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Large meteorite impacts have a profound effect on the Earth’s geosphere, atmosphere, hydrosphere and 
biosphere. It is widely accepted that the early Earth was subject to intense bombardment from 4.5 to 3.8 
Ga, yet evidence for subsequent bolide impacts during the Archean Eon (4.0 to 2.5 Ga) is sparse. However, 
understanding the timing and magnitude of these early events is important, as they may have triggered 
significant change points to global geochemical cycles. The Maniitsoq region of southern West Greenland 
has been proposed to record a ∼3.0 Ga meteorite impact, which, if confirmed, would be the oldest 
and only known impact structure to have survived from the Archean. Such an ancient structure would 
provide the first insight into the style, setting, and possible environmental effects of impact bombardment 
continuing into the late Archean. Here, using field mapping, geochronology, isotope geochemistry, and 
electron backscatter diffraction mapping of 5,587 zircon grains from the Maniitsoq region (rock and 
fluvial sediment samples), we test the hypothesis that the Maniitsoq structure represents Earth’s earliest 
known impact structure. Our comprehensive survey shows that previously proposed impact-related 
geological features, ranging from microscopic structures at the mineral scale to macroscopic structures 
at the terrane scale, as well as the age and geochemistry of the rocks in the Maniitsoq region, can be 
explained through endogenic (non-impact) processes. Despite the higher impact flux, intact craters from 
the Archean Eon remain elusive on Earth.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Meteorite impacts have shaped Earth’s surface and caused in-
stantaneous changes—some catastrophic—to planetary crusts as 
well as the atmosphere, oceans, climate and life. Such punctu-
ated violent events are superimposed on gradual geological change 
(Grey et al., 2003; Schmieder and Kring, 2020). Currently, the 
oldest confirmed meteorite impact structure formed at 2.23 Ga, 
and may be associated with the end of global glacial conditions 
at that time (Erickson et al., 2020). Establishing the timing and 
size of large and ancient impacts is thus crucial for understand-
ing the development of Earth’s surface and the evolution of com-
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plex life (Kring, 2000; Osinski et al., 2001; O’Neill et al., 2020). 
However, most evidence of meteorite impacts on Earth, including 
the topographic expression of impact craters, becomes progres-
sively removed from the rock record over time through erosion 
and recycling of crust via normal tectonic processes. For this rea-
son, Archean impact ejecta horizons in South Africa and Australia, 
which range in age from 3.47 to 2.6 Ga, are currently the oldest 
evidence of impact processes, yet none have a recognized source 
crater (Glass and Simonson, 2013). The size of these early impacts, 
and hence their consequences for Archean Earth systems, are un-
known.

The Maniitsoq region of West Greenland has been claimed to 
host the oldest impact structure on Earth (Garde et al., 2012; 
Scherstén and Garde, 2013). With a purported age of ∼3.00 Ga 
and a diameter of ∼150 km, the Maniitsoq structure is a candi-
le under the CC BY-NC-ND license 
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date source crater for Archean-aged ejecta deposits. The Maniitsoq 
structure is located in the Archean Akia Terrane of the North At-
lantic Craton (Friend et al., 1996; Nutman and Friend, 2007; Po-
lat et al., 2015; Friend and Nutman, 2019). The Akia Terrane is 
dominated by Mesoarchean gray gneisses (Garde, 1997; Garde et 
al., 2000) with minor amounts of younger supracrustal rock se-
quences (Kirkland et al., 2018), variably disrupted ultramafic rock 
complexes (Szilas et al., 2015), and late-tectonic felsic to mafic ig-
neous intrusions (Fig. 1). A broadly arcuate array of mafic rocks 
in the region (Fig. 1) was proposed to represent mantle-derived 
melt produced by a 3.0 Ga bolide impact (Garde et al., 2012, 2013). 
Published U–Pb zircon ages in five granitoid rocks cluster around 
3.00 Ga; their isotope systematics were interpreted as evidence for 
an impact-induced hydrothermal overprint, and regarded as the 
minimum age of that impact event (Scherstén and Garde, 2013). 
Other evidence that has been put forward in support the Maniitsoq 
impact hypothesis includes mineral microstructures interpreted to 
have formed during high-strain (shock) deformation, putative im-
pact melt, curvilinear aeromagnetic anomalies, rock brecciation, 
and platinum group element abundances (Garde et al., 2012, 2013, 
2014; Scherstén and Garde, 2013; Keulen et al., 2015). Of these, 
only deformation microstructures in minerals provide diagnostic 
evidence of impact processes (French and Koeberl, 2010) and the 
data presented of alleged shocked quartz from Maniitsoq rocks has 
been challenged (Reimold et al., 2013). Given that the preservation 
potential for Archean impact structures is low (none are currently 
known), it is crucial to investigate materials at Maniitsoq that can 
provide unambiguous evidence of shock metamorphism in deep 
crustal rocks, such as shock microstructures in the refractory min-
eral zircon (Kamo et al., 1996; Moser et al., 2011; Timms et al., 
2017), rather than quartz and feldspar, where evidence of impact 
deformation can more easily anneal over geologic time (French and 
Koeberl, 2010).

We evaluate the hypothesis that the Maniitsoq structure repre-
sents an Archean-age impact crater that formed ca. 3 Ga by inte-
grating new field observations, geochronology, isotope geochem-
istry, and a microstructural survey of 2,256 zircon grains from 
18 basement rocks and 3,331 zircon grains from 14 stream sed-
iments from across the Maniitsoq region (Fig. 1). Field observa-
tions and geochronology of key samples from the central area 
of the proposed Maniitsoq structure are used to determine the 
timing of magma crystallization and regional deformation. Elec-
tron backscatter diffraction imaging is used to investigate if zircon 
from throughout the Maniitsoq structure shows evidence of shock 
metamorphism and is coupled with an expansive study of detri-
tal grains in fluvial systems from nearby drainages. Finally, oxygen 
isotope geochemistry of zircon evaluates the proposal that bolide 
impact caused an influx of surface waters in rocks exposed in the 
Maniitsoq region.

2. Materials and methods

2.1. Rock and mineral samples

Two granitoid samples previously proposed to be impact-
generated melts that formed at 3.0 Ga (Garde et al., 2012; Keulen 
et al., 2015) were collected for U–Pb zircon geochronology and O 
isotope analysis and complement 15 additional bedrock samples 
with published U–Pb zircon ages (Fig. 1; Supplementary Table S1). 
Of these existing 15 samples, seven have crystallization ages >3.0 
Ga, six have crystallization ages <3.0 Ga, and two are metased-
imentary rocks with depositional ages < 3.0 Ga (Supplementary 
Table S1). An additional sample (a metaleucogabbro; sample 488) 
was also analyzed to relate its crystallization age to microstruc-
tures measured with electron backscatter diffraction (EBSD). To-
gether, this set of 18 bedrock samples provides a balance of zircon 
2

that is both older and younger than the proposed age (∼3.0 Ga) 
of impact at Maniitsoq. An additional 3,331 zircon grains from 14 
stream sediment samples representing various drainages across the 
terrane (Fig. 1) were also surveyed for EBSD as a means of expand-
ing regional bedrock sampling of rocks that may be poorly exposed 
or no longer extant.

The first proposed impact-related sample is an alkali-feldspar-
rich pegmatite (sample 899; Fig. 2a) from the Maniitsoq structure 
(Fig. 1), consistent with those described previously as the product 
of impact-induced melting (Garde et al., 2012). The pegmatite con-
tains cm-sized alkali-feldspar porphyroclasts (Fig. 2a) which im-
plies substantial ductile deformation after crystallization.

A second rock proposed to be related to impact-induced melt-
ing is an equigranular felsic gneiss (sample 1240) that was sam-
pled near the location where microstructural evidence of impact 
melt was proposed (Keulen et al., 2015). The equigranular felsic 
gneiss is folded with the enveloping mafic gneiss (Fig. 2b).

2.2. U–Pb zircon geochronology.

Zircon geochronology was conducted using a Resonetics RESO-
lution M–50A–LR laser ablation system, incorporating a COMPex 
102 193 nm excimer UV laser coupled to a Nu Plasma II multi-
collector inductively coupled plasma mass spectrometer. Detailed 
analytical methods are presented in Appendix A in the supplemen-
tary material.

2.3. O isotope analysis in zircon

Oxygen isotope ratios and 16O1H/16O (OH−) values were deter-
mined on new and previously dated zircon grains using a Cameca 
IMS 1280 at the Centre for Microscopy Characterisation and Anal-
ysis at the University of Western Australia. Analytical procedures 
closely followed those of Kita et al. (2009) and the data reduction 
follows protocols described previously by Kirkland et al. (2012). 
Detailed analytical methods are found in Appendix A.

2.4. Electron backscatter diffraction

Zircon grains from 18 rock samples (2,256 grains) and 14 
stream sediment samples (3,331 grains) collected across the Mani-
itsoq region (Fig. 1) were surveyed for deformation by electron 
backscatter diffraction (EBSD). Zircon grains were mounted in 
epoxy resin, and some are the same samples that were analyzed 
for U–Pb geochronology and oxygen isotope ratios. Scanning elec-
tron microscopy (SEM) analysis was performed using a Tescan 
MIRA3 field emission gun (FEG) SEM in the Microscopy and Micro-
analysis Facility in the John de Laeter Centre at Curtin University 
using methods described previously (e.g., Cavosie et al., 2018). De-
tails of sample preparation and instrument operating conditions 
are presented in Appendix A in the supplementary material.

3. Results

3.1. Field relationships

New geologic mapping conducted during field campaigns in 
2016–2018 has identified a polyphase deformation history in the 
Maniitsoq region that builds on, and is consistent with, previ-
ous interpretations (Garde et al., 2000; Kirkland et al., 2018; 
Berthelsen, 1962; Steenfelt et al., 2020). Here, we present a brief 
summary of the field observations with further details found in 
Kirkland et al. (2018) and Steenfelt et al. (2020).

The earliest fabric is preserved in mafic enclaves and this fab-
ric is folded into locally-preserved and variably-oriented folds. The 
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Fig. 1. (a) Geological map of the Akia Terrane of the North Atlantic Craton, southern West Greenland (map modified from Allaart, 1982 and Gardiner et al., 2019). Dashed 
red line indicates the inferred location of the melt zone associated with the proposed Maniitsoq impact structure (Garde et al., 2012). Dashed black lines show the proposed 
distance from the center of the impact crater (Garde et al., 2012; Scherstén and Garde, 2013). Samples from Scherstén and Garde (2013) were used to argue for pervasive 
isotopic resetting of zircon at 3.0 Ga due to a bolide impact. (b) Aeromagnetic map of the Akia Terrane and surroundings, illustrating regionally developed fold patterns 
that developed after 3.0 Ga (modified from Steenfelt et al., 2020). The spatial extent of map is the same as in (a). Sources of data for each sample are detailed in the 
Supplementary Tables. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
age of this early fabric is unclear, but it is younger than the crys-
tallization age of diorite gneiss that hosts this fabric (dated at 3.2 
Ga; Garde et al., 2000) and older than the enveloping tonalite 
(>3.0 Ga; Garde et al., 2000; Gardiner et al., 2019). A second-
generation fabric forms the dominant gneissosity in the tonalites, 
and is isoclinally folded at the outcrop- to map scale. The dom-
inant regional tectonic fabric (Fig. 1b) is a third-generation fo-
liation that is parallel to the contacts between the supracrustal 
rocks and the enveloping tonalite gneiss (Fig. 1a) and present as 
foliations in metabasites and metasedimentary rocks. Second and 
third-generation structures are associated with high-temperature 
metamorphism at <2.88 Ga (Kirkland et al., 2018).
3

3.2. Zircon geochronology

U–Pb analytical data are presented in Supplementary Table S2. 
The results for sample 488 (metaleucogabbro) are described in de-
tail in Appendix B in the supplementary material.

3.2.1. Sample 899
Zircon crystals are dominantly euhedral, many are brown to 

black, implying high to extreme U content. There is some morpho-
logical variation within the grains (Fig. 3a); most have well-defined 
crystal faces, some are angular broken fragments, and some are 
rounded. Under CL imaging many grains reveal idiomorphic zoning 
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Fig. 2. (a) Alkali-feldspar pegmatite (sample 899). Porphyroclasts of alkali-feldspar (inset) indicate significant subsolidus ductile deformation. Sample location: 65.35302◦ N, 
51.44110◦ W. (b) Equigranular felsic gneiss (similar to sample 1240) folded with enveloping mafic gneiss. Photo location: 64.96659◦ N, 52.13032◦ W.

Fig. 3. (a) U–Pb analytical data for zircons from sample 899: alkali-feldspar pegmatite. Yellow squares indicate Group I (magmatic zircon); red squares indicate Group X 
(inherited zircon); gray squares indicate Group D (discordant or high common Pb). (b) U–Pb analytical data for zircons from sample 1240: equigranular gneiss. Yellow 
squares indicate Group I (magmatic zircon). Concordia ellipse is shown in brown.
whereas a few grains are traversed by a network of fractures. These 
fractures are cored by low CL response zircon but edged by high CL 
response zircon. Some grains have a spongy texture. A total of 46 
analyses were made on 46 grains. Six analyses have greater than 
2% non-radiogenic lead as determined using the 204Pb approach 
or are >5% discordant (Fig. 3a). These six analyses (Group D) are 
interpreted to have lost or gained Pb, including potentially non-
radiogenic Pb, and are excluded from further discussion. Thirty 
analyses (Group I), on homogeneous domains in oscillatory zoned 
zircon yield a 207Pb/206Pb weighted mean age of 2963 ± 1 Ma 
(MSWD = 2.2), interpreted as the age of high-grade metamor-
phism and melting. Group I grains have high concentrations of U 
(average 598 ppm) and moderate Th/U ratios (average 0.91). Ten 
analyses (Group X) on CL-bright cores yield 207Pb/206Pb ages of 
3005–2971 Ma, interpreted as either the age of xenocrystic com-
ponents or dates reflecting variable degrees of radiogenic Pb loss 
from a ca. 3.0 Ga component during overprinting at ca. 2960 Ma. 
Group X has highly variable Th/U ratios, potentially consistent with 
more than one inherited source, but, in general, their Th/U ratios 
are very high (2.6 to 0.56, with an extreme outlier at 11.4). Calcu-
lated densities, assuming annealing stopped at crystallization, are 
low for Group I reflecting high to extreme U and Th content (aver-
4

age = 4.15 g/cc), in contrast Group X has higher apparent densities 
(average = 4.3 g/cc).

3.2.2. Sample 1240
Zircon crystals are subhedral to euhedral, with somewhat 

rounded terminations. There is very little morphological variation, 
and under CL most grains display a relatively homogeneous low re-
sponse with faint indications of oscillatory zoning (Fig. 3b). Some 
grains have convoluted internal textures consistent with some 
form of dissolution and subsequent new growth process. A total 
of 16 analyses were made on 16 grains (Fig. 3b). All sixteen anal-
yses (Group I) yield a Concordia age of 3002 ± 1 Ma (MSWD =
1.9 concordance and equivalence), interpreted as the age of mag-
matic crystallization. Uranium content is moderate (average 270 
ppm) and the Th/U ratio is relatively low (average 0.5). Calculated 
apparent densities range from 4.6 to 4.3 g/cc, assuming damage 
accumulation commencing after growth, consistent with Archean 
zircon and intermediate levels of alpha dose damage.

3.3. Zircon microstructural survey

A total of 2,256 zircon grains from 18 rock samples within the 
inner 100 km diameter of the proposed impact structure (Fig. 1a) 
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Fig. 4. Electron backscatter diffraction orientation maps (inverse pole figures) of representative zircon grains in Maniitsoq granitoid samples ranging in age from 3024 to 3008 
Ma. Colors indicate crystallographic orientation; deformation would manifest as color variations in single grains. Dark areas are metamict (radiation damaged) portions of 
zircon grains that are no longer crystalline. Circular holes are areas analyzed for U–Pb geochronology by laser ablation inductively coupled mass spectrometry. Scale bars are 
all 100 micrometers. The pixel size for each image is 500 nm.
were surveyed for deformation using electron backscatter diffrac-
tion. These include nine granitoid samples with crystallization 
ages of 3240–3002 Ma that predate the proposed impact event, 
seven granitoid samples with crystallization ages of 2998–2729 
Ma that postdate the putative impact, and two metasedimentary 
rocks with depositional ages <3000 Ma (Supplementary Table S1). 
Fifty-two to 283 zircons per sample were analyzed (average of 125 
grains/rock sample; Supplementary Table S4). In addition, 14 flu-
vial sediment samples were analyzed with 119 to 319 zircons per 
sample (average of 238 grains/fluvial sample) for a total of 3,331 
grains (Supplementary Table S5).

Across the entire zircon suite (5,587 grains), most grains yield 
high-quality diffraction patterns, in whole or part, indicating zir-
con across the region is predominantly crystalline. Exceptions at 
the grain-scale include discrete zones or bands of radiation dam-
age caused by locally high actinide abundances, which are com-
mon in zircon (e.g. Nasdala et al., 2005). Radiation damaged areas 
lose crystallinity and do not generate diffraction patterns, and thus 
appear black in orientation maps (Fig. 4). Nearly all grains an-
alyzed preserve evidence of oscillatory growth zoning, typically 
manifested in cores or rims, consistent with an igneous origin 
(Fig. 4). Some grains show minor evidence of brittle deformation 
in the form of irregular fractures that are typical for zircon in ex-
5

humed plutonic rocks. However, none of the analyzed zircon grains 
contain sets of parallel planar fractures that are typical of impact-
related deformation (e.g. Cavosie et al., 2010).

3.4. Oxygen isotope ratios in zircon

We analyzed O isotope values and OH contents for zircon grains 
from five samples located within the central 100 km diameter re-
gion of the Maniitsoq structure (Fig. 1). Thirty zircon analyses with 
primary signatures (i.e. low 16O1H/16O) yield δ18O values ranging 
from 5.0 ± 0.4 to 7.0 ± 0.4� relative to Vienna Standard Mean 
Ocean Water (VSMOW) (Fig. 5a). All but six analyses on the zircon 
grains have low 16O1H/16O values within the range of the zircon 
U–Pb standards (Fig. 5b).

4. Discussion

4.1. Geochronology

An alkali-feldspar-rich pegmatite (sample 899) is from the core 
of the Maniitsoq structure and similar samples were inferred to 
be generated from impact-induced melting (Garde et al., 2012). 
The weighted mean age of 2.963 ± 0.001 Ga from sample 899 
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Fig. 5. Stable isotope ratios in zircon. (a) δ18O values of zircon from Maniitsoq rocks. 
Four samples have crystallization ages older than the proposed impact and would 
have been affected by the putative impact event. All measured values are inconsis-
tent with the incorporation of surface water (<0�, VSMOW). The range of global 
3.2–2.9 Ga zircon oxygen isotope ratios from primitive crust is from Valley et al. 
(2005) and Spencer et al. (2014). (b) 16O1H/16O of Maniitsoq zircon (unkn.) relative 
to the reference material (ref.) indicating minimal evidence for secondary alteration. 
Open symbols are from metamict (radiation damaged) areas of grains and are in-
dicative of alteration; these analyses yield similar δ18O values to unaltered grains 
(filled symbols).

is interpreted as the age of high-grade metamorphism and melt 
crystallization based on analyses in homogeneous domains in os-
cillatory zoned zircon (e.g. Rubatto, 2017). This age is too young to 
have been generated from the proposed 3.0009 ± 0.0019 Ga min-
imum age of impact (Scherstén and Garde, 2013), but is generally 
consistent with recent studies that demonstrate prolonged mag-
matism and high-temperature metamorphism affected the Akia 
terrane from ca. 3.05 to 2.97 Ga (Gardiner et al., 2019; Steenfelt 
et al., 2020). Furthermore, protracted magmatism and metamor-
phism over ca. 80 Ma is not consistent with an impact, which is a 
relatively short-lived thermal event.

An equigranular gneiss (our sample 1240) that was previ-
ously described as containing impact-related melt microstructures 
(Keulen et al., 2015) yielded a crystallization age of 3.002 ±
0.001 Ga. This gneiss is intercalated with previously dated younger 
supracrustal rocks, which suggests younger interleaving and fold-
ing at granulite-facies conditions (Kirkland et al., 2018). Pervasive 
folding of this unit after crystallization reflects the previously doc-
umented polyphase deformation history that must have occurred 
after 3.0 Ga (Kirkland et al., 2018); thus, a circular 3.0 Ga impact-
related structure would not be preserved. Hence, based on the 
temporal relationship of fabrics, an impact crater formed as a cir-
6

cular feature at ca. 3.0 Ga could not be preserved as such in the 
Maniitsoq region, due to younger pervasive polyphase ductile de-
formation. Even modest amounts of strain would modify the shape 
of an originally circular structure in the crust (e.g. Riller, 2005). 
Furthermore, aeromagnetic data do not support the presence of a 
circular structure in the Maniitsoq region (Steenfelt et al., 2020).

4.2. Zircon microstructure

Shock-deformation microstructures in zircon provide diagnostic 
evidence of impact (Timms et al., 2017), and can survive post-
impact high-temperature metamorphism in the deep crust (Erick-
son et al., 2020; Moser et al., 2011) as well as magmatic recycling 
(Gibson et al., 1997). In general, the vast majority (99.9%) of our 
comprehensive suite of 5,587 zircons surveyed from the Maniit-
soq region record no deformation. Less than ten zircon grains were 
identified that show evidence of crystal-plastic deformation, which 
manifests as crystallographic misorientation; cumulative misorien-
tation per grain was �5◦ in all but three grains analyzed. Bedrock 
samples that contain deformed grains include sample 311 (1 of 
114 grains), located >50 km southwest of the center of the Mani-
itsoq structure, sample 488 (2 of 98 grains), located ∼80 km north-
east of the center (Fig. 1), and detrital samples 9, 12, and 13 (three 
grains) (Fig. 6). Deformation in these grains manifests as systems 
of sub-parallel low-angle grain boundaries, resulting in progres-
sive cumulative misorientation of up to ∼10◦ across each grain 
(Fig. 6a,c,d), as well as localized recrystallization (Fig. 6b). These 
types of microstructure are typical of endogenic deformation in 
shear zones or other discrete high-strain environments, and have 
been reported in zircon from both tectonic and magmatic settings 
(Reddy et al., 2009; Piazolo et al., 2012). The microstructures in 
detrital zircon from across the Maniitsoq region are similar to that 
observed in bedrock (Fig. 6), and provide a robust verification that 
no deformed bedrock units were omitted in our sample suite.

Zircon from across the Maniitsoq region record no evidence of 
high-pressure shock deformation, such as deformation twin lamel-
lae or high-pressure minerals, as has been found in zircon at 
many of Earth’s ∼190 confirmed impact structures (Earth Earth 
Impact Database, 2020). Moreover, the highly crystalline nature 
and preservation of igneous growth zoning in most of the inves-
tigated zircon grains is inconsistent with recrystallization due to a 
pervasive regional hydrothermal alteration event proposed to have 
shortly followed impact (cf. Scherstén and Garde, 2013).

4.3. Oxygen isotopes

Meteorite impacts can cause widespread hydrothermal alter-
ation (Osinski et al., 2013) and the geochemical imprint can be 
evaluated using stable isotopes (Muttik et al., 2010). Scherstén and 
Garde (2013) propose pervasive and nearly complete isotopic re-
setting of Maniitsoq zircon during a regional hydrothermal event 
associated with impact at 3.0009 ± 0.0019 Ga. The hydrother-
mal alteration process was proposed to have involved dissolution–
reprecipitation of zircon, resulting in near-complete expulsion of 
radiogenic-Pb from the zircon grains at that time.

The oxygen isotope ratio (δ18O) in zircon is a sensitive indica-
tor of both primary growth and/or secondary alteration processes. 
Mantle-equilibrated zircon has a narrow range of δ18O values of 
5.3 ± 0.6� (VSMOW); high and low-temperature water–rock in-
teraction, and melting of supracrustal material (δ18O > ∼6.5�
VSMOW) all impart distinctive isotopic signatures on zircon (Valley 
et al., 2005).

Our δ18O analyses are within uncertainty or higher than val-
ues for zircon derived from the mantle (Fig. 5a; Valley et al., 2005) 
and hence inconsistent with that expected for zircon grown or re-
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Fig. 6. Electron backscatter diffraction orientation maps showing crystallographic misorientation of zircon grains with crystal-plastic deformation from Maniitsoq samples 
(sample locations in Fig. 1a). Each of the grains records up to ∼10◦ of misorientation that is accommodated by a system of sub-parallel low-angle grain boundaries, and in 
the case of (B), localized recrystallization – these styles of deformation in zircon are consistent with tectonic and magmatic processes. The circular feature in (A) is a hole 
made during the U–Pb analysis by laser ablation. Scale bars are 50 micrometers in length. The pixel sizes for these images range from 150 to 300 nm.
precipitated in a reservoir buffered by Archean seawater (<0�
relative to VSMOW; Jaffrés et al., 2007).

An additional test for aqueous alteration of zircon, which has 
been shown to affect primary δ18O values, is in situ measure-
ment of 16O1H/16O (Wang et al., 2014). The low 16O1H/16O values 
of all but six spot analyses (Fig. 5b) unambiguously demonstrate 
that Maniitsoq zircon grains were not aqueously altered or recrys-
tallized in a water-rich environment (e.g. Van Kranendonk et al., 
2015). Those six analyses from 42 grains with elevated 16O1H/16O 
values are consistent with the incorporation of H2O during sec-
ondary processes in metamict (radiation-damaged) zircon; such 
zircon domains are easily identified from their modified U/Pb sys-
tematics (indicating radiogenic Pb mobility), as well as identified 
as dark (non-crystalline) areas in electron backscatter diffraction 
orientation maps (see sample 575 grain Z3 in Figs. 2 and 7).

Metamict zircon occurs widely in Archean rocks primarily due 
to accumulated unannealed radiation damage, which allows incor-
poration of H2O into the damaged zircon structure environment 
(Van Kranendonk et al., 2015). Regardless, their δ18O values (4.3 
± 0.4 to 5.4 ± 0.4�) are similar to the mantle range (Binde-
man, 2008) and of 3.2–2.9 Ga zircon derived from primitive crust 
globally (Fig. 5a) (Valley et al., 2005; Spencer et al., 2014), and 
are inconsistent with alteration or recrystallization in a seawater-
rich environment. Therefore, there is no stable isotopic evidence in 
zircon from the Maniitsoq structure that supports a hydrothermal 
influx of seawater, from bolide impact or other processes.

5. Conclusions

The timing of fabric development, the absence of impact-related 
microstructures in zircon, and the primary oxygen isotope ratios 
of zircon all repudiate the hypothesis that the Maniitsoq struc-
7

ture in southern West Greenland formed as a consequence of me-
teorite impact and related processes at ca. 3.0 Ga. To date, no 
diagnostic evidence of impact-related deformation has been pre-
sented, and moreover, the geologic features in the area are consis-
tent with existing models of regional endogenic processes during 
polyphase magmatism, tectonism and metamorphism associated 
with Mesoarchean to Neoarchean growth, reworking and stabiliza-
tion of the North Atlantic Craton. Our results conclusively rule out 
the proposal that much of the Archean rock mass in the Maniit-
soq region formed by an Archean meteorite impact, which leaves 
the 2.23 Ga Yarrabubba structure in Western Australia as the old-
est confirmed terrestrial impact structure. The source craters for 
Archean-aged impact ejecta remain elusive on Earth.
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Fig. 7. Electron backscatter diffraction images (inverse pole figures) of high OHO grains showing the metamict nature of the analyzed regions. The same color legend in Fig. 4
applies to this image. The pixel size for each image is 500 nm.
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