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Abstract 

Over the past few decades, physiologically-based pharmacokinetic modelling (PBPK) has been anticipated 
to be a powerful tool to improve the productivity of drug discovery and development. However, recently, 
multiple systematic evaluation studies independently suggested that the predictive power of current oral 
absorption (OA) PBPK models needs significant improvement. There is some disagreement between the 
industry and regulators about the credibility of OA PBPK modelling. Recently, the editorial board of 
AMDET&DMPK has announced the policy for the articles related to PBPK modelling (Modelling and 
simulation ethics). In this feature article, the background of this policy is explained: (1) Requirements for 
scientific writing of PBPK modelling, (2) Scientific literacy for PBPK modelling, and (3) Middle-out 
approaches. PBPK models are a useful tool if used correctly. This article will hopefully help advance the 
science of OA PBPK models.  

©2021 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons 
Attribution license (http://creativecommons.org/licenses/by/4.0/). 
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Introduction 

Over the past few decades, physiologically-based pharmacokinetic modelling (PBPK) has been 

anticipated to be a powerful tool to improve the productivity of drug discovery and development. Several 

sophisticated software products have been commercialized since the late 1990s. Plenty of case study 

reports have been published in peer-reviewed journals, showing nearly perfect prediction, prediction error 

being much smaller than the variation in the clinical plasma concentration (Cp) - time profile. It seems that 

we already have achieved a “prediction paradise”[1]. …Really? Recently, multiple systematic evaluation 

studies independently suggested that the “bottom-up” predictive power of current oral absorption (OA) 

PBPK models needs significant improvement [2–6]. Almost all case studies had to use parameter 

optimization on a drug-by-drug basis to fit the simulated plasma concentration (Cp) - time curve to clinical 

data (Part 3, section 3.4). Expert scientists continue hard experimental works to better understand in vivo 

systems and improve the predictive performance of in vitro systems [7–9]. There is some disagreement 

between the industry and regulators about the credibility of PBPK modelling [10,11]. "Publication bias" 

(Part 2, section 2.4) and "parameter optimization" (Part 3) have been identified as the main issues of the 
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case studies [11]. Recently, a more realistic view about PBPK modelling has been reported by an industrial 

consortium [12]. Are we lost in modelling and simulation? 

Recently, the editorial board of AMDET and DMPK has announced the policy for the articles related to 

PBPK modelling (Modelling and simulation ethics). This policy is introduced to enhance the science of PBPK 

modelling. In this article, the background of this policy is explained. This article consists of three parts: 

Part 1: Requirements for scientific writing of PBPK modelling, 

Part 2: Scientific literacy for PBPK modelling, 

Part 3: Middle-out approach (parameter back-calculation from clinical PK data). 

The topics discussed in this article have been repeatedly raised before. Transparency and reproducibility 

(calculation traceability) are critically important for scientific writing (Part 1) [12–14]. From the perspective 

of evidence-based medicine, case studies are less reliable for assessing the predictive power of a model 

(Part 2) [15–17]. The issue of parameter identifiability in mathematical modelling has been repeatedly 

warned in the literature (Part 3) [18–24]. 

In this article, the above points will be discussed focusing on OA PBPK modelling. But this article would 

also be beneficial to the other PBPK models. PBPK models will be a useful tool if used correctly. This article 

will hopefully enhance the science of OA PBPK modelling in the future. 

Part 1: Requirements for scientific writing of PBPK modelling 

The policy on the scientific writing of physiologically-based pharmacokinetic modelling (PBPK) articles 

complements the current journal's author guidelines that cover in vivo and in vitro methods based on 

scientific literacy. This guideline is also in line with regulatory guidance for industry regarding PBPK 

modelling [12–14]. In this article, past articles that do not comply with this policy are not quoted, because it 

would be disadvantageous for the authors. However, readers will see that the majority of the past papers 

have some issues raised in this article. 

Transparency and reproducibility are mandatory to ensure the credibility of PBPK modelling. As sciences 

and technology progress, model equations and physiological data can be updated in the future (section 

2.1). Therefore, the use of the current best estimate parameter in PBPK modelling is appropriate. However, 

if the physiological data or model equation changes in the future, past articles need to be re-evaluated. For 

example, a wide variety of small intestinal fluid volume (Vsi) has been used in oral absorption (OA) PBPK 

modelling, ranging from less than 100 mL to over 1500 mL (the former is based on the recent MRI 

measurements) [25–29]. Despite more than a 15-fold difference, they all claimed good predictability 

(section 3.3). This cannot be true. If all details had been reported, we can trace the calculation and 

retrospectively inspect the reason for this contradiction. But if there was an undisclosed part, it is not 

possible to judge whether the past good prediction is just a lucky coincidence or due to other reasons. 

When such an inconsistency arises in regulatory submissions, it causes a more troubling situation. To 

ensure the credibility of PBPK modelling, authors must write the manuscript as transparent as possible to 

enable inspection by peer-reviewers and ensure reproducibility by independent third parties. 

1.1. Introduction section 

The purpose of PBPK modelling should be explained in the introduction section. The question of interest 

and the context of use (COU) for PBPK modelling should be described [10]. There is no one-size-fits-all 

model (section 2.8). A mathematical model that suits the purpose should be selected. The reason for 

selecting a PBPK model should be explained. 
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1.2. Method section 

Based on the scientific ethics of transparency and reproducibility, authors are requested to disclose the 

model equations, physiological parameters, and drug parameters (section 2.1) that are sufficient for peer-

review (or appropriate references to them). Undisclosed parts cannot be peer-reviewed in the first place. In 

addition, according the rule of science, an experimental section should be written as detailed as possible so 

that to “enable” reproducing the same result. This point is critical for ensuring the credibility of science. If 

the word "reproducibility" is interpreted literally, even if the model equations and parameters are not 

disclosed (as in a black box model),  the results can be reproduced by using the same input data and the 

same software (same version). In the context of scientific credibility, for the articles of mechanistic models 

(including PBPK models (section 2.1)), it should be taken as calculation traceability. A method section 

should be detailed enough to enable someone who wants to trace the calculation process, at least in the 

essential parts for COU. If a part of the model is not disclosed, that part becomes a "black box”. Because a 

black box can mask errors in any part of the model, the credibility of the entire research is damaged by the 

existence of only one undisclosed part. 

The scientific validity of a research article is the author’s responsibility, even when using commercial 

software. In papers using commercial software, the model equations and physiological parameters are 

often described as "default”. The default information may have been disclosed in a user’s manual. 

However, it is not available for peer-reviewers and readers. The default model equations and physiological 

parameters must also be publicly disclosed.  

In nearly all case study reports of OA PBPK modelling, case-by-case parameter optimization (back-

calculation) has been committed to fit the simulated plasma concentration (Cp) - time curve to the clinical 

observation on a drug-by-drug basis (called “local middle-out approach”, see Part 3). Any parameter back-

calculation from clinical PK data must be explicitly stated in the method section. Case-by-case parameter 

back-calculation could have been unconsciously committed. For example, ad hoc selection of estimated 

permeability values from in silico, in vitro, or in situ data is a kind of parameter back-calculation. Various 

terms implying a subtle adjustment such as “optimize”, “fit”, “adjust”, “recover”, “refine”, and “software 

estimated”, have been used to refer to parameter back-calculation. However, the difference from the initial 

value often exceeds two-fold due to the large errors in in vitro – in vivo extrapolation (IVIVE) and/or in silico 

prediction [30,31] (section 3.10). 

When a parameter is calculated from a chemical structure by an in silico model, the prediction accuracy 

of the in silico model should be shown (or referenced) (section 3.8 (iv)). 

1.3. Results section 

When case-by-case parameter back-calculation was committed, the initial input parameters and the 

simulation results before parameter back-calculation must be reported in the result section (Figure 1). 

Unfortunately, the failed prediction is often undisclosed in case study reports. However, this information is 

important for evaluating the creditability of a back-calculated parameter. For the advancement of science, 

failed predictions are just as (or even more) important than successful cases (section 3.4). 

After case-by-case parameter back-calculation, the fitted curve must be labeled as “fitted” (NOT 

“predicted”) for the same clinical PK data used for parameter fitting. The fitted Cp - time curve is not a 

predicted curve, because the observed Cp - time profile has been used to back-calculate the parameter 

(self-referencing) (section 3.11). 

In oral absorption (OA) PBPK modelling, the fraction of a dose absorbed (Fa) is one of the most 
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important outputs for understanding the oral absorption of a drug. Although clinical Fa data (or its 

surrogates (section 2.6)) is not always available for model validation, simulated Fa data is important for 

interpreting the simulation results regarding the oral absorption of a drug, at least for biopharmaceutics 

and formulation scientists (section 2.2). Therefore, a simulated Fa value should be reported. The simulated 

Fa value (or the Fa – time profile) is available as an output in all commercial OA PBPK software products. 

However, unfortunately, this value has not been reported in many reports. 

 

Figure 1. Schematic illustration of simulated and observed Cp – time profiles 

1.4. Discussion section 

When parameter back-calculation from clinical PK data is committed, the following points should be 

discussed  (See Part 3 for details) [18–24,32–34]: (i) the reason for the mismatch of the initial “bottom-up” 

prediction and clinical PK data, (ii) the reason for selecting a parameter as the subject of back-calculation 

(sections 3.5 to 3.7), (iii) parameter identifiability (section 3.2), (iv) the accuracy of the other parameters 

than the subject of parameter back-calculation (section 3.8), (v) the plausibility of back-calculated 

parameter considering physicochemical properties, in vitro data, and in vivo physiology (section 3.10), (vi) 

the constancy of the back-calculated parameter in the clinical and/or population conditions (COU) to be 

predicted (sections 3.3 and 3.13), (vii) the validity of the optimized model  (section 3.11). 

1.5. References 

The above policy applies to the references. The authors should cite reliable articles as references. 

Part 2: Scientific literacy for physiologically-based pharmacokinetic modelling 

In Part 1, we discussed how to write a scientific article for PBPK modeling. In this part, we will discuss 

how to interpret PBPK papers and how to evaluate PBPK models. Physiologically-based pharmacokinetic 

(PBPK) models are not as easy to use as a smartphone app. As mentioned in the introduction, commercial 

PBPK software may not be so perfect as a user might believe [2–6,11,35,36]. Before using a PBPK model, we 

must understand the scientific literacy for mathematical modelling. In this part, the scientific literacy 

required for PBPK modelling is discussed. We are fully aware that there are various opinions among the 

modelers on this topic. The purpose of this part is to suggest several viewpoints when using a PBPK model. 

2.1. The basic concept of physiologically-based pharmacokinetic models 

Basically, a PBPK model consists of independent a priori information of drug and formulation 

parameters, physiological and biological parameters at the organ level, and model equations [37]. All model 
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equations and parameters have a physical and physiological basis (mechanistic basis) (Figure 2). PBPK 

models provide a mechanistic representation of pharmacokinetics and allow a priori “bottom-up” 

prediction of in vivo PK profiles from in vitro data for various clinical situations. To simulate the effect of a 

physiological factor, the model equation must include the factor as a system parameter. As drug 

parameters, the parameters that are intrinsic to a drug should be used. By combining drug-intrinsic 

parameters with physiological factors in model equations, the effects of physiological conditions can be 

simulated. This model structure allows the PBPK model to handle population variability and physiological 

covariates. Furthermore, the oral absorption (OA) PBPK model can account for the bioequivalence of 

various formulations considering confidence intervals. This point is one of the specific features that can be 

handled by PBPK modelling.  

 

 

Figure 2. Overall prediction scheme of PBPK modelling (A) and the solubility model in biorelevant media for 
an acidic drug (B). (A) In vitro data is first reduced to drug intrinsic parameters using the mathematical model 

of an in vitro system [38]. The drug intrinsic parameters are then converted to in vivo PK profiles via 
intermediate parameters (e.g., the permeation rate constant (kperm)). The drug intrinsic parameters are 
directly related to a chemical structure so that suitable for in silico prediction and drug design. (B) Drug 

intrinsic parameters: purple, physiological parameters: green, and intermediate parameter: blue [39,40]. Ka is 
the dissociation constant, S0 is the intrinsic solubility of a drug, and Kbm,0 and Kbm,- are the bile micelle partition 

coefficients for unionized and anionic drug molecular species, respectively. [Cbm] is the bile micelle 
concentration, [H

+
] is the proton concentration (= 10

-pH
), and [H2O] is the concentration of water. 

 

An OA PBPK model consists of the model equations of solubility, dissolution rate, permeability, etc. 

Therefore, it is important to understand these equations before using PBPK modelling (section 1.2, 2.3, and 

2.7). For example, in a physiologically-based solubility model (Figure 2B), the pH and the bile micelle 

concentration (Cbm) are used as physiological parameters, and the intrinsic solubility (S0), pKa, and bile 

micelle partition coefficients (Kbm) (for each unionized and ionized drug molecules) are used as drug 

parameters [35,39,40]. Physiologically-based dissolution [41–48] and permeation [49–55] models have 

already been reported in the literature and implemented in some OA PBPK models. The followings are 

examples of physiologically-based dissolution and permeation models in the simplest form.   
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Dissolution model (for mono-dispersed spherical small particles) [41–48,56] 

1/3 2/3eff surface dissolv
2 undissolv

dissolv GIp

d 3
1

d
undissolvX D S X

X Dose
t S Vr

 
   

 
 

where Xundissolv and Xdissolv are the amounts of a drug undissolved and dissolved in the gastrointestinal fluid, 

respectively. Deff is the effective diffusion coefficient, Dose is the dose strength, ρ is the true density of the 

drug substance, and rp is the particle radius (rp < 30 μm). Ssurface and Sdissolv are the solubilities of a drug at the 

particle surface and in the bulk fluid, respectively. VGI is the gastrointestinal fluid volume. The dissolution 

rate constant (kdiss) is kdiss = 3 Deff Ssurface/(ρrp
2). Ssurface, Sdissolv, and Deff are affected by physiological factors 

such as pH, buffer capacity, bile micelle concentration (Figure 1(b)).  

Permeation model (for passive diffusion) [49–55] 
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where Xperm is the amounts of a drug permeated the intestinal wall, kperm is the permeation rate constant, 

DF is the degree of flatness of the small intestinal tube, RGI is the radius, Peff is the effective intestinal 

membrane permeability, PE is the plica expansion factor, PUWL is the UWL permeability, VE is the villi 

expansion factor, fu is the fraction of unbound drug molecule species (free fraction), f0 is the fraction of 

undissociated drug molecule species (calculated from pKa and pH), Ptrans0 is the intrinsic passive transcellular 

permeability, Ppara is the paracellular permeability, heff is the effective thickness of the UWL, and PWC is the 

water conveyance. 

Instead of using a physiologically-based mechanistic dissolution model, an experimental in vitro 

dissolution profile can be plugged into an OA PBPK model as a kind of intermediate parameter (Figure 

2A)[57]. This strategy is often used when the dissolution process is the key determinant of oral drug 

absorption. In this case, the dissolution profile is pre-fixed so that it is not altered by the physiological 

factors in the computer simulation. For example, when a dissolution profile measured at pH 1.2 is plugged 

into an OA PBPK model, it is not changed even if the gastric pH value is changed from pH 1.2 to pH 5.0 in 

the OA PBPK model. Consequently, it cannot account for the effect of inter- or intra- subject variability of 

relevant physiological parameters on drug dissolution processes. Such a simulation strategy may be 

understood as a variation of the convolution method, rather than “physiologically-based” computational 

modelling (in the case of using in vivo predictive dissolution testing [58–61], the in vitro dissolution profile 

itself is physiologically-based). 

2.2. To Explain or to predict? Which is the position of a PBPK model? 

The purpose of mathematical modeling is not only to calculate the predicted values, but also to explain 

the observed and predicted data (understanding, interpretation) [62]. The interpretability of a model is 

especially important for medical applications. For an explanation-oriented model, ideally, all system 

parameters should be set based on independent a priori information. From the viewpoint of mathematical 

modelling, PBPK models are more of an explanation-oriented model when compared to more complex 

statistic models like deep learning [63]. In general, the interpretability of a model decreases as the model 
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becomes more complex. Simple models have a great value of “interpretability” by themselves [64]. On the 

other hand, complex models may (or may not) show better predictive power (prediction performance, 

generalization performance) (section 2.8).  

The predictive power and description capability of a model are different. The description capability of a 

model is to describe existing data, whereas the predictive power is to predict unknown data. As a model 

becomes more complex and flexible, description capability always increases. However, predictive power 

does not always increase, because assumptions and errors can accumulate with the increasing complexity 

of a model (sections 2.8 and 3.10). When parameterization is used, a complex model is often prone to 

overfitting (Figure 3). 

In mathematical modelling, generally speaking, to compensate for its lesser interpretability and its 

higher risk of overfitting, a complex model should show a significant advantage over a simple model with 

respect to predictive power for the context of use [20,64–67]. If simple and complex models show 

comparable predictive power with regard to the context of use, the simple model should be selected (cf. 

Occam’s razor, the principle of parsimony) [68]. At the same time, when a complex model shows better 

predictive power, the complex model should be selected (section 2.8). 

 

Figure 3. Overfitting.  

In Figure 3, the quintic equation perfectly describes (fits) the data. If the experimental data is error-free, 

it is suitable for predicting unknown Y from new X data. In practice, especially for biological data, there is 

always error in experimental data. For objective model selection, statistical indices such as the Akaike 

Information Criterion (AIC) can be used [69]. 

2.3. How to interpret a model 

There are several ways to interpret a mathematical model to understand the behavior of the system of 

interest. 

Parameters 

The first step to understanding a PBPK model is to know the parameters that affect the physical and 

physiological processes. Parameters that are not included in the model equation cannot be captured by the 

model. Before using a PBPK model, we must understand the key factors that affect the pharmacokinetic 

processes of a drug (sections 2.1 and 2.7). Intermediate parameters can be used to understand the 

contribution of each process. 
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Mathematical structure 

A mathematical structure represents the relationship between the system parameters, the dependent 

variables, and the independent variables, for example, being additive, synergistic, proportional, inversely 

proportional, exponential, etc. This point is important for parameter identifiability (see Part 3). 

Rate-limiting step 

In any kinetic model, it is essential to understand the rate-limiting step (or rate-limiting parameter) 

[70,71]. For example, the rate-limiting step that determines Fa (FaRLS) can be diagnosed from the solubility, 

dissolution, and permeation numbers [53,72]. From FaRLS, the sensitive parameters for Fa of a drug can be 

easily identified. The rate-limiting step of intestinal membrane permeation can be diagnosed by using a 

physiologically-based permeability model [73,74]. The rate limiting step could differ depending on the 

physiology of each subject. 

Parameter sensitivity analysis 

Parameter sensitivity analysis (PSA) has been utilized to interpret black-box models, such as deep 

learning. PSA could also be useful in PBPK modelling. In PBPK modelling, PSA has been generally used to 

help deciding which parameters require further consideration either for additional in vitro measurement or 

parameter back-calculation (section 3.5). A PBPK model includes all parameters and models, however some 

of these may have little or no influence on the outcome. 

2.4. Evidence level regarding the predictive power of PBPK models 

The predictive power of a mathematical model can be evaluated based on the concept of evidence-

based medicine (EBM) [15–17]. According to EBM, the evidence level of a case study is low. Case studies are 

prone to publication bias. Successful cases tended to be published whereas failed cases are usually not 

published. Historically, publication bias has caused the illusion of knowledge, especially in the medical area. 

A systematic study is essential to evaluate the predictive power of PBPK models. For the bottom-up 

prediction by OA PBPK models, several systematic evaluation studies have already been published [2–5]. 

However, middle-out approaches (see Part 3) have been evaluated mostly by case studies (or the collection 

of case studies). Systematic evaluation is required for middle-out approaches using a standardized 

procedure (more precisely, for local middle-out dynamic PBPK models) [10,75,76].  

Although the evidence level of a case study is limited, it is still beneficial as far as appropriately 

conducted and reported. However, the creditability of case studies has often been compromised by the 

existence of a black box in a model (see Part 1) and inappropriate parameter optimization (see Part 3) [11]. 

The middle-out approach is discussed in detail in Part 3. 

2.5. Points to consider for systematic evaluation of predictive power 

Dataset: In OA PBPK modelling, the biopharmaceutical classification system (BCS) can be a good starting 

point [6,77,78]. A test set biased to BCS class I drug (high solubility/high permeability) should be avoided, 

because complete absorption is easily expected for BCS class I drug. Similarly, no food effect and no gastric 

pH effect on Fa are expected for BCS class I drugs (but they could affect Cmax and F). In the case of BCS class I 

drugs, complex OA PBPK models may add little advantage over simple models for Fa prediction (depending 

on the purpose of the model) (section 2.8). 

Control: A simple model or a naïve prediction (Figure 4) should be used as a control to evaluate the 

predictive power of complex models [5,50,51,79].  
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Outcome: The absolute bioavailability (F) or Fa has been used to evaluate OA PBPK models [2]. F is 

calculated by subtracting the effects of Dose and systemic clearance (CL) from oral AUC data using i.v. data 

(F = (AUCp.o./Dosep.o.)/(AUCi.v./Dosei.v.)). FaFg can then be calculated from the hepatic clearance (CLh) as FaFg = 

F/Fh, Fh = 1 – CLh /hepatic flow [80] (Fg: the fraction escaping the intestinal wall metabolism, Fh: the fraction 

escaping the hepatic first-pass metabolism). In addition, there are several methods to estimate Fa from 

clinical PK data (section 2.6) [5,81]. AUC is less suitable for evaluating the predictive power of OA PBPK 

models because the main determinant of AUC is Dose and CL in many cases. 

Statistics: Statistics must be carefully interpreted. The percentage within a two-fold error is often used 

to evaluate the predictability of PBPK models. However, even when the predicted and observed F values 

are randomly distributed from 0 to 1, the percentage within a two-fold error becomes 50 % (Figure 4A) (see 

also Figures 3 and 4 in [6]). When predicted as average, 75 % is within a 2-fold error (Figure 4B). This kind of 

prediction is called “naïve prediction”. This percentage increases when the data set is biased towards BCS 

class I. 

 
Figure 4. Naïve prediction. (A) Random prediction, (B) prediction by average. The percentage within a two-

fold error is 50 % for (A) and 75 % for (B). 

2.6. Surrogates of Fa data 

In OA PBPK modelling, the fraction of a dose absorbed (Fa) is an important simulation output (section 

1.3). However, there is no exact method to measure in vivo Fa. Therefore, one or a few approximations 

have been used to estimate Fa from in vivo PK data [50,70,79,82–84]. 

(A) Mass-balance data using a radio-labeled drug for i.v. and p.o. 

(B) From absolute bioavailability (F), hepatic clearance (CLh), and the hypothesis of Fg = 1 (section 3.8 

(v)). 

(C) Relative bioavailability of solution vs. solid formulation. 

(D) Relative bioavailability in the fasted state vs. the fed state (when Do < 1 in the fed state) (Do: the 

dose number (Dose/ (S ×Vsi)), S: solubility, Vsi: small intestinal fluid volume). 

(E) Relative bioavailability between the dose strengths where Do < 1 and Do > 1 (AUC can be corrected 

by elimination T1/2 for nonlinear clearance drugs). 

The mass-balance data would be the most reliable data to estimate Fa. However, these data are rarely 

available. When i.v. data is available, we can estimate FaFg from F and CLh. When i.v. data are not available, 
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for high permeability drugs, the relative bioavailability to an oral formulation that eliminates the effect of 

solubility and dissolution ((C)-(E)) can be used as a surrogate of Fa (cf. in this case, the effects of Fg and Fh 

are canceled out). The permeability category (low/high) can be reliably diagnosed by in vitro permeability 

assays [85]. In the case of high Papp drugs (> metoprolol Papp at pH 6.5, metoprolol log DpH6.5 = -1.1)[86], Fa 

will be greater than 0.8 with a very high probability when there is no solubility and dissolution limitation. 

Based on this high reliability, Caco-2 Papp data has been used for regulatory biowaiver submission (note: for 

highly lipophilic drugs (log DpH6.5  > 1.5), the Caco-2 assay may underestimate the permeability of the drug 

due to experimental artifacts such as membrane binding [87,88], leading to a misassignment of a drug as 

low permeability (this can be identified by a mass balance study in Caco-2). In this lipophilicity range, the 

diffusion through the unstirred water layer becomes the rate-limiting step of in vivo membrane 

permeation. Therefore, a rough estimation of permeability from experimental log DpH6.5 will be sufficient 

and could be more reliable [55,86]). 

The above methods showed similar Fa values when applied to the same drug in most cases 

[50,79,82,83], confirming the validity of these methods. More than 600 clinical Fa data has been compiled 

from the literature and has been used to evaluate OA PBPK models [5,50,73,79,83,86,89,90]. For low Fa 

drugs the inter-subject variability is usually very high, and a clinical study may be an unrepresentative 

sample of the population. 

2.7. Often forgotten physicochemical mechanisms in OA PBPK modelling 

A good understanding of physicochemical processes in oral drug absorption is specifically important for 

OA PBPK modelling (see conclusion part). Below are some examples of physicochemical mechanisms that 

are often forgotten in OA PBPK modelling. 

Example 1: Peff estimation from in vitro data 

It is well known that the effective intestinal membrane permeability (Peff) is markedly affected by bile 

micelle binding [51,91–94], the unstirred water layer (UWL) [74,95–98], and the anatomical features (villi 

and fold structures) [99] (section 2.1) (cf. the Peff value includes the free fraction effects by definition in 

most cases of commercial software). However, these factors cannot be captured by an empirical equation 

of Peff = aPapp
b (log Peff = A’ + B’log Papp) (Papp: in vitro apparent permeability). This empirical equation cannot 

correctly explain and predict the food effect (especially the negative food effect) [51,91,100], the 

formulation effect (solubility-permeability trade-off)[101,102], and species differences [52,103]. The 

empirical coefficients, a and b (or A’ and B’), are usually determined by the regression analysis between Peff 

and Papp
 using hydrophilic model drugs (log D < 1)[31]. Therefore, lipophilic drugs are beyond the applicable 

range of the standard curve. In addition, Papp is usually measured in the absence of bile micelles on the 

apical side and albumin on the basolateral side. The thick UWL in the in vitro systems mask the membrane 

permeability when not rigorously agitated [98,104]. Finally, and most importantly, this equation is an 

empirical correlation so that it should not be referred to as “physiologically-based”. A mechanistic 

physiologically-based permeation model that considers these factors is available in the literature  (section 

2.1) [49–55] and in some commercial software products. 

Example 2: Dissolution in the stomach 

The gastric fluid is acidified by hydrochloric acid (HCl). Because HCl is not an efficient buffer, the pH 

value of the gastric fluid increases when a free weak base drug is dissolved [105]. In addition, the solid 

surface pH is markedly increased by the dissolving free base molecules [42,43,48,61,106,107]. Therefore, 

the solid surface solubility (Ssurface) and the bulk phase solubility (Sdissolv) must be differentiated in the 



ADMET & DMPK 9(2) (2021) 75-109 Lost in modelling and simulation? 

doi: https:/doi.org/10.5599/admet.923 85 

Nernst-Noyes-Whitney equation (section 2.1) [35]. These two factors are important for predicting the effect 

of gastric pH on drug absorption. A mechanistic dissolution model that considers these factors is also 

available in the literature (section 2.1) [42,43,48,61,79,106,107] and in some commercial software 

products. 

Example 3: Salt dissolution 

The dissolution modelling of a salt form drug is not that easy as one might imagine. The solid surface 

solubility of a salt is significantly higher than that of the free form (> 100-fold in most cases). However, the 

equilibrium solubility in the pH-controlled region becomes the same regardless of the starting material is a 

free form or a salt form (unless the residual solid (equilibrium maker) show different solid forms) (cf. a salt 

form coverts to a free form in the pH-controlled region). In drug discovery and development, the solubility 

of a drug substance is usually measured in well-buffered media after a sufficient incubation time to achieve 

equilibrium [108–111]. The small intestinal pH (about pH 6.5) is in the pH-controlled region in most cases. 

In addition, a salt form may or may not show faster dissolution and more importantly supersaturation after 

dissolution, because the solid surface precipitation of a less soluble free form can inhibit the dissolution of 

its salt [112,113]. The mechanism of supersaturation and precipitation is not well understood at this 

moment. However, at least, it does not simply follow the first-order kinetics [114–119]. 

In addition, in silico models for the physicochemical properties of a drug are not so accurate as to be 

used for PBPK modelling [120]. Solubility measurements are not as easy as a modeler might imagine 

[109,111,121]. The pKa values change between 25 °C and 37 °C [122,123]. Enabling formulations such as 

amorphous solid dispersion [124], co-crystal [125,126], nanoparticles [127–129], and self-emulsifying drug 

delivery system [130,131] also requires an in-depth understanding of physical chemistry for OA PBPK 

modelling. Further investigations on these points are required in the future (see conclusion part). 

2.8. A simple PBPK model or a complex PBPK model, which one to use? 

“Everything should be made as simple 
as possible, but not simpler.” 

Albert Einstein 

As mentioned above, we are fully aware that there are various opinions among the modelers on the 

selection of mathematical models. A PBPK model should be selected considering the purpose of modelling 

and available data at each drug discovery and development stage. In the early drug discovery stages, a 

simple PBPK model may be sufficient. In the late drug development stages and after launch, a complex 

PBPK model may be required to investigate more complex clinical situations.  

For the use in the early drug discovery stages, simple models can show sufficient prediction 

performance [20,64,82,132,133]. A simple OA PBPK model has shown good prediction performance for the 

fraction of a dose absorbed (Fa) [5,50,79,83,134] and plasma concentration (Cp) - time profiles [135–143]. 

For relative bioavailability (Frel) prediction, a simple OA-PBPK model is also available for the food effect (via 

bile micelles) and gastric acid effect predictions [51,79,100]. By multiplying AUC in the fasted state (or low 

gastric pH) with Frel (i.e., AUC ratio), AUC in the fed state (or high gastric pH) can be estimated. Minimal 

PBPK models have also been proposed to reduce the complexity of a model (see section 3.13 for metabolic 

DDI prediction) [21,144].  

To explain and predict complex pharmacokinetics and population variation in late drug development 

and product life-cycle management, a PBPK model should have sufficient components. Commercial 

software products that implements a complex dynamic OA PBPK model would be especially useful for these 

purposes. 
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Part 3: Middle-out approach 

Part 2 discussed the interpretation and evaluation of the PBPK model. One of the most difficult parts of 

evaluating a PBPK model is the validity of the middle-out approach. Therefore, middle-out approaches are 

discussed in this part. Middle-out approaches have been widely utilized in real drug discovery and 

development [21]. They would be effective to improve various processes in drug development. At the same 

time, if they are inappropriately used, they could cause trouble. The purpose of this section is to discuss 

how to properly use the middle-out approach in OA PBPK modelling. 

3.1. The concept of the middle-out approach 

In a middle-out approach, some parameters of a PBPK model are derived from in vitro data (bottom-up), 

while others are derived from clinical PK data (top-down) on a drug-by-drug basis (see also section 3.14). In 

the following sections, this prediction scheme is referred to as a “local (drug-by-drug)” middle-out approach 

to differentiate it from a “global” middle-out approach (section 3.15) [145]. For drug-drug interaction (DDI) 

prediction, the local middle-out approach using a CYP specific inhibitor or substrate has been successfully 

used [21] (section 3.12). However, it has been pointed out that the inappropriate use of a local middle-out 

approach reduces the creditability of OA PBPK modelling [17,20]. 

A middle-out approach brings an empirical model into PBPK modelling (Figure 5, the red line and 

square). Therefore, we should follow the good practice of empirical modelling: (i) Before back-calculation, 

parameter identifiability must be carefully examined (sections 1.4 and 3.2) [18–23,32,33]. (ii) The degree of 

freedom must be enough to avoid overfitting (section 2.2, Figure 3). (iii) The predictive power must be 

validated using clinical data that is not used to back-calculate the parameter (called “cross-validation”) 

(section 3.11). (iv) The optimized empirical model should be used within the parameter space limited by the 

data used for back-calculation (so that as interpolation) (This is a general recommendation for empirical 

models. For the hybrid of empirical and mechanistic models, this point (iv) needs further in-depth 

discussion.). 

3.2. Parameter identifiability: a simple explanation 

The issue of parameter identifiability in biological mathematical modelling (including PBPK modelling) 

has been repeatedly warned in the literature [18–24]. However, this issue seems to have been overlooked 

in many case studies using a local middle-out approach. In this section, parameter identifiability is plainly 

explained focusing on OA PBPK modelling. 

In a middle-out approach, the identifiability of a parameter(s) must be assessed before back calculating 

the parameter, whether the parameter(s) can be uniquely and reliably identifiable from the input-output 

data [18–24]. There are two types of parameter identifiability: statistical and structural. Statistical 

identifiability is related to the experimental error of the observed data. However, even with error-free data, 

a model parameter could be structurally non-identifiable. 

To illustrate the concept of structural identifiability, let’s consider an equation of Y = abX, where X is an 

explanatory variable, Y is an object variable, and a and b are system parameters [23]. The lump quantity a·b 

is uniquely identifiable from X and Y, while the individual parameters of a and b are non-identifiable (it is 

mathematically indefinite). Even when multiple XY data sets are available, a and b are non-identifiable. 

Therefore, a or b must be fixed separately.  
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Figure 5. Bottom-up and middle-out approaches for OA PBPK modelling. A middle-out approach brings an 

empirical model into a PBPK model (the red line and square). For parameter back calculation and validation, 
separate clinical data (Fa, Fa’) must be used. 

The statistical identifiability can be understood by considering Y = 1/ (X + a). If the error of X is 

comparable to a, a cannot be reliably determined (even assuming zero error in Y). For example, when X = 

100 ± 10, we cannot determine a smaller than 10. Preferably, a should be determined at X << a. Another 

familiar example is Y = 1 - exp(-aX) (Figure 6). In this case, aX should be < 1.5 if Y has a 20 % error. The other 

simple examples of parameter identifiability are shown in Supplemental Information. 

 

Figure 6. Y = 1 – exp (-aX). 

 

3.3. Local middle-out approach to predict the food effect: an example 

To overview the process of a local middle-out approach and understand the importance of parameter 

identifiability, in this section, we look at a simple example of OA PBPK modelling using a local middle-out 

approach and then discuss the checkpoints. 
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Step 1: Problem statement 

The drug candidate is a poorly soluble non-ionizable compound. The formulation is a simple immediate-

release formulation. Drug parameters are available from preclinical in vitro studies (Table 1). The 

physiological data are provided as default values. 

Table 1. Drug and physiological parameters (example) 

Parameter Value Comments 

Drug parameter   
Permeation rate constant (kperm) 0.1 h-1 From Caco-2 data (Peff = a Papp

 b) 
Effective solubility (S) 0.1 mg/mL 

0.2 mg/mL 
Fasted state simulated intestinal fluid (FaSSIF) 
Fed state simulated intestinal fluid (FeSSIF) 

Dose strength (Dose) 350 mg  
Particle size 5 μm  
Diffusion coefficient 6 × 10-6 

cm2/s 
 

   
Physiological parameter   
Small intestinal fluid volume (Vsi) 1000 mL Default (see Checkpoint 4) 
Small intestinal transit time (Tsi) 3.5 h Default 
Small intestinal radius (Rsi) 1.5 cm Default 
Degree of flatness (DF) 1.7 Default 
Fraction escaping first pass hepatic 
metabolism (Fh) 

1 Calculated from i.v. CLh and hepatic flow 

Now, the clinical PK data in the fasted state became available after the first-in-human study (both p.o. 

and i.v.). The bioavailability (F) was 0.30 ± 0.15 (mean ± s.d.). We are asked by the managers to predict AUC 

in the fed state in healthy volunteers. To utilize the first-in-human clinical data, we decided to conduct a 

local middle-out approach. 

Step 2: Model selection 

The particle size is small enough so that the drug dissolution process does not become the rate-limiting 

step [70–72]. In addition, because the drug is non-ionizable, gastric dissolution would have little effect on F. 

In the case of solubility limited oral absorption, F can be calculated as [146]: 

g h perm si si
a g h g h

F F k SV TPn
F F F F F F

Do Dose
    (1) 

where Pn is the permeation number (=kperm ×Tsi), and Do is the dose number Do = Dose/ (S ×Vsi). Fg is the 

fraction escaping the intestinal metabolism. In this example, Eq. 1 is used as a model equation for 

convenience. 

Step 3: Parameter optimization 

From Eq. 1 and given data, kperm is optimized to be 0.3 h-1 in the fasted state. 

Step 4: Model validation 

Using the optimized kperm value, F is calculated as, 

 

This predicted F value perfectly matches the clinical F data (= 0.30). This kperm value is additionally 

𝐹 =
0.3 × 0.1 × 1000 × 3.5

350
= 0.30 
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validated using the independent clinical F data in the fasted state. 

Step 5: Prediction 

The optimized kperm value is then used to predict F in the fed state. Using the solubility in FeSSIF (0.2 

mg/mL), Fa is calculated as 

 

Therefore, AUC is predicted to increase twofold in the fed state. 

Checkpoint 1: Hidden “bottom-up” prediction 

Usually, we start a prediction study with a “bottom-up” approach at a preclinical stage (section 1.3). The 

input parameters are initially projected from the in vitro data. In the above case, 

 

The “bottom-up” prediction resulted in a 3-fold underestimation. kperm was increased threefold (from 0.1 

to 0.3) after parameter optimization. This is not a subtle adjustment. This information alerts that there is a 

marked discrepancy between the kperm values estimated from the Caco-2 data and back-calculated from the 

clinical F data (section 3.4).  

Checkpoint 2: Subject of parameter optimization 

The reason for selecting kperm as the subject of parameter optimization is not clear (sections 1.2 to 1.4 

and 3.5 to 3.7).  

Checkpoint 3: Parameter identifiability  

Eq. 1 suggests that the kperm value is not identifiable from the provided data (F, Fh, Dose, S, Vsi, and Tsi).  

Fg must be separately fixed (section 3.8 (v)). In the above calculation, Fg was unknowingly assumed to be 1 

(section 1.2 to 1.4).  

Checkpoint 4: Hidden errors  

The intestinal fluid volume of 1000 mL is significantly greater than the current best estimate (most 

probably < 150 mL) (in the discussion below, we assume that 100 mL is realistic for the convenience of 

discussion) [26–29]. The optimized kperm value carries the error in the intestinal fluid volume (e.g., 1000 mL 

vs 100 mL). With a more realistic intestinal fluid volume of 100 mL, the kperm value is back-calculated to be 

3.0 h-1, ten-fold higher than 0.3 h-1. This could cause a misunderstanding of the rate-limiting step for 

membrane permeation (section 1.4).  

Checkpoint 5: Variation of clinical data 

Considering that CV% of F is 50 %, it is not possible to back-calculate the kperm value within a good 

confidence interval. 

Checkpoint 6: Constancy of optimized parameter 

It was implicitly assumed that the kperm values in the fasted and fed states are the same. However, it is 

well known that bile micelle binding reduces the free fraction, the effective diffusion coefficient, and 

consequently Peff and kperm (section 2.7) [51,91,92,94,147,148]. 

𝐹 =
0.3 × 0.2 × 1000 × 3.5

350
= 0.60 

𝐹 =
0.1 × 0.1 × 1000 × 3.5

350
= 0.10  
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Checkpoint 7: Model validation 

The predictive power of a model cannot be validated by the same data used for parameter back-

calculation (section 3.11). 

Checkpoint 8: Prediction 

After parameter optimization, the predictive range of the optimized model is limited to the parameter 

space of the clinical data that is used for model development (limited to interpolation with some 

exceptions). 

In the above example, a simple model (Eq. 1) was used for convenience to illustrate the middle-out 

approach. In complicated PBPK modelling, these checkpoints are not so easy to recognize. However, the 

mathematical principle remains the same. 

3.4. When is a local middle-out approach required? 

A local middle-out approach is required when a bottom-up prediction is not satisfactory for the contest 

of use (section 1.3, Figure 1). The widespread use of a local middle-out approach is consistent with the 

results of systematic evaluation suggesting that current bottom-up OA PBPK models need significant 

improvement (introduction section). Discrepancies between bottom-up predictions and clinical 

observations may suggest opportunities to uncover unidentified mechanisms or to improve the equations 

and parameters of the model (Sections 1.3, 3.3 Checkpoint 4). Before parameter back-calculation, the 

reason for the discrepancy should be thoroughly explored (sections 1.4 and 2.7). 

3.5. How to diagnose parameter identifiability in OA PBPK modelling 

In the literature, Peff has often been the subject of back-calculation. Therefore, the identifiability of Peff is 

discussed as an example below. 

Simple analytical solutions are useful for diagnosing the parameter identifiability (section 2.2). The Fa 

equation represents the relationship between the solubility, dissolution rate, and permeation of a drug to 

Fa [5,35,149]: 

a
1

1 exp
1

F
Do

Dn Pn

 
 

   
 
 

 (2) 

where Dn is the product of the dissolution rate (kdiss) and the intestinal transit time (Dn = kdiss × Tsi). When 

Do < 1, set Do = 1. 

When the oral absorption of a drug is limited by the dissolution rate (Dn < Pn/Do), the permeation 

process is statistically non-identifiable from Fa (cf. Y = 1/ (X + a)). In other words, for Peff to be identifiable, 

the oral absorption must be permeability or solubility-permeability limited. In this case, Eq. 2 becomes: 

a 1 exp
Pn

F
Do

 
   

 
 (3) 

At Pn/Do > 0.7, the Peff value (that is in Pn) is statistically non-identifiable from clinical Fa data 

considering the variation of clinical Fa data (cf. Y = 1 - exp(-aX), Figure 6). At Pn/Do < 0.7, Eq. 3 can be 

approximated to [146]: 
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 a
Pn

F
Do

  (4) 

Using Eq. 4 for Fa, the AUC value after oral administration can be expressed as: 

perm si g h perm si si
a g h g h g h

si

Dose

k T F F k SV TDose Dose Dose Pn Dose
AUC F F F F F F F F

CL CL CL Do CL CL

SV

      (5) 

Finally, 

g h eff si si

si

2F F DF P SV T
AUC AUC

CLR

 
   (6) 

In the absence of a unique correspondence between a parameter and a Cp - time profile, it is impossible 

to directly quantify the physiological process that involves the parameter. When the parameters are in a 

multiplication relationship, they are structurally non-identifiable from clinically observed data (cf. Y = abX). 

As clearly represented in Eq. 6, the individual parameters related to oral drug absorption cannot be 

calculated solely using AUC after oral administration [19–22,33]. Therefore, an OA PBPK model is essentially 

overparameterized. To back-calculate Peff from Fa, the other eight parameters (Fg, Fh, S, Vsi, Tsi, Rsi, DF, and 

CL) must be fixed separately. 

Parameter sensitivity analysis can be used as a support to diagnose the identifiability of parameters. 

However, AUC is sensitive to all the parameters on the right-hand side of Eq. 6. Being a sensitive parameter 

is a necessary but not sufficient condition to be identifiable [19–22]. 

A similar analysis of parameter identifiability can be performed for Cmax and Tmax: 

el

el aa
max

d el

k

k kkFDose
C

V k

 
  

 
 

a
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a el el

1
ln

k
T

k k k

 
  

  
 

where ka is the absorption rate constant, kel is the elimination rate constant, and Vd is the volume of 

distribution. ka can be approximated as 1/ka = 1/kdiss + Do/kperm (section 3.14). 

3.6. What kind of parameters can be candidates for back-calculation? 

Only an intermediate parameter (e.g., Peff) or an empirical scaling factor should be the candidates for the 

subject of parameter back-calculation from clinical PK data in a local middle-out approach (Figure 2).  

Drug-intrinsic parameters, especially physicochemical properties, should not be the subject of 

parameter back-calculation from clinical PK data. They should be determined by in vitro measurements. 

Physiological parameters such as the small intestinal fluid volume (Vsi) should not be the subject of drug-

by-drug back-calculation as well, because they do not change drug-by-drug (except for drugs with 

gastrointestinal effects) (A global middle-out approach has been used to estimate some physiological 

parameters when direct measurements are not possible (section 3-15)).  

Post-absorptive (systemic) PK parameters such as CL and Vd should be determined from i.v. Cp - time 

data [33] (unless F = 1 can be surely estimated from in vitro data, such as the case of BCS class I drug with 

low hepatic clearance). The same CL and Vd values should be used regardless of formulations or 
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administration routes. Oral formulation usually does not affect systemic CL and Vd (however, it affects CL/F 

and Vd /F). 

3.7. Which candidate parameter should be selected for back-calculation? 

When multiple candidate parameters can equally explain the discrepancy between prediction and 

observation, we cannot determine which one to be selected for back-calculation solely based on the clinical 

data. This situation is like a checksum process. We can validate a series of numbers by checking the sum of 

numbers, but we cannot tell which number has the error. The selection of a parameter depends on the 

clinical study design and the reliability of the estimation from in vitro data (section 3-8, (iv)). Identifiability 

issues can be even more severe when there are regional differences in the gastrointestinal parameters in 

Eq 6. 

3.8. How to fix the other parameters 

There are several methods to fix the other parameter values. 

(i) Clinical study using different administration routes and formulations 

To reliably estimate a parameter from clinical PK data, the interference of confounding factors must be 

reduced as much as possible. A specific clinical study design has been employed to eliminate the 

confounding factors for each parameter (Table 2) (see also (3.13)). For example, systemic clearance (CL) can 

be obtained from i.v. data. An i.v. administration eliminates the oral absorption process (F = 1), so that CL 

become identifiable from AUC (cf. CL = Dose/AUC). Vd and Fh can also be calculated from the i.v. data [150]. 

An oral solution formulation can be used to eliminate Dn from Eq. 2 (1/Dn becomes negligible), and S and 

Vsi from Eq. 6 (mathematically, by fixing Do = 1). 

Table 2. The parameters and the clinical study design 

Parameter Clinical study design Reference 

CL, Vd i.v. administration -a 

Peff Site-specific solution administration and i.v. administration [151] 

Precipitation rate Site-specific solution administration and sampling [152][153] 
a
 See any pharmacokinetic textbook 

It is not known whether parameter back-calculation from the oral Cp - time data after the administration 

of solid dosage forms can be accurate. Theoretically, the dissolution processes can be decomposed from 

the permeation process by using the Cp - time data from solution formulations [154]. However, this 

deconvolution process often becomes unstable due to the variation of the data. In addition, there has been 

no systematic evaluation of Peff back-calculation from the oral Cp - time data after the administration of 

solid dosage forms. Unfortunately, in the literature, Peff has been back-calculated even in the absence of i.v. 

data in many cases. The credibility of such Peff back-calculation is at least questionable (section 3.9). 

(ii) Experimentally measured physiological parameters 

Experimentally measured physiological parameters can be obtained from the literature (Vsi, Tsi, and Rsi in 

Eq. 6). However, it should be noted that some of the physiological parameters reported in the literature 

have large variations between subjects and between occasions. 

(iii) Physiological parameters estimated by a global middle-out approach 

The global middle-out approach has been used to back-estimate an unknown physiological parameter 

from clinical PK data (DF in Eq. 6, section 3.15). 
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(iv) Preclinical in silico, in vitro, and in vivo data  

Preclinical in silico, in vitro, and in vivo data can be used to fix a parameter if their predictability is 

sufficient considering the contest of use (COU) (section 1.2). The in vitro equilibrium solubility in 

biorelevant media such as FaSSIF and FeSSIF has often been assumed to be in vivo predictive. However, it 

should be noted that these are simplified artificial fluids, not actual intestinal fluids. FaSSIF and FeSSIF are 

very good model fluids, yet, the solubility values do not always accurately reflect the real in vivo values 

[155]. In addition, the solubility data could be inaccurate when inappropriately measured [109]. 

Current in vitro-in vivo extrapolation (IVIVE) and allometric scaling for CL and Vd is not sufficiently 

accurate for the COUs of OA PBPK modelling in the late drug development stage [7].  

In silico models for the physicochemical properties and other ADME properties of a drug are not so 

accurate as to be used for PBPK modelling [120] (except for molecular diffusion coefficients [156, 157]). 

(v) Hypothesis generation 

The Peff value is still not identifiable after fixing S, Vsi, Tsi, Rsi, DF, CL, and Fh. Hypothesis generation is 

required to estimate Fg [14]. Hypothesis generation may include IVIVE, but in a less qualitative manner. 

Hypothesis generation about the negligibility of a parameter would be most credible and useful because it 

can reduce the interference from the parameter for back-calculation. The credibility of a hypothesis can be 

improved by combining various in vitro, preclinical in vivo, and clinical observations. For example, when in 

vitro data suggest that a drug is not a substrate of intestinal metabolic enzymes, Fg = 1 (no gut wall 

metabolism) can be a plausible hypothesis. Low intrinsic hepatic clearance (< 100 mL/min/kg)[158], the lack 

of metabolites, and the lack of clinical grapefruit–drug interaction can further support the hypothesis of Fg 

= 1. 

3.9. A good example of credible parameter back-calculation  

Sjögren et al. reported that Peff can be credibly identifiable by the deconvolution of the Cp - time profiles 

after intraintestinal bolus administration as a solution, using i.v. disposition data [151]. They pointed out 

that the Cp - time profiles after an oral administration may not be suitable for Peff estimation due to possible 

interference of confounding factors. They used a solution formulation to eliminate the uncertainty in S, Vsi, 

and the effect of dissolution processes. Intra-intestinal administration was used to eliminate the effect of 

gastric emptying. The i.v data was used to calculate CL and Fh. Hypothesis generation was used for Fg. The 

basic concept of their approach is shown in Figure 8 (They used the deconvolution method, but it was 

simplified to AUC calculation to explain the concept). 

3.10. Accumulation of errors 

After parameter back-calculation, the simulation curve would show perfect fitting to the observed Cp -

time data that had been used for parameter back-calculation. However, this perfect fitting does not imply 

the validity of all parameters and model equations.  

A back-calculated parameter inherits the errors of the other parameters (see Checkpoint 4). In the case 

of Eq. 6, the errors in nine separately fixed parameters (Vsi, Tsi, Rsi, DF, S, CL, Fg, Fh, and clinical AUC) 

exponentially accumulate in Peff (sections 2.2, 2.8). Even if each parameter has only a small error of 20 % 

(1.2-fold), the total error can become 5.2-fold (= 1.29). To back-calculate Peff within less than 20 % error, 

each parameter must have less than 2 % error. Any experimentalist knows that this is not possible. 

Furthermore, back-calculating one parameter hides the errors of the other parameters and model 

equations (section 3.4). Peff itself can show high inter-subject variability [159].   
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Figure 8. Peff calculation scheme using a set of clinical data, literature data, and hypothesis generation. Each 
parameter is fixed step-by-step. The parameters after the evaluation are moved to the right side of the 

equation and shown in bold type. Eq.6 is used to understand the concept of back-calculation. Sjo ̈gren et al. 
used the deconvolution method [151], but the basic concept of parameter identification is the same (the 

deconvolution method can eliminate the uncertainty in Tsi).  

3.11. How to validate the predictive power of a PBPK model after parameter back-calculation 

In a local middle-out approach, the predictive power needs to be validated for each drug after 

parameter back-calculation. The parameter back-calculated in one clinical condition is not necessarily valid 

in the other clinical condition (section 3.3, checkpoint 6). The predictive power of a model cannot be 

validated by the same data used for parameter back-calculation, because it is self-referencing. Therefore, 

the predictive power needs to be validated using other clinical PK studies of the context of use (COU) 

(“cross-validation”). The PK data under clinical conditions where some of the same pathways in the system 

are perturbed as in the COU can be employed for validation [10,21]. In the case of food effect prediction, 

the optimized model should be validated by the Cp - time data under a clinical condition in which the 

pathways of oral absorption are perturbed by the same factor for the food effect. In other words, the food 

effect prediction must be validated by a clinical food effect study. 

The clinical PK data in the same clinical condition cannot be used for validation, even if it is 

independently determined, because the Cp - time profiles are expected to be similar under the same clinical 

condition (this is a kind of “leakage” in the cross-validation process). Multiple-dose PK data under the same 

clinical condition cannot be used for validation (unless the context of use is the prediction of metabolic 

enzyme induction or mechanism-based inhibition in the intestine after multiple-dose PK). 

3.12. “Confirm and refine“ strategy in drug discovery and development  

The quality and quantity of experimental data available for PBPK modelling increase as a research 

project proceeds in drug discovery and development. Therefore, it would be beneficial to utilize these data 

for PBPK modelling (section 2.8). 

Each module in an OA PBPK model can be confirmed by comparison with corresponding in vitro 

experimental data covering a wider range than in vivo conditions. For example, the solubility model should 

be validated by an experimental pH-solubility profile in the range of pH 1.0 to 8.0 to cover in vivo 

gastrointestinal conditions. The dissolution model (the Nernst-Noyes-Whitney equation) can be confirmed 
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by comparison with dissolution test data. If the prediction result deviated from the experimental 

observation, an empirical correction parameter can be introduced, like the z factor for each dissolution 

condition [81]. 

Similarly, in vivo animal PK data can be used to inform the confidence level of a PBPK model. However, 

in this case, the refinement (back-calculation) process requires the same cautions as the local middle-out 

approach. In addition, there may be species differences in the back-calculated parameter. 

First-in-human PK data can be used to inform the confidence level of a PBPK model in humans. The PK 

data at a low dose (dose number << 1) can be used to evaluate the oral absorption process without 

interference from the dissolution rate and solubility. In the case of high permeability drugs, the low dose PK 

data may provide information regarding systemic clearance and volume of distribution to some extent (but 

i.v. PK data is preferable). The confidence level of solubility and permeability values (as Pn/Do, Eq. 2) may 

also be evaluated by the dose sub-proportionality of AUC (so that relative bioavailability between low and 

high doses). However, as discussed above, it is not easy to accurately back-calculate (refine) a parameter 

from in vivo oral PK data. Extreme caution should be exercised when using a middle-out approach.  

3.13. What is the difference between metabolic DDI and food effect predictions? 

A local middle-out approach has been successfully used to predict metabolic DDI by PBPK modelling 

[12,160,161]. Because it is practically impossible to clinically evaluate all DDI combinations, DDI prediction 

by a local middle-out approach would be of great value. In the local middle-out approach for DDI, to 

identify the fraction of metabolic clearance (fm) (e.g., a CYP isozyme), a specific inhibitor has been used in a 

clinical PK study (section 3.8 (i)). In the following, the concept of DDI prediction by the local middle-out 

approach is briefly explained (see [12,160,161] for details).  

In the case of i.v. dosing (or F = 1 for oral dosing), CL and AUC in the absence of an inhibitor can be 

expressed as: 

 mA mB mA mB,    1CL CL f F F F     

 mA mB

AUC
Dose

CL f f



 

where fmA and fmB are the fractions of metabolic clearance pathways (A and B, respectively). The fmB can be 

calculated from the AUC ratio in the absence (AUCno-inhibition) and presence (AUCinhibition, fmB = 0) of a specific 

strong inhibitor as: 

no-inhibition
mB

inhibition

AUC
1

AUC
f  

 

The inhibitor should specifically inhibit only pathway B and there is no other underlying clearance 

mechanism (e.g. renal clearance) or uptake/efflux transporter in interplay which can be influenced by the 

inhibitor. In this case, the fmB value is identifiable from the AUC ratio. This equation also suggests that the 

AUC ratio is predictable without using any complex PBPK modelling. A simple prediction scheme for 

metabolic DDI (AUC ratio) has been proposed and thoroughly validated using a large number of clinical DDI 

data (section 2.8) [67,162–164].  

However, a similar approach cannot be simply applied to the food effect prediction, because a food 

intake simultaneously affects various processes of oral drug absorption (section 2.7) [165]. 

3.14. What is the difference between PBPK and compartmental PK models? 
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In pharmacokinetics, the compartmental PK model is widely used. Although both compartmental PK 

models and PBPK models belong to mathematical models, their applications are different. 

In compartmental PK models, all parameters are calculated from clinical PK data (“top-down” approach) 

(section 3.1). Because the compartmental PK model is empirical, it is used following the good practice of 

empirical modelling (section 3.1). To avoid overfitting (section 2.2, Figure 3), the Akaike information 

criterion has been used to select the number of compartments appropriately [69]. For an i.v. PK model, the 

number of compartments is set to be one or two in most cases (2 and 4 parameters, respectively). For an 

oral PK model, only three parameters, that is, kel, ka, and Vd /F are used in most cases (Figure 7).  

 
Figure 7. An oral one-compartment model with an finite absorption time of T = 3.5 h [86,166]. In many cases, 
an oral Cp - time profile can be summarized into three parameters, ka, the elimination rate constant (kel), and 
the lumped values of the volume of distribution (Vd), Fg, and Fh (Vd /FgFh). Tmax, Cmax, and AUC are all described 
by using only one absorption parameter (ka) that represents the oral absorption of a drug. Therefore, the oral 

absorption of a drug can be well described by fitting one of many conjugated parameters in a complex OA 
PBPK model (the degree of freedom is zero). From the Cp -time profile after oral administration, only the 

composite parameter of Vd/FgFh is identifiable. An i.v. data is required to fix Vd (and CL) [33]. 

 

In contrast, a PBPK model consists of dozens to hundreds of parameters (section 2.1) [37]. All these 

parameters cannot be identified from the Cp -time profile alone (section 3.8).  

3.15. Global middle-out approach (system parameter estimation) 

In PBPK modelling, it is preferable to use experimentally measured physiological parameters. However, 

some of the physiological parameters are not available. In such a case, a global middle-out approach has 

been used to back estimate a physiological parameter from the multiple PK data of multiple drugs (cf. A 

local middle-out approach is on a drug-by-drug basis) (section 3.1) [83,90,129,145,167]. In this approach, 

the following three points are usually carefully considered to ensure parameter identifiability and avoid 

overfitting: (i) enough number of data covering a wide range of dependent and independent variables, (ii) 

in vivo PK data that is sensitive to the physiological parameter (and not sensitive to the other parameters), 

(iii) comparison with directly or indirectly measured values.  

For example, the volume of the small intestinal fluid (Vsi) available for drug dissolution has not been 

clear, because only free water can be directly measured by MRI  [28,29]. The Vsi value available for drug 

dissolution was back-calculated from the clinical PK data of several low solubility drugs at various dose 

strengths covering Do < 1 and Do > 1 [83,167]. The estimated Vsi values (130 mL [83] and 116 mL [167]) 
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were about 1.5 to 2-fold larger than the average free water volume directly measured by various 

techniques [26,28,29]. DF in Eq. 6 was obtained from the relationship between the clinical Fa and Peff values 

of about 20 high solubility drugs [55] (cf. Fa = 1 – exp( - 2DF/Rsi x Peff x Tsi). 

Conclusion: strategy to improve oral absorption physiologically-based pharmacokinetic modelling  

Multidisciplinary collaboration 

A good collaboration of pharmacokinetic, physical chemistry, formulation, and physiology experts is 

required to improve oral absorption (OA) physiologically-based pharmacokinetic (PBPK) modelling. There 

are many opportunities for both experimentalists and modellers to take advantage of collaborative works 

in this field [32]. 

The critical role of physical chemistry in OA-PBPK modelling 

The importance of physical chemistry in PBPK modelling has often been overlooked (section 2.7). 

Physical chemistry plays a central role in oral drug absorption  [86]. In addition, physical chemistry is also 

important for hepatic clearance, renal clearance, and tissue distribution (including the brain) [85,168–176]. 

A recent survey suggested that a poor understanding of physical chemistry is one of the reasons for the 

prediction failure of OA PBPK modelling [6]. A good understanding of the chemical equilibrium [177], 

nucleation theory [115,178], and fluid dynamics (including mass transport) [172,173,179] is required in OA 

PBPK modelling. Fortunately, physical chemists are generally well trained in mathematics and mechanistic 

modelling. They are familiar with the concept of parameter identifiability. 

The critical role of physiological parameters in OA PBPK modelling 

Similarly, an in-depth understanding of gastrointestinal physiology is critically important [165,180,181]. 

Physiological parameters reported in the literature have large variations, for example, in gastric pH, 

intestinal pH, fluid volumes, bile concentration, and buffer capacity [27,182]. It is a combination of 

experimental uncertainty, true inter-subject variability and true inter-occasion variability. The buffer 

capacity of compendial dissolution media (phosphate buffer) is markedly higher than the real intestinal 

fluid (bicarbonate buffer), affecting the dissolution profiles of drugs [61,183–186]. The intestinal fluid 

volume (Vsi) would be much smaller than originally thought [25–29] (note that a Vsi value (212 mL) had 

already been reported as early as 1957) [26,27]. The gastric and intestinal pHs of dogs are significantly 

different from those in humans [50,187–190]. 

Harmonization 

In the future, it is desirable to harmonize physiological parameters and model equations for regulatory 

submission (section 1.2 and 2.1). In addition, drug intrinsic parameters such as S0, P trans0, and Kbm (section 

2.1), should be obtained using harmonized procedures [109]. Currently, the prediction characteristics of 

commercial software products vary from product to product [5]. If two software products predict different 

outcomes, which one should be used for regulatory purposes? In the field of biopharmaceutics, the 

procedures and conditions for dissolution tests [191,192], in vitro – in vivo correlation [193,194], the 

biowaiver scheme [195], etc. have been harmonized and standardized. Similarly, OA PBPK modelling should 

be harmonized based on proper model evaluation in the future (section 2.4). We may also need a good 

simulation practice when PBPK modelling is used to waive a clinical study [35,36]. 
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Not to be lost in modelling and simulation 

“The greatest enemy of knowledge is not 
ignorance; it is the illusion of knowledge”  

Daniel Boorstin/ Stephen Hawking 

When the “bottom-up” simulation deviates from the clinical data, simply press the "optimize" button 

and the monitor will display a simulation curve that exactly matches the clinical plasma concentration (Cp) -

time data. If we continue publishing this as a successful "prediction", it will eventually cause the illusion of a 

prediction paradise.  

We must exert extreme caution not to be lost in modelling and simulation. Model equations, 

physiological parameters, and drug parameters must be disclosed to ensure proper peer-review and 

reproducibility. A systematic evaluation of predictive power is required to avoid publication bias. When a 

middle-out approach is pursued, the fitted Cp - time curve must be labelled as "fitted" (NOT "predicted"). 

Parameter identifiability should be carefully considered. The optimized model must be validated using 

independent clinical PK data of the context of use. Finally, and most importantly, pharmacokinetic, physical 

chemistry, formulation, and physiology experts should work together so that not to get lost in modelling 

and simulation. 

As mentioned in the introduction, when used correctly, OA PBPK modeling will be an excellent tool for 

understanding and predicting the oral absorption of a drug. This article will hopefully enhance the science 

of OA PBPK modelling in the future. 
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