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A B S T R A C T   

To account for vertical human-structure interaction (HSI) in the vibration serviceability analysis, the contact 
force between the pedestrian and the structure can be modelled as the superposition of the force induced by the 
pedestrian on a rigid surface and the force resulting from the mechanical interaction between the structure and 
the human body. For the case of large crowds, this approach leads to (time-variant) models with a very high 
number of degrees of freedom (DOFs). To simplify analysis, this paper investigates the performance of an 
equivalent single-degree-of-freedom approach whereby the effect of HSI is translated into an effective natural 
frequency and modal damping ratio for each mode of the supporting structure. First, the numerical study con-
siders a footbridge structure that is modelled as a simply-supported beam for which only the fundamental 
vertical bending mode is taken into account. For a relevant range of structure and crowd parameters, the 
comparison is made between the structural response predicted by the simplified model and the more accurate 
reference model that accounts for all DOFs of the coupled crowd-structure model. Where the simplified model is 
found to underestimate the structural response, although to a limited extent, this is compensated for by intro-
ducing a correction factor for the effective damping ratio. Second, the performance of the simplified method is 
evaluated through the application on a real footbridge. The results show that the simplified method allows for a 
good and mildly conservative estimate of the structural acceleration response that is within 10–20% of the 
predictions of the reference crowd-structure model.   

1. Introduction 

Architects and engineers are designing ever more slender and 
lightweight footbridges. Being slender, these structures are sensitive to 
vibrations caused by the dynamic loading induced by pedestrians [1,2]. 
The point is now reached where the dynamic performance of these 
structures under high crowd densities has started governing their design. 
Recent studies [5,6] show that these human-structure interaction (HSI) 
effects, such as added damping, are in many cases a decisive factor when 
assessing the vibration serviceability of footbridges. Current design 
codes and guidelines, which pioneered the concept of crowd dynamic 
loading on footbridges, such as Sétra [3], HiVoSS [4] and the UK Na-
tional Annex to Eurocode 1 [7], do not specify anything different than 
using the ‘empty’ modal properties of the footbridge, in particular 
damping. With such low ‘empty’ damping values, which are completely 
unwarranted for the crowd loading case, fairly standard beam-like 
footbridges spanning 30–40 m would need a considerable amount of 
tuned mass dampers (TMDs) to reduce the predicted excessive crowd- 

induced vibrations. Current implementation of state-of-the-art HSI 
methodologies to calculate a more realistic vibration response to crowd 
walking, e.g. [5,6], is quite expensive and requires specialist software to 
deal with non-proportionally damped systems. The consequent urgent 
need for a simplified procedure to account for HSI in engineering design 
practice is the main motivation for this work. 

The walking behaviour of pedestrians can be considered as 
controlled by an internal driving force [8] and results into forces 
induced on the structure that supports them. On a perfectly rigid floor, 
these forces are equal to the well-known ground reaction forces (GRFs) 
as registered on a rigid laboratory floor [9]. These forces depend on the 
weight and the internal driving force of the pedestrian. On the other 
hand, when the supporting structure vibrates, so-called active and pas-
sive human-structure interaction phenomena (can) occur during 
walking:  

• Active interaction phenomena, also called Structure-to–Human 
interaction (S2H) phenomena [10], imply that the internal driving 
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force of the pedestrian is modified, consciously or unconsciously, in 
response to the vibration of the surface. As a result, the pedestrian’s 
walking behaviour and the induced forces are also modified [11–13]. 
These active interaction phenomena are known to result from lateral 
oscillations of the bridge deck [13–17]. As these interaction effects 
can significantly amplify the structural response [18,19], they should 
be accounted for in the vibration serviceability assessment (VSA) of 
footbridges that are sensitive to lateral human-induced vibrations. In 
the vertical direction, however, it is argued that active interaction 
phenomena only occur for vibration amplitudes that exceed the 
acceptable limits for vibration comfort [3,20]. In these cases, the 
pedestrians either stop walking or display a highly disturbed walking 
behaviour, both of which result in a significant reduction of the 
structural response [21]. It is for these reasons that these vertical 
active interaction phenomena are not further considered here.  

• Passive interaction phenomena, also called Human-to-Structure 
(H2S) interaction phenomena [10], refer to the fact that the 
human body is a mechanical system that interacts with the sup-
porting mechanical system. As a result, the dynamic behaviour of the 
coupled crowd-structure system can differ significantly from that of 
the empty structure, in particular for lightweight structures [6]. In 
the vertical direction, these passive HSI phenomena are much more 
frequent and relevant for the design practice [5,6]. 

In the literature, many studies have reported experimental evidence 
of these passive interaction effects. The most significant HSI effect is the 
effective modal damping ratios of the coupled crowd-structure system 
that are much higher than the inherent modal damping ratios of the 
empty structure [22–27]. In response to these observations, various 
numerical models have been proposed during the last decade to simulate 
these interaction effects. The most complex among these models are 
multibody (biomechanical) models, that easily use 30 or more degrees of 
freedom (DOFs) in combination with feedback and feedforward control 
algorithms to replicate the normal walking motion [28]. Also inspired 
by the literature in biomechanics are the inverted pendulum (IP) models 
[29–32]. For both multibody and IP models, experimental validation is 
lacking, in particular in view of simulating HSI effects, and the model 
complexity is considered too high for application in design practice. 

The most common approach to describe the vertical HSI is to 
consider the pedestrian and the supporting structure as two linear sub-
systems that are coupled at a single contact point [6,27,33–35]. In this 
case, the contact force not only depends on the pedestrian’s weight and 
internal driving force, but also on the dynamic behaviour of both sub-
systems (i.e. their relative motion). Assuming that there is no active HSI, 
allows decomposing the contact force in two independent terms: an 
autonomous force term independent of the vibrations of the supporting 
structure and an interaction term due to the mechanical interaction with 
the human body.A similar approach has been previously applied in the 
field of wind engineering [36,37] and building acoustics [38] to describe 
interaction phenomena. 

For the present application, the autonomous force term corresponds 
to the well-known GRFs as registered on the rigid floor. Depending on 
the frequency range of interest, the mechanical system representing the 
human body is a single (SDOF) or multiple (MDOF) degree of freedom 
[39,40]. Concerning the vibration serviceability of footbridges, the 

frequency range of interest is typically between 0.5 and 6.0 Hz. In this 
frequency range, a good representation of the dynamic behaviour of the 
human body can be obtained by considering a SDOF model [6,27], for 
example the one presented in Fig. 1 (a): a sprung mass mh1, an unsprung 
mass mh0, a spring kh1 and damping element ch1. Although the models 
proposed in the literature display small differences, they generally 
correspond in terms of the natural frequency (2.75–3.50 Hz) and the 
modal damping ratio (25–35%) of the human body model representing a 
pedestrian. [41] provides a more comprehensive overview of the 
experimental evidence and numerical models involving vertical HSI. 

The objective of the this paper is to propose a new and simplified 
methodology for design practice that takes into account vertical HSI in 
the VSA of civil engineering structures occupied and dynamically 
excited by crowds. The state-of-the-art reference framework in this study 
simulates the vertical HSI for a single person by means of the SDOF 
model presented in Fig. 1 (a) with fh1 = 3.25 Hz, ξh1 = 0.30 %, 
mh = mh1 +mh0 = 70 kg and μh1 = mh1/mh = 0.95. However, as also 
stated in [6,41], these properties remain to be validated for large crowds 
and realistic loading conditions. To reflect on these uncertainties and 
keeping in mind that the impact of HSI is most sensitive to the ratio 
between the relevant natural frequency of the human body fh1 and the 
considered mode of the structure fs, the results are also presented in 
terms of the dimensionless ratio fh1/fs. It is noted that even when future 
experimental studies indicate that these parameters need to be cor-
rected, the presented methodology will still be valid as long as the low- 
frequency dynamic behaviour of the human body is highly damped and 
the distributions of fh1 and ξh1 among the human population can be 
approximated by a Gaussian distribution. These are assumptions that 
can be made based on the currently available state of the art [41]. 

Concerning the crowd conditions, this study considers the conser-
vative load case of (near-) resonance whereby the fundamental or sec-
ond harmonic of the (near-) periodic walking load coincides with one of 
the natural frequencies of the occupied structure. Sparse [42,24] and 
dense [43,44] traffic conditions are represented by, respectively, a 
normal and low variability in step frequency between different pedes-
trians. This approach is in accordance to the one proposed by the design 
guides Sétra [3], HiVoSS [4] and the UK National Annex to Eurocode 1 
[7]. The approach of these design guides is used because (1) it is spe-
cifically developed for engineering practice to assess the vibration 
serviceability of footbridges, (2) they are widely applied internationally 
and (3) the drafts of the next version of the Eurocodes propose to inte-
grate this approach. 

The outline of this paper is as follows. First, the reference crowd- 
structure model and the statistical approach to analyse the structural 
response are presented. Second, the simplified model is introduced. 
Then, the simplified model is verified as a good approximation of the 
reference model for the prediction of crowd-induced vibrations. Next, 
results reported in the literature are used for validation purposes. 
Finally, it is illustrated how the proposed simplified method can be in-
tegrated in general procedures for the VSA of footbridges. The procedure 
is then applied and its performance evaluated by application to a real 
footbridge with multiple modes in the frequency range of interest. 

Fig. 1. The human body model (a) and the coupled crowd-structure model introduced in [6] (b).  
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2. The reference modelling framework 

2.1. Governing equations 

The crowd-structure model introduced in [6] is used in this study. 
The first-order continuous-time state-space equations of motion of the 
coupled moving crowd model read: 

ẋ
(
t
)
= Acx

(
t
)
+BcSp

(
t
)
pf
(
t
)

(1)  

with x(t) = [ z(t) uh(t) ż(t) u̇h(t) ]⊤ (2)  

with x(t) ∈ Rns the modal state vector and ns = 2(nm +nh), z(t) ∈ Rnm the 
modal coordinate vector, nm the number of modes, pf(t) ∈ Rnh is the 
force vector collecting the time history of the autonomous force term 
pf ,k(t) of each pedestrian k of the nh pedestrians as rows and Sp(t) ∈
Rndof×nh a selection matrix which transfers the forces to the corre-
sponding ndof DOFs of the model of the structure. The autonomous force 
term pf ,k(t) is modelled using the probabilistic single-person force model 
developed by Živanović et al. [46]. The system matrices Ac ∈ Rns×ns and 
Bc ∈ Rns×ndof are defined as: 

Ac =

[
0 I

− M− 1
hs Khs − M− 1

hs Chs

]

(3)  

Bc =

[
0

Tp

]

(4)  

where Mhs,Khs and Chs are the generalised mass-, stiffness and damping 
matrices of the coupled crowd-structure system and Tp is the generalised 
input transformation matrix, as defined in [6]. 

2.2. Crowd characteristics 

A crowd is characterised by inter- [47] and intra-person variability 
[9,48]. In [2] it is shown that the inter-person variability of the walking 
speed and the pedestrian weight have a negligible influence on the 
structural dynamic response [2]. Therefore, the weight G = 700 N 
[3,49] and walking speed vs [m s− 1] are set equal to their mean value for 
all pedestrians. The walking speed is defined in terms of the pedestrian 
density d[pedestriansm− 2], as defined in [43,19]. The arrival times are set 
to follow a Poisson distribution [50,51]. The pedestrian’s step frequency 
fs and weight G characterise the vertical load exerted on a rigid floor, 
defined here by a probabilistic single-person force model (see Section 
2.1). 

In agreement with the methodology presented by the design guides 
Sétra [3] and HiVoSS [4], the conservative load case of (near-) resonant 
loading is of interest: the mean value of the step frequency fp (or one of 
its integer multiples) is chosen to match one of the natural frequencies of 
the (occupied) structure fhs. A distinction is made between low and high 
pedestrian densities:  

• d < 1personsm− 2 (sparse traffic): fs = N (μfs , 0.175)Hz [3,4]  
• 1⩾d⩾1.5personsm− 2 (dense traffic): fs = N (μfs ,0.05)Hz [20] 

with 1.0 < fs < 2.5 [20], fp an integer multiple of the mean value of the 
step frequency μfs and N representing a normal distribution. 

The mechanical properties of the SDOF system used to simulate the 
passive interaction between the pedestrian and the structure are set to 
approximate the low-frequency dynamic behaviour of the human body 
during the walking cycle. It is shown in [6] that the impact of the inter- 
person variability on the parameters of the human body models is low. 
Therefore, only the mean values (fh1 = 3.25Hz, ξh1 = 0.30 [6,27,40]) are 
considered here. 

2.3. Statistical analysis 

Given the statistical nature of pedestrian excitation, the structural 
response is best evaluated by means of a statistical analysis [52,42]. In 
this study, the structural response is evaluated by Monte Carlo simula-
tion considering the variability of the autonomous force term pf(t). For 
each sample of the Monte Carlo process, the maximum acceleration level 
over the relevant observation time window with length T is determined, 
with T [s] denoting the time needed by a pedestrian to cross the bridge 
span with length L [m] (T = L/vs), where vs, and thus also T, is the same 
for all pedestrians (Section 2.2). In agreement with [3,4], the output 
quantity of interest concerns the 95 percentile value of the maximum 
acceleration levels. The number of Monte Carlo samples is increased 
until the probability that the true percentile of the distribution is within 
±5% of the corresponding percentile of the simulated data accumulated 
until that point, is higher than 95% (Matlab Statistics Toolbox, [53]). A 
more comprehensive discussion of this approach and an illustrative 
example can be found in [54]. 

3. Simplified model 

To simplify analysis, this study introduces an equivalent model 
whereby the effect of passive HSI is translated into effective (or 
‘apparent’) modal parameters for each mode of the supporting structure. 
In other words, these effective modal parameters are introduced to 
represent the dynamic behaviour of the coupled crowd-structure system. 
The simplified model is a very reasonable and cost effective alternative 
for the reference coupled crowd-structure model presented in Section 
2.1: The model order is reduced from ns = 2(nm +nh) to 2nm. Given the 
fact that the number of modes nm representing the structure is generally 
limited and much smaller than the number of pedestrians nh, the model 
order can be significantly reduced. Similar effective parameters have 
been investigated in recent studies [6,27,45]. 

The motivation for this simplified model stems from the resemblance 
between the dynamic behaviour of the coupled crowd-structure system 
and that of the empty structure. The dynamic behaviour of the coupled 
crowd-structure system is examined based on its accelerance frequency 
response function (FRF) Hhs(ω) [6] for an input force and output ac-
celeration at the antinode of a given structural mode, found using the 
system transfer function for the linear state-space model introduced in 
Section 2.1. For the empty structure, the FRF (Hs) only depends on the 
modal characteristics of the empty structure. 

Consider the empty structure. It can be assumed that for (near-) 
resonant excitation of mode j, the contribution of mode j dominates the 
structural response. As in the remainder of this section only the (near-) 
resonant mode j of the structure is retained, the subscript j is omitted 
when referring to the corresponding natural frequency fs, modal 
damping ratio ξs, unity-normalised mode shape Φs and modal mass ms 
[55]. The maximum steady-state amplitude of the single-mode response 
of the empty structure (üs,max) is found for resonant loading at the 
antinode (max|Φs| = 1.0) of the resonant mode: 

üs,max = p0maxω|Hs(ω)| = p0|Hs(ωs)| =
p0

2ξsms
(5)  

with fs =
ωs

2π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − 2ξ2
s

√

(6)  

with p0 [N] the amplitude of the sinusoidal input, ωs the acceleration 
resonant frequency and fs the undamped resonant natural frequency 
[56]. Eq. (5) shows that the key structural parameters determining its 
dynamic response are the natural frequency fs, the modal damping ratio 
ξs and the modal mass ms. 

It is shown in [6] and illustrated in Fig. 2 for different ratios between 
the total mass of the crowd (mcr = nhmh) and the structure (mstr), that 
both the FRF of the empty structure and the FRF of the coupled crowd- 
structure system are characterised by a single peak. This behaviour is the 
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same as that of a tuned mass damper, with a damping ratio significantly 
higher than the optimum damping ratio [57,58]. The peak value of the 
FRF Hhs(ω) can be considered as a measure for the maximum amplitude 
of the steady-state acceleration response of the coupled crowd-structure 
system (ühs,max) exposed to resonant harmonic excitation with amplitude 
p0: 

ühs,max = p0|Hhs(ωhs)| =
p0

2ξeffmeff
, (7)  

with ωhs = argmaxω|Hhs(ω)| (8)  

feff =
ωhs

2π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − 2ξ2
eff

√

(9)  

where feff [Hz], ξeff [-], and meff [kg] are defined as the (undamped) 
‘effective natural frequency’, ‘effective damping ratio’ and ‘effective 
mass’ of the coupled crowd-structure system. In this study, the 
assumption is made that the effective mass is equal to the modal mass of 
the empty structure: 

meff = ms (10)  

This choice is made to keep the methodology as simple as possible by 
using two effective parameters, instead of three (i.e. similar to the 
approach adopted in [59]). In addition, this modelling choice implies 
that the mode shapes of the equivalent coupled crowd-structure system 
are identical to those of the empty structure. The mass-effect of the 
crowd is thus taken into account by both the change in the effective 
damping ratio and effective natural frequency. However, it is noted that 
this is only valid at (near-) resonance, which is the main concern of 
design calculations when checking vibration serviceability. In summary, 
the presented methodology accounts for the mass, damping and stiffness 
effects by means of the effective natural frequency feff and effective 
damping ratio ξeff of the coupled crowd-structure system at (near-) 
resonance. 

The limitation of the proposed methodology is that it assumes that 
the dynamic properties of the coupled crowd-structure system can be 
well-approximated by a time-invariant system. This assumption is valid 
when the position of the humans is time-invariant, e.g. for grandstand 
applications, and was validated in [6] for the application to footbridges 
for pedestrian densities of 0.2 personsm− 2 and higher. In the latter case, 
the crowd can be considered (roughly) homogeneous and uniformly 
distributed over the bridge deck. Although the proposed methodology is 
in this paper applied to the specific case of footbridges, the methodology 
itself is applicable to both moving and stationary dynamic excitation, as 
long as (near-) resonant excitation is of interest and the human SDOF 
parameters are known. 

4. Numerical study 

The characteristics of the simplified model (the effective modal pa-
rameters of the coupled crowd structure system) are determined for a 
realistic range of structure and crowd parameters. In addition, this 
section validates the simplified model as a good approximation of the 
reference crowd structure system (Section 2.1) when the (near-) reso-
nant structural response to pedestrian excitation is of interest. To this 
end, the structural response predicted by both models is compared using 
a realistic range of structure and crowd parameters. 

4.1. Input parameters 

aaa  

• Structure parameters: The dynamic behaviour of the structure, with 
total mass mstr, is represented by the modal parameters of the reso-
nant mode j : fsj,Φsj, ξsj and msj. As footbridges are generally lowly- 
damped, modal damping ratios ξsj between 0.2% and 2.0% are 
considered. In view of the vibration serviceability issues of foot-
bridges, the natural frequency is varied between 1 Hz and 6 Hz [3,4]. 
A single vertical bending mode is considered with a half-sine mode 
shape and msj = 1

2mstr, as for a simply supported beam. No range is 
specified for the modal mass msj but a reasonable range is considered 
for the ratio between the total crowd (mcr) and total bridge mass 
(mstr). The structural mass of footbridges is generally found to be 
between 350 kg and 1000 kg per m2 of the bridge deck. A maximum 
pedestrian density of 1.5 pedestriansm− 2 then corresponds on average 
to 1.5× 70 = 105kgm− 2, which therefore corresponds to an upper 
limit of the crowd to structure mass ratio of about 30% (mcr/mstr =

105/350 ≈ 0.3).  
• Crowd characteristics: The human body model parameters are set to 

their mean value (see Section 2.2): mh = 70 kg [49] and mh1 =

0.95mh,mh0 = 0.05mh, fh1 = 3.25Hz,ξh1 = 0.30. As at this point the 
mass ratio is specified rather than the pedestrian density, the struc-
tural response is predicted considering both sparse and dense traffic 
conditions (Section 2.2). 

The following non-dimensional quantities are introduced: 

f jeff = fjeff

/
fsj (11)  

ξjeff = ξjeff
/

ξsj (12)  

f j = fh1

/
fsj (13)  

Fig. 2. The modulus of the accelerance FRF Hhs(ω) of the coupled crowd-structure system with ξs = 0.5%, for a frequency ratio fh1/fs of: 0.4 (∘), 0.6 (□), 0.8 (△), 1.0 
(⋄), 1.2 (▿) and 1.4 (+) and of the empty structure (black), for a mass ratio mcr/mstr of (a) 0.05 and (b) 0.25.. 
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mj =
mj,add

msj
with mj,add = ρ

∫ ∫

LxLy

Φ2
sjv

(

x, y

)

dxdy (14)  

with f jeff and ξjeff respectively the normalised effective natural frequency 
and damping ratio for mode j of the empty structure, f j the ratio between 
the natural frequency of the human body model and the natural fre-
quency of mode j of the empty structure, and mj the ratio between the 
modal mass (mj,add [kg]) added by the crowd with ρ [kgm− 2] the crowd 
mass per unit area, and the modal mass of mode j of the empty structure, 
with Φsjv(x, y) denoting the vertical component of the unity-normalised 
modal displacements at location (x, y) on the surface of the structure 
LxLy. The formulation in Eq. (14) can be used for any mode shape. 

Given the above specified ranges for fsj and fh1, a lower and upper 
bound of approximately 0.5 and 3.5 respectively is found for f j. To ac-
count for the uncertainty that remains on fh1, the range considered for f j 

is widened to: 0.25 < f j < 6. For the special case of a sinusoidal mode 
shape and a modal mass equal to half of the total mass of the structure, 
the upper bound of the mass ratio mj is 0.3. 

4.2. Output quantities of interest 

aaa 

• Effective modal parameters: the normalised effective natural fre-
quency f effj and damping ratio ξeffj.  

• 95 percentile value of the maximum acceleration levels: calculated 
according to the reference crowd-structure model (üHSI95) and the 
simplified model (üeff95), considering the statistical approach 
detailed in Section 2.3. The following ratio is defined: 

Reff =
üeff95

üHSI95
(15)  

Reff greater (less) than unity indicates that the simplified model 

(üeff95) overestimates (underestimates) the response predicted by the 
reference model (üHSI95). 

4.3. Results 

Fig. 3 compares the modulus and phase angle of the FRF of the 
reference coupled system and the simplified model for a mass ratio mj of 
0.05 and 0.25, and for different frequency ratios f j =

{0.4,0.6, 0.8, 1.0,1.2, 1.4}.Similar to the reference coupled crowd- 
structure system, the FRF of the simplified model is found using its 
system matrices which are in this case composed solely of the effective 
modal parameters. Table 1 lists the relative difference ε between the 
modulus of the FRF of the reference crowd-structure model (Hhs) and the 
simplified model (Ĥhs), calculated as: 

ε =

⃒
⃒
⃒Ĥhs − Hhs

⃒
⃒
⃒

|Hhs|
sgn
(⃒
⃒
⃒Ĥhs

⃒
⃒
⃒ −

⃒
⃒
⃒Hhs

⃒
⃒
⃒

)
(16)  

where the sign function (sgn) introduces a negative sign for the cases of 
underestimation, where the FRF modulus of the simplified model is for 
the most part below its coupled crowd-structure system counterpart. 
This relative error is evaluated over different frequency ranges, 
considered relevant for (near-) resonant excitation: ±2.5%f effj,±5%f effj,

±10%f effj and ±15%f effj. For feffj = 2 Hz, these ranges approximate the 
frequency band in which 70% (1× σ) to 95% (2× σ) of the spectrum of 
the load is expected, for both sparse (N (μfp ,0.175),±10%feffj and 

±15%f effj) and dense (N (μfp ,0.05),±2.5%f effj and ±5%f effj) traffic 
conditions. 

Fig. 3 shows that (small) modelling errors become apparent in the 
form of (small) differences in both amplitude and phase as the excitation 
frequency is further away from the resonant frequency of the coupled 
system. These differences increase for increasing mass ratios (Figs. 3-c vs 
a, and 3-d vs b) but altogether remain limited. These differences result 
from the fact that the simplified model is introduced to translate the 

Fig. 3. The modulus (a,b) and phase angle (c,d) of the accelerance FRF Hhs(ω) of the coupled crowd-structure system calculated based on the reference system (solid) 
and the simplified model (dashed) for ξs = 0.5%, a mass ratio mj of (a,c) 0.05 and (b,d) 0.25, and for increasing frequency ratios f j (dark to light): 0.4, 0.6, 0.8, 1.0, 
1.2 and 1.4. 
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dominant effect of HSI in effective modal parameters (feff and ξeff) for 
each mode of the supporting structure. This is a modelling choice that 
reduces the model order from ns = 2(nm +nh) to 2nm and inevitably in-
volves approximations. The effective modal parameters are defined such 
that they accurately represent the dynamic behaviour of the coupled 
system at resonance. As the simplified model is developed for civil en-
gineering structures occupied and dynamically excited by crowds, it is 
exactly this (near-) resonant behaviour of the coupled system that is of 
interest. It is for this reason that the modelling errors emerging away 
from resonance are of little importance in the proposed methodology. 
These results furthermore show that in terms of amplitude, away from 
resonance the FRF modulus of the simplified model is in most cases 

(slightly) greater than the FRF modulus of the reference crowd-structure 
system. In other words, the simplified model is on the safe side for non- 
resonant excitation. Only when both f j≲1 and the frequency range 
below the resonant frequency of the coupled system are considered, the 
amplitude of the FRF modulus of the simplified model is found to be 
(slightly) smaller than the modulus of the reference system (see Fig. 3- 
b). For these cases, the simplified model is not on the safe side for non- 
resonant excitation. At the end of this section, it is discussed how this 
issue is addressed for (near-) resonant excitation by crowds by the 
introduction of a correction coefficient. 

The above observations are confirmed and more clearly represented 

Table 1 
The relative difference in the modulus of the FRF of the coupled crowd-structure system and the FRF of the simplified model (ε) over a frequency range of ±2.5%f effj,

±5%f effj,±10%f effj and ±15%f effj, for frequency ratios (f j) 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4, and the mass ratios (mj) 0.05 and 0.25.   

mj = 0.05  mj = 0.25  

f j  ±2.5%feffj  ±5%feffj  ±10%feffj  ±15%feffj  ±2.5%feffj  ±5%feffj  ±10%feffj  ±15%feffj  

0.40 − 0.81 − 0.80 − 0.77 − 0.76 0.23 0.29 0.30 0.29 
0.60 − 0.72 − 0.79 − 0.80 − 0.79 0.31 0.25 − 0.37 − 0.61 
0.80 − 0.80 − 1.78 − 2.72 − 3.08 1.11 0.93 1.28 − 3.07 
1.00 − 0.75 − 1.90 − 3.31 − 4.08 2.69 7.06 15.27 19.49 
1.20 2.30 3.75 4.57 4.76 5.71 13.50 21.81 25.22 
1.40 3.93 5.18 5.81 6.00 9.59 17.17 22.54 24.48  

Fig. 4. The normalised effective natural frequency f jeff (a,c,e) and normalised effective damping ratio ξjeff (b,d,f) of the coupled crowd-structure system for the 
normalised mass ratios mj = {0.05, 0.10,0.15,0.20, 0.25,0.30}and a structure with a modal damping ratio ξs of 0.5% (a,b), 1.0% (c,d) and 2.0% (e,f), in terms of the 
normalised natural frequency f j, and corresponding frequency for which fh1 is optimally tuned (•, Eq. (17)). 
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by the results in Table 1: The relative difference ε generally increases as 
the FRF moduli are compared over a greater range around the resonant 
frequency. For a mass ratio of 0.25, ε is between − 3 % underestimation 
and +25 % overestimation, respectively. 

Fig. 4 presents the normalised effective natural frequency f effj and 
normalised effective damping ratio ξeffj in terms of the normalised nat-
ural frequency f j, for the modal damping ratios ξj = {0.5,1.0, 2.0} and 
the normalised mass ratios mj = {0.05,0.10,0.15,0.20,0.25,0.30}. To 
complement these dimensionless results and considering a natural fre-
quency of the human body model fh1 of 3.25 Hz, Fig. 5 presents the 
effective natural frequency f effj and effective damping ratio ξeffj in terms 
of the natural frequency of mode j of the empty structure. These figures 
aim to illustrate how these graphs and results can be used in engineering 
practice (as illustrated in Section 5). For reasons of readability, again, 
the normalised effective natural frequency f effj is displayed. Together, 
Figs. 4 and 5 represent the effective quantities for the wide range of low- 
frequency modes of any empty footbridge, with a natural frequency 
between 1 and 6 Hz and modal damping ratios up to 2%. The following 
observations are made:  

• For high values of the normalised natural frequency (f j > 1.5), the 
effect of the human presence is similar to that of an equivalent added 
mass: the effective natural frequency reduces in relation to the mass 

ratio and the effective damping ratio is approximately equal to the 
modal damping ratio of the empty structure (ξjeff ≈ ξsj) [6,60].  

• For intermediate values of the normalised natural frequency 
(0.5 < f j < 1.5), the most significant HSI effect is in the increase in 
the effective damping ratio relative to the one of the empty structure 
[6,41,60]. Similar to the behaviour of a tuned mass damper, the 
highest effective damping ratio is found for frequency ratios f j 

(slightly) below unity, corresponding to the optimal tuning fre-
quency for accelerations [57,58,61]: 

fopt =
1
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + mj

√ fsj (17)  

Figs. 5 b,d,f show that regardless of the inherent structural damping, 
similar values for the effective damping ratio of the coupled crowd- 
structure system are obtained. This observation indicates that, rela-
tive to the low structural damping, the damping introduced by the 
crowd is dominant.  

• For low values of the normalised natural frequency (f j < 0.5), the 
effective damping ratio again increases with the mass ratio, but less 
strong than for intermediate natural frequencies [6].  

• It can be observed that the effective natural frequency is slightly 
lower (for fsj < fopt) or higher (for fsj > fopt) than the natural fre-
quency of the empty footbridge [60,62,63]. The trends are highly 
similar for modal damping ratios up to 2%. 

Fig. 5. The normalised effective natural frequency f jeff (a,c,e) and the effective damping ratio ξjeff (b,d,f) of the coupled crowd-structure system for the normalised 
mass ratios mj = {0.05, 0.10,0.15, 0.20,0.25,0.30}and a structure with a modal damping ratio ξs of 0.5% (a,b), 1.0% (c,d) and 2.0% (e,f), in terms of the natural 
frequency of mode j of the empty structure, and corresponding frequency for which fh1 = 3.25 Hz is optimally tuned (•, Eq. (17)). 
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• For the three widely ranging values of structural damping values for 
a typical normal footbridge (0.5%, 1% and 2%), Figs. 4 and 5 indi-
cate little effect of the structural damping on the normalised effective 
natural frequency and damping ratio. 

Next, focus is on the ratio Reff between the structural acceleration 
response predicted by the reference crowd-structure model and the 
simplified model. Fig. 6 presents the ratios Reff in terms of the natural 
frequency of the empty structure (fsj), for the normalised mass ratios 
mj = {0.05,0.10,0.15,0.20,0.25,0.30} and two values of the modal 
damping ratio ξsj = {0.5,2.0} %. This figure shows that the ratios Reff 

are close to unity. These results suggest that the structural response 
predicted by the reference crowd-structure system and the simplified 
model are comparable. For natural frequencies of the empty structure 
(fsj) lower and higher than fopt (Eq. 17), the simplified model respectively 
overestimates and underestimates the structural response. The differ-
ence in the predictions increases with the mass ratio. Note that when 
fh = 3.25 Hz, the human body models are optimally tuned for natural 
frequencies of the empty structure close to 3.33 Hz and 3.71 Hz for 
normalised mass ratios mj ranging from 0.05 to 0.30. For a mass ratio 
mj = 0.3, the structural response is overestimated by approximately 
25%. The largest underestimation is found for natural frequencies of the 
empty structure near 4 Hz. For the mass ratio mj = 0.3, the structural 
response is underestimated by approximately 20%. 

The differences between the predictions of the reference crowd- 
structure system and the simplified model stem from the fact that the 
simplified model allows for a good but not perfect representation of the 
dynamic behaviour of the reference crowd-structure system. As previ-
ously observed in Fig. 3, a nearly perfect fit is obtained for the most 
important (near-) resonant frequencies of the coupled system, but, 
(small) differences are observed for frequencies further away from the 
resonant frequency. For frequency ratios lower than the optimal 
(fh < fopt), the modulus of the FRF of the simplified model is (slightly) 
smaller than the one of the reference system for frequencies further 
away from the resonant frequency (e.g. f j = 0.8 in Fig. 3). In this case, 

(near-) resonant excitation results in an underestimation of the struc-
tural response. The opposite is true for frequency ratios greater than 
optimal (fh > fopt , e.g. f j = 1.2 in Fig. 3). This also explains why Reff is 
closer to unity for dense traffic conditions, as in this case a larger pro-
portion of the loading is situated near the resonant frequency of the 
coupled system. Considering that the effective damping ratio of the 
coupled system can be up to 50 (for ξsj ∼ 0.5%), 25 (for ξsj ∼ 1.0%) and 
10 (for ξsj ∼ 2.0%) times larger than that of the empty structure (see 
Figs. 4 and 5), an over-estimation of 25% is considered mild in com-
parison to the over-estimation that would result from neglecting HSI. A 
mild overestimation of this kind can be considered acceptable for design 
purpose having in mind the very large levels of overestimation when HSI 
is neglected. On the other hand, underestimations are not desirable, 
even though the level of underestimation is limited to 20%. To avoid 
these underestimations, the effective damping ratio ξjeff is modified to 
ξjeff,D for application in design procedures: 

ξjeff,D = cjD
(
fj,mj

)
ξjeff (18)  

with cjD a dimensionless correction coefficient dependent on the natural 
frequency of the empty structure fsj and the mass ratio mj (Fig. 7). This 
correction coefficient has been determined empirically, based on the 
trends observed for Reff (Fig. 6). From Fig. 7 it can be observed that for 
frequencies higher than fopt (Eq. (17)), this modified effective damping 
ratio ξjeff,D is (slightly) lower than the effective damping ratio ξjeff (i.e., 

cjD < 1). The corresponding ratio Reff,D =
üeff,D95
üHSI95 

in Fig. 8 shows that when 
the structural response is predicted using the modified effective damp-
ing ratio ξjeff,D, the predictions of the reference system are in all cases 
mildly overestimated by 10–25%. 

5. Application 

In this section, the effective modal parameters are validated based on 
results reported in the literature (Section 5.1). Next, a procedure is 
introduced for the application of the proposed simplified method to 

Fig. 6. The ratio Reff = üeff95/üHSI95 in terms of the natural frequency of the empty structure (fsj), for the normalised mass ratios mj = {0.05,0.10, 0.15,0.20,0.25,
0.30} (dark to light) and a structure with a modal damping ratio ξsj of (a,c) 0.5% and (b,d) 2.0% and considering (a,b) sparse and (c,d) dense traffic conditions, and 
corresponding frequency for which fh1 = 3.25 Hz is optimally tuned (•, Eq. (17)). 
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account for vertical HSI in the VSA of footbridges (Section 5.2) and is 
applied to a real slender footbridge (Sections 5.3 up to 5.5). By 
comparing the structural response predicted by the reference crowd- 
structure model to the one predicted by the simplified model, the us-
ability and accuracy of this simplified model is evaluated. Finally, it is 
illustrated how the proposed procedure can be easily integrated in 
(simplified) design procedures specified in guides and codes. 

5.1. Validation of the effective modal parameters 

As indicated in the introduction section, many studies have investi-
gated the impact of the presence of stationary persons on the dynamic 
behaviour of the coupled crowd-structure system. For the present study, 
focus is on the impact of pedestrians that are walking along the struc-
ture. In this case, the experimental analysis of the dynamic behaviour of 
the coupled system is far more complicated as it also requires detailed 
and accurate information on the walking loads induced by the pedes-
trians. This type of information is very difficult to collect on site. So far, 
only the study of Shahabpoor et al. [27] has reported on the modal 

properties of a laboratory footbridge occupied by pedestrians walking 
along the structure. Although these properties remain to be validated for 
large crowds and realistic loading conditions [6,41], such experimental 
investigations fall outside the scope of the present work. Instead, this 
section uses the relevant state-of-the-art results reported in [27] to 
validate the effective modal parameters presented in Fig. 4. 

In the following, only the tests and results reported in [27] relevant 
for this study are discussed. The test structure in [27] involves a simply- 
supported post-tensioned concrete footbridge with a length of 11.2 m, 
width of 2 m and weight of approximately 15 tons. Only the funda-
mental vertical bending mode (fj = 4.44 Hz, ξj = 0.6 − 0.7 %, mj = 7128 
kg) has a natural frequency below 6 Hz, and is therefore the only mode 
relevant in the present study. The modal parameters of the empty and 
occupied structure were determined using the FRF-based modal tests 
using a known input shaker force. For the tests involving walking per-
sons, from 2 to 15 persons (average mass 70 kg) were requested to walk 
in a closed-loop path along the structure at a self-selected normal 
walking speed. 

The simplified model introduced in this study, is developed for civil 

Fig. 7. The correction coefficient cD in terms of (a) the normalised natural frequency (f sj) and (b) the natural frequency (fsj) of the empty structure, for the normalised 
mass ratios mj = {0.05,0.10, 0.15,0.20, 0.25,0.30} (dark to light), and corresponding frequency for which fh1 = 3.25 Hz is optimally tuned (•, Eq. (17)). 

Fig. 8. The ratio Reff,D = üeff95/üHSI95 in terms of the natural frequency of the empty structure (fsj), for the normalised mass ratios mj = {0.05,0.10, 0.15,0.20,0.25,
0.30} (dark to light) and a structure with a modal damping ratio ξsj of (a,c) 0.5% and (b,d) 2.0% and considering (a,b) sparse and (c,d) dense traffic conditions. 
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engineering structures occupied and dynamically excited by crowds. 
Therefore, only the tests with a large number (10 and 15) of pedestrians 
are of interest as in this case the pedestrians can be considered as more 
or less uniformly distributed along the structure. The load case of 10 and 
15 persons correspond to a normalised mass ratio mj of 0.049 and 0.074, 
respectively. 

The following results are reported in [27] (see also Table 2):  

• A natural frequency, damping ratio and modal mass of the occupied 
structure of respectively 4.48 Hz (4.47 Hz), 2.91% (2.10%) and 7402 
kg (7311 kg) for 15 (10) pedestrians. In accordance to the definitions 
given in Section 3, these values correspond to an effective natural 
frequency feff and damping ratio ξeff of respectively 4.48 Hz (4.47 Hz) 
and 3.02% (2.15%) for 15 (10) pedestrians.  

• Identified ranges for the human body model parameters: 2.75 – 3.00 
Hz for the natural frequency and 27.5% – 30% for the damping ratio. 
The (range of the) natural frequency of the human body model 
identified in [27] slightly differs from the value of 3.25 Hz consid-
ered in this study (Section 2.2) but corresponds to the following 
range of frequency ratios: 0.62⩽f j⩽0.68. The damping ratio corre-
sponds to the value of 30% considered in this study (Section 2.2).  

• The results confirm that the unity-normalized mode shapes of the 
equivalent coupled crowd-structure system are identical to those of 
the empty structure. 

Fig. 4 is now used to derive a good estimate of the effective modal 
parameters using only the natural frequency and modal damping ratio of 
the empty structure, the frequency ratio f j and the calculated normalised 
mass ratio mj. This is illustrated in Fig. 9 for the case corresponding to 15 
persons. Given the damping ratio of the empty structure (0.6–0.7%), the 
weighted average of the values derived for a damping ratio of 0.5% 
(Figs. 4-a,b) 1.0% (Fig. 4–c,d) are used. For 15 (10) persons, Fig. 4 
predicts an effective natural frequency and damping ratio of respectively 
4.47–4.48 Hz (4.46–4.47 Hz) and 2.85–4.03% (2.10–2.93%), for the 
frequency ratios 0.62⩽f j⩽0.68. It is observed that the corresponding 
values of [27] (4.48 Hz (4.47 Hz) and 3.02% (2.15%)) fall well within 
the ranges derived using the simplified model (see also Table 2). 

5.2. Step-by-step analysis procedure 

Fig. 10 presents a step-by-step procedure for the application of the 
simplified method to account for vertical HSI in the VSA of footbridges. 
Furthermore, Fig. 10 illustrates how the procedure can be integrated in 
design methods for the prediction and evaluation of the vibration 
serviceability of footbridges under pedestrian excitation. 

First, the necessary input parameters are collected: the modal pa-
rameters of the empty structure (for each mode within the frequency 
range of interest) and the pedestrian density for which the VSA is per-
formed. It is acknowledged that in the design stage, the structural 
damping ratios can only be estimated. Current practice is to estimate the 
structural damping ratios based on experience with comparable foot-
bridges. To this end, design guidelines suggest minimum and mean 
values for the damping ratio according to the considered construction 

type. After completion, the structural damping ratios can be estimated 
more reliably from vibration data collected on site. In view of a con-
servative assessment of the vibration serviceability of the footbridge 
using the simplified method, it is recommended not to overestimate the 
added-damping effect due to HSI. It is therefore recommended to 
consider the curve representing an added mass ratio closest to, yet 
smaller than, the actual added mass ratio. Likewise, it is recommended 
to use the graph corresponding to a structural inherent damping ratio 
closest to, but preferably lower than, the actual structural inherent 
damping ratio. 

Second, the normalised mass ratio mj is calculated for each mode 
based on Eq. (14). This mass ratio is then applied to determine the 
corresponding effective natural frequency fjeff and damping ratio ξjeff 

(Fig. 5), the correction coefficient cjD (Fig. 7) and the design value of the 
effective damping ratio ξjeff,D (Eq. 18). The obtained effective modal 
parameters describe the dynamic behaviour of the coupled crowd- 
structure system and are in the final step used as input for a general 
procedure for the prediction and evaluation of the structural response to 
pedestrian excitation. This general procedure may involve simplified 
procedures as presented in guidelines and design guides (e.g. [3,4,7]) or 
may involve detailed simulations according to the state-of-the-art, 
whereby no additional measures are taken to account for vertical HSI. 

5.3. Eeklo footbridge 

The Eeklo footbridge is a slender steel footbridge with three spans, a 
main central span of 42 m and two side spans of 27 m (Fig. 11a). The 
cross section of the bridge consists of two main beams with a height of 
1.2 m at a spacing of 3.4 m, supporting a steel deck with a thickness of 8 
mm thickness and stiffened with three secondary beams. The bridge is 
supported by land abutments at the sides and two concrete piers at the 
center span. The abutments and piers are equipped with neoprene 
supports. Previous research developed a detailed finite element (FE) 
model using ANSYS software [64] according to the as-built plans [65]. 
That same research performed output-only system identification based 
on ambient vibrations. In total, 14 modes were identified with a fre-
quency up to 12 Hz (Table 3). Through model calibration, using the 
translational stiffness of the neoprene bearings as updating parameters 
and the lsqnonlin-solver (MATLAB [66]), an optimal correspondence 
was found between the measured and calculated modal characteristics: 
the relative errors on the frequencies of all 14 modes are limited to 
1.76% and all MAC values are greater than 0.9. Some of the lower modes 
are presented in Fig. 12 which illustrates that combined lateral-torsional 
modes alternate with vertical bending modes. For more information 
related to the footbridge and the model calibration, the reader is referred 
to [65]. 

5.4. Effective modal parameters 

The reference crowd-structure model is applied to determine the 
effective modal parameters of the modes listed in Table 3 for five 
pedestrian densities d = {0.2,0.5, 0.8,1.0, 1.5} personsm− 2. To do so, 
only the contribution of the selected mode j is considered. All modes 
have more or less strong vertical modal displacements making them 

Table 2 
For the fundamental vertical bending mode (fj = 4.44 Hz, ξj = 0.6 − 0.7 %, mj = 7128 kg) of the footbridge discussed in [27] and for the frequency ratio 0.62⩽f j⩽0.68: 
the natural frequency and modal damping ratio of the empty structure and the effective modal parameters derived from [27] and estimated using Fig. 4 of the structure 
occupied by 10 and 15 pedestrians. As the latter is based on a graphical technique, an interval is estimated instead of a single numerical value.  

Empty structure Occupied structure  

Number of  Derived from [27] Estimated using Fig. 4 
fj [Hz]  ξj [%]  pedestrians [-] mj [-]  feff [Hz]  ξeff [%]  feff [Hz]  ξeff [%]  

4.44 0.6–0.7 10 0.049 4.47 2.15 4.46–4.47 2.10–2.93 
4.44 0.6–0.7 15 0.074 4.48 3.02 4.47–4.48 2.85–4.03  
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excitable by pedestrian walking. For a pedestrian density of 1.5 
personsm− 2, the normalised added modal mass mj, the effective natural 
frequency fjeff , damping ratio ξjeff and the correction coefficient cD are 
listed in Table 3. 

Second, the procedure as detailed in Section 5.2 is applied to arrive at 
a good estimate of the effective modal parameters. Based on the modal 

characteristics of the empty structure (Section 5.3) and the selected 
pedestrian density, e.g. 1.5 personsm− 2, the normalised mass ratio is 
calculated for each mode j using Eq. (14). Next, a good estimate of the 
effective modal parameters for each mode j can be derived from Figs. 5 
and 7 and Eq. (18) using only the corresponding natural frequency and 
modal damping ratio of the empty structure and the calculated nor-
malised mass ratio mj. This is illustrated in Fig. 13 for the fundamental 

Fig. 9. The normalised effective natural frequency f jeff (a,c) and normalised effective damping ratio ξjeff (b,d) in terms of the normalised natural frequency f j, for 
normalised mass ratios mj up to 0.30. The red dashed lines indicate the values corresponding to the fundamental mode of the 11.2 m span concrete footbridge 
occupied by respectively 10 and 15 persons [27]: fj = 4.44 Hz, ξj = 0.6 − 0.7 % ( ↦ ξs = 0.5%, a,b and ↦ ξs = 0.5%, c,d), added mass ratio mj of respectively 0.049 
and 0.074. 

Fig. 10. Roadmap for the application of the proposed simplified procedure to account for vertical HSI in the VSA of footbridges.  
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and the second mode of the Eeklo footbridge. 
From Table 3 it can be observed that the maximum percentage of the 

added modal mass is approximately 30%. This is, for example, the case 
for the vertical bending modes 2 and 5 (Fig. 12). For other modes such as 
the combined lateral-torsional mode 1 and 4, the added modal mass 
ratio is as low as 1.5%. As expected, the highest normalised effective 
damping ratio is found for mode 2 (3.02 Hz) and mode 5 (5.75 Hz), two 
modes that are characterised by a low structural inherent damping ratio 
(≈ 0.2 %), a high added modal mass ratio (mj ≈0.3) and, more 

importantly, a natural frequency close to 3.7 Hz for which the human 
body models (fh1 = 3.25 Hz) are optimally tuned (Eq. (17)). 

Fig. 14 compares the modulus of the FRF of the Eeklo footbridge for 
an input force and output acceleration at midspan of the centre span and 
the side span, computed using the effective modal parameters (simpli-
fied model) and the reference coupled crowd-structure system for a low 
(0.2personsm− 2) and a high (1.5personsm− 2) pedestrian density. This 
figure shows that overall a very good agreement is found between the 
FRF modulus of the two systems. This is also confirmed by the relative 
difference in the modulus of the FRFs that is limited to 4.1% and 17.8% 
(3.1% and 8.4%) in the frequency range [0, 5] Hz ([0, 10] Hz), for a 
pedestrian density of 0.2 pedestriansm− 2 and 1.5 pedestriansm− 2, 
respectively. 

5.5. Structural response to pedestrian excitation 

First, detailed simulations are performed using the reference crowd- 
structure model and the simplified model. Second, it is illustrated how 
the proposed simplified model can also be easily integrated in the 
(simplified) design procedure proposed by guidelines and codes. 

5.5.1. Prediction based on detailed simulations 
Considering the statistical approach detailed in Section 2.3, the 95 

percentile value of the maximum acceleration levels is calculated ac-
cording to the reference crowd-structure model, the simplified model, 
and the simplified model with modified damping ratio, for five pedes-
trian densities d = {0.2,0.5, 0.8,1.0, 1.5}personsm− 2. Resonant condi-
tions are considered for each mode with a natural frequency below 5 Hz: 
modes 1–4 (Table 3). For each of these load cases, the structural 
response is calculated twice: (1) considering only the contribution of the 
resonant mode and (2) considering the contribution of all modes with a 
natural frequency below 13 Hz. The following observations are made 
(Fig. 15):  

1. When only the contribution of the resonant mode is considered, the 
highest structural response is found when resonance is considered 
with the second mode (Fig. 15-b). The high sensitivity to human- 
induced vibrations for this vertical bending mode is mainly 
explained by its low modal damping ratio and modal mass. 

2. From Fig. 15-b it can be observed that the structural response in-
creases with the pedestrian density faster than the expected factor 
̅̅̅̅
N

√
[3]. For example, ü95(d = 1.5) ≈ 1.6ms− 2 >

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1.5/1.0

√
ü95(d =

1.0) ≈ 0.7ms− 2. This observation is explained by the fact that as the 
pedestrian density increases, the effective natural frequency of the 
targeted mode decreases. For a pedestrian density of 1.5 
pedestriansm− 2, the effective natural frequency of the second mode is 
lower than 2.5 Hz. Thus, as the pedestrian density increases, the 
share of pedestrians for which resonance occurs with the funda-
mental harmonic of the walking load increases. The amplitude of this 

Fig. 11. Eeklo footbridge.  

Table 3 
The mode number j, natural frequency fsj, modal damping ratio ξsj and vertical 
modal mass msjv of all modes with a natural frequency below 13 Hz for the Eeklo 
footbridge and the normalised added modal mass mj, the effective natural fre-
quency fjeff , effective damping ratio ξjeff and correction factor cD for a pedestrian 
density of 1.5 personsm− 2.  

Empty footbridge Footbridge  + 1.5 personsm− 2  

j fsj  ξsj  msjv  mj  fjeff  ξjeff  cD   

[Hz] [%] [ × 103kg] [%] [Hz] [%] [-] 

1 1.71 1.94 202 1.81 1.69 2.05 1.00 
2 3.02 0.19 22 28.94 2.41 10.15 0.98 
3 3.30 1.45 54 7.28 3.21 6.03 0.86 
4 3.43 2.97 500 1.23 3.42 3.78 0.87 
5 5.75 0.23 27 30.77 5.96 8.92 0.89 
6 5.80 0.16 56 8.96 5.84 2.09 0.94 
7 6.10 2.08 66 6.67 6.12 3.38 0.95 
8 6.47 0.60 26 31.31 6.67 7.75 0.90 
9 6.94 3.38 65 6.62 6.97 4.39 0.95 
10 7.36 4.77 160 4.69 7.38 5.41 0.95 
11 9.71 2.50 177 2.88 9.72 2.76 0.95 
12 9.80 0.87 15 35.79 9.95 5.34 0.89 
13 10.65 1.43 56 6.08 10.67 1.92 0.95 
14 12.16 3.49 324 1.73 12.16 3.61 0.96  

Fig. 12. Top and side view of the first six modes of the calibrated FE model of the Eeklo footbridge.  
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fundamental harmonic is on average 4 times larger than that of the 
second harmonic [3].  

3. In all cases, the simplified method with modified damping ratio ξeff,D 
allows for a good and conservative estimate of the structural 
response that is within 10–20% of the predictions of the reference 
crowd-structure model. 

These results show that the vertical HSI-effect can be accounted for 
by means of the effective modal parameters, even for the case where 
multiple low-frequency modes contribute to the structural response. 

5.5.2. Prediction according to the current codes of practice 
Finally, it is illustrated how the proposed simplified method to ac-

Fig. 13. The normalised effective natural frequency f jeff (a,b), effective damping ratio ξjeff (c,d) and correction coefficient cD (e,f) in terms of the natural frequency of 
the empty footbridge (fsj), for normalised mass ratios mj up to 0.30. The red dashed lines indicate the values corresponding to (a,c,e) the fundamental mode (fj = 1.71 
Hz, ξj = 1.94% ↦ ξs = 2.0%, added mass ratio mj of 0.02,≃ 0.05) and (b,d,f) the second mode (fj = 3.02 Hz, ξj = 0.19% ↦ ξs = 0.5%, an added mass ratio mj of 
28.94%,≃ 0.30), of the Eeklo footbridge. 

Fig. 14. The modulus of the accelerance FRF Hhs of the Eeklo footbridge calculated based on the reference crowd-structure system (solid) and the simplified model 
(dashed) for a pedestrian density of (a) 0.2personsm− 2 and (b) 1.5personsm− 2, for an input force and output acceleration at midspan of the centre span (black) and a 
side span (grey). 
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count for vertical HSI can be easily integrated in (simplified) design 
procedures specified in guidelines and codes such as Sétra [3], Hivoss 
[4] and the UK National Annex to Eurocode 1 [7]. The load case 
considered is pedestrian excitation in crowded conditions. For this load 
case, the aforementioned guidelines have a similar approach to assess 
the vibration serviceability of a footbridge: the maximum structural 
response (typically acceleration) is predicted for each pedestrian density 
of interest and evaluated with respect to the relevant vibration comfort 
criteria. The structural response is predicted assuming that the first or 
the second harmonic of the walking load coincides with one of the 
natural frequencies of the structure. It is furthermore assumed that the 
resonant mode dominates the structural response. The key element of 
the design guides is the fact that the excitation by a certain pedestrian 
density d is represented by an equivalent deterministic harmonic design 
load pj [Nm− 2] which is uniformly distributed on the bridge deck. The 
amplitude of the harmonic design load pj depends on the pedestrian 
density d, the average weight assumed for the pedestrians (generally 
700 N), the natural frequency of the considered mode and guide-specific 
parameters that account for the level of synchronization among the 
pedestrians and the risk that resonance occurs. As input, these design 
procedures require the dynamic characteristics of the structure. In the 
design phase, this information consists of (1) the natural frequencies and 
mode shapes predicted based on a numerical model of the structure and 
(2) minimum and mean values for the modal damping ratio as suggested 
by the design guides. It is at this point that the simplified method to 
account for vertical HSI can be integrated in the procedure of the 
guidelines: the natural frequencies fsj and damping ratios ξsj of the empty 
structure can be replaced by the effective quantities (fjeff and ξjeff,D) of 
the coupled crowd-structure system. 

By way of illustration, the response of the Eeklo footbridge for d =

1.0pedestriansm− 2 is predicted according to the Sétra guideline [3]. The 
harmonic design load pje in direction e (vertical, lateral or longitudinal) 
is specified as: 

pje =
Neq

S
Qeh

(

fsj

)

with Qeh

(

fsj

)

= αehGψeh

(

fsj

)

(19)  

with Neq [-] the equivalent number of pedestrians with Neq = 1.85
̅̅̅̅
N

√
for 

d⩾1.0pedestriansm− 2 and N the total number of pedestrian distributed on 
the bridge deck with surface S [m2],Qeh(fsj) [N] the load amplitude of the 
h-th harmonic of the walking load in direction e generated by a single 
pedestrian, defined as the product of the dynamic load factor αeh [-], the 

weight G = 700 [N] and the reduction coefficient ψeh(fj) [-]. The latter 
accounts for the probability that resonance occurs between the step 
frequency (or twice its value) and the natural frequency of mode j under 
consideration. The load amplitude Qeh defined by Sétra [3] is presented 
in Fig. 16-a. The maximum acceleration level üje max [m s− 2] in direction 
e, observed in the anti-node of the considered resonant mode j, is 
calculated as: 

üje max =
Fje

2ξsjmsj
max

⃒
⃒ϕje

⃒
⃒ with Fje = pje

∑

k
sk
⃒
⃒ϕsje,k

⃒
⃒ (20)  

with ϕje the vector which collects the unity-normalised modal dis-
placements of mode j in direction e for all nodes of the bridge deck area 
S, Fje the modal load in direction e and s the vector which collects the 
bridge deck area allocated to the corresponding nodes (S =

∑
ksk [m2]). 

As this procedure considers resonant loading, Eq. (20) can be directly 
related to Eq. (7). 

The proposed simplified method to account for vertical HSI is now 
integrated in this procedure by considering the effective natural fre-
quency fjeff and damping ratio ξjeff,D in Eqs. (19) and (20) instead of those 
of the empty structure. The corresponding predictions for a pedestrian 
density of 1.0pedestriansm− 2 are visualised in Fig. 16-b. To allow for the 
comparison with the corresponding predictions of the reference system 
(Fig. 15), Fig. 16-b also shows the results independent of the reduction 
factor ψeh (white bars). It is also noted here that the simplified procedure 
of Sétra [3] and the reference crowd-structure model arrive at very 
similar predictions of the maximum acceleration levels for each load 
case: {0.22; 0.71; 0.11; 0.02} ms− 2 (Fig. 16, white bars) and 
{0.23; 0.73; 0.13; 0.02} m s− 2 (Fig. 15), respectively. 

Finally, it is noted that the amplitude of the harmonic design load pj, 
in particular the equivalent number of pedestrians Neq, in some load 
cases and guides also depends on the damping ratio. However, to the 
best knowledge of the authors, the relations specified between N and Neq 

are only valid for low-damped structures [54] and should therefore be 
re-evaluated for the application to highly damped (coupled crowd- 
structure) systems. 

6. Conclusions 

A novel methodology suitable for design practice is proposed that 
allows to account for the significant effects of passive vertical HSI in the 
VSA of structures occupied by and dynamically excited by crowds. The 

Fig. 15. The 95 percentile value of the maximum acceleration levels ü95 calculated considering the contribution of only the resonant mode (grey) and all modes 
(white) according to: the reference crowd-structure model (black, left bar), the simplified model (dark grey, central bar) and the simplified model (light grey, right 
bar) with modified damping ratio when resonance is targeted with the (a) first, (b) second, (c) third and (d) fourth mode of the Eeklo footbridge. 
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scope is limited to pedestrian densities of 0.2 personsm− 2 and greater, 
when the crowd can be considered roughly homogeneous and uniformly 
distributed over the structure. The methodology is suitable for the load 
case that governs the VSA according to current design guidelines: (near-) 
resonant crowd dynamic loading whereby the fundamental or second 
harmonic of the (near-) periodic walking load coincides with one of the 
natural frequencies of the occupied structure. The methodology consists 
of representing the effect of HSI by an effective natural frequency and 
damping ratio for each excited mode of the supporting structure. These 
effective modal parameters are presented in user-friendly charts in terms 
of the mass ratio and the modal parameters of the empty structure. By 
comparison of the structural response to pedestrian excitation predicted 
by a nominally more accurate reference model and the simplified model, 
the accuracy of the simplified model is evaluated for the relevant low- 
frequency (1–6 Hz) dynamic behaviour and for a crowd to structure 
mass ratio up to 30%. For structural modes with a natural frequency 
greater than that of the pedestrian interaction model (≈ 3 Hz), the 
simplified model is found to underestimate the structural response with 
maximal 20%. To address this issue, a correction factor is introduced for 
the effective damping ratio. The results finally show that the simplified 
method allows for a good and conservative estimate of the structural 
response that is within 10–20% of the predictions of the state-of-the-art 
reference crowd-structure model. These results are also confirmed by 
application on a real footbridge where multiple low-frequency modes 
contribute to the structural response. It is worth noting that as a result of 
passive HSI, the highest pedestrian density is not necessarily the load 
case governing the vibration serviceability. Small groups of (synchro-
nized) pedestrians or runners may induce greater vibration levels as the 
added-damping effect resulting from HSI is in those cases often negli-
gible. This stands in stark contrast with the considerable added-damping 
effect often observed for crowded conditions. 

The proposed simplified methodology has the advantage that it is 
generally applicable to all cases where vertical HSI of crowds is of in-
terest. Through the consideration of the appropriate interaction models, 
the effective modal parameters for footbridges, floors, grandstands and 
other assembly structures dynamically excited by crowds, can be 
derived. Furthermore, the methodology can be integrated easily in 
general procedures for the VSA of structures in the presence of crowds. 
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