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Abstract: Carbon capture and storage (CCS) has attracted renewed interest in the re-evaluation of the
equations of state (EoS) for the prediction of thermodynamic properties. This study also evaluates
EoS for Peng—Robinson (PR) and Soave-Redlich-Kwong (SRK) and their capability to predict the
thermodynamic properties of CO,-rich mixtures. The investigation was carried out using machine
learning such as an artificial neural network (ANN) and a classified learner. A lower average absolute
relative deviation (AARD) of 7.46% was obtained for the PR in comparison with SRK (AARD = 15.0%)
for three components system of CO, with N, and CH4. Moreover, it was found to be 13.5% for
PR and 19.50% for SRK in the five components’ (CO, with N, CHy, Ar, and O;) case. In addition,
applying machine learning provided promise and valuable insight to deal with engineering problems.
The implementation of machine learning in conjunction with EoS led to getting lower predictive
AARD in contrast to EoS. An of AARD 2.81% was achieved for the three components and 12.2% for
the respective five components mixture.

Keywords: equation of state (EoS); carbon capture systems (CCS); machine learning; fluid pack-
age selection

1. Introduction

The increased global awareness of the effect of CO, on the climate has renewed
the interest in carbon capture and storage (CCS) technologies for the reduction of CO,
emissions relative to historic emissions; these innovative technologies aim to achieve a
lower relative rise in global mean temperature (GMT) long-term [1]. Though the accurate
prediction of the thermodynamic properties of CO;-rich mixtures is critical in terms of
design calculations for the selectivity, costing, and safety of operations, improper property
prediction will have an adverse effect on a project’s economic feasibility in regards to
overdesign or lack thereof [2,3].

1.1. A Brief Insight into Equation of State and Machine Learning

There are a vast number of equations of state (EoS) used for the prediction of thermo-
dynamic properties of gas mixtures. These EoS are used in a fluid package within software
such as Aspen HYSYS to predict fundamental properties such as density, heat capacity,
viscosity, etc. [4]. Also, it is highly important to combine the existing EoS with other
methods to improve the reliability and accuracy of predicting thermodynamic properties.
It is because using EoS in the design calculations in software packages such as AspenONE,
without access to autonomous property prediction programes such as NIST Thermo Data
Engine [5], is not sufficiently accurate. Machine learning itself can be used to predict
property data, however, current works are limited to species within fractional components
X, Y, etc. Combined with EoS principles, it can be used to predict mixtures” thermody-
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namic properties more accurately and at a wider range using artificial variables such as
pseudo-reduced variables within the data pre-processing [6].

1.2. Rise of Machine Learning in Science

With the emergence of Industry 4.0, some of its key pillars such as machine learn-
ing have been implemented into industries and a range of academic fields to provide a
novel solution to Big Data problems [7]. Machine learning is a statistical-based model
for computer systems to perform tasks such as data prediction and classification from
the analysis of a set of inputs without an explicit set predefined logical model such as
conventional empirical correlation equations [7]. Machine learning builds a model through
the use of a training dataset where a set of variables would be used to predict the desired
output [8]. There are two main types of learning: supervised and unsupervised, both of
which have an assortment of applications. Supervised learning is a novel solution for
the current empirical models such as those used in cubic EoS through the specification
of their respective input parameters such as temperature, pressure, and composition to
train the system to learn the relationship through non-linear modeling and may provide a
solution within minutes whereas more accurate models will require significantly longer
depending on the complexity of the model. An innovative solution may also be to use
unsupervised learning, where only the input and output are given, where the predicted
model will categorize data as various classes (such as solid, liquid, or vapor).

There has been little work done on the combination of machine learning with artificial
variables for the prediction of thermodynamic properties, where recent works such as
work presented by Nikkholgh (2009) [6] considered the use of reduced variables, however,
did not consider the use of Bayesian regularization backpropagation and the combination
of the variables from cubic EoS such as the attraction and repulsion factors [6]. This is
because of the lack of powerful computing in artificial intelligence (AI) [7]. Also, despite the
adaptation of first-principles-based models to problems, there is still a lack of capability to
model problems such as diagnosis, safety analysis, and materials design [9]. Therefore, it is
imperative to focus on machine-learning-based technologies such as Al. Al technologies
such as Deep Learning and ANN have the capability and should be further investigated to
make the method mature within chemical engineering [9].

The machine learning tools used in this work made use of the toolbox found in MAT-
LAB software [10] that has both supervised and unsupervised learning functionality for the
data prediction with a full list of modeling techniques. In this work, the supervised learning
model was performed for the classification and regression of fluid properties. The main
feature of this work employs the use and development of an ANN, which makes use of
the Neural Network Fitting app within the machine learning toolbox for the prediction of
density; whereas for the prediction of phase behavior, classified learning was used.

1.3. Aspen Fluid Package Selection

This article aims to cover the evaluation of the cubic EoS of the Carlson (1996) phys-
ical property selection method for Aspen, which suggests the use of Peng-Robinson,
Redlich-Kwong-Soave, and Lee—Kesler-Plocker for their reliability in carbon-rich mixtures
prediction [11]. Although it seems that PR is the preferred equation for gas mixtures due to
its low critical Z value, new mixing rules like Predictive-SRK and UMR have changed this
perception [12]. The EoS is known for its empirical nature, and there is a need to constantly
evaluate the correct mixture behavior. Thus, it is highly useful to review the fundamental
principles behind cubic EoS for their application in machine learning algorithms.

2. Materials and Methods
2.1. Cubic Equation of State

Cubic equations of state are a popular practice used for property predictions of
chemical processes due to their simplicity and the assimilation into Maxwell constructions
for thermodynamic departure predictions [13]. Van der Waals was the first to successfully
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find the PVT behavior in gas and liquid states by including a repulsive and attraction
term [14]. The underlying principle of the Van der Waals’ equation is the description of
phase behavior through dimensionless reduced variables (a, b, and c constants) relating to
reduced fluid properties: Tr, Pr, and Vr which is defined by the Equation (1):

T p 14

Tr—i,Pr—E,Vr—VC )
These reduced variables yield a universal reduced equation, though this principle is
valid for substances that present similar PVT behavior in terms of reduced variables [15].
The theorem of corresponding states for fluid phases is expressed by a compressibility
factor (Z) (Equation (2)), which may be used in the ideal gas formulae to define real

fluid properties:
PxVm
~ RxT @)
The nature of cubic EoS, being of cubic nature, allows for three possible roots, where T,
being smaller than 1 can enter the vapor-liquid equilibrium regime, though as the reduced
temperature is decreased further, minima and maxima are present (for the turning point) in
the equation of state shown in where three real roots are present. It has been observed that
the low-temperature results in a metastable fluid, this phenomenon is known as “stretched
liquid” and causes negative absolute pressure. However, this is not further explored
in this work [16]. As a result of the abovementioned Corresponding States Theorem,
the root for the basis of prediction for all cubic EoS has empirical correlations to the critical

compressibility of a set of mixtures.

P xVm,

Ze = ~
c RxT, Constant 3)

Van Der Waals acknowledges that substances behave alike at the same reduced states,
that being said, at their respective reduced state the properties of these substances are alike,
which is known as the corresponding states principle. Hence, the primary purpose of the
use of corresponding states is for the cubic empirical model [17]:

RxT a
Vm—b  Vm(Vm+b)+c(Vm—b)

P= @)

The tabulation of the cubic equation of state in Table 1 is found in the literature where
Van der Waals, RK, SRK, PR, Harmens-Knapp, and Schmidt-Wenzel EoS were obtained
from [13]; Patel-Teja [18], and the modified Nasrifar Moshfeghian EoS [19].

Table 1. Cubic Equations of State Variations [13,18,19].

Cubic Equation a b c Simplified Equation
Van der Waals a 0 0 P= X}{mxfb ~ T
Redlich and Kwong \/”Tr b 0 = \ﬁr:—Tb T \/Tr)vfn(VmH;)

Soave Modified Redlich Kwong axauo b 0 P = \}{,;_Tb - %

Peng Robinson axauw b B pP= ‘}Qrsz - Vm(Vmﬁaﬁb(Vm—b)

Harmens-Knapp pP= 15:3; - vm2+vmx[;;(xTc>+h2x(c—1)

Schmidt-Wenzel pP= lfiiz(fb - Vm2+vmxhxa ((1T-&)-3w)+h2><3w2

Patel-Teja = \ﬁmxfb - VmM»V:z(inc)fbxc

Modified Nasrifar Moshfeghian P RxT a:xa(9)

T Vm—b(2) ~ Vmr+2xb(2)xVm—2xb(2)’
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The parameters for the EoS have an approximate physical meaning, where a is the
attraction force between the molecules, b is related to the repulsion and the effective
molecule size [20]. The a and b parameters used in this work as presented in Table 2 [16].
The table lists the original works where the Soave-modified Redlich-Kwong alpha function
is modified for hydrogen-containing systems due to the conventional extension. This is
unable to accurately predict the K values of hydrogen, which may be required in syngas
processing [21].

Table 2. Cubic equations of interest parameters [16].

Cubic Equation

a B %

5
Redlich and Kwong 0.42748 x & IX)T[Z 0.08664 x R%CTF
Soave Modified 3
Rodlich I‘i“;oﬁg 042748 x RXT2 008664 x K5l [14 (0.48508 + 155171 x w — 0.15613 x w?) x (1—T9%)]?

Peng Robinson

045724 x X2 0.0778 x B5Te [14 (0.37464 + 1.54226 x w — 026992 x w?) x (1 — TP%)]

EoS extension to mixtures requires the use of mixing rules to calculate pseudo-reduced
properties; the rules applied for mixtures may be as basic as linear mixing, assuming no
activity between mixture species. An improvement is an extension to mixtures through
the use of Van der Waals mixing for pseudo-reduced attraction and repulsion parameters
through interaction parameters. There are two popular mixing rules including linear
(Equations (5)-(7)) and Van Der Waals (Equations (6)—(8)) mixing rules [13].

N
Amix = Z Xi X a; %)

i=1

N
bmz’x = Z X; % bl' (6)

i=1

N
Cmix = Y_ Xi X ¢ ()

i=1

- N N 05

Amix = Z Z Xi X X] X (ai X ﬂj) X (1 — kz]) (8)

i=1j=1

In the current study, in contrast to the semi-empirical correlation, the binary interaction
coefficients (k;) were extracted from the Aspen HYSYS database for Peng-Robinson and
Soave-Redlich—-Kwong to solve Equation (8). The binary interaction coefficients for Peng
Robinson and Soave Redlich Kwong are provided in Tables 3 and 4.

Table 3. Peng Robinson Binary interaction parameters [19].

Carbon Dioxide Nitrogen Methane Argon Oxygen
Carbon Dioxide 0 —2.00 x 1072 0.1 0 9.75 x 1072
Nitrogen —2.00 x 1072 0 3.60 x 1072 0 ~1.20 x 1072
Methane 0.1 3.60 x 102 0 2.30 x 1072 0
Argon 0 0 2.30 x 1072 0 1.04 x 1072
Oxygen 9.75 x 1072 —~1.20 x 1072 0 1.04 x 1072 0
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Table 4. SRK Binary interaction parameters [19].

Carbon Dioxide Nitrogen Methane Argon Oxygen
Carbon Dioxide 0 ~1.71 x 1072 9.56 x 102 0 9.75 x 102
Nitrogen ~1.71 x 1072 0 3.12 x 1072 —2.00 x 1073 —1.40 x 1072
Methane 9.56 x 102 3.12 x 102 0 3.90 x 102 0
Argon 0 —2.00 x 1073 3.90 x 1072 0 1.60 x 1072
Oxygen 9.75 x 1072 —1.40 x 1072 0 1.60 x 1072 0

For the evaluation of EoS and the development of the Artificial Neural Network model,
pure component properties, and the properties of a binary mixture such as density and
viscosity data were obtained from the literature. For the prediction of binary mixture
components, the obtaining of their respective pure component physical properties was
undertaken using NIST databanks for properties such as critical pressure, temperature,
volume, relative molecular mass, and acentric factor. The pure component properties are
given in Table 5. For the development of a single fluid property prediction, the work
was done by [21] by measuring densities and thermodynamic properties for three CO,-
rich mixtures.

Table 5. Physical properties for pure substances [21].

Critical Properties Acentric Standard I.deal Gas
Formation of
Component RMM Factor -
Pressure, Temperature, Volume, (Unitless) Enthalpy Gibbs Energy
MPa K m3/mol (kJ/mol) (kJ/mol)
Carbon Dioxide 44.010 7.38 304.18 9.4120 x 107° 0.228 —393.51 —394.39
Nitrogen 28.013 3.40 40.55 8.9081 x 107° 0.040 0 0
Methane 16.043 4.60 190.56 9.8630 x 10~° 0.011 —74.8 —50.8
Argon 39.948 4.87 150.8 7.4303 x 107 0 0 0
Oxygen 31.998 5.05 154.6 7.9997 x 10~° 0.022 0 0

2.2. Models Development
2.2.1. EoS Phase Property Prediction Methodology for EoS Evaluation

Firstly, the evaluation of EoS models including Redlich-Kwong, the Soave-modified
Redlich-Kwong, and Peng-Robinson was performed for the prediction of carbon-dioxide-
rich mixtures for their use in simulation software. The compressibility of the CO, mixtures
is computed through a three-step process: pseudo-critical properties calculation, mix-
ture attraction-repulsion coefficient calculation, and solving of general EoS. The first step
utilizes the linear mixing rule to predict the critical temperature and pressure of the mixture.
The second step extends the use of the selected EoS to mixtures; the prediction of cubic
equation parameters a, b; and o« employs Van der Waals mixing using the VW script,
where the binary interaction coefficients are inputted from the Aspen HYSYS database,
whereas for the three components in the Peng-Robinson EoS, the works by [21] are incor-
porated for the improved modeling of the VLE behavior. The third step uses the MATLAB
symbolic toolbox. The compressibility is solved numerically for Vi, of the general EoS (in
Equation (4)) by using the appropriate variables calculated using Van der Waals mixing for
their respective equations: RK, SRK, and PR.

Using the “if” condition to compute the real roots, we classify whether they are in a
single-phase region or classify as liquid or vapor by specifying minimum and maximum
roots respectively. The molar density may be computed by the reciprocal of the molar vol-
ume. The outputs of this function are the compressibility and molar density of the liquid,
gas, and single-phase systems.
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2.2.2. Machine Learning

The development of machine learning tools for property prediction made use of Knime
Analytics and MATLAB, the computation of phase behavior using Weka posed several
limitations which in turn led to it not being included in this study due to the inability to
have a systematic approach to prediction through a set architecture.

For the prediction of properties of CO, mixtures, the logic presented in Figure 1 shows
the stages undertaken for the optimization and development of each generation of model
envisaged through MATLAB. The sequence of events that lead to the advancement and
success in a model lay within the pre-processing data stage, where the manipulation of
input data (in this article, the experimental data from literature [22-24]) is to extract desired
data points and remove irrelevant data, where this data is then used in the calculation
of parameters; these techniques for data manipulation are altered where needed to improve
predictive accuracy over the preceding model. The manipulated data is then collected
for training in the neural network model alongside the specified selected number of lay-
ers, neurons per layer, and training algorithm; the trained model is then computed for
the AARD.

ANN Training Workflow

Import Data

Data Simulate Machine

Model
evaluation

Data Pre-processing

Results Learning

Testing

¢
Js
Layers & Training
Data Input Neurons Algorithm Test Data Set

by
Specify ANN % Specify ANN

A

Manipulation

Data Data
Manipulation

* )

A 4

Compute
AARD(%)

|
=

Figure 1. Artificial neural network training workflow logic.
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Within the “Evaluation” stage when the AARD is computed for the neural net-
work model, the model is contrasted against its predecessors for its accuracy and reliability,
if it deviates this too much, the alteration of the pre-processing parameters (marked by
blue stars below) such as data manipulation method, neuron-layers, and layers-per-neuron
is changed to achieve the lowest AARD.

The approach to achieving the improved models with the enhanced data pre-processing
technique is presented in the following sections. It is important to note that each model may
require to be re-run, this is due to many solutions available from each unique model owed
to the random seed of assigned weights in the initialization of the neural network model,
which are then optimized around.

Generation 1 and 2—Knime Analytics

The first and second-generation for property prediction in this work made use of
Knime Analytics for the prediction of the density for a single binary mixture at a temper-
ature and pressure range of 273-423 K and 0.95-126.46 MPa, respectively. Generation 1
(Figure 2) comprised of the prediction of density by training the MLP using tempera-
ture, pressure, and composition, however, it was found that around the phase boundary
prediction issues arose.

Temperature

Density

Figure 2. Generation 1 for density prediction using MLP.

The phase prediction error is reduced in Generation 2 (Figure 3) where data input is
partitioned by phase into their respective categories. This method required more time to
compute the data due to the increase in the number of MLP for each phase and offers no
solution to property prediction.

Temperature Temperature

Density
Data

Partitioning Density
by Phase MLP

Composition Compositio

Rejected Partition

Figure 3. Generation 2 for prediction of density through Split Data.
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Generation 3 and 4—Initial MATLAB Models for Predicting Density and Viscosity

The third-generation model developed is aimed at predicting viscosity along with
density (Figure 4), however, an improvement was made by using the predicted density as
an additional input using an ANN in series (see Figure 5).

Temperature

Density

Viscosity

Figure 4. Gen 3 density and viscosity prediction ANN workflow.

Density
Temperature

emperature
Viscosity

Density Viscosity

Pressure

ANN ANN

Composition

Composition

Figure 5. Generation 4 improved viscosity prediction with density ANN workflow.

Generation 3 and 4—Initial MATLAB Models for Predicting Density and Viscosity

Generation 5 (Figure 6) is aimed at improving upon Generation 2, with the prediction
of density close to the phase boundary. The prediction of phase uses the MATLAB classifi-
cation learner through support vector machines (SVM) for the separation of two classes
of data through a hyperplane, or a soft margin when necessary. The training set used for
training the classifier module defined the phases: gas as “1”, liquid as “2”, and supercritical
as “3”; exporting this model for the prediction phase from the input temperature and
pressure for pre-processing and then training the ANN to predict density (see Figure 6).
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Pre-processing

Phase

Temperature

Density

Phase

Classification Density ANN

Figure 6. Generation 5 Density prediction ANN with phase classification workflow.

Generation 6—Association with Equation of State Parameters

With both the ANN and cubic EoS models working and ANN showing higher accuracy
in contrast to Peng-Robinson and SRK; for the improvement on existing works for the
property prediction of pure CO;, the extension of mixtures was undertaken. A new ANN
schema for property prediction was envisioned (Figure 7) using functions of:

e  Pseudo-reduced temperature and pressure.
e Peng-Robinson attraction and repulsion parameters.
e  Pseudo-critical compressibility (though not incorporated in the final model).

Reduced

Pre-processing Temperature

Temperature
Reduced

Pressure

Density

g Density ANN

Component
Critical Properties

Pseudo-Critical
Compressibility

Figure 7. Generation 6 workflow of density prediction through various pre-processing techniques.
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3. Results and Discussion
3.1. Generation 1 and 2 Multi-Layered Perceptron (Knime Analytics)

Knime Analytics was used for the prediction of density. Table 6 (temperature be-
tween 6.71 K and 77.94 K) and Table 7 (temperature between 273.4 K and 323.4 K) show
the input, output, and the deviation of the predicted densities from the experimental value.
AARDs (%) of 22.27% and 5.95% were obtained for temperatures between 6.71 K and
77.94 K and temperatures between 273.4 K and 323.4 K, respectively. There are two higher
absolute relative deviations (ARDs) in Table 6, which make the average higher for the
temperature between 6.71 K and 77.94 K. Generally, this method is quite appropriate for
the prediction of a mixture density, especially at a higher temperature.

Table 6. Generation 2 results of Knime Analytics MLP density prediction of the test set for mixture 1 (6.71 K to 77.94 K) [22].

Input Output
Density (kg/m3) Relative Deviation (%) ARD (%)
Phase Temperature (K) Pressure (MPa) -
Experimental Calculated

L 6.71 88.8 385.2 820.4 112.98 112.98
L 51.73 107.36 1071.4 1082.5 1.04 1.04
G 1.81 3.76 59.2 56.5 —4.58 4.58

L 6.36 81.08 239.8 758.2 216.13 216.13
L 22.57 95.63 943.5 943.8 0.04 0.04
L 36.41 100.46 997.5 1008.3 1.08 1.08
L 54.13 105.21 1049.7 1061.6 113 1.13
L 105.09 114.13 1145.2 1141.2 —0.35 0.35
L 50.12 99.96 996.4 1010.0 1.36 1.36
L 126.33 114.56 1142.9 1149.7 0.59 0.59
G 2.19 3.74 46.3 39.0 —15.59 15.59
SC 15.88 64.24 732.5 723.9 -1.18 1.18
sC 54.07 94.15 942.9 942.9 0.00 0.00
SC 77.97 100.87 1012.0 1012.1 0.01 0.01
SC 26.16 56.85 612.0 611.8 —0.02 0.02
SC 77.94 90.08 907.3 909.2 0.21 0.21

Min —15.59 Average
Max 216.13 22.27

Table 7. Generation 2 results of Knime Analytics MLP density prediction of the test set for mixture 1 (273.4 K to 323.4 K) [22].

Input Output
Density (kg/m?3) . L.
Phase Temperature (K) Pressure (MPa) Relative Deviation (%) ARD (%)
Experimental Calculated
L 273.4 6.71 888 820.4 —7.61 7.61
L 2734 51.73 1073.6 1082.5 0.83 0.83
G 283.3 1.81 37.6 56.5 50.15 50.15
L 283.3 6.36 810.8 758.2 —6.49 6.49
L 283.3 22.57 956.3 943.8 —1.30 1.30
L 283.3 36.41 1004.6 1008.3 0.37 0.37
L 283.3 54.13 1052.1 1061.6 0.90 0.90
L 283.3 105.09 1141.3 1141.2 —0.01 0.01
L 298.4 50.12 999.6 1010.0 1.04 1.04
L 298.4 126.33 1145.6 1149.7 0.36 0.36
G 323.4 2.19 37.4 39.0 4.40 4.40
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Table 7. Cont.

Input Output
Density (kg/m®)
Phase Temperature (K) Pressure (MPa) Relative Deviation (%) ARD (%)
Experimental Calculated

SC 323.4 15.88 642.4 723.9 12.69 12.69

SC 3234 54.07 941.5 942.9 0.14 0.14

SC 3234 77.97 1008.7 1012.1 0.34 0.34

SC 373.5 26.16 568.5 611.8 7.63 7.63

SC 373.5 77.94 900.8 909.2 0.94 0.94
Min —7.61 Average

Max 50.15 5.95

3.2. Generation 3 and 4 Neural Network Prediction of Density and Viscosity (MATLAB)

Neural network was used for the prediction of viscosity of a single-phase binary mix-
ture. Table 8 shows an improved prediction of viscosity with lower minimum, maximum,
and AARD.

Table 8. Summary of results for ANN prediction of single-phase viscosity for CO, and Squalene [18].
Prediction of Viscosity
. Gen 3 Gen 4
Density (No Density) (With Density)

Min Deviation (%) —1.014 —37.670 —8.469
Max Deviation (%) 1.144 34.959 5.807
AARD (%) 0.230 4.121 1.130

3.3. Generation 3 and 4 Neural Network Prediction of Density and Viscosity (MATLAB)

For the prediction of phase through SVM, investigating the accuracy of each method
for the number of folds (where data is divided into portions using 1 for test validation
and the rest for training repeating through each fold and taking an average error). Gener-
ally, it was found that cubic is more accurate than the other ones (Table 9).

Table 9. MATLARB classified Learner accuracy with phase prediction.
SVM Accuracy (%)
Number of Folds
Linear Quadratic Cubic Fine Gaussian  Medium Gaussian Coarse Gaussian

1 (No Validation) 96.80 98.40 88.90

2 88.90 90.50 85.70

4 95.20 93.70 85.70

6 88.90 88.90

8 95.20

10 96.80

15 93.70

20

30

40

50

Note: Colour coded for each fold where green is most accurate in set and red being least accurate.

3.4. Comparison of 3 and 5 Component Binary Mixtures for EoS and Generation 6 ANN with the
Association of EoS (MATLAB)

For the computation of Generation 6 ANN, two layers with six neurons each with
the Bayesian regularization backpropagation algorithm for the reduction in overfitting of
data and consistency in results were used. The following subsections present a graphical



Sustainability 2021, 13, 2527

12 of 18

comparison of compressibility for the computed EoS and ANN against the literature data
for pure CO,, CO; in a binary mixture with N, and CHy. As can be seen, ANN has a lower
AARD (%) of 2.81. After that, the PR is more accurate than the RK and SRK (see Table 10).

Table 10. Absolute deviation for EoS and ANN for three components from the MATLAB model.

RK SRK PR ANN
Maximum ARD (%) 98.77 290.09 271.83 65.70
AARD (%) 52.25 14.98 7.46 2.81

Using the full dataset of CO, with N, CHy, Ar, and O, as there is no available data
(for the selection of the number of components) for the binary interaction coefficients for
the self-consistent equations, the Van der Waals mixing rule was computed using Aspen
interaction parameters [20]. The outcome of this led to ANN being significantly more
accurate than the earlier components (Table 11).

Table 11. Absolute deviation for EoS and ANN for five components from MATLAB model.

RK SRK PR ANN
Maximum ARD (%) 569.89 659.02 638.98 553.57
AARD (%) 79.77 19.39 13.29 12.24

Generally, in terms of machine learning tools, MATLAB is a better choice for model de-
velopment than using Knime Analytics due to the increased customization of ANN setup,
monitoring of performance, and integration into the property prediction framework. In the
case of Weka, though the software is not used to generate results, the analytics package has
the opportunity to export the design of neuron layers’ respective bias and weight to incor-
porate the ANN into MATLAB and other code-based mathematical software. The major
issue that arose with using MATLAB, which is not presented in Knime Analytics, is the
associating of a “seed” to the neural network. This allows for a continually changing
framework of the network through different seed converses of the neural network, how-
ever, this may be avoided by storing the state of the random number generator before the
initialization of the network.

The complete generations of neural network models developed all have merit to
property prediction, Generation 3 and 4 for viscosity prediction show a suitable degree
of accuracy for prediction, the benefit of using density as an input though has provided
a significant reduction in maximum error. In Generation 5, to combat the issue arising
phase change, classifying the phase as an independent variable through the Classification
Learner app, the best classification method using support vector machines is its cubic vari-
ant, this is expected as the phase characterization as a function of temperature and pressure
is of cubic behavior.

The use of pseudo-critical properties such as reduced pressure, temperature, and EoS
parameters in the Generation 6 model for ANN predictions is able to predict compress-
ibility as a single output because of this, vapor liquid equilibria may not be solved in this
version and will have to be undertaken in future works, though the main objective was to
achieve an ANN that is able to predict compressibility more accurately than the other meth-
ods. However, with the five-component binary mixtures, like with EoS, the predictive
accuracy decreased.

In this work, Bayesian regularization backpropagation had the lowest AARD, fol-
lowed by Levenberg-Marquardt backpropagation. However, in published literature
Bayesian regularization has not been considered.
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3.5. Comparison of 3 and 5 Component Binary Mixtures for EoS and Generation 6 ANN with the
Association of EoS (MATLAB)

The major issue arising from the modeling of data is the overfitting of the train-
ing data. Even with the use of the Bayesian regularization backpropagation training func-
tion, the data still overfitted the training data. This is shown in Figure 8 where the algorithm
attempts to find the optimal solution, however, after 600 iterations the MSE of the training
set increases significantly with near to no improvement of the actual training set. Though in
cases where the number of neurons is lower, such as Figure 9, the optimum solution is
found and is not limited by the maximum epoch to prevent overfitting. The current
limitation of this work is the prediction of mixture critical properties, as such, a more
accurate method for predicting mixture pseudo-critical properties is desired for improving
prediction through a better mixing rule for pseudo-properties calculation, where currently
linear mixing is used. The optimal ANN setup was found using the three-component
mixture. It was obtained that the optimal number of neurons per layer is between two
and eight, however, with too many neurons, the AARD deteriorates, overfitting the data
and not being able to converge to find the optimal setup. Though the optimal number
of layers showed that two neuron layers are the ideal setup for this case; however, it is
unable to find optimum weight and bias values to achieve an appropriate fit for the data,
unlike with one layer. In this work, it was found that the Bayesian regularization back-
propagation has the lowest AARD. Figure 8 shows AARD% as a function of the number of
neurons. From Figure 10, increasing from one layer to two layers led to the reduction of
AARDY% significantly. It may be because the outputs of the ANN model are not a linear
function of the input. Moreover, a considerable change in AARD% was not seen with the
increase of the number of layers from two to three. Therefore, two layers were selected as
the optimal value.

) Best Training Performance is 0.0020754 at epoch 998
10°F :

Train
Test
- Best

-
o
=}

4
<

Mean Squared Error (mse)
=

<

1073 ) . | . . ) . | L j
0 100 200 300 400 500 600 700 800 900 1000

1000 Epochs

Figure 8. Training Performance for 100 Neuron ANN.
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3.6. Compressibility Factor

The gas compressibility factor or Z-factor is one of the most vital parameters in the
industries such as chemical and petroleum. It should be pointed out that there is a direct
relationship between the Z-factor and the density of a gas stream, its flow rate as well as
isothermal compressibility [25]. It is challenging to obtain accurate Z-factor values for gas
streams because of the fact that mostly there are other gases in the CO,-rich mixture gas
and also the system is non-ideal [25]. It is common to use simple empirical correlations
for the prediction of the Z-factor, however, the results are usually not accurate and there
are calculation convergence difficulties [25]. A combination of different methods can be
used to improve the compressibility factor prediction. The work done by Gaganis [26]
combined the truncated regularized kernel ridge regression (TR-KRR) algorithm with a
simple linear-quadratic interpolation scheme for estimation of the Z-factor. The maximum
absolute relative prediction error is around the critical point was obtained around 2%. In the
present study, the combination of machine learning with EoS was used for the prediction of
the compressibility factor of pure CO; and CO,-rich mixtures. The compressibility factor
as a function of reduced pressure for the pure CO, models for SRK and Peng—Robinson
EoS and ANN at three different temperatures were shown in Figure 11. The results showed
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high accuracy when dealing with the prediction of compressibility factor, however, this was
due to the more ideal state of the system. It was assumed that the system is pure CO,.
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Figure 11. Pure CO, compressibility chart for all temperatures.

Compressibility as a function of reduced pressure for a binary mixture containing N
(mole fraction = 0.0442) at three different temperatures is shown in Figure 12. For a binary
mixture with the low mole fraction of nitrogen (N, mole fraction = 0.0442). As it can be
seen the SRK, PR, and ANN can predict the compressibility factor relatively accurately at
the points far from the critical points. However, the accuracy of the ANN model is higher
at the points around critical points. It can be seen as higher deviations for all three EoS at
the critical points.
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Figure 12. CO, and N binary mixture compressibility chart (xCO,: 0.9558).

The nitrogen content in the gas mixture was increased to evaluate the effect of the
higher N; content of the gas mixture. The compressibility factor as a function of reduced
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pressure for a binary mixture containing Nj (mole fraction = 0.0442 and 0.1442) at three
different temperatures is shown in Figures 13 and 14. It was found that there is a lower de-
viation from experimental data at a lower temperature in the presence of a higher N, mole
fraction (0.1442) for all three EoS and ANN was higher in the gas mixture. Interestingly,
it obtained fairly accurate results even for the RK EoS at lower temperature and higher
Ny content in comparison with pure CO, (Figure 11) and lower N, content (Figure 12) but
significant deviation was found for the RK EoS at temperatures of 283 K and 293 K. The de-
viation from experimental data was increased for the SRK and PR EoS, when temperature
increased to 283 K and 293 K, at the points around the critical point. However, there was
good agreement between the ANN model values and the experimental data for all three

temperatures.
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Figure 13. CO, and N binary mixture compressibility chart (xCO,: 0.8512).
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Figure 14. CO; and N, binary mixture compressibility chart (xCO,: 0.9558).
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4. Conclusions

The objective of this work was to select an appropriate model for the prediction
of thermodynamic properties for CO,-rich mixtures. This is clearly of high value to
the simulation for the future of process design in CCS and adsorption kinetic in gas-
well application. Out of the evaluated EoS that is used in Aspen HSYS, Peng—Robinson
more accurately represents CO, mixtures. Though there are more accurate EoS developed
in the literature, these works are not yet available to incorporate into process simulation
using Aspen HYSYS.

The applicability of machine learning techniques applied from Big Data analytics to a
broader range of problem-solving capabilities for chemical engineering such as empirical
formulation has been successfully considered in this work and may further be used for
process control. Prospects of this work aim to incorporate machine learning into process
simulations software, where literature or experimental data may be used to accurately
describe fluid properties for process design using a pre-set model that is capable of defining
a fluid accurately without the need for empirical formulation or choosing a “close enough”
approach to using a selection of preset fluid packages.

The importance of data manipulation has been successfully addressed in this article to
provide a basis for manipulation of input data to enhance predictive accuracy by extending
the desired outputs from being mol fractional inputs of individual components to being
a function of pseudo-critical properties. This development may lead to an improved
universal model to predict a complex range of mixtures thermodynamic property from
their fundamental particle interactions and other underlying mixture interactions not yet
explored in this article.

Having explored a range of training algorithms in this work, it has been found that
using Bayesian regularization backpropagation has not been previously considered in
the published literature [6], which is surprising due to its better classification of data
with lower AARD in contrast to conventional lowest AARD, being Levenberg—Marquardt
backpropagation. Perhaps this should be considered more throughout the development of
ANN for predicting thermodynamic properties in future works.
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