
ABSTRACT
A new working mode of overloaded traffic control 

for rural highways is presented, and a location-routing 
model is built to optimize the check base distribution and 
the control vehicles’ routing schemes. Then, for the loca-
tion-routing model with a large set of location alterna-
tives and an unknown settable number of check bases, a 
multiple ant colony optimization algorithm is designed to 
solve the model. Furthermore, actual data from Guiyang 
rural highways are used to perform a numerical analysis. 
The results indicate that the model can be used to ob-
tain the optimal base location-vehicle routing scheme to 
verify the feasibility of the model and the algorithm. The 
model and algorithm can help managers to make deci-
sions on locating the check bases and routing the control 
vehicles.
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1. INTRODUCTION

The issue of truck overloading can commonly 
be seen in China. Overloaded trucks damage road 
pavement and shorten road service life [1]. There-
fore, China has been intensifying control over over-
loaded trucks on highways. Since 2004 China has 
continuously implemented controls for overloaded 
trucks [2]. On rural highways, the common way to 
control overloaded trucks is to set the monitoring 

stations (hereafter check bases) along the roadways 
to check the passing traffic in order to find and pe-
nalize the overloaded trucks.

However, it is difficult to effectively intercept 
the overloaded trucks with this method because 
rural road networks are too connected and compli-
cated, and the overloaded trucks may detour around 
the fixed check bases at little cost. To improve the 
efficiency and effect of overload control, this pa-
per puts forward a new working mode for overload 
control, namely, setting some check bases first and 
then dispatching control vehicles from the bases to 
capture the overloaded trucks by cruising nearby ru-
ral highways. In contrast to fixed check points, the 
control vehicles can visit all roadways to overawe 
all the overloaded trucks. However, it cannot be ex-
pected that the control vehicle can capture all over-
loaded trucks in the rural highway network. Apart 
from expressways with on-off ramps, in which all 
overloaded trucks can be found at the toll gates, for 
other open roads (such as normal highway or rural 
road) it is impossible to catch all overloaded trucks. 
The point of this study is not to find all overload-
ed trucks, but to make control vehicles visiting all 
overloaded roadways at the minimum cost and to 
make all overloaded trucks afraid of being captured. 
The idea of using control vehicles to capture the 
overloaded trucks has been put forward based on a 
World Bank-funded project in Guiyang. The feasibil-
ity and efficiency have been discussed soundly and 
some trial projects are being discussed. This study 
intends to optimize the routes of control vehicles and 
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window based on the rule of minimizing the total 
cost and maximizing the customer satisfaction [9]. 
Taking into consideration the demand changes of 
customers, Nadizadeh established a dynamic loca-
tion-routing optimization model in the case of limit-
ed capacities of vehicles and warehouses [10]. More 
studies on LRP can be found in literature [11-15].

Although the location-routing model has been 
widely used on the location of distribution centres, 
warehouses, and emergency facilities, it is still in 
the early trial stage for the microlevel decisions on 
the spatial distribution of check bases and the num-
ber of control vehicles in each base and the corre-
sponding cruise routes. 

Several exact algorithms have been devoted to 
solving the LRP. Laporte and Norbert designed a 
branch-and-bound algorithm with a single depot 
and solved instances that had 20-50 customers and 
2-5 routes per opened depot [16]. For a given num-
ber of customers, LRPs tend to be more difficult to 
solve when the number of depots gets larger. Then, 
to solve the multi-depot location-routing problems, 
Laporte et al. designed a branch-and-bound algo-
rithm which can solve LRPs with up to 2-3 depots 
and 40 customers [17]. Akca et al. presented a ca-
pacitated location and routing problem (CLRP) and 
designed a branch-and-price algorithm with up to 
40 customers [18]. The size of the LRP is limited 
when the LRP is solved by exact algorithms. Srivas-
tava et al. proposed such approaches may work only 
for medium-sized location-routing problems [19]. 
Furthermore, when time window and/or route dis-
tance constraints are added, the problems become 
even harder to solve. 

As the LRP problem is an NP-hard problem, 
most of the research studies used a heuristics algo-
rithm for the solution. In literature [8], Nagy and 
Salhi classified the heuristics algorithm into four 
types as follows: sequential, clustering-based, it-
erative, and hierarchical. Sequential methods first 
optimize the depot location and then optimize the 
vehicle routes based on the located depots [20]. 
There is no feedback between location optimiza-
tion and vehicle routing. Balakrishnan et al., Sal-
hi and Rand, and Salhi and Nagy pointed out that 
the sequential solution for VRP cannot guarantee 
the optimal scheme for the distribution system [7, 
21, 22]. However, Srivastava and Benton found 
that sequential methods can provide good quality 
solutions in some cases [23]. Sérgio Barreto et al. 
presented a cluster analysis based on a sequential 

the distribution of check bases in the case that the 
advantage of the input-output of new mode has been 
commonly realized by the authorities. 

Currently, not much literature exists on con-
trolling overloaded trucks. Bagui provided a defini-
tion of an overloaded truck and proposed a method 
to compensate for road damages by fining the over-
loaded trucks [3]. Quintero et al. proposed a bi-lev-
el model to represent the interactions between the 
truck loading practices of freight transport carriers 
and the decisions of a road planning authority which 
is responsible for the enforcement of the overloading 
control [4]. The model can predict a carrier’s reac-
tions under a series of planner’s decisions and then 
help the planner choose an optimal combination of 
the number of check points and the punishment lev-
els to have the minimal total expenditure (on repairs 
and overloading inspection costs). However, the is-
sues regarding the base location and control vehi-
cle routing have not been addressed in the study. Li 
analysed the interactions between a carrier’s profit, 
transport price, operating cost and overloading pen-
alties, and gave the solutions and the policy impli-
cations for China to deal with the overloading issue 
[5]. Chen presented the idea of tolling the trucks by 
actual loaded weights and axle loading quotas and 
studied the long-term effectiveness of controlling 
the overloaded trucks by economic methods [6]. 
The above review shows that, except for Quintero’s 
study on the number of check bases and checking 
the frequency of overloaded trucks, all the other 
literature studied the governance of overloading at 
the macro level, such as analyses of policies and 
strategies for overloaded traffic control, and lacked 
specific quantitative analyses for the control of the 
overloaded trucks (including the location of check 
bases, the routing of control vehicles, etc.). 

Salhi proposed the Location-Routing Problem 
(LRP) which is a generalization of the Vehicle-Rout-
ing Problem (VRP) that reflects the interdepen-
dence between facility locations and vehicle-rout-
ing decisions [7]. Nagy defined LRP as an operation 
issue to minimize the total cost of construction and 
transport by determining the locations of facilities 
and the vehicle travel routes when the location al-
ternatives and client sites are given [8]. In recent 
years, the LRP research community has been very 
active. The location-routing model is widely used 
in many fields. For example, under the constraints 
of facility capacity and vehicle capacity, Luo estab-
lished a two-objective LRP model with a fuzzy time 
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optimization algorithm is designed to solve this LRP 
with a large set scale of location alternatives. Final-
ly, the actual data on Guiyang rural highways are 
used to conduct a numerical test. The results show 
that by the optimal location-routing scheme, check 
bases are selected in areas with abundant mineral 
resources and dense construction sites, where large 
trucks such as mineral trucks and slag trucks are of-
ten overloaded. The designed routes of the control 
vehicles consist of many provincial roadways and 
county-level and township-level rural roadways. 
These roadways have heavy truck traffic. These 
cruise routes can ensure that the control vehicles ef-
fectively intercept the overloaded trucks. It will be 
shown that our method is helpful for implementing 
the bases’ spatial distribution decisions and vehicle 
cruise route schemes.

The remainder of this paper is arranged as fol-
lows. In Section 1, a programming model is con-
structed that simultaneously locates the check bases 
and assigns routes for the control vehicles and clears 
the goal that all roadways with overloaded trucks 
are visited with the minimum cost. In Section 2, an 
algorithm is designed to solve the model. In Section 
3, a numerical analysis is done with the actual data 
on Guiyang rural highways. Finally, in Section 4, 
the whole study has been summarized.

2. LOCATION-ROUTING MODEL
As shown in Figure 1, roadways with overload-

ed trucks in a road network are mapped into dis-
crete points to form a set of control demand points. 
To control the overloaded trucks, each check base 
should be equipped with at least one control vehicle, 
and all vehicles are of the same type. A control vehi-
cle, which is equipped with mobile weighing facili-
ties, starts cruising from a check base to visit the con-
trol demand points to detect the overloaded trucks. In 

heuristics [24]. They constructed groups of custom-
ers with the capacity limitation and determined the 
distribution route in each customer group first and 
then located the distribution centres and assigned 
the routes to them. Wu et al. decomposed the LRP 
into two sub-problems (location-allocation prob-
lem, vehicle-routing problem) first and then solved 
the sub-problems iteratively by feeding information 
from one sub-problem to the other [25]. Hierarchi-
cal methods (Salhi et al.; Nambiar et al.) consider 
the routing problem to be a subordinated problem 
that is nested into the main location problem and 
solve the LRP as a whole [26, 27]. 

According to the existing literature, the problem 
scale is generally 2-200 nodes (including location 
alternatives and demand points). The literature on 
large-sized LRPs focuses on the LRP with a large 
number of demand points, while the scale of the lo-
cation alternatives is small (we can see this point 
in literature [9-12, 14, 15]). Therefore, the solution 
of these LRPs can be obtained based on the combi-
nation of a simple heuristic algorithm and an enu-
meration method. However, when the set scale of 
location alternatives gets larger and the maximum 
number of facilities is not given, a combinatori-
al explosion will occur of the number of potential 
location combinations, which leads to the solution 
space increasing sharply. It is not realistic to use 
the enumeration method to solve the vehicle cruis-
ing scheme of location combinations one by one. 
Therefore, some researchers proposed the heuristic 
approach that hybrid multiple heuristics approach-
es to solve the LRP. In 2005, Albareda-Sambola et 
al. proposed a heuristic algorithm combining taboo 
heuristic algorithm and rounding heuristic algorithm 
to solve the LRP [28]. In 2006, Bouhafs et al. pro-
posed a combination of simulated annealing and ant 
colony system to solve the capacitated LRP [29]. In 
2008, Marinakis and Marinaki proposed a bi-level 
genetic algorithm to solve the LRP [30]. Inspired by 
their studies, this paper attempts to use the heuristic 
that hybrid multiple heuristic approaches to solve 
LRP in the case of a large set of alternatives.

Under the working mode of a mobile overload 
control for rural highways by control vehicles 
based on check bases, this paper first constructs an 
optimization model that can simultaneously deter-
mine the number and location of check bases and 
the cruise routes of control vehicles, with the aim 
of visiting all the roadways with overloaded trucks 
for the minimum cost. Then, a multiple ant colony  

Check base Control vehicle Demand point
Cruise route Rural highway

Figure 1 – Schematic diagram of overload control by mobile 
facilities
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where: C is the total cost for controlling overloaded 
trucks, including the fixed cost of base construction, 
the fixed cost of control vehicle purchase, the fuel 
cost and the labour cost. Equation 1 is the objective 
function denoting the minimization of the total cost. 
Equation 5 ensures that the cruise route of a control ve-
hicle is a closed loop. Equation 6 ensures that a demand 
point can only be served by one vehicle. Equation 7 
ensures that the control vehicle starts from a check 
base and eventually returns back to the same base. 
Equation 8 indicates that as long as a control vehicle 
starts from a location alternative, the base is set at 
that alternative. Equation 9 ensures that the cruise time 
of each control vehicle is shorter than its daily cruise 
limitation. Equation 10 illustrates that the number of 
control vehicles is smaller than the maximum num-
ber.

3. ALGORITHM
The above problem is a non-linear program-

ming problem that is composed of a Facility Loca-
tion Problem (FLP) and a vehicle-routing problem, 
namely, a location-routing problem. It is an NP-hard 
problem and usually needs to be solved by a heuris-
tic algorithm [31]. In literature [8], Nagy and Salhi 
believed that using hierarchical heuristic algorithms 
to solve LRPs may provide better solutions. Based 
on their research, the proposed Multiple Ant Colony 
Optimization algorithm (MACO) in this paper is hi-
erarchical.

its cruising trip, a control vehicle will stop at some 
well-sighted sites along a roadway to set a temporal 
check point. The administrative staff guide the sus-
pected trucks which pass along the roadway to the 
check point and weight them by mobile weighing 
equipment.

 The staying and working of a control vehicle at 
each demand point is the same, and a demand point 
is visited only once. The travel time of a control ve-
hicle for a cruising loop should not be longer than 
the vehicle maximum travel range. Every control 
vehicle should return to the base from which it has 
departed.

 To monitor all of the control demand points, the 
problem of selecting a number of check bases from 
a set of alternatives and assigning some control ve-
hicle to each check base, as well as designing the 
control vehicle cruise network is studied in the con-
text of a known road network and a set of control 
demand points. The goal of the decision-making 
is to maximize the control efficiency with as little 
control cost as possible, which consists of a set of 
sub-costs, including the cost for constructing check 
bases, the cost of purchasing control vehicles, the 
tour cost of control vehicles, and the labour cost.

Variables and parameters
J  – set of location alternatives of check bases;
I  – set of control demand points;
K  – set of control vehicles;
cj  – fixed cost of a single check base;
ck – fixed cost of one control vehicle;
cl  – unit transport cost;
cp – unit labour cost;
v  – travel speed for control vehicle;
t  – staying and working time of a control vehicle 
   at a demand point;
tmax – maximum daily travel time of a control  
   vehicle;
lii’ – distance between two demand points;
n  – number of attached staffs for one control  
   vehicle;
u  – maximum equipped number for control  
   vehicle;
Dk – number of demand points visited by control  
   vehicle k;
zj=1 if a check base is located at point j,  
   0 otherwise;
zjk=1 if check base j selects control vehicle k,  
   0 otherwise;
xii’k=1 if control vehicle k travels from demand  
   point i to demand point i’, 0 otherwise.
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the process of calculation, the optimal location-rout-
ing scheme for each H need not be obtained. CH is 
assumed to be the total cost for overloaded traf-
fic control in the optimal location-route scheme 
with H check bases being set. cH is the fixed cost 
which is proportional to the number of bases. When  
cH+1>Min(CH,CH-1,...C1), it means that the low-
est cost for the overloaded traffic control is 
Min(CH,CH-1,...C1), namely, the global optimal 
solution has been determined and H need not be in-
creased anymore to solve the LRP. 

The algorithm structure is shown in Figure 2. A hi-
erarchical ACO structure is designed with different 
transition rules for the upper-level ant colony and the 
lower-level ant colony. The upper-level is for the lo-
cation decision, while the lower-level is for the route 
selection. The route selection is nested into the loca-
tion decision process. Namely, for the base(s) select-
ed by each ant in the upper level, a route selection is 
carried out by the ant colony algorithm in the lower 
level. The coordination between the upper and lower 
levels is achieved by the global pheromone updating 
rule of the upper-level ant colony (the specific de-
scription can be seen in Section 2.4). 

3.1 Location selection

When H check bases are open, each ant in the 
upper level may generate a route. The nodes on each 
route are regarded as a location combination. This 
means that each ant in the upper level may generate 
a location combination. In the process of location 

The Ant Colony Optimization algorithm (ACO) 
was first proposed by Dorigo et al. [32]. Then the 
ACO has been improved by some researchers [33, 
34]. However, MACO was first proposed by Gam-
bardella for solving the VRP with time windows 
[35]. They designed two ant colonies to optimize two 
different objective functions. Ting et al. adopted the 
MACO to solve the LRP with capacity constraints on 
depots and routes [36]. They decomposed the LRP 
into a facility location problem and a multiple depot 
vehicle-routing problem, and, as the result, the ve-
hicle-routing problem is nested into the facility lo-
cation problem. In the research done by Ting et al., 
each ant of the FLP may generate a different number 
of locations. This means that the number of facilities 
selected by an ant is random, but through the accu-
mulation of pheromones on the ants’ routes, the algo-
rithm can obtain the final location scheme by an iter-
ative calculation. In this paper, in order to avoid local 
optimal solution caused by the randomly generated 
facility number, all the possible numbers of facilities 
are enumerated, and the location-routing problem is 
correspondingly solved. When the algorithm termi-
nation condition is met, the calculation ends and 
the global optimal solution is output. The specific 
method is that MACO is adopted to solve the LRP 
from the case of one check base (namely, H=1) to 
H=Hmax check bases (Hmax is the number of alter-
native locations). For each H, there is an optimal 
location-route scheme (a local optimal solution for 
the whole LRP). Finally, the global optimal solution 
can be found from these local optimal solutions. In 

Updating the pheromone
between alternative points

Start

H=H+1

N

Y

Inputting the number of
check bases H

Location optimization
(Upper-level ant colony search

Routing optimization
(Lower-level ant colony search)

cH+1>Min(CH,CH-1,...,C1)?

Outputting the 
optimal solution

End

Figure 2 – The process diagram of the multiple ant colony algorithm
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and it is assumed that all the ants of the VRP take 
the virtual base as their starting point. The distance 
between the demand point i and the virtual base is 
represented by the distance from the demand point i 
to the nearest check base di. This method of chang-
ing the multiple depots into a single depot by using 
a virtual depot has been adopted in MA et al. [37]. 
In the process of vehicle routing, first, we set the 
maximum time that an ant can travel equal to the 
maximum time that a vehicle can cruise. Next, let 
the ants leave the virtual base to visit the demand 
points. The first demand point selected by the ant 
after its departure is defined as i, and the nearest 
real base to i is oi. The ant must visit oi after visiting 
several demand points (namely, oi must be added to 
the route), and the ant’s travel time from the virtual 
base to oi must be shorter than the maximum time 
that an ant can travel. To ensure the ant can visit all 
the demand points, we set the ant’s travel time equal 
to 0 when the ant arrives at oi. Meanwhile, set the 
ant to select the next demand point from the virtual 
base rather than from oi. Then, with the above steps, 
let the ant continue to visit the remaining demand 
points until all the demand points are visited.

For each single VRP base, the vehicle routing 
is carried out. In the process of routing, let ηij=1/lij 
be the selection expectation of edge (i,j), then, the 
probability that the ant starting from node i selects 
node j at time t is: 

p t
t

t
ij

i ijs
s S

ij ij

$

$

x h

x h
=

!

a b

a b

^ ^
^
^
^h h
h
h
h/  (14)

where: τij(t) is the pheromone concentration of edge 
(i,j) at time t; ηij is the expectation of edge (i,j); α 
and β are the heuristic factors of the pheromone 
concentration and expectation, respectively; and S 
is a set of feasible nodes.

3.3 Pheromone updating rules of VRP
There are two ways to update the pheromones 

between nodes [38]. One is the local pheromone up-
dating. That is, after the ant walks through the edge 
between two nodes, the pheromone on the edge is 
updated. The updating rule is shown in Equations 15 
and 16. Updating a local pheromone with negative 
feedback rules can reduce the possibility that subse-
quent ants choose the same edge, avoid premature 
stagnation of the algorithm, and improve the ants' 
global searching ability.

t t1 1ij ij1 1 0x xt t x+ = - +^ ^ ^h h h  (15)

selection, the probability of ants selecting every  
feasible node is determined by the selection expec-
tation and pheromone between the current node and 
the feasible node. The specific calculation method 
of the selection probability is as follows:

First, based on the maximum cruise time of the 
vehicles, the set of demand points that can be cov-
ered by each alternative point is calculated and de-
fined as the coverage range. The similarity is used 
to represent the size of the overlapping coverage 
range between the alternative points. The calcula-
tion method is shown in Equation 11, and then the 
selection expectation is defined as the reciprocal 
of the similarity between the alternative points 
(Equation 12).

, , , , , ,S L
L a b b M1 2 3ab

ab
a

f= = =Y  (11)

Here, Sab is the similarity between the current al-
ternative point a and another alternative point b; Lab 
is the number of demand points checked repeatedly 
by the current alternative point a and the other alter-
native point b; La is the number of demand points 
checked by the current alternative point a.

S
1

ab
ab

h =  (12)

where: ηab is the selection expectation of alternative 
point b at alternative point a. Sab is the similarity 
between alternative point a and alternative point b. 

All ants select the next node from the starting 
point at the same time, and the departure time is set 
to 0. When all ants complete a state transition (trans-
ferring from the current node to the next node), the 
time increases by 1. The probability that an ant se-
lects the alternative point b from the alternative a at 
any time t is:

p t
t

t
ab

as as
s S

ab ab

$

$

x h

x h
=

!

a b

a b

^ ^
^
^
^h h
h
h
h/  (13)

where: τab(t) is the pheromone concentration of 
edge (a,b) at time t; ηab is the expectation of the 
edge (a,b); α and β are the heuristic factors of pher-
omone concentration and expectation, respectively; 
and S is a set of feasible alternative points.

3.2 Vehicle routing 
In most of the literature on VRP, the customer 

assignment is required before the vehicle routing. 
Unlike most literature, here the demand points 
are not assigned to each base directly. Instead, for 
each location combination output by an upper ant, 
the check bases are mapped to a virtual check base 
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FLP can be obtained, and only the best-so-far ant of 
the FLP is allowed to add a pheromone on the edge 
after each iteration of the FLP. The updating rule is 
as follows:

1ab
TC

ab
TC

ab
bs1

4 4x t x t xD= - ++ ^ h  (21)

C
1

ab
bs

H
bsxD =  (22)

where: τab
TC is the pheromone on the edge (a,b) af-

ter the TC-th iteration; ρ4 is the global pheromone 
evaporation coefficient in the location optimization,  
ρ4!(0,1); Δτab

bs represents the pheromone released 
by the best-so-far ant of the FLP on the edge (a,b) in 
the TC-th iteration; and CH

bs is the cost of the control 
vehicles corresponding to the route of the best-so-
far ant of the VRP when the number of the bases 
is H.

3.5 Steps of the algorithm
Step 1: Input M and N (the numbers of base location 
alternatives and control demand points, respective-
ly), tmax (maximum travel time of a control vehicle), 
and the distance matrix between the points. Set Kmax 
(a large enough number) as the ceiling number of 
control vehicles, tc1 as the time of the search by the 
ants in the upper level and tc2 as the time of the 
search by the ants in the lower level. 
Step 2: Set H=1, tc1=1, Cmin as a large enough num-
ber, and calculate the fixed cost cH.
Step 3: Solve the FLP in the upper level by the ant 
colony algorithm. 
Step 3.1: Generate M ants in the upper level. The ini-
tial pheromones between alternative check bases 
are calculated by Equation 20. The ants’ expectations 
of selecting other alternative check bases from the 
current one are calculated by Equation 12.  
Step 3.2: Each ant randomly selects an alternative 
check base to start generating the route, and pab(t) 
is calculated by Equation 13. To avoid falling into a 
local optimization, the roulette selection method 
is used to increase the randomness of the selection 
[39]. The details are: generating a random number  
ε,ε!(0,1) and successively accumulating the pab(t) 
according to the ID of the feasible alternative check 
bases. When ( )p tab $ f/ , the alternative check 
base with the largest ID code is selected. Then, the 
local pheromone updating is according to Equations 
19 and 20. After all ants in the upper level complete 
their location selection, go to Step 3.3.
Step 3.3: Number the routes of ants in the upper lev-
el as 1,2,3,…,M. Let y=1 denote the first route.

N C
1

NN0
$

x =  (16)

where: τij(t) is the pheromone of edge (i,j) at time t; 
α1 is the local pheromone updating parameter in the 
route optimization; ρ1!(0,1); τ0 is the initial value 
of the pheromone matrix; N is the number of nodes; 
and CNN is the length of routes constructed by the 
nearest neighbourhood heuristics.

The other updating method is global pheromone 
updating, which is based on the elitist ant strategy 
in the ant system. Only one ant (the best-so-far ant 
of the VRP) is allowed to add a pheromone after 
each iteration of the calculation. The updating rule 
is shown in Equations 17 and 18. At this moment, the 
result of the best-so-far ant is converted into a pher-
omone increment to form positive feedback, which 
can accelerate the convergence speed of the algo-
rithm. 

1ij
TC

ij
TC

ij
bs1

2 2x t x t xD= - ++ ^ h  (17)

C
1

ij
bs

LC
bsxD =  (18)

where: τij
TC is the pheromone on edge (i,j) after 

the TC-th iteration; ρ2 is the global pheromone 
evaporation coefficient in route optimization, 
ρ2!(0,1); Δτij

bs is the pheromone released by the 
best-so-far ant of the VRP on edge (i,j) in the TC-th 
iteration; and CLC

bs is the cost of the control vehicles 
corresponding to the route of the best-so-far ant of 
the VRP under a location combination (including 
fixed vehicle cost, fuel cost, labour cost).

3.4 Pheromone updating rules of FLP
Similar to the pheromone updating rules of the 

VRP, there are two ways to update the pheromones. 
The local pheromone updating is carried out after 
each ant in the upper level selects the alternative 
point b from alternative a. The updating rule is as 
follows:

t t1 1ab ab ab33
0x x t xt+ = - +^ ^ ^h h h  (19)

S
1

ab ab
0x =  (20)

where: τab(t) is the pheromone on edge (a,b) at time 
t; ρ3 is the local pheromone update parameter in the 
location optimization, ρ3!(0,1); τab is the initial val-
ue of the pheromone matrix; and Sab is the similarity 
between alternative points a and b.

After the vehicle routing for all location combi-
nations is selected by the upper-level ants in each 
iteration of the calculation, the best-so-far ant of the 
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Step 4.4: After all the ants in the lower level fin-
ish a round of searching, the global pheromone is 
first updated by Equations 17 and 18. Then, calculate 
the variable cost cV (including fuel cost, vehicle 
purchase cost, etc.) corresponding to the optimal 
route in the current round of the search. Update the 
cost for the overloaded truck control as C=cV+cH; if 
C<Cmin, set Cmin=C and tc2=tc2+1, and then run Step 
4.1-Step 4.4 again. If tc2>tc2

max, set y=y+1 and run 
Step 4-Step 4.4 again. If y>M, go to Step 5.  
Step 5: Update the global pheromone by Equations 21 
and 22, set tc1=tc1+1 and then run Step 3.1-Step 5 
again. If tc1>tc1

max, run Step 6.
Step 6: Set H=H+1 and calculate cH. If cH<Cmin, set 
tc1=tc2=1 and run Step 3-Step 6 again. Otherwise, 
stop the calculation and output the global optimal 
solution.

4. CASE ANALYSIS
A survey from the project of "Guiyang rural 

highway maintenance pilot plan" revealed that 63 
roadways have seriously overloaded trucks, includ-
ing X079, X153, X192, X072, X063, X184, X074, 
X191, X124 and X071. The data are picked up from 
our survey in 2017 which is a part of one of our 
projects. The names of 63 roadways with seriously 
overloaded trucks in Guiyang rural highway net-
work are shown in Table 1. 

Step 4: Group the nodes in route y to form a node 
set and map the set to a virtual node; in this case the 
ants in the lower level will use this virtual point as 
the starting point for route generation. 
Step 4.1: Generate N ants in the lower level. The 
initial pheromones between each pair of demand 
points are calculated by Equation 16, and the initial 
pheromones between each demand point and the 
virtual node is equal to the initial one between the 
demand point and the corresponding nearest check 
base. 
Step 4.2: The ant starts from the virtual node and se-
lects the next demand point based on Equation 14 and 
the roulette selection method first. Then, determine 
the check base o where the ant will return by the 
route selection method in Section 2.2. 
Step 4.3: To ensure the cruise time t is smaller than 
tmax, it is necessary to judge whether to add the se-
lected demand point to the ant’s travel route. The 
method is as follows: set j as the selected demand 
point, calculate t if j is added to the travel route and 
time (tjo) of the ant from j to o. If t+tjo≤tmax, then 
add j to the route. The local pheromone is updated 
by Equations 15 and 16 and then continue to run Step 
4.3. If t+tjo>tmax, then j is not added to the route and 
the current node is the last visited demand point. Let 
the ant return to o and set t=0 to run Step 4.2-Step 
4.3 again.
Table 1 – Names of the 63 roadways

ID Roadway ID Roadway ID Roadway ID Roadway

1 X166 17 S308 33 X129 49 S310

2 S420 18 S211 34 S102 50 S102

3 Y020 19 X195 35 S101 51 S210

4 Y003 20 X073 36 X164 52 S210

5 S310 21 Y049 37 S207 53 S421

6 X163 22 S106 38 X153 54 S210

7 X165 23 X067 39 S420 55 X078

8 S208 24 S209 40 Y066 56 S104

9 S310 25 Y042 41 X184 57 Y071

10 Y019 26 S210 42 S101 58 X127

11 Y014 27 S210 43 Y004 59 S105

12 Y024 28 X178 44 Y012 60 S210

13 S310 29 S209 45 Y024 61 X065

14 Y005 30 Y014 46 S209 62 X114

15 S211 31 X170 47 X089 63 S310

16 S209 32 S308 48 X122
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vehicle needs to check overloaded trucks 120 times 
in one year (the unit fuel cost of control vehicles is 
1 yuan/km).

The solution algorithm program is compiled 
by Excel 2016-VBA. Setting the number of ants 
both in the upper level and the lower level as 
63, the computation iterations as 100, the heu-
ristic factors of pheromone concentration as 1, 
and the heuristic factors of expectation as 2, all 
the pheromone evaporation coefficients as 0.5, 
the sum of the fixed construction cost, the pur-
chase cost of control vehicles and staff labour cost  
(cH=20H+H+3·6H=38H/year, H is the number of 
bases being built) can be obtained in the case that at 
least one vehicle must be purchased for each check 
base.

When H=9, c9 is greater than C2, C3, C4 and 
C5, which means that the minimum total cost for 
controlling the overloaded trucks has been gen-
erated in C2, C3, C4 and C5, namely, the optimal  

The spatial distribution of 63 roadways is shown 
in Figure 3.

For the case study, first the midpoints of 63 road-
ways are set, which have the heaviest overloaded 
truck traffic in Guiyang rural highway, as demand 
points being visited by control vehicles and lo-
cation alternatives of the check bases. And then, 
Dijkstra algorithm is used to calculate the short-
est travel distance between the demand points. In 
this way, the studying issue has become a loca-
tion-VRP problem, namely, determination of the 
loops for dispatching control vehicles to visit each 
site (named demand point) and the sites for set-
ting the check bases. The spatial distribution and 
distance matrix of the demand points is shown in 
Figure 4. 

It is assumed that the maximum number of con-
trol vehicles is 63, a control vehicle needs three 
staff members and the travel speed is 40 km/h. 
The working time in a demand point is 0.5 hours, 
and the maximum cruise time is five hours. The 
fixed cost of constructing a check base is 2.0 mil-
lion yuan. The depreciation cost of a check base is 
0.2 million yuan/year with 10 years of service life. 
The labour cost of a staff is 60,000 yuan/year/per-
son. The purchase cost of a control vehicle is 0.1 
million yuan, and its service life is 10 years. The 
vehicle depreciation cost is 10,000 yuan/year. The 
fuel cost for vehicle travel is 120 yuan/km/year if a 

N

0 10
Kilometres

Overloaded roadway
Rural highway

Figure 3 – Distribution of 63 roadways
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As seen in Table 2, when four check bases are 
built, they will be located at points 24, 28, 45, and 
54. Additionally, twelve control vehicles should be 
equipped, and three vehicles each are allocated to 
Point 45 and Point 54, two vehicles are allocated 
to Point 24, and four vehicles are given to Point 
28. The cruise routes of the vehicles are shown in 
Figure 6.

The check bases No. 24, 28, 45, and 54 are locat-
ed in Mengguan Township of Huaxi District, Qing-
shan Township of Xifeng County, Yangchang Town 
of Wudang District, Guiyang and Weicheng Town of 
Qingzhen City, respectively. The areas around these 
bases are rich in mineral mines and construction 
sites, and the mineral trucks, slag trucks, and oth-
er large trucks in these areas are often overloaded.  

location-routing scheme has been found. There-
fore, we stop the solution calculation and output the 
schemes with the minimum total cost.

Figure 5 shows the change of the increment in ant 
pheromone as the increment of the calculation itera-
tions when the number of built check base increases 
from 1 to 8. The ordinate is the average pheromone 
increment of the 63 ants, and the abscissa denotes 
the number of iterations.
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Figure 5 – Relationship between the pheromone increment and 
the iteration number in the route optimization

It can be seen from Figure 5 that the pheromone 
increments in the cases of different base numbers 
increase at the initial stage of the calculation. How-
ever, the increase rate gradually decreases until 
convergence, which indicates that there is minimum 
overloaded truck control cost for different numbers 
of check bases. When four check bases are set, the 
convergent value of the pheromone increment is the 
largest among the eight cases, which means the case 
with the smallest control cost.

Table 2 shows the location combination, num-
ber of control vehicles and total cost for overload-
ed trucks control corresponding to the cases of 1-8 
check base(s) being set.
Table 2 – Indicators in the cases of different numbers of check bases

Number of 
bases Total cost Location 

combination
Number of  

vehicles Cruise time

1 450.140 54 21 96.375

2 342.388 16,28 15 67.725

3 321.424 16,28,35 13 61.550

4 320.192 24,28,45,54 12 56.900

5 338.944 16,24,28,35,40 12 54.300

6 358.644 7,24,28,35,40,54 12 53.675

7 378.056 7,16,24,28,35,40,45 12 52.450

8 397.509 7,16,24,28,35,40,45,54 12 51.310

Check base

Route
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Demand point
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0 10
Kilometres

N

Xifeng
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Figure 6 – Scheme of the location and VRs
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where: W is the working efficiency of the control ve-
hicles; N is number of demand points; tk is the cruis-
ing time of vehicle k; K is the control vehicle set. 

%IR K t
T1 100

maxn $
$= -a k  (24)

where: IR is the idle ratio of vehicles; Kn is the num-
ber of vehicles; tmax is the maximum cruising time of 
a vehicle; T is the total cruising time of all vehicles.

When 1-8 check bases are built, the working 
efficiency and idle ratio of the control vehicles in 
the optimal scheme are shown in Figure 8. It can be 
seen that the vehicle working efficiency increases 
as the increment of check bases, while the increas-
ing trend gradually flattens out. When the number of 
check bases increases from one to four, the working 
efficiency increases significantly. This means that 
the working efficiency increases obviously as the 
increment of check bases when a few check bases 
are set. When the number of check bases increases 
from four to eight, the control efficiency does not 
change significantly. At this time, although there are 
more bases, the vehicle working efficiency does not 
change significantly. In contrast to the working effi-
ciency, the idle ratio of vehicles shows a downward 
trend as the increment of the check bases increases 
from one to four, and the idle ratio is 5.1% when 
there are four bases, which is the lowest ratio. How-
ever, when the bases increase from four to eight, the 
idle ratio of vehicles increases obviously.
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Figure 8 – Working efficiency and idle rate of vehicles under 
different numbers of bases

The performance of cost for controlling over-
loaded trucks is used to describe the relationship 
between the control cost and the working efficiency. 
The larger it is, the better the cost performance will 
be. The calculation method is as Equation 25.

CP C
W=  (25) 

The check bases can manage the inspection of the 
overloaded trucks, which may also act as a deterrent 
to the trucks in the roadways in the nearby regions.

By taking No. 54 check base as an example, the 
situation along the cruise routes can be seen from 
Figure 7. It can be known that the cruise routes of 
the three control vehicles pass through nine towns 
(Liwo Town, Liuchang Town, Wangzhuang Town, 
Weicheng Town, Zhanjie Town, Gubao Town, Maige 
Town, Baihua lake Town, Qingzhen City), three sce-
nic spots such as Hongfeng Lake, as well as several 
coal mines. The main involved roadways are four 
provincial highways (S310, S106, S211 and S210), 
and many county-level and township-level rural 
highways, such as X068, X198, X063, Y019, Y012, 
Y020 and Y021. There are rich mines along the road-
ways, and the mining trucks tend to be overloaded. 

The total cruising time means the sum of the 
cruising time of all control vehicles. When ensur-
ing all demand points be visited, the smaller it is the 
higher the control working efficiency. The ratio of the 
number of demand points to the total cruising time 
(Equation 23) can be used to evaluate this efficiency. 
The idle ratio refers to the rate of the unused vehicles 
to the total (Equation 24). The smaller it is, the higher 
the utilization of the vehicles.

W
t

N
k

k K

=
!

/  (23)
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Figure 7 – Situation along the routes



Jiang J, Zhao X, Guo W, Yang Z. Scheme of Overloaded Truck Control on a Rural Highway

808 Promet – Traffic&Transportation, Vol. 32, 2020, No. 6, 797-810

best (3.458). These results show that the proposed 
model and the corresponding algorithm can effec-
tively help decision-makers to make a reasonable de-
cision on the location of check bases and the routing 
of control vehicles.

In this paper, the temporal distribution of the traf-
fic flow at demand points is not considered; thus, the 
optimized schemes cannot tell the departure times of 
the control vehicles. In our follow-up study on this 
topic, we will consider the traffic flow fluctuation on 
roadways crossing several time windows when op-
timizing the cruising routes and the departure times 
for control vehicles. In this way, we may enable the 
control vehicles to intercept more vehicles during the 
cruising.
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农村公路超载货车的控制方案

本文首先提出了一种新的农村公路超载治理模
式，并建立选址-路径模型优化治超站的分布和治
超车的路径方案。其次，针对具有大规模候选位置
集和治超站数量未知的选址-路径模型，设计了一种
多蚁群优化算法进行求解。最后，利用贵阳市农村
公路的实际数据进行了数值分析。研究结果表明，
该模型可以获得最优的治超站位置和治超车路径方
案，从而验证了模型和算法的可行性，可以帮助管
理人员做出确定治超站选址和治超车路径选择的决
策。

关键词：

公路交通；选址-路径模型；多蚁群

优化算法；治超站；农村公路
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