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Abstract— Human activity/behaviour monitoring and recog-
nition is a key for facilitating humans robot interaction, and
allows robots for a better scheduling of future operations. It
is challenging and often addressed at different levels, such
as human activity classification, future activity prediction and
monitoring of the on-going activities. The paper proposes a
novel attention-based learn-able pooling mechanism for human
activity classification from RGB videos. Recently, most of the
best performing human activity recognition approaches are
based on 3D skeleton positions. The 3D skeleton positions are
not always available in videos captured using RGB cameras,
which are widely used in robotics applications. RGB videos
contain rich spatio-temporal information and processing them
semantically is a difficult task. Moreover, accurately capturing
spatial information and long-term temporal dependencies is
the key to achieving high recognition accuracy. We use an
existing Convolutional Neural Network for image recognition
to extract video features which are then processed using our
innovative application of attention mechanism to focus the
network on features that are more important for discrimination.
Afterwards, we use a novel learn-able pooling mechanism
to extract activity-aware spatio-temporal cues for efficient
activity recognition. The proposed pooling mechanism learns
the structural information from hidden states of a bidirectional
Long Short-Term Memory network via Fisher Vectors.

I. INTRODUCTION

There is a significant advancement in robotics research
that drives the near future intelligent/smart robots, which will
be capable of interacting and collaborating with humans to
assist with various complex tasks in our day to day life.
Automatic recognition of human activities is a fundamental
part of the robot’s perception of the situation at a given
time and is necessary to facilitate natural interaction between
humans and robots. Although this area has been actively
researched by the computer vision community, it continues
to be a very challenging. This is mainly due to factors
like large variations in body pose and object appearance, a
wide variety of backgrounds, lighting conditions, occlusion,
complex body joint inter-dependencies, and inter- and intra-
class variations. Thus, recent activity recognition models
have focused on multiple modalities like vision-based 3D
human body poses, RGB videos and depth maps. Due to
the popularity of depth-based 3D pose estimation devices
(e.g. Microsoft Kinect), authors have increasingly relied on
pose-based methods [1], [2] for human activity recognition.
This is especially true for the large scale datasets that are
available now [3]. But, depth based pose-estimation devices
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often suffer from inherent inaccuracies [4] and requires both
RGB and depth information resulting in processing of a
high volume of data which is computationally expensive
for resource-constrained computational platforms associated
with robotics and automobile applications. Moreover, despite
the popularity of depth-based pose estimation devices, in
situations such as CCTV surveillance, home monitoring and
so on, monocular RGB cameras are widely used. Thus, one
needs to often rely on RGB videos for various real-world
applications. Thus, in this paper, we explore human activity
recognition based on RGB data only.

RGB videos present various visual, temporal and con-
textual cues involving a given human activity. Over the
past few years, deep learning models based on CNNs have
achieved very promising results [5], [6]. Existing approaches
often combine the spatial information extracted using a CNN
[7] and temporal dependencies by using recurrent networks
such as LSTMs [8]. Approaches such as recurrent CNN
has also been explored [9] in video recognition problems.
Modern deep CNNs consist of a variety of layer types
to capture hierarchical feature representation and the pre-
diction is dominated by the task-specific representation of
convolutional layers. These models have shown remarkable
success in visual recognition by considering full images with
distinctive classes. However, it raises questions about their
performance in discriminating small changes in successive
frames in a given video. Therefore, there is a need for
learning meaningful spatio-temporal structures in videos for
discriminating various human activities. In order to address
this, we propose a novel learn-able pooling mechanism,
which captures the activity-aware spatio-temporal structure
in videos by exploring both spatial and temporal information
in videos containing human activity. The spatial information
is explored using the high-level features from a ImageNet
[10] pre-trained CNN model (Inception-ResNet-V2 [11]).
The dynamics of these spatial features over a given sequence
and their importance for a given activity is captured using
a bidirectional LSTM (bi-LSTM) and attention mechanism,
which captures sequential attention, as well as spatial atten-
tion by focusing on various temporal and spatial locations in
the sequence.

Our novel attention mechanism consists of two parts:
1) a sequential self-attention mechanism is used to selec-
tively focus the high-level CNN representations on impor-
tant temporal points. 2) The output of this sequential self-
attention is fed into a bi-LSTM to capture the long-term
temporal dependencies. We adapt the bi-LSTM to learn the
structural information and similarities contained within its
hidden states through Fisher Vectors (FVs). The FVs are



based on a clustering mechanism that semantically groups
information. By exploiting the LSTM hidden states, with
learn-able FVs the network is able to take advantage of this
information. The output of learn-able FVs is pooled using
AAP to represent the number of states equalling the number
of activity classes. The novel learn-able FVs with AAP
replaces the customary Global Average Pooling (GAP) and
Fully-Connected (FC) layers used towards the end of many
standard CNN architectures [12], [11]. Statistical pooling
methods such as GAP or max pooling does not take into
account the temporal and other structural information in
recurrent mechanisms such as LSTM. To to pool the most
relevant features based on learned representations authors
have proposed learn-able pooling approaches [13], [14], [15].
This, inspired us to put forward the FV-based activity aware
pooling mechanism that exploits the structural information
and long-term temporal dependencies in semantic manner
as opposed to simply taking the average or max-values for
pooling. Our main contributions are:
• We introduce a novel learn-able FV with activity-aware

pooling mechanism that learns structural information
from hidden states of an LSTM to give us more effective
temporal learning.

• Together with learn-able LSTM FV pooling, we intro-
duce a sequential self-attention-based end-to-end train-
able human activity recognition model that gives us
state-of-the-art results on two challenging datasets.

II. RELATED WORK

A. Activity Recognition - RGB Models

Human activity recognition models have traditionally re-
lied on RGB video data [16]. Due to the recent advancement
of deep learning, CNN models are widely used for learning
representations from video data. Usually, there are two ways
for processing video data through CNNs: i) First, frames in a
video sequence are often encoded through 2D CNN in a time
distributed manner [7], [17]. ii) The other method consists
of deep 3D CNN models, which directly take input as RGB
video [18], [9], [19]. To improve the performance of a given
deep network, multiple streams are often combined together.
In [7], the authors proposed a three streamed network, where
the first stream processes the optical flow while the other
two of the streams calculate regions of interest. Deng et al.
[17] proposed a CNN-based two stream network for group
activity recognition in which the first stream is focused on
background scene, which enables the network to capture
contextual cues. The second stream is used to recognize
the multi-person activities. In [5], the authors use glimpse
clouds with ResNet-50 architecture. Glimpse clouds can be
interpreted as attention-based interest points. Molchanov et
al. used recurrent 3D CNN [9] for online detection of hand
gestures. In [6], authors integrate features from different
parts of a spatial-temporal LSTM network to make an
attention-based activity recognition model. In the proposed
architecture, a bi-LSTM with sequential self-attention mech-
anism is used to capture long term temporal dependencies

and meaningful spatial features without exploring multiple
streams.

B. Activity Recognition - Attention Mechanisms

Attention mechanism was first proposed by Bahdanau
et al. [20] to solve the machine translation problem by
selectively focusing on more relevant and discriminatory
features. It calculates similarity between queries, and keys
and transforms values based on the similarity measure.
Typically, keys and values are the same vectors. Zhang et al.
[21] introduced self-attention mechanisms where the output
is a weighted representation of itself. Recently, Multi-Head
attention mechanism [22] has shown encouraging results in
natural language processing. Multi-Head attention divides
the spectrum into a number of sub-spaces. This allows the
model to represent different learned sub-spaces at different
positions. Attention mechanisms have also been widely used
for video understanding tasks [23], [24], [6], [25]. Sharma
et al. [6] introduced the recurrent attention mechanism for
activity recognition. The approach tends to recognize im-
portant elements in video frames based on the performed
action. Similarly, an end-to-end spatial and temporal atten-
tion model for human action recognition using skeleton data
is proposed in [25]. The approach selectively focuses on
discriminative skeleton joints within each frame and pays
separate attention to the joints in different frames. The
proposed attention mechanism is different from the above-
mentioned approaches in the sense that we explore the self-
attention and adapt it to sequential self-attention to capture
the contextual information. We have also used bidirectional
LSTM to capture long-term temporal dependencies. In our
ablation study, we also experiment with Multi-Head attention
and discuss its performance and complexity in comparison
to the sequential self-attention.

C. Activity Recognition - Learn-able Poolings

Often, a pooling layer is very common towards the end
of deep CNNs. There exist various pooling mechanisms in
literature like Average or Max Pooling [26], [27], Attention
Pooling [28], Rank-Pooling [29] and High-Dimensional Fea-
ture encoding [30]. The goal of pooling is to select the most
important features and reduce the network size so that the
model doesn’t over-fit. But pooling using statistical methods
or high dimensional encoding does not take into account
the temporal and other structural information in recurrent
mechanisms such as LSTM. Thus, authors have explored
learn-able pooling methods to pool the most relevant features
based on learned representations. Image features can be well
described through descriptors such as Vector of Laterally
Aggregated Descriptors (VLAD) [31] and FVs [32] which
are an aggregation of unsupervised clustering information.
VLAD uses K-means, while FVs use Gaussian mixture
model (GMM) for clustering. In [14], authors introduced
NetVLAD, where VLAD clusters are learnt in a supervised
manner and used as input for learn-able pooling mechanism
towards the end of the network. In a similar manner, Girdhar
et al. [13] introduced Action VLAD, where VLAD features



Fig. 1. The proposed deep network consists of: 1) a pre-trained CNN (Inception-ResNet-V2 [11]) model used to extract frame-wise high-level CNN
features from a given video consisting of T frames. 2) a sequential self-attention layer to capture the contextual information consisting important spatial and
temporal knowledge. 3) Learn-able activity-aware pooling consisting a bidirectional LSTM (bi-LSTM) and Fisher Vectors to learn the structural information
and similarities by exploring the hidden states of the bi-LSTM. The AAP feature vector is passed through the Softmax layer to estimate the probabilities
of various human activities.

are used as input for learn-able pooling for activity recogni-
tion. Instead, K-means, NetVLAD and Action VLAD learn
semantic clusters in a supervise manner through a neural
network. In [15], authors introduced learn-able FV (NetFV)
to semantically cluster and pool audio and video features
along with context gating for video classification. Unlike in
original FVs, the cluster weights in NetFV are not calculated
from GMM but using a differentiable soft-assignment. In the
proposed approach, we adapted the NetFV by introducing
LSTM FVs that relies on learned FVs from hidden states
of a bi-LSTM and uses this representation for activity-aware
learn-able pooling.

III. PROPOSED APPROACH

The proposed network is based on the widely used in-
ception and residual network Inception ResNet-V2 [11],
which is a high performance image classification and object
detection model. We use the Inception ResNet-V2 to process
the CNN features from each frame Fig.1. The model is used
in a time distributed manner in which all the frames from a
given video are passed through the same Inception ResNet-
V2 model to process the corresponding CNN features. These
features are then processed by our sequential self-attention
to capture the contextual information consisting of important
spatial and temporal knowledge. The sequential self-attention
captures the information describing how much to recommend
the CNN features at time point t in focus conditioned on all
other CNN features from different time points. Afterwards,
we introduce a novel bi-LSTM FV pooling that accurately
captures the long-term dependencies and semantic structure
present in temporal information. Our model is able to exploit
the structural information contained in the bi-LSTM cells
by semantically grouping its hidden states into learn-able
clusters, which are part of the FV representation. This is
followed by an AAP mechanism that allows the network to
train without the need of an FC layer towards the end. We
are able to show this mechanism successfully replaces the
widely used customary GAP and FC mechanism and the
whole model is trained in an end-to-end manner.

A. Temporal Processing to Capture Contextual Information

In order to capture the contextual information from the
sequence of feature map ft (t = 1 . . . T ) as outputs from
the Inception ResNet-V2, we use sequential self-attention
mechanism that transforms the feature map to a weighted
version of itself with conditioned on rest of the feature maps
representing rest of the frames. This leads the network to
selectively focus on more relevant features to generate a
holistic context information for further processing by our
learn-able pooling for activity recognition. The goal of the
attention mechanism is to assign higher weight-age to more
relevant features. Normally, attention mechanism is described
as a mapping function, which maps a query and a set of
key-value pairs to an output context, where queries Q, keys
K, values V , and output context are all vectors. The context
vector is deducted from Kand Q which effectively calculates
the context compatibility betweenQ with K. Thus, the output
of the attention mechanism is a mapping of V weighted by
the compatibility of K with Q. The Q, K and V vectors
can either come from the same sources (e.g. self-attention)
or from different sources (e.g. attention in neural machine
translation). In our network, we use self-attention and thus,
they come from the same source as a sequence of feature map
ft, where t = 1 . . . T . Formally, the attention mechanism can
be described as in [22]:

Attention(Q,K,V) = softmax(QKTr )V (1)

Tr represents the transpose of a given vector/matrix. The
proposed sequential self-attention takes a query ft and maps
against a set of keys ft′ associated with the candidate feature
maps from frames at different time points and return values
as context vector vt computed by expanding Eqn 1:

vt =

T∑
t′=1

at,t′ft′ and at,t′ = softmax(Wagt,t′ + ba)

gt,t′ = tanh(Q+K + bg),Q = σ(ftWg) and K = ft′Wg′

(2)

The above equation shows the decomposition of Eqn 1 to
compute the queries Q, keys K and the values are nothing



Fig. 2. The proposed learn-able Fisher Vector (FV) pooling using a bidirectional LSTM (bi-LSTM): The structural information in hidden states of the
bi-LSTM is learned through FVs. For clarity, the bi-LSTM is unrolled to illustrate the hidden states over the video duration of T . The FV cluster weights
are learned through parameters W and b. The weights are then used for deriving first order (FV1) and second order (FV2) FVs. The FV1 and FV 2 have
learned parameters clusters’ centers and co-variances as shown in Eq. 4. Towards the end FV1 and FV2 are concatenated and pooled with activity-aware
weights for human activity classification.

but the output context vector vt ∈ V . σ indicates sigmoid
activation function. The weight matrices Wg and W ′g are
for the respective feature maps ft and ft′ ; Wais the weight
matrix corresponding to their non-linear combinations. The
element at,t′ is computed from gt,t′ using the element-wise
tanh function; ba and bg are the bias vectors. The attention-
focused context vector vt conveys how much to attend the
feature map ft in focus conditioned on its neighbourhood
context representing feature maps of all other frames in a
given video (see Fig. 1). The weight matrices Wg and W ′g ,
and the bias vectors ba and bg are learn-able parameters and
learned during the training of the model. The output context
vector vt is now fed into the next stage of our architecture,
which is learn-able FV pooling.

B. Learn-able Fisher Vector Pooling

The output of our sequential self-attention is a sequence of
context vectors v = {v1,v2, . . . ,vT } corresponding to the
input frames of the given video v = {F1, F2, . . . , FT }. The
contextual information captures the neighbourhood context
by considering all other surrounding frames. However, it does
not capture the sequential structure and dependencies. Our
goal is to encode v using an internal state which summarizes
information extracted from the history of past observations.
The internal state encodes the sequence knowledge and is
responsible for making a decision on how to act. The widely
used approach to model this internal state is through hidden
units ht ∈ Rn of a recurrent neural network that are updated
over time. We achieve this in our next step by using a
fully-gated bidirectional LSTM (bi-LSTM). In Fig. 2, we
present the unroll bi-LSTM for a better understanding of
the temporal dependency, but in reality it is the same bi-
LSTM. The bi-LSTM generates output as a sequence of
hidden states in forward direction h = {h1, h2, . . . , hT } and
backward direction h

′
= {h′

1, h
′

2, . . . , h
′

T } corresponding to
the input sequence of context vectors v = {v1,v2, . . . ,vT }.
The hidden states in both forward and backward direction
are concatenated h = [h, h

′
] to produce the final contextual

feature vector for further processing.
Generally, the sequence recognition using the LSTM is

carried out by considering the last time step T based on
the associated features at T and is based on the previ-
ously involved hidden states. This is a fundamental flaw
in LSTM since it uses recurrent connections to maintain
and communicate temporal information. Thus, researchers
have recently explored dynamical temporal pooling [33] as
an additional direct pathway for referencing previously seen
frames. Inspired by this approach, our method focuses on
the hidden states of the bi-LSTM and let the model learns to
attend the different parts of the hidden states h and h′ at each
step of the output generation. We achieve this by using learn-
able pooling with FVs in which the similar hidden states of
the bi-LSTM are grouped together via clustering. The FVs
[32] are computed as the aggregation of cluster weights,
means and co-variances for each data vector. Instead of
calculating the cluster-weights, means and co-variances as in
original implementation [32], we use NetFV (FV integrated
with neural network) to learns these parameters [15]. The
main idea is to assign ht to the cluster k as a soft assignment:

αk(ht) =
eW

Tr
k ht+bk

ΣK
j=1e

WTr
j ht+bj

(3)

where matrix Wj and bias vector bj are learn-able param-
eters. The soft assignment of αk(ht) of hidden state ht to
cluster k measures how close the hidden state ht is to cluster
k. Here j ∈ (1,K) where K is the total number of clusters.
Using the above soft assignment, we can compute the FVs
are using the NetFV representation [15] as:

FV1(j, k) =

T∑
t=1

αk(ht)

(
ht(j)− ck(j)

σk(j)

)

FV2(j, k) =

T∑
t=1

αk(ht)

((
ht(j)− ck(j)

σk(j)

)2

− 1

) (4)

FVs FV1 and FV2 capture the respective first-order and
second-order statistics, ck and σk are the learn-able cluster’s



center and diagonal co-variance of the kth cluster, where
k ∈ [1,K]. This is different from the original FV [32] in the
sense that the cluster centers ck and the co-variance matrices
σk are not coupled to the cluster weights αk. Moreover,
ck and σk are learned independently from the parameters
of the soft assignment αk as in Eqn. 4. Both FV1 and
FV2 are normalized and then concatenated to get the final
FV = [FV1, FV2]. Our implementation is different from
the approach in [15] since we use the weighted pooling
mechanism in an activity-aware manner and is defined as:

Pooling(FV ) = softmax(WpFV + bp) (5)

where matrix Wp ∈ R|FV |×C and bias vector bp are
learn-able parameters and C is number of human activity
classes. Our adaptation of FV is different from NetFV in the
following ways:
• NetFV doesn’t take into account the temporal informa-

tion contained in the video frames while we learn FV
from temporal information contained in hidden LSTM
states.

• NetFV uses a FC layer towards the end while we use
first order AAP.

In NetFV, authors learn FV directly from CNN features
and do not consider any temporal information. The proposed
adaptation takes attention weighted CNN features processed
through LSTM as input. This helps to exploit the temporal
structure contained within the hidden LSTM states and
cluster them in a semantic manner. To out knowledge this
is the first article that attempts to exploit the hidden LSTM
states in this way. In NetFV [15], the pooled size is is a tune-
able hyper-parameter which necessitates further layers for
classification. Instead we implement AAP where the pooling
weight itself acts as the final classifier and thus the pooling
output is equal to the number of classes. This obviates the
need for a FC layer and thus helps in preventing over-fitting.

IV. EXPERIMENTS, RESULTS AND DISCUSSION

The model is evaluated on two challenging daily activity
recognition datasets. The first one is the MSR Daily activity
dataset [34]. which has 320 videos with 10 subjects preform-
ing 16 different daily activities. For evaluation, we follow the
standard protocol [34] in which 50% of the subjects (subjects
1 to 5) are used for training and the rest for evaluation.
The evaluation protocol is challenging and indicates good
generalisation since only half of the data is used for training.
The second is the NTU RGBD dataset [3], which is one of
the largest human activity recognition dataset. This dataset
contains approximately 57K video samples of daily activities
containing 60 daily activities preformed by 40 different
subjects. We evaluate the model on the cross-subject protocol
suggested by the authors which is more difficult than the
other cross-view protocol [3]. The model is trained with
a mini-batch size of 4 to fit with a GPU memory of 24
GB. To train the model, we use Linux PC (Ubuntu 16.04
LTS) with a Nvidia Quadro P-6000 GPU. The performance
of the proposed model and state-of-the-art approaches using

TABLE I
COMPARISON OF THE PROPOSED MODEL WITH THE STATE-OF-THE-ART

APPROACHES ON MSR 3D DAILY ACTIVITY DATASET [34]

Methods Pose RGB Accuracy (%)
Ensemble [34] × - 68.0
Efficient Pose [35] × - 73.1
Moving Pose [36] × - 73.8
Poselets [37] × - 74.5
MP [38] × - 79.4
PDA [8] - × 75.3
Actionlet [39] × - 88.8
PDA [8] × × 90.0
Ours - × 91.9

the MSR Activity dataset is presented in Table I. It is clear
that the proposed approach (91.9%) outperforms the state-
of-the-art approaches by a significant margin. For example,
using only the RGB video, our approach is 1.9% higher
than the approach in [5] (90%) which combines multi-modal
information (pose and RGB). Using only RGB information,
the accuracy (75.3%) in [5] is significantly inferior to our
approach (91.9%). This suggests the benefit of our proposed
attentional learn-able pooling for human activity recognition
using only RGB information. In Table I, most of the state-
of-the-art approaches are based on the body pose represented
as a 3D skeleton. The performance of our approach is better
than these approaches. This justifies that our approach can be
easily applicable to video-based activity recognition without
requiring additional information such as depth, which is
essential for the computation of 3D skeletons.

TABLE II
PERFORMANCE OF OUR MODEL IN COMPARISON TO THE

STATE-OF-THE-ART APPROACHES ON NTU RGB+D DATASET [3]. ALL

THE RESULTS ARE IN CROSS SUBJECT SETTINGS WHICH IS MORE

CHALLENGING THAN THE CROSS VIEW SETTINGS

Methods Pose RGB Accuracy (%)
Part-aware LSTM [3] × - 62.9
C3D [40] - × 63.5
DSSCA-SSLM [38] × × 74.9
Synthesized CNN [41] × - 80.0
ST-GCN [42] × - 81.5
DPRL+GCNN [43] × - 83.5
PDA [8] × × 84.8
3Scale ResNet152 [44] × - 85.5
Glimpse Clouds [5] - × 86.6
Ours - × 87.2

Table II presents the performances of the proposed ap-
proach and state-of-the-art approaches using the NTU dataset
[3]. Similar to the performance in MSR Activity dataset,
the proposed approach (87.2%) outperforms the state-of-
the-art approaches in which many of them use multi-modal
information (RGB + Pose). Using RGB only, our approach
is 0.6% better than the best performing approach (Glimpse
Clouds [5]) and 23.7% better than the approach in [40]. It is
also clear that the proposed approach is significantly better
than the 3D skeleton-based approaches. This signifies the
proposed attentional learn-able pooling mechanism plays a
key role in discriminating human activities in videos.



TABLE III
COMPARISON OF BASE NETWORK ACCURACY ON THE MSR DATASET

[34]. ‘BASE ACC’ IMPLIES THE PERFORMANCE OF THE CORE

CNN-LSTM MODELS WITHOUT THE USE OF OUR PROPOSED

SEQUENTIAL SELF-ATTENTION AND NOVEL LEARN-ABLE POOLING

USING FV. THE ASSOCIATED PARAMETERS ARE PRESENTED AS THE

NEAREST MILLIONS

Base CNN Network Params Base Acc Proposed Acc
MobileNets [46] ∼4.2M 75.0% 79.4%
NasNet Mobile [45] ∼2.6M 79.0% 82.5%
Inception V3 [47] ∼23M 79.5% 84.0%
Inception ResNet-V2 [11] ∼54M 86.9% 91.9%

V. ABLATION STUDY

In this section, we perform three different experiments
to justify the suitability of various components: 1) different
state-of-the-art deep CNN models to extract CNN features
for our network, 2) compare the performance of the pro-
posed learn-able pooling with the traditional GAP and FC
combination, and 3) the benefits of the proposed sequential
self-attention in comparison to the multi-head attention. First,
we analyse the performance using different base CNNs to
extract frame-wise CNN features from videos. We use three
state-of-the-art CNN models with different characteristics.
The performance on MSR dataset [34] is shown in Table
III. For base network, the last layer (i.e. classification) is
comprised of a GAP layer followed by a FC layer with
softmax activation. This is placed on top of the core CNN-
LSTM network. The NasNet Mobile [45] outperforms the
MobileNets [46]. It also consists of significantly less number
of parameters (∼2.6M vs ∼4.2M) in comparison to the
MobileNets. Among the three architectures, the Inception-
ResNet-V2 [11] achieves the best accuracy and has the
largest number of parameters (∼54M). The proposed algo-
rithm also improves accuracy when Inception-V3 [47] as a
backbone. Although the proposed model benefits from better
backbone (Inception-ResNet-V2), it is able to improve results
across 4 different backbones. In Table III, it is evident that the
our novel sequential self-attention and lean-able FV pooling
enhances the performance of the core CNN-LSTM network.
It also demonstrates the applicability of the proposed method
across a spectrum of CNNs ranging from lightweight to
heavier models.

Second, we demonstrate the effectiveness of the proposed
sequential self-attention in comparison with the multi-head
attention mechanism [22]. The multi-head attention mech-
anism focuses on more important parts of the feature map
in discriminating various activities. The results are shown
in Table IV, using both the MSR Activity [34] and NTU-
RGBD [3] datasets. The performance of both attention
mechanisms significantly improves the recognition accuracy
in comparison to the base accuracy. In case of multi-head
attention mechanism [22], the keys K, queries Q and values
V vectors are transformed through a number of trainable
weights. Each transformation produces a different mapping
of the same input vectors, where each mappings are called
heads and hence the name multi-head attention. The optimum

TABLE IV
COMPARISON OF THE PERFORMANCE OF THE PROPOSED SEQUENTIAL

SELF-ATTENTION (SSA) WITH THE MULTI-HEAD ATTENTION (MHA).
THE CLASSIFICATION LAYER CONSISTS OF THE COMBINATION OF GAP

AND FC

Dataset Base MHA SSA MHA SSA
Acc Params Params Acc Acc

MSR [34] 86.9% ∼9.4M ∼98K 90.6% 91.3%
NTU [3] 82.2% ∼9.4M ∼98K 86.3% 86.6%

TABLE V
IMPACT OF SEQUENTIAL SELF-ATTENTION AND OUR NOVEL FV

POOLING. THE BASE NETWORK IS INCPETION-RESNET-V2 + LSTM +
GAP/FC

Dataset Base SSA & GAP/FC SSA & FV pooling
MSR [34] 86.9% 91.3% 91.9%
NTU [3] 82.2% 86.6% 87.2%

number of heads for multi-head attention is 4 and is found
experimentally. The performance of the proposed sequential
self-attention is better than the multi-head attention. More-
over, the associated number of learn-able parameters with
sequential self-attention (∼98K) is significantly less than the
multi-head attention (∼9.4M). This justifies the benefit of
the proposed sequential self-attention, which not only gives
higher accuracy but also computationally more efficient.

In the third, we study the impact of our novel learn-
able activity-aware pooling (AAP) using FVs on model’s
recognition performance Table V. In this experiment, we
compare the recognition accuracy of our model using the
proposed AAP with the customary combination of the GAP
and FC layer. It is evident that the recognition accuracy is
significantly better when our learn-able pooling mechanism
is used. This is because the proposed learn-able pooling
learns semantic clusters to pool more effective hidden states
of a bi-LSTM to represent high-level encoding of the spatio-
temporal structure in videos and thus, achieves better per-
formance. The number of clusters is a tune-able hyper-
parameter, and we have experimentally found the optimal
number of clusters to be 32 and 64 for the MSR Daily
Activity [34] and NTU-RGBD dataset [3], respectively.

VI. CONCLUSION

We have proposed a simple yet effective approach to rec-
ognize human activities using only monocular RGB videos
for robotics applications. The novel attentional learn-able
pooling mechanism can be easily integrated to any of the ex-
isting deep CNN models used for image/object recognition.
A sequential self-attention mechanism is used to capture the
contextual information which conveys how much to attend
a feature map in focus conditioned on its neighbourhood
feature maps. We further present an alternative to the cus-
tomary GAP/MAP and FC layer with a learn-able pooling
mechanism in the form of lear-nable FVs. The FVs semanti-
cally cluster temporal structures and dependencies present in
hidden LSTM states to further enhance the performance. The
end-to-end trained model is evaluated using two challenging
datasets and preforms better than state-of-the-art.
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