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Abstract: Dedicated Short-Range Communication (DSRC) or IEEE 802.11p/OCB (Out of the Context
of a Base-station) is widely considered to be a primary technology for Vehicle-to-Vehicle (V2V) com-
munication, and it is aimed toward increasing the safety of users on the road by sharing information
between one another. The requirements of DSRC are to maintain real-time communication with
low latency and high reliability. In this paper, we investigate how communication can be used
to improve stopping distance performance based on fieldwork results. In addition, we assess the
impacts of reduced reliability, in terms of distance independent, distance dependent and density-
based consecutive packet losses. A model is developed based on empirical measurements results
depending on distance, data rate, and traveling speed. With this model, it is shown that cooperative
V2V communications can effectively reduce reaction time and increase safety stop distance, and
highlight the importance of high reliability. The obtained results can be further used for the design of
cooperative V2V-based driving and safety applications.

Keywords: collision avoidance; DSRC; stopping distance; software defined radio; testbed; V2V;
consecutive loss; vehicular communication; ADAS

1. Introduction

The emergence of Connected and Autonomous Vehicles (CAVs) in the motoring indus-
try has led to a growth in research and development for vehicular network technologies.
CAVs aim to ensure a safer and efficient transport system and overall safer driving experi-
ence through enabling communication between vehicles, roadside units, pedestrians, and
the network [1,2]. In addition, CAVs will reduce air pollution through improved overall
traffic efficiency [3].

Safety is critical as traffic accidents, and road congestion is still a considerable con-
cern worldwide. As such, CAVs safety is highly critical as has a direct impact on road
fatalities [4,5]. The World Health Organization (WHO) reported that 1.35 million road-
related deaths occurred in 2018 [6]. The current leading technologies for CAV deploy-
ment are Dedicated Short-Range Communication (DSRC) for Vehicle-to-Vehicle (V2V) and
Cellular-Vehicle-to-Everything (C-V2X) for Vehicle-to-Infrastructure (V2I) [7,8]. V2V is also
available with C-V2X via PC5 interface (sidelink) [9].

In this paper, we show that the stopping distance performance can be improved using
DSRC communication. In addition, an investigation on the impact of consecutive packet
loss on safety and stopping distance is demonstrated. In this work, an open-source DSRC
Software-defined radio transceiver was utilized, and the result was gathered through field
trials. We believe analyzing the reliability and the impacts of consecutive loss are vital for
identifying safety-related performance aspects. The testbed used in this work has been
previously demonstrated in Reference [10] and shown to perform to DSRC standards.
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This work investigates how stopping distance can be reduced, as well as the impact of
consecutive packet loss or burst losses on stopping distance.

The novelty of this paper is in two key areas, the first being an extension of previous
work [10] where we will be investigating and modeling the reduction of stopping distance
that can be achieved with vehicle communications. In the second, we will be modeling
the impact of consecutive packet losses and how this alters the reduction we have shown
is attainable with communication, and a model has been designed to allow this to be
proven. This is assessed in three cases: distance independent, distance dependent, and
density-based scenarios. Currently, there does not seem to be many works associated with
the impacts of consecutive loss on stopping distance. All our simulated results are based
upon actual field test measurements made with our Software Defined Radio (SDR) testbed
and theoretical models being formed from the resulting information.

The remainder of the paper is organized as follows. We first introduce some back-
ground behind DSRC and work relating to this study, including our previous work in
Section 2. In Section 3, we give a brief description of the testbed and include some of the
procedures used for measurements and testing. Section 4 is used to show the theoretical
model and equations used, and Section 5 is used to show the results from the combined the-
oretical distance independent model and the field test distance dependent model. Section 6
is a simulated analysis based upon safety distance and the impacts of density-based losses,
and Section 7 includes a combined analysis of both distance independent and density
losses. Finally, Section 8 concludes the paper and gives future ideas for investigation.

2. Related Work

CAVs are an essential part of the future of automotive transport. They will allow
vehicular networks to be formed through mutual awareness and vehicular cooperation
between all vehicles on the road, sharing data between one another and with the network
infrastructure. The goal of CAVs is to work towards increasing road efficiency and road
safety [11]. Vehicular Ad-Hoc Networks (VANETs) are a type of vehicular network formed
of nodes that are communicating information via messages. SAE International defines one
of these as the Basic Safety Message (BSM), which is vital for safety-related information,
such as location, speed, heading, and general operation details. The type of message
utilized for this is usually defined as a broadcast message [12]. The BSM is also known
as a Cooperative Awareness Message (CAM) in some countries but is predominantly the
same in the context of usage [13]. One technology that has been accepted by the CAR2CAR
Consortium to be a part of VANETs is DSRC or 802.11p/OCB (Out of the Context of a
Base-station) [14,15]. DSRC is a vitally important component to support various types of
communication; it is also subject to considerable research efforts. DSRC is commercially
available but highly expensive [16]. To counter the high-cost of commercial devices, we
previously designed a laptop-based testbed [17] and an SDR-based testbed [10], with the
latter being utilized for the simulations in this paper.

Many authors have looked at different ways of utilizing V2V for safety-related sce-
narios. Bella and Russo [18] conducted a study into rear-end collision warning system
based on simulators, but this was tailored more towards driver behavior. Zhao et al. [19]
produced an in-depth review of collision avoidance systems, including both sensors and
communication, that details the benefits of each.

Two independent studies have been conducted to analyze the performance of V2V
or Ad-Hoc performance in vehicular communications. Lee and Lim [20] carried out
User Datagram Protocol (UDP) performance tests over different field test scenarios with
findings that long-range communication has poor performance in terms of reliability and
that reliability can also be affected by packet size. The work by Khairnar et al. [21] is a
simulation test aimed toward the Physical (PHY) and Medium Access Control (MAC)
layers, and they proposed using a non-traditional channel access algorithm known as
Self-Organized Time-Division Multiple Access (STDMA).
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In Reference [22], Gao, Lim, and Bevly studied how V2V can be used in truck pla-
tooning; however, this work mainly focused on the data rate and message delivery ratio.
The work showed results for how differing antenna positions on the vehicle can greatly
change the reliability of V2V.

There are two similar works regarding the reliability and packet loss in DSRC testing.
Carpenter and Sichitiu [23] gathered data from 3000 vehicle tests to investigate the effects
of the Inter Packet Gap (IPG), whilst, on the other hand, in Reference [24], Bai and Krishnan
sought to devise a way of fundamentally defining communication reliability and proposing
these ideas in terms of DSRC.

Lin et al. [25] chose to research into Vehicle to Infrastructure (V2I) and conducted a
measurement campaign comparing the 802.11a protocol with 802.11p, in both Line of Sight
(LOS) and Non-LOS conditions. They found that 802.11p in the V2I environment suffers
fewer consecutive losses than that of 802.11a.

Safety distance is another area that has had a lot of research conducted and differs to
stopping distance as this is the distance gap between vehicles used for reacting as situations
arise. Mahmud et al. [26] performed an in-depth analysis into the various types of safety
distance indicators, such as various Time to Collision (TTC) algorithms, deceleration-based
indicators, and distanced-based indicators. Similarly, Lee and Yeo [27] developed a rear
end collision warning system using multilayer neural networks based upon TTC and
kinematic approaches.

Simulator tools are highly useful for research and development towards DSRC and
Advanced Driver Assistance Systems (ADAS) solutions. Many researchers have applied
simulators to solve various traffic-related issues, such as Wang et al. [28], who investigated
how throughput and delay of DSRC can impact the capacity of highway environments,
stating that, with DSRC capacity, can be increased by up to 491% in perfect circumstances.
Uno and Lida [29] used microscopic traffic analysis to monitor traffic conflicts by vehicles
lane changing, and they found that the Human drivers attitude towards potential collisions
is one of the primary reason for the collisions and that an increase in attitude of use of
automatic systems could alleviate the problems.

3. Testbed Overview

This section will be used to briefly introduce our testbed, experiment methodology,
and the field tests conducted to gather our results. This testbed is based on our previous
works relating to an empirical DSRC testbed utilizing SDR devices [10], and we conducted
empirical evaluations as to the capabilities of the system. Further details on the testbed can
be found in this work. Our experiments have shown that the testbed can operate to DSRC
standards over many different aspects, such as Broadcast Distance Power, Packet Delivery
Ratio, Throughput, Latency, Reliability, and Packet Loss Rate.

Our testbed was designed with four main considerations: to be capable of operating
to DSRC standards in regard to the access and physical layers of the stack, to be open
source to allow reproducibility, low cost when compared to commercial DSRC products,
and to be portable so tests can be evaluated in the field. To meet all these requirements,
various approaches were considered, such as open source modified Wi-Fi cards, traditional
laptops, and Software Defined Radios [17,30,31]. After considering this, we opted for the
use of Ettus Universal Software Radio Peripheral (USRP) B210 software defined radios and
Lenovo ThinkPad laptops. We also opted to use an established open source project known
as the Wireless Measurement and Experimentation (WiME) project [16,32–34].

The chosen message protocol used to transmit these messages is UDP, to reflect the
protocol used in CAM/BSM messaging which transmits vital vehicle information, such as
speed, heading, current action, and brake status. This information is vital for safety-related
aspects; thus, the information must be reliable and delivered quickly, which UDP/BSM
are capable of as no relationship must be formed before information is delivered, such as a
broadcast [23].
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4. Communication-Assisted Stopping Distance

Stopping Distance is the term given to describe the distance a vehicle will traverse
until a full complete stop; this includes time for the driver or machine to react to a problem
and for the vehicle to fully decelerate after the brakes are applied. This can be split into
three categories leading to total distance [35–38];

• Thinking Distance—this is categorized as the distance a vehicle will travel before the
driver notices a problem.

• Reaction Time—this describes the time taken for the driver to initialize a reaction to
the encountered problem, for example applying the brakes.

• Braking Distance—this is the distance the vehicle will travel after the reaction has
been made, such as engaging the brakes, before the vehicle will come to full stop.

These different timings will be broken down in our results with the reaction time being
substituted to our communication time. We also omit the Thinking Distance parameter
as this would be an automatic braking system based on communication the driver of the
vehicle would not be counted upon to react.

4.1. Stopping Distance

This section shows results on how the testbed could be used in collision avoidance,
such as rear end collisions or emergency braking. This is based upon the latency finding of
our experiments between sending and receiving nodes. Latency or information freshness
is critical for CAVs as this is the speed at which the nodes are communicating information
and is required to be 100 ms for standard BSM [39,40]. The latency that we monitored can
be seen in Figure 1, and this experiment was conducted by measuring processing time
and calculating the propagation time. The equation that is used to calculate End to End
processing time (PTE2E) is shown in Equation (1), and it shows the Time sent (Ts) and Time
received (TR) of a packet when transmitted through direct connection via SubMiniature
version A (SMA) cable, which eliminates the propagation time. We then subtract the times
from one another, leaving us with the processing time of both systems, which we assume is
even on both sides. Then, we calculated the propagation time (TP) for each distance, and,
because we are only using distances up to 100 m, the propagation is at most 33.4 micro
seconds. We then add the two times to find total End to End Latency (TE2E). This latency,
however, ignores the logical processing inside of the receiving device for reacting to the
received packet, which would be negligible.

PTE2E =
(TR − TS)

2
TE2E = PTE2E + TP

. (1)

Figure 1. End to End latency distribution.

The results for latency can be seen in Figure 1 and are the product of over 2000 samples.
We found that the latency ranged between 2.1 and 2.9 ms with a mean of 2.48 ms, showing
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the latency is lower than expected for information freshness of 50 ms required for pre-crash
sensing [41].

To calculate the stopping distance (DS), we chose to use two different methods avail-
able and used in the literature. The first equation shown in Equation (2) is the most
commonly used formula used in physics to calculate braking distance (D B); however, it is
not based upon vehicle mass and assumes a rate of deceleration from 0 to max deceleration
(maximum braking force) [35–38], where g is acceleration due to gravity (9.81 m/s2), V is
velocity of vehicle, and u is the coefficient of friction. This equation is then used with an
equation for thinking distance to calculate total stopping distance. Thinking distance (DR)
is calculated with the velocity (V) and reaction time (TR). TR can also be represented in our
case with TE2E when using the testbed.

DS(m) = DR + DB

DR(m) = V ∗ TR

DB(m) =
V2

2gµ

. (2)

The coefficient of friction is a variable to describe the friction between the rubber tires
of the vehicle and the road. Table 1 shows some road examples that are based on weather
and ground type, with the average coefficient values associated [42]. In our experiments,
we chose to use 0.8 as the coefficient of friction as this is the standard for normal dry road
conditions for both asphalt and concrete.

Table 1. Coefficient of friction.

Road Type Coeff of Friction with ABS without ABS

Asphalt—Dry 0.8–0.9 0.75
Asphalt—Wet 0.5–0.7 0.45–0.6
Concrete—Dry 0.8–0.9 0.75
Concrete—Wet 0.8 0.7

Snow 0.2 0.15
Ice 0.1 0.07

The second equation shown in Equation (3) is used by many researchers, like in
Reference [42–45], as this equation considers more in-depth variables concerning the type
of car, road conditions, air conditions, and other parameters. Table 2 details each component
of Equation (3), along with the value we chose to use and the range of values that are
typically used. This is then added to DR, which is calculated in the same way as previously
and leads to the total DS.

DB(m) =
W

2gCae
ln(1 +

CaeV2

ηbµW + f rcosθ + Wsinθ
)

whereCae = (p ∗ A f ∗ Cd)/2

DS(m) = DB + DR

. (3)
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Table 2. Simulation parameters.

Value Range Chosen Value

W, Weight Of Vehicle N/A 1800 kg (Citroen DS3)
g, Gravitational Acceleration N/A 9.8 (m/s2)

p, Air Density N/A 1.35
Af, Projection Area Height * Width 2.562
Cd, Air Drag Factor 0.15–0.5 0.4

V, Velocity (m/s) N/A (mph/2.237)
ηbBrake Efficiency 0.8–1.0 0.7
µ, Friction Factor N/A 0.8

θ, Road Slope N/A 0
f r,Roll Factor 0.012–0.015 0.015

Using these equations, we predict the effect of using our maximum communication
latency of 2.92 ms as the reaction time in place of the typical driver reaction time, which is
suggested to be between 0.67 s and 2 s. The reaction time depends on driver state, such
as age, driver experience, and state of mind. In this work, 1.5 s is chosen as the reaction
time as this is the time reported by Brake to most accurately represent most drivers [46].
Figure 2 highlights the stopping distance reduction that could be observed when using
communication-assisted systems or autonomous braking systems.

Figure 2. Stopping distance comparison.

The results for this section show the difference between the stopping distance when
using each method of measuring stopping distances, and they show the second has a slight
reduction in distance needed. The second finding is that the reduction in distance is large
when using the communication reaction time. This information can used in critical braking
scenarios, such as debris on the road causing an emergency braking situation, a vehicle
breaking down, a crash occurring, or sudden braking by the lead vehicle. Table 3 shows the
distance that can be saved at each distance with the use of communication-based reaction
time when the consecutive losses are 0. This table also shows the percentage of distance
that is saved and at its lowest is a decrease of over 30%.

Through the use of the two formulas, it can be seen that Equation (3) is more accurate
showing the braking distances for any vehicle that is chosen. Our experiments used a small
hatchback, but the equation can be altered to represent any vehicle necessary. For these
reasons, this will be the method used in our experiments.
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Table 3. Stopping distance reduction.

MPH Km/h Stopping Distance Reduction (m) Decrease (%)

10 16.09 6.69247 81.9962
20 32.18 13.3849 69.5796
30 48.27 20.0774 60.4289
40 64.36 26.7699 53.4053
50 80.45 33.4624 47.8444
60 96.54 40.1548 43.3324
70 112.63 46.8473 39.5980
80 128.72 53.5398 36.4563
90 144.81 60.2322 33.7764

100 160.90 66.9247 31.4635

4.2. Theoretical Model for Consecutive Losses

The following section outlines the main findings of the work, where the analysis is
conducted as to multiple consecutive packet losses, and a model is designed and assessed
to show impacts of consecutive losses. The losses we observed in our field tests, can be split
into single losses or consecutive losses (burst losses). These types losses can occur due to
circumstances, such as channel fluctuations, obstacles in the way, weather changes, or the
hidden node problem. The use of UDP in our testbed means there is no acknowledgement
of a packet being received, and this means that, if a packet is lost, the sender is not
aware of this. UDP is the closest representation of a broadcast type communication used
for CAMs/BSMs.

We believe this assists in identifying the reliability requirements for DSRC and high-
lights the importance of maintaining highly reliable systems. We have also chosen to
monitor this over different data rates to analyze impacts by the Inter Packet Gap (IPG).
The IPG will be abbreviated to TPI, which is the Packet Interval Time. The number of losses
we chose to use will be shown later, but it will be stated that these losses are based upon
real world field tests conducted.

We developed a model that shows the theoretical loss on the stopping distance that
consecutive packet losses could have. This model is based upon the field work for stopping
distance, along with an equation that calculates the loss of stopping distance per packet,
which includes the packet sending interval. Equation (4) shows the model formula, and
Table 4 shows the parameter information.

RSD =
{
(TE2EV) +

[ W
2gCae

ln(1 +
CaeV2

ηbµW + f rcosθ + Wsinθ
)
]}

−
{

V[PaL(TE2E + TPI)]
}

. (4)

Table 4. Parameter details.

Component Detail

TE2E End to End Latency
V Velocity (m/s)
g Gravitational Acceleration
µ Coefficient of friction

PaL Number of Packets Lost (Consecutive)
PTE2E Processing Time Latency at Receiver (s)

TPI Packet Interval Time(s)

This initial model represented in Equation (4) does not consider the next packet after
the burst loss being received and processed. This means that, after consecutive packet losses,
no packet is successfully received, processed, and an action taken. This would be vital
in autonomous systems, whereby the communication would be essential to maintaining
adequate distances and awareness. For this an extra iteration of processing, round-trip
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time and packet interval would need to be included, which are used to represent the packet
being received successfully, and this is shown in Equation (5).

RSD =
{
(TE2EV) +

[ W
2gCae

ln(1 +
CaeV2

ηbµW + f rcosθ + Wsinθ
)
]}

−
({

V[PaL(TE2E + TPI)]
}
+
[
V(TE2E + TPI + PTE2E)

]). (5)

We chose to use the second model as this paper is focused on the impacts of how packet
loss can alter the stopping distance when relying on communications, and this equation
highlights that impact. The model works by utilizing Equation (3) to find the normalized
stopping distance for a vehicle and then we subtract the distance lost via consecutive losses.
The losses can be seen in the second part of Equation (5). The result of this equation will
leave us with the distance remaining to a collision or stopping distance remaining. We
know that, after losing the consecutive packets, the vehicle will still need to stop in order
to show the full distance required to stop, and the Equation (5) sign could switch. This
would then represent the stopping distance, plus the distance lost through consecutive
loss, to leave us with total stopping distance. In our case, we are showing how lead and
following autonomous vehicles communicate, with the following vehicle adhering to a
communication-assisted stopping distance. We then analyze how this stopping distance
is impacted with the addition of consecutive packet loss, and this is shown for different
speeds and data rates. For our results, we show the stopping distance when 0 packets are
lost, and we then show how the stopping distance is reduced with each consecutive loss.
This highlights how the reduction in reliability leads to reduced stopping distance and,
hence, a higher chance of collisions with the lead vehicle. As the reduction value reaches 0,
we deem this to be the point at which lead and follow vehicle will be occupying the same
space or that a collision may have occurred. We also show a negative value, which would
mean the follow vehicle has gone past the lead vehicle, and this would be classified as a
collision; we show this to identify the impact of reliability.

5. Simulation of Field Tests

We chose to analyze our results in two different ways: the first is a distance indepen-
dent instance, where we theoretically analyzed what would happen with a consecutive loss
of packets, and this will range from our lowest to our highest. The second is a distance de-
pendent analysis based on the packet losses we measured during field tests, at each distance
up to 100 m. Both scenarios are measured at various data rates and traveling speeds.

5.1. Distance Independent Consecutive Packet Loss

To measure the distance independent losses, we used our testbed to monitor the
number of consecutive losses observed in 3000 experimental samples when measuring
packet loss rates. To do this, we attached a number in each packet and extrapolated the
number, and this allowed us to see the number of packets lost consecutively. We chose to
do this over a 100-m distance because typical stopping distances up to 70 mph fall within
this distance range. We took our samples and compiled a normal distribution plot showing
our spread of consecutive losses. This can be seen in Figure 3 and shows most consecutive
losses are in the range of 1–11. It can also be seen that the most common occurrence of
consecutive loss is 2 packets, and the mean is approximately 5. Using these results, we
selected a range of values through 1–18 because 1 is our minimum consecutive loss and 18
is our highest. We produced results for 30 mph, 50 mph, and 70 mph and conducted this
over the full range of data rates we utilized in our testbed, i.e., 10 to 140 packets per second.
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Figure 3. Packet loss distribution.

Table 5 represents the remaining stopping distance available after a number of consec-
utive losses at 30 mph and 10 pps. The table is used to give an example of what the results
look like after applying our model.

As can be seen at 0 losses, this is the full stopping distance required at 30 mph.
The distance shown on the right is the remaining stopping distance that would be available
after consecutive loss, shown on the left. The results for 11 packets and higher show a
negative value. This negative value means the distance remaining to stop has reached a
point whereby a vehicle could have collided or overtaken the lead vehicle. This highlights
the importance of reliability for communication when autonomous vehicles become more
widespread. There are variables in the model, and, in these tests, the three variables are:

• Consecutive Losses, which have been set to—0, 1, 4, 6, 8, 9, 11, 13, 15, 17, 18;
• Data Rate in packets per second, which is configured as—10, 25, 50, 75, 100, 120, 140;

and
• Speed in mph or(km/h), which is configured as—30 (48.27), 50 (80.45), 70 (112.63 ).

Table 5. Thirty miles per hour (48.27 km/h) remaining stopping distance.

Consecutive Packet Loss Equation (4). Remaining SD (m) Equation (5). Remaining SD (m)

0 13.1474 13.1474
1 11.7675 10.3488
2 10.3876 8.96891
4 7.62782 6.20911
6 4.86803 3.44932
8 2.10823 0.68952
9 0.72833 −0.6903
11 −2.0314 −3.4501
13 −4.7912 −6.2099
15 −7.5510 −8.9697
17 −10.3108 −11.7295
18 −11.6907 −13.1094

The following set of figures are used to show the results for distance independent
measurements, and these are for each speed and data rate. Figure 4 shows 30 mph, Figure 5
shows 50 mph, and Figure 6 is for 70 mph.
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Figure 4. Thirty miles per hour (48.27 km/h) reduction in stopping distance.

Figure 5. Fifty miles per hour (80.45 km/h) reduction in stopping distance.

Figure 6. Seventy miles per hour (112.63 km/h) reduction in stopping distance.

5.2. Distance Dependent Consecutive Packet Loss

A second scenario to be analyzed is the impact of distance dependent packet losses.
This scenario is based upon the studied vehicle being at different distances from the vehicle
of interest. In this case, we measured how the stopping distance is reduced when vehicles
are at different communication distances. We first show Figure 7, where we can see the
receiver power over distance from 0–250 m. Figure 8 is used to show the number of packet
losses at each distance and data rate. It can be seen in this figure that, at distances of 30 m
and between 60–90 m, there is a spike in packet losses at the 120 and 140 pps curves. We can
refer to Figure 7, where we see that, due to the fading nature of the channel, the received
power suffers degradation over these distances, and we can attribute the number of packets
being transmitted that cause this fading to have a larger effect of the reception percentage.

Following from the figure used to show the packet losses at each distance, we can
then show how consecutive packet losses will impact stopping distance based on real
world distance dependent packet losses measured. We utilized our developed formula and
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applied it to the field test measurements at each distance. Figures 9–11 show the stopping
distance when the vehicle traveling has a velocity of 30, 50, and 70 mph and is again shown
for each instance of data rate. In these figures, we observe that the 10 pps plot has a large
reduction in stopping distance from a distance of 70 m, and we can attribute this to being
caused by the fading effects mentioned previously, as observed in Figures 7 and 8.

Figure 7. Receiver power over distance.

Figure 8. Packets lost over distance.

Figure 9. Thirty miles per hour (48.27 km/h) distance dependent reduction in stopping distance.



Future Internet 2021, 13, 68 12 of 24

Figure 10. Fifty miles per hour (80.45 km/h) distance dependent reduction in stopping distance.

Figure 11. Seventy miles per hour (112.63 km/h) distance dependent reduction in stopping distance.

5.3. Analysis of Distance-Based Results

The results from our experiments show that the usage of communication can assist
with the reduction of stopping distance, enabling a reduction of up to 30% when packet
losses are 0. However, for the consecutive losses, we can see an impact in both distance
dependent and distance independent cases.

Our results show that, at all speeds, consecutive packet loss leads to a reduction in
stopping distance. We can also see how important data rate is for vehicle communication,
as at each instance of 10 pps for 30 and 50 mph shown in Figures 4 and 5, a negative value is
produced indicating the stopping distance has reduced below 0. This means the following
vehicle has either collided with the lead vehicle or overtaken it.

Figure 4 shows the results for 30 mph and shows the data rates of 120 and 140 pps have
a reduction of less than 5 m, which is the average length of a vehicle, hence leaving two
vehicles space still available to take emergency action. When considering the maximum
consecutive packet loss, the minimum data rate that would provide adequate time to
respond would be above 75 pps per second in the 50 mph experiments, as seen in Figure 5.
Anything lower than this and the stopping distance is reduced by between 50–75%. In the
70 mph example in Figure 6, 25 pps would have a reduction of less than 40%, and the higher
data rates with consecutive loss degrade the stopping distance by approximately 10%.

We can draw a conclusion from our results that, at lower speeds, the consecutive
packet loss has much more of an impact. This is due to the stopping distance being smaller,
therefore giving less distance to receive the delayed communication message. However,
due to high speeds, if packets are not sent at a high enough rate the stopping distance is
reduced too low for adequate reaction. This leads to less time for an action to be made,
but we also show that this can be mitigated with high data rates.

The main conclusion to be drawn from the distance dependent test is that, in order to
mitigate the effects of consecutive losses, high data rates must be used in order to provide
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adequate reaction time. We can also see that, if the requirement of a 99.9% reliable system
is adhered to, that, in all tests, a loss of two packets consecutively has minimum effect in
Figures 9–11. We can also see that the lower data rates suffer more at higher distances
but cause more significant degradation to stopping distance at lower distances; the primary
example of this can be seen in the 30 mph tests in Figure 9. It can also be seen that, as the
distance increases, the packet losses have less of an impact exponentially.

Figure 7 can also show the reason that the packet loss suffers somewhat at lower
distances. The figure shows received power levels at distances up to 250 m, but our focus
is only to 100 m. It also shows the fading characteristics indicated at the lower distances by
the rapidly changing power levels, hence having the higher losses seen at lower distances.
Figure 7 also highlights the power levels for lower distances suffer fading, but 100 m has
a lower power level and yet does not suffer the same level of packet losses. This can be
attributed to the fading characteristics of the channel and the gain settings on the SDR; we
can also see that, at 60 m, a significant level of fading is observed.

6. Simulation of Density Losses

The following section is now focused on the connotations of losses incurred by the
density of the vehicle network. Simply put, this is analyzing the number of losses caused
by an increase in the number of vehicles transmitting simultaneously.

This is essential towards analyzing the losses incurred in vehicular networks and
how the reliability can be hindered by large amounts of nodes broadcasting their individ-
ual safety messages and how the dissemination of messages can reduce reliability. Our
approach to this was to simulate a vehicular scenario based on number of nodes within
communication vicinity and relate this to packet losses and safety distance. These exper-
iments prove that the use of communication will reduce reaction time, and, due to this
reduction, both nodes in communication range and safety distance are reduced.

6.1. Density-Based Losses

In this section, we use a simulation to monitor packet losses when considering multi-
ple nodes in a 3-lane highway environment. We assume to eliminate the opposite flowing
traffic with the use of location-based broadcast, which is the preferred method for Coopera-
tive Collision Avoidance (CCA) [47]. Our initial calculation is to approximate the number
of nodes within broadcast communication range. We choose to incorporate the use of Au-
tomatic Gain Control (AGC), which is used to alter the gain depending on the speed being
traveled. Lower gains can be used at lower speeds to have a smaller communication range.

The first step of this is to identify the communication range, which will be known as
the safety distance. The safety distance is approximately the same as the reaction time for a
human driver or DSRC/Advanced Driver Assistance Systems (ADAS) device, which, as
we have mentioned, is approximately 1.5 s without the DSRC testbed and 2.92 ms with the
testbed. For the consideration of safety distance, we do not use the separate measurement
of braking distance. As we described previously, stopping distance is the combination of
braking distance and reaction distance. In this scenario, reaction distance is essentially
the safety distance, and we are calculating the minimum required gap between vehicles
depending on the speed being traveled. When using a full ADAS system, an adequate
approach must be made for the calculation of braking distance because, without this chain
reaction, accidents would be prevalent. This is merely a simulation to represent an example
for the safety distance with communication and the impacts of node density.

It can be shown that the distance traveled in the reaction time (Safety Distance or Ds)
is directly affected by: the time taken for a reaction to be made by the driver (TR) and the
acceleration of the vehicle being driven (a). This can be shown in Equation (6) as:

Ds = a ∗ TR. (6)

In the case of the testbed reaction time, we must also consider a delay within the
system due to the processing of the information and the mechanical delay of activating



Future Internet 2021, 13, 68 14 of 24

the brakes. We will assume this to be equal across all acceleration speeds and have set this
value as 0.25 s, and it will be specified as Reaction Processing Time (TRP). This is shown
for human driver in Equation (7) and ADAS in Equation (8).

Ds,h = a ∗ TR, (7)

Ds,a = a ∗ (TR + TRP). (8)

The difference between the two safety distances according the traveling speed can
be shown and in addition, we also show the results of various stopping distance algo-
rithms. These algorithms will be the Mazda Algorithm [18], the Stop Distance Algorithm
(SDA) [18], and a more recent variant, known as the PATH (Berkeley) Algorithm [18,27,48].
The PATH algorithm is a modified version of the Mazda algorithm and is used to show
safety distance calculation or critical warning distance.

In order to show the various algorithms, the deceleration of a vehicle is assumed to be
at maximum for both following and leading vehicle. This is taken from a study conducted
into various vehicles [48,49], and, for our interpretation, the deceleration rate for a standard
Petrol car is used. This can also be calculated using a deceleration formula and the initial
calculated braking distance without the use of Reaction time.

Deceleration (ȧ) can be calculated in two different methods: with Sf representing final
speed, and Si representing initial speed, t denotes time, and d is distance.

ȧ = (
Sf − Si

t
), (9)

ȧ = (
Sf

2 − Si
2

2d
). (10)

For this scenario, Equation (10) is used as the braking distance has already been
calculated. The deceleration will then be modeled to represent the rate of deceleration
(ȧR). This is taken from a work by Woo et al. [48] and is a validated model representing
the reality of braking via CarSim simulator. The formula Equation (11) is a linear equation
representing an approximation of deceleration rate and is used in order to simplify the
vehicle braking dynamics, where ȧ is the max rate of deceleration, and the mechanical
delay is (TRP).

ȧR =
ȧ

TRP
(11)

6.2. Safety Distance Algorithm

With the deceleration rate model now described and in addition to the calculated
Human reaction safety distance and the ADAS reaction safety distance, the algorithms
previously mentioned will be briefly explained and shown;

Mazda algorithm is a worst-case scenario to ensure collisions do not occur and is
shown in Equation (12), where vl, vf, vrel represent leading, following, and relative vehicle
velocities, and (ȧf),(ȧl) represent deceleration. This algorithm assumes that the two vehicles
are at a constant velocity and that, at T2, the leading vehicle will begin braking at the
deceleration rate specified, and that the following vehicle will begin braking after T1 at its
own deceleration rate. Rmin Is used to represent a minimum range or a tolerance rate.

Ds(vl, vf, vrel) =
1
2
[(

vf
2

ȧf
)− (

vl
2

ȧl
)] + vfT1 + vrelT2 + Rmin. (12)

SDA follows approximately the same idea as Mazda; however, it is based on the dif-
ference between the two stopping distances of lead and following vehicle, and it is usually
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a part of ADAS that utilizes driver warning systems. In this algorithm, TR represents the
reaction time of the driver. This is shown in Equation (13).

Ds(vl, vf) = vfTR + (
vf

2

ȧf
)− (

vl
2

ȧl
). (13)

PATH is a modified version of the Berkeley algorithm and is based upon two vehicles,
where the lead vehicle begins braking, and the follower reacts after Tr and begins to brake.
This algorithm also uses Rmin to represent a minimum range or a tolerance rate and is
shown in Equation (14).

Ds(vl, vf) =
1
2
+ [(

vf
2

ȧf
)− (

vl
2

ȧl
)] + vfTr + Rmin. (14)

In these algorithms, we will assume that the vehicles velocity and deceleration are the
same; therefore, the relative speed will be 0. The Berkeley example will also be used with
both the deceleration value calculated from our simulations and the industry standard
value of 6.44 m/s2 [50,51]. The final method to be analyzed in the Highway Code guideline
of a 1 m per every mile per hour [52,53]. For instance, at 30 mph, the gap should be left is
30 m safety distance. We found that, after calculating with each algorithm, the SDA, PATH,
and Mazda equate to the same safety distance as the finding we made for human-based
safety distance. For this reason, we will only plot five variations of safety distance, which
can be seen in Figure 12. This graph highlights how much quicker the ADAS-based braking
system would react compared to a typical human reacting to a warning produced by the
other algorithms or from a visual reaction from eyesight.

Figure 12. Safety distance variations.

6.3. Node Density Simulation

With the safety distance calculated, the number of nodes in range can now be predicted
for each traveling speed. This will be based upon the calculated safety distance and 5 m set
as a car length.

Due to the use of omnidirectional antennas, it is known the radiation pattern is a circle
with the center point being the antenna. To communicate to vehicle of interest, the radius
will be the safety distance plus one full car length. As this is a circle pattern, the diameter
is simply shown Equation (15). However, we also know that a vehicle is approximately
5 m, and a centrally placed antenna would limit the circumference; to compensate, we
add an additional 5 m to the diameter to represent the vehicle of interest, shown as VL.
This equation will only be applicable in our simulation as we are only considering average
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vehicle sizes, and, to more appropriately represent other vehicles, such as a bus or lorry,
a custom radius distance would be applicable.

d = (r ∗ 2) + VL . (15)

With the diameter calculated from the safety distance, we can now predict the number
of nodes within this diameter. For example, at 30 mph and using the PATH, safety distance
of 20.2 m is 45.4 m. We then calculate how many nodes will be present in the communication
range. This can be simplified down to number of cars per lane, safety distance per car, and
the number of lanes to give an approximate minimum value. For our number of nodes, we
consider all vehicles maintaining the 20.2-m spacing, with an approximate length of 5 m
per vehicle. Therefore, in one lane of traffic, two nodes will be within range. This will be
then multiplied by number of lanes, leading to the classification that 9 nodes will be within
range, including the central node. This is, however, the best-case scenario; a worst-case
scenario would be that the minimum safety distance is not adhered to, and cars could
be packed tightly together. This leads to 11 cars per lane being within communication
range, which results in a total of 33 at 30 mph. This is shown in Equation (16) for best case
and Equation (17) for maximum nodes, where d represents diameter of communication,
r represents radius of communication, L is used to show number of lanes, and dc shows
length of vehicle.

Nodesavg = ((d/(r + dc)) + 1) ∗ L, (16)

Nodesmax = (d/dc) ∗ L. (17)

Figure 13 shows the result of the node calculation, and it shows that the ADAS has a
vastly reduced number of nodes in communication range due to the reduction in reaction
time compared to that of all human reaction-based analysis. As mentioned, PATH and
human reaction are identical and so will be treated as the same for the simulation; this
can also be seen in Figure 13. The worst performing is the general guidance given by the
highway code, and we can deem this to be because it is rather a guideline than an effective
algorithm. It should also be noted that the human reactions are not due to the emerging
situation but rather the reaction to the ADAS warnings provided by DSRC, whereas the
ADAS reaction is a reaction based on automatic braking provided by DSRC. The figure
also shows the losses scale by miles per hour with changes only occurring in incremental
steps. This is a highly useful finding for the use of automatic gain control, as the diameter
would be kept identical until a threshold to change to the next limit.

Figure 13. Node density.

As the number of nodes are now calculated for each speed, a simulation can be
performed to find consecutive losses. The simulation has been conducted using MATLAB
and is a representation of communication between DSRC nodes competing for channel
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access. The simulations have been performed with varying numbers of communicating
nodes to represent the number of nodes in communication range for each traveling speed.
The simulation provides the number of expected consecutive packet collision probability
per node density/traveling speed, when all nodes are competing for channel access with
BSM messages being broadcast.

The simulation is based upon node density over DSRC communication and contains
the parameters used in DSRC for MAC configuration. This includes collision window
timings, slot allocation, and acknowledgements for packet reception having been removed.
These settings have been gathered through various sources [29,54–56]. Further information
relating to the simulation and the settings have been collated from Reference [56,57], and
these relate to data rate and transmission scheme. The simulation has kept as many
variables the same as the tests in the distance-based experiments to maintain consistency,
comparability, and compatibility. The acknowledgements for packet reception have been
removed. Table 6 is used to emphasize important simulation parameters we used.

Table 6. Simulation parameters.

Parameter Value

Number of Simulations per cycle 5
Packets Per Node 1000
Transmission Rate 6 Mbps
Number of Nodes Equations (15) and (16)

Packet Size 256 bytes
Number of retransmissions 0

Contention Parameters (Safety-Related) Cwmin = 3,Cwmax = 7
Slot time 13 us

MAC SIFS 32 us
MAC DIFS 58 us

MAC PHY Header 32 us

We chose to display only ADAS results as we will be using this to compare with the
results of distance-based losses. Figure 14 shows the probability of consecutive packet
collisions for the node of interest when a specific number of nodes are within its communi-
cation range. We can see from these results that the number of losses due to density is more
severe than those of distance-based. The DSRC system suffers up to 15% losses, which is
approximately 150 packets with 21 nodes in range. When compared to the distance-based,
we saw a maximum loss of 18 packets. This highlights the importance of the capabilities
of the network in terms of traffic load and an adequate allocation scheme to reduce these
losses in order to meet stringent requirements for safety. We will show the linear regression
curve equations produced that enable the calculation of number of packets lost due to
collisions, for each different safety distance algorithm, and each will be shown individually
in Equations (18)–(21), where x represents the number of nodes.

Figure 14. Node density.
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ADAS = 0.72 ∗ x − 0.57, (18)

PATH = 0.57 ∗ x + 1.8, (19)

PATHIS = 0.54 ∗ x + 2.9, (20)

HC = 0.49 ∗ x + 4.7. (21)

6.4. ADAS/DSRC Losses

In order to show comparable results to the distance-based experiments, we will need
to show the number of consecutive packets lost at each traveling speed. To do this, we use
the linear regression formulas we developed thorough the simulation and apply them to
the number of nodes in communication range found in Figure 14. These calculations will
be shown up to 100 mph, and the values can be seen in Table 7 for each algorithm.

Table 7. Losses per 1000 packets.

Speed (mph) Speed (km/h) Human/PATH PATH (IS) ADAS Highway Code

10 16.09 104 110 60 136
20 32.18 155 159 60 194
30 48.27 207 208 81 253
40 64.36 241 256 81 312
50 80.45 292 305 103 371
60 96.54 343 353 103 430
70 112.63 378 402 124 488
80 128.72 429 451 124 547
90 144.81 480 515 146 606
100 160.9 514 564 146 665

Table 7 shows packet losses due to density collisions are much higher than those of
distance-based, primarily due to nodes competing for transmission time slots. The table
shows the number of consecutive losses per 1000 packets for each algorithm, with 100%
losses being shown as per our linear equation, and the ADAS losses can be seen to be
124 at 70 mph. This level of loss is considerably high for successive packet collisions.
For this reason, we will produce a scale showing 1–100% losses recorded as consecutive.
Figure 15 shows the results from extrapolating the distance and packet losses based upon
traveling speed. Table 8 shows the corresponding packet loss value to each percentage for
clarification, and these have been rounded to the nearest whole packet.

Figure 15. Pecentage of consecutive packet loss.
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Table 8. Advanced Driver Assistance Systems (ADAS)/Dedicated Short-Range Communication
(DSRC) percentage losses.

Speed (mph) Speed (km/h) 1% 10% 25% 50% 75% 100%

10 16.09 1 6 15 30 45 60
20 32.18 1 6 15 30 45 60
30 48.27 1 9 21 41 61 81
40 64.36 1 9 21 41 61 81
50 80.45 2 11 26 52 77 103
60 96.54 2 11 26 52 77 103
70 112.63 2 13 31 62 93 124
80 128.72 2 13 31 62 93 124
90 144.81 2 15 37 73 110 146
100 160.9 2 15 37 73 110 146

The results will now be shown as stopping distance reduction, with the delays caused
by each consecutive packet loss percentage. This will be shown for 30, 50, and 70 mph
respectively and will use three different data rates, 10, 100, and 140 packets per second.
The algorithm used for calculating stopping distance in previous experiments are again
utilized here; however, we now use the altered packet losses from density in place of the
distance-based. Figures 16–18 show the results of this simulation.

Figure 16. Thirty miles per hour (48.27 km/h) reduction in stopping distance.

Figure 17. Fifty miles per hour (80.45 km/h) reduction in stopping distance.
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Figure 18. Seventy miles per hour (112.63 km/h) reduction in stopping distance.

6.5. Analysis of Density-Based Results

The figures provided show similar results to that of distance-based losses. However,
we can see that the losses are far greater; thus, the distance needed to avoid potentially
dangerous collisions is vastly reduced in comparison. As DSRC aims for 99.9% reliability,
our most appropriate result is seen in the 1% category or 1–2 packet losses. If the losses are
kept at this level, the stopping distance would not be affected, but, as the losses increase to
even 10%, we can see that a rate of 10 pps is unsafe to use. The use of 140 pps performs
well at 70 mph, but, at 30 mph, the 140 pps becomes unsafe to use; this also shows that
DSRC needs to have high data rates if the reliability is reduced below 99%.

In order for brief comparison, Figure 19 shows the PATH reaction at 70 mph and
has the reaction time set to the standard human reaction as used previously of 1.5 s. This
figure is only an example used to show how much DSRC systems can assist and reduce
stopping distances. It is acknowledged that the human driver would react from visually
witnessing an emerging scenario; therefore, the figures are highly improbable. The only
loss percentage that would not suffer significant degradation is at 1% consecutive loss.

Figure 19. Seventy miles per hour (112.63 km/h) reduction in stopping distance—PATH.

These tests highlight the importance of three main factors; reliability, data rate, and
latency. Other services would be able to cope with the loss of any of the three, but, where
safety is concerned, they are all of vital importance and must be ensured to the highest
of levels.

7. Joint Distance and Density Losses

The final part of our analysis is to employ a joint loss system between both distance
reliant and density-based losses. This will be a brief comparison as we know that density
losses contribute significantly more to losses than those of distance. To do this, we took
both previous results for distance independent losses and the density-based losses and
combined them in four different scenarios. These scenarios are all shown at 70 mph and for
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four different data rates of 10, 5, 100, and 140 pps. The 4 differences used in each simulation
are 0%, 1%, 10%, and 100% of the density-based losses. The algorithm used is the same as
with distance independent; however, we modified it to consider two different packet loss
scenarios. The results can be seen in Figures 20–23.

Figure 20. Joint loss—0% density losses.

Figure 21. Joint loss—1% density losses.

Figure 22. Joint loss—10% density losses.

From the figures produced, it can again be seen the biggest contributor to unsafe
stopping distances is at any point over 1% density-based packet losses, and the second
highest is the use of low data rates, such as 10 pps. In the 10% and 100% figures, the only
data rates that do not become unsafe are those of 100 and 140 pps, and this is where the
stopping distance does not decrease highly, further proving the requirement of high data
rates. The 10 pps performs extremely poorly when subjected to high density collisions,
which would be expected.

The final point to note is that, with the requirement of 99.9% reliability, our examples
at density 1% and maximum distance loss of 18 packets consecutively, which totaled



Future Internet 2021, 13, 68 22 of 24

approximately 20 consecutive packet losses, 140, 100, and 50 pps, did not approach unsafe
levels of distance.

Figure 23. Joint loss—100% density losses.

8. Conclusions

This paper investigated how important reliability is in the context of vehicles and
safety, especially in the context of stopping distances. We analyzed real world field test data
and showed how highly reliable communication could assist and even shorten the stopping
distance via the significantly reduced reaction time. We observed that autonomous or
automatic braking systems will be a lot more efficient in reducing stopping distances,
which in turn will allow for more efficient traffic. A model for calculating the reduction
to stopping distance when subjected to consecutive losses has also been produced and
quantified, and this helps to highlight the importance of reliability when a system is based
solely on communication. Our results also showed that almost perfect packet reception
must be guaranteed for safety when CAVs become more prevalent on the road, whilst also
showing that lower data rates are not suitable for all safety needs.

We also proved that a method of reduced safety distance with the use of our system
can reduce the effect of tailgating. We showed that our safety distance algorithm is viable
in our density-based simulations.

We showed that our system can improve safety for vehicles, using the DSRC and ade-
quate mathematical interpretation to maintain safe distances when driving and equipped
in conjunction with ADAS systems. We also prove that the main detriment to DSRC is the
collisions that can occur between vehicles and that distance is a much smaller factor in
comparison. With this said, we show that with the use of both DSRC and ADAS the safety
zone can be reduced, which would in turn reduce the number of density collisions and, by
proxy, increase road efficiency.
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