBP acts to modulate actin polymerization to F-actin, and decreased actin 
 

381 polymerization has been shown to impair trophoblast cell matrix invasion (Liang, et al. 2019). 
 

382 382 
 

383 DBP may play a pivotal role in coordinating the intracellular functions of both G- and F-actin in 
 

384 trophoblast cells, but this activity appears to be distinct from intracellular DBP in other cell types. 
 

385 In islets of Langerhans, the presence of DBP is due to alpha-cell-specific expression of the DBP 
 

386 gene (GC), rather than cellular uptake of circulating DBP. Using islets isolated from wild type 
 

387 (DBP+/+) and GC knockout (DBP-/-) mice we showed that loss of intracellular DBP was 
 

388 associated with decreased alpha-cell size and glucagon release, with indirect effects on beta-cell 
 

389 insulin release (Viloria et al. 2020). The ratio of G-/F-actin is known to be important for secretory 
 

390 function of islet cells (Kalwat and Thurmond 2013), and DBP-/- alpha-cells showed a shift from 
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391 monomeric G-actin expression to increased F-actin (Viloria et al. 2020). Thus in alpha-cells 
 

392 intracellular DBP appears to function by limiting DBP for polymerization to F-actin, while in 
 

393 trophoblasts DBP appears to limit nuclear uptake of G-actin. This dichotomy of function may 
 

394 reflect the endogenous nature of DBP and its specific secretory function of alpha-cells but, 
 

395 nevertheless, underlines the importance of DBP for maintenance of both systemic and 
 

396 intracellular actin homeostasis. This is further illustrated by previously reported studies of hepatic 
 

397 stellate cells which do not express DBP/GC but acquire DBP in a megalin-dependent fashion from 
 

398 hepatocytes which express and secrete DBP (Gressner, et al. 2008). After internalization by 
 

399 hepatic stellate cells, DBP acts to bind intracellular actin, with concomitant effects on 
 

400 transdifferentiation of these cells into myofibroblasts (Gressner et al. 2008). 
 

401 401 
 

402 Although DBP plays a pivotal role in defining the matrix invasion by trophoblastic cells, our data 
 

403 also indicate a role for DBP’s cargo. Active vitamin D, 1,25D, promoted trophoblast matrix 
 

404 invasion consistent with previous studies of trophoblast cells (Chan, et al. 2015; Kim et al. 2018). 
 

405 This effect was independent of the nuclear VDR and trophoblast cells did not exhibit classical 
 

406 1,25D-VDR responses such as induction of CYP24A1, but instead promoted non-nuclear 
 

407 signalling via induction of pERK. This mechanism is required for trophoblast responses to 1,25D, 
 

408 but also appears to play a fundamental role in promoting trophoblast invasion in general. Inhibition 
 

409 of pERK dramatically suppressed matrix invasion by all three trophoblast cell lines in the presence 
 

410 or absence of 1,25D, and this was associated with complete suppression of intracellular DBP and 
 

411 elevation of nuclear G-actin. Thus, megalin-mediated uptake of DBP by trophoblasts appears to 
 

412 be dependent on ERK phosphorylation, with increased pERK following treatment with 1,25D 
 

413 acting to further enhance matrix invasion. By contrast, in thyroid carcinoma TPC cells 1,25D 
 

414 suppressed matrix invasion, and these cells also demonstrated classical nuclear responses to 
 

415 1,25D, similar to those described for 1,25D and other tumor cells lines (Bao, et al. 2006). Thus, 
 

416 the action of 1,25D in promoting matrix invasion by trophoblast cells is distinct from more 
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417 established cellular anti-proliferative/anti-invasion effects of vitamin D, and acts to amplify the 
 

418 actions of cellular DBP uptake. 
 

419 419 
 

420 Data in Figure 4 and Figure 5 suggest that DBP and its ligand 1,25D act in a coordinated fashion 
 

421 to optimise trophoblast invasion. To test this hypothesis, we used serum from healthy 1st trimester 
 

422 pregnancies to assess matrix invasion capacity for individual pregnant women. The observation 
 

423 that serum DBP levels alone are sufficient to define the magnitude of JEG3 matrix invasion 
 

424 underlined the importance of DBP as a determinant of healthy placenta development. We have 
 

425 shown previously that placental levels of DBP are directly proportional to maternal serum 
 

426 concentrations of DBP (Tamblyn et al. 2017). Data presented here suggest that this, in turn, plays 
 

427 a key role in directing trophoblast function. Although maternal serum 1,25D showed only a trend 
 

428 towards enhanced matrix invasion by JEG3 cells, adjustment of DBP concentrations to account 
 

429 for 1,25D resulted in a stronger correlation with invasion than for DBP alone. Collectively these 
 

430 data endorse a mechanistic model in which 1,25D acts to promote DBP uptake and enhance 
 

431 trophoblast invasion. Nevertheless, in 1st trimester serum samples DBP concentration alone was 
 

432 sufficient to discriminate between women who went on to healthy pregnancies and those who 
 

433 developed preeclampsia. This is in stark contrast to measurement of vitamin D metabolites such 
 

434 as 25D and 1,25D which showed no difference between these two populations of women 
 

435 (Tamblyn et al. 2018). It is also important to recognise that in serum invasion experiments serum 
 

436 25D had no impact on matrix invasion by JEG3 cells, even when used to adjust DBP levels. 
 

437 Serum 25D levels are used almost exclusively as the marker of vitamin D ‘status’ for studies of 
 

438 human health. Based on data presented in the current study, we propose that this approach is an 
 

439 oversimplification of the biological action of vitamin D, with both DBP and active 1,25D 
 

440 coordinating important molecular, cellular and clinical actions of vitamin D. 
 

441 441 
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442 Data presented here suggest an entirely new paradigm for vitamin D and placental function in 
 

443 which the serum vitamin D carrier DBP plays a pivotal role in trophoblast matrix invasion (Figure 
 

444 8). The fact that trophoblasts acquire exogenous DBP from using megalin-mediated endocytosis 
 

445 provides a mechanism by which circulating maternal levels of DBP can influence fetal trophoblast 
 

446 function. Serum DBP concentrations are increased in pregnant versus non-pregnant women but 
 

447 the function of this is unclear. We propose that lower serum levels of DBP during pregnancy may 
 

448 impair matrix invasion by fetal trophoblasts. Consistent with this we show that circulating 1st 

 
449 trimester levels of DBP are lower in women who go on to develop the malplacentation disorder 

 
450 preeclampsia. This is supported by recent studies of women with type 1 diabetes who develop 

 
451 preeclampsia, where decreased serum levels of DBP were also observed (Kelly, et al. 2020). In 

 
452 this report the lower circulating levels of DBP were assessed in the context of free and bound 

 
453 vitamin D metabolite levels, but direct actions of DBP may also occur in these women. Thus, 

 
454 circulating DBP may be a novel marker of preeclampsia risk. However, use of DBP as a systemic 

 
455 actin scavenger has also been proposed as strategy for the prevention of endothelial injury 

 
456 associated with bone marrow transplantation (Luebbering et al. 2020). It is therefore interesting 

 
457 to speculate that restoration of low serum DBP in pregnant women may provide a new approach 

 
458 for the management of disorder of placentation such as preeclampsia. 

 

459 459 
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468 Figure legends 
 

469 Figure 1. Expression of VDR and DBP in trophoblasts and thyroid cells. 1A. Expression of 
 

470 protein for the vitamin D receptor (VDR, pink) and vitamin D binding protein (DBP, red) in JEG3, 
 

471 BeWo, HTR8 and TPC cells cultured on Matrigel in the presence or absence of 1,25D (10 nM, 48 
 

472 h). Immunofluorescence for each protein is shown in combination with nuclear (Hoechst, blue) 
 

473 and membrane (NaK ATPase, green) markers. 1B. Data for total corrected cell fluorescence of 
 

474 VDR and DBP protein expression (mean ± 95% CI) are shown for duplicate images from n= 3-4 
 

475 separate experiments. Statistically different from vehicle-treated control, * p < 0.05, ** p < 0.01, 
 

476 *** p < 0.001. 
 

477 
 

478 Figure 2. Effects of 1,25D on trophoblasts and TPC cells cultured on Matrigel. 2A. 
 

479 Expression of mRNA (1/δCt) for CYP24A1, and 2B. Cell proliferation (BrdU incorporation, 
 

480 absorbance units) (A) in JEG3, BeWo, HTR8 and TPC cells cultured on Matrigel in the presence 
 

481 or absence of 1,25D (100 nM, 48 h). 2C. Cell matrix invasion (cell number/field of vision) by JEG3, 
 

482 BeWo, HTR8 and TPC cells cultured on Matrigel in the presence or absence of 1,25D (10 nM and 
 

483 100 nM, 48 h). 2D. Expression of mRNA for matrix metalloproteinase 2 (MMP2) and tissue- 
 

484 inhibitor of matrix metalloproteinase 1 (TIMP1) in JEG3, BeWo, HTR8 and TPC cells cultured on 
 

485 Matrigel in the presence or absence of 1,25D (100 nM, 48 hrs). Data for mRNA expression are 
 

486 mean ± 95% CI 1/δCt value for duplicate or single analyses from n=3 separate experiments. Data 
 

487 for cell invasion and cell proliferation assays are mean ± 95% CI, for triplicate or quadruplicate 
 

488 analyses from 3-5 separate experiments. Statistically different from vehicle-treated control, * p < 
 

489 0.05, ** p < 0.01, *** p < 0.001. 
 

490 
 

491 Figure 3. Effect of VDR knockdown on 1,25D-induced cell matrix invasion. Effect of siRNA 
 

492 knockdown of VDR on (3A) VDR mRNA expression in JEG3 cells (3B) VDR (pink) and DBP (red) 
 

493 protein expression. Immunofluorescence for each protein is shown in combination with nuclear 
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494 (Hoechst, blue) and membrane (NaK ATPase, green) markers. Effect of siRNA knockdown of 
 

495 VDR on (3C) cell matrix invasion (cell number/field of vision) by JEG3 and TPC cells cultured on 
 

496 Matrigel in the presence or absence of 1,25D (100 nM, 48 h). Data for cell fluorescence are mean 
 

497 ± 95% CI, for quadruplicate analyses from 4 separate experiments. Data for matrix invasion 
 

498 fluorescence are mean ± 95% CI, for duplicate analyses from 3 separate experiments. Statistically 
 

499 different from vehicle-treated control, *** p < 0.001. 
 

500 500 
 

501 Figure 4. Effect of serum DBP and megalin function on intracellular DBP and trophoblast 
 

502 function. 4A. Effect of wild type (DBP+/+) and DBP knockout (DBP-/-) mouse serum on DBP 
 

503 (red) and megalin (pink) protein expression in Matrigel cultured JEG3 cells. Immunofluorescence 
 

504 for each protein is shown in combination with nuclear (Hoechst, blue) and membrane (NaK 
 

505 ATPase, green) markers. 4B. Total corrected cell fluorescence for DBP and megalin protein 
 

506 expression 4C. Matrigel invasion. 4D. Expression of mRNA for MMP2, TIMP1, VDR, DBP and 
 

507 megalin (LRP2) in JEG3 cells cultured in medium with DBP+/+ or DBP-/- serum in the presence 
 

508 or absence of 1,25D (100 nM, 48 h). 4E, 4F and 4G. DBP and megalin immunofluorescence, and 
 

509 Matrigel invasion, in JEG3 cells cultured in FBS-supplemented medium in the absence or 
 

510 presence of the megalin inhibitor RAP (1 µM)). Data for immunofluorescence are the mean ± 95% 
 

511 CI for duplicate analyses from n=4 separate experiments. Data for matrix invasion are the mean 
 

512 ± 95% CI for duplicate or single analyses from n=3 separate experiments. Data for mRNA 
 

513 expression are the mean ± 95% CI for single analyses from n=3 separate experiments. 
 

514 Statistically different from vehicle-treated control, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 
 

515 0.0001. 
 

516 
 

517 Figure 5. ERK kinase activity and responses to 1,25D in trophoblastic and thyroid cells. 
 

518 5A. Western blot analysis of cytoplasmic and nuclear ERK and pERK in JEG3, BeWo and TPC 
 

519 cells treated with or without 1,25D (100 nM, 48 h) or ERK kinase inhibitor U0126 (1µM, 48 h). 5B. 
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520 Effect of ERK kinase inhibitor U0126 on pERK in JEG3 cells cultured on Matrigel with or without 
 

521 1,25D (100 nM, 48 h). 5C. Effect of ERK kinase inhibitor U0126 on DBP (red) and VDR (pink) 
 

522 protein expression in Matrigel cultured JEG3 cells. Immunofluorescence for each protein is shown 
 

523 in combination with nuclear (Hoechst, blue) and membrane (NaK ATPase, green) markers. 5D. 
 

524 Matrigel invasion by JEG3, BeWo, HTR8 and TPC cells treated with 1,25D (100 nM, 48 hrs) in 
 

525 the presence or absence of the ERK kinase inhibitor U0126 and in the presence or absence of 
 

526 1,25D (100 nM, 48 h). Data showing the number of matrix invading cells/field of vision are the 
 

527 mean ± 95% CI for triplicate analyses from 3 separate experiments. Statistically different from 
 

528 vehicle-treated control, ** p < 0.01, *** p < 0.001. 
 

529 529 
 

530 Figure 6. G-actin, F-actin and megalin concentration with respect to serum DBP level and 
 

531 presence of serum 1,25D (100 nM, 48 h). 6A. Effects of wild type mice (DBP +/+) and knockout 
 

532 mice (DBP -/-) serum on expression level of F-actin (green), G-actin (red) and DBP (yellow) in 
 

533 JEG3 and HTR8 cells. Immunofluorescence for each protein is shown in combination with nuclear 
 

534 (Hoechst, blue) marker. 6B. Data for total corrected cell fluorescence of F-actin and G-actin 
 

535 protein expression (mean ± 95% CI) for images from 6A, with n=3 separate experiments and 
 

536 showing multiple replicates for each experiment. 6C. Ratio of total corrected cell fluorescence of 
 

537 G-actin and F-actin protein expression (mean ± 95% CI) for JEG3 and HTR8 data from 6B. 
 

538 Statistically different from DBP+/+ control, ** p < 0.01, *** p < 0.001. 
 

539 539 
 

540 Figure 7. DBP from pregnancy serum samples defines matrix invasion by JEG3 cells, and 
 

541 is decreased in women who later develop preeclampsia . 7A-Correlation of serum DBP, 
 

542 1,25D, and 25D with Matrigel invasion by JEG3 cells cultured in medium supplemented with 
 

543 pregnancy serum samples. 7B. Correlation of DBP adjusted for 1,25D or 25D with invasion of 
 

544 Matrigel by JEG3 cells for n=14 pregnancy serum samples. R and p value are shown for each 
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545 graph. 7C. Concentration of DBP in first trimester serum samples from women who went on to 
 

546 have normal healthy or preeclampsia pregnancies (n = 20 samples in each group). 
 

547 547 
 

548 Figure 8. Schematic representation of the actions of DBP and 1,25D on trophoblast 
 

549 invasion. DBP and 1,25D cooperate to promote matrix invasion by trophoblasts. Inhibition of 
 

550 this cooperative mechanism by ablation of serum DBP, inhibition of ERK kinase or inhibition of 
 

551 DBP-megalin endocytosis (X) increases cellular G-/F-actin ratio and decreases matrix invasion. 
 

552 552 
 

553 Supplemental Figure 1. Effect of ERK kinase inhibition on expression of VDR and DBP in 
 

554 Matrigel cultures of BeWo and HTR8 cells. Immunofluorescence analysis of expression of 
 

555 protein for DBP (red) and VDR (pink) in BeWo and HTR8 cells cultured the presence or absence 
 

556 of 1,25D (100 nM, 48 hrs) without or with the pERK inhibitor U0126. Nuclear (Hoechst, blue) and 
 

557 membrane (NaKATPase, green) are also shown. Scale bar shows 20µm. Images were taken with 
 

558 40x magnification. 
 

559 559 
 

560 Supplemental Figure 2. Expression of the vitamin D system and proliferation response in 
 

561 trophoblastic cells cultured on plastic. S2A. Expression of mRNA (1/δCt) for VDR, CYP24A1, 
 

562 and DBP and S2B. Cell proliferation (BrdU incorporation, absorbance units) in JEG3, BeWo, and 
 

563 TPC cells cultured on platic in the presence or absence of 1,25D (100 nM, 48 h). S2C. Expression 
 

564 of protein for the vitamin D receptor (VDR, pink) and vitamin D binding protein (DBP, red) in JEG3 
 

565 and TPC cells cultured on plastic in the presence or absence of 1,25D (100 nM, 48 h). 
 

566 Immunofluorescence for each protein is shown in combination with nuclear (Hoechst, blue) and 
 

567 membrane (NaK ATPase, green) markers. Data (mean ± 95% CI) are shown for n= 3-4 separate 
 

568 experiments. Statistically different from vehicle-treated control, ** p < 0.01. 
 

569 569 
 

570 570 
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Supplemental Table 1. Antibodies used in immunofluorescence analysis and Western 
blot analysis 

 
Immunofluorescence analysis 

Primary antibodies Manufacturer Dilution used 

anti-Vitamin D receptor (VDR) Santa Cruz, D-6: sc-13133 1:50 

anti-Vitamin D Binding protein Abcam, ab65636 1:50 

anti-LRP2 (Megalin) Abcam, ab236244 1:50 
anti-pERK1/2 Cell signalling, 9101L 1:50 

anti-Sodium Potassium ATPase 
antibody-Plasma Membrane Marker 
Alexa Fluor 488 conjugate 

Abcam, ab197713 1:100 

Deoxyribonuclease-1. Alexa Fluor 594 
Conjugate (anti-G-actin) 

ThermoFisher, D12372 1:500 

Phalloidin-. Alexa Fluor 488 conjugate 
(anti-F-actin) 

Abcam, ab176753 1:500 

Western blot analysis 

Primary antibodies Manufacturer Dilution used 

anti-ERK1/2 ThermoFisher, MA5- 
15134, K.913.4 

1:1000 

anti-pERK1/2 ThermoFisher, MA5- 
15173, S.812.9 

1:1000 

anti-β-actin Abcam, ab8227 1:10,000 

Secondary antibodies 
Alexa Fluor 488 -conjugated goat anti- 
mouse IgG 

ThermoFisher, A21235 1:250 

Alexa Fluor 594 -conjugated goat anti- 
rabbit IgG 

ThermoFisher, A11037 1:250 
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