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Abstract

The initiation and regeneration of pulsatile activity is a ubiquitous feature observed in excitable systems

with delayed feedback. Here, we demonstrate this phenomenon in a real biological cell. We establish a

critical role of the delay resulting from the finite propagation speed of electrical impulses on the emergence of

persistent multiple-spike patterns. We predict the co-existence of a number of such patterns in a mathematical

model and use a biological cell subject to dynamic clamp to confirm our predictions in a living mammalian

system. Given the general nature of our mathematical model and experimental system, we believe that our

results capture key hallmarks of physiological excitability that are fundamental to information processing.

Keywords: Neuronal excitability, delayed-feedback,

mathematical modelling, dynamic clamp

Introduction

Persistent and repetitive electrical spiking activity un-

derlies information processing in a wide range of ex-

citable biological systems, including neurons [1, 2],

arthropod muscle fiber [3], cardiac cells [4, 5, 6], pan-

creatic β-cells and other endocrine cells [7, 8]. Spikes:

brief, rapid depolarisations of the voltage across cells

membranes, are initiated due to the excitability prop-

erties of the cell and in response to incoming stimuli,

such as electrical impulses induced by other cells. Ex-

citability properties allow cells to selectively respond

to inputs in an ‘all-or-none’ fashion, acting as a non-

linear filter and enabling precise temporal encoding of

stimuli. In certain contexts, spiking patterns induced

by transient stimuli are repetitively regenerated follow-

ing stimulus withdrawal [9], suggesting a mechanism

by which memories could be encoded in the timing or

frequency of spiking events, as has been postulated for

the encoding of sensory inputs and in motor control

[10, 11].

Electrical impulses in the brain traverse, via axonal

and dendritic projections, distances that can extend

many times the cell body. The finite conduction ve-

locity along such projections induces delays in signal

transduction and information processing, including in

the encoding and decoding of memories [12, 13, 14].

Since delayed spiking activity has been linked to work-

ing memory [14], it should come as no surprise that de-

myelinating diseases, in which the electrical insulation

around axons degrades, are associated with memory

impairment.

Excitable systems subject to delayed feedback are

capable of regenerating their own excitable response,

resulting in robust multi-pulse patterns dependent on

the feedback strength and the length of the delay inter-

val [15, 16, 17]. The presence of rich dynamics, includ-

ing co-existence between different types of dynamic be-

haviour in nonlinear systems with delays [15, 16, 17]

has sparked significant interest in investigating the in-

terplay between excitability and delay in a variety of
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systems. A prominent example of such a system in-

volves semiconductor micro-cavity lasers [18, 19, 20];

in an analogous fashion to neural systems, the number

of emission pulses per delay period in the laser sys-

tem is thought to be reflective of its ability to store

information. In particular, it has been suggested that

this property could be used in the construction of bio-

inspired ‘neuromorphic’ photonic resonators that pro-

cess information through light pulses alone [21, 22].

Supporting this perspective are results that show that

pulse-timing patterns due to regeneration of excitation

exist in a coherently driven laser [23] and a wavelength

tuneable semiconductor laser subject to optoelectronic

delayed feedback [24] as well as in a driven laser subject

to optoelectronic delayed feedback [25], and a micro-

laser with integrated saturable absorber [26]. Given

the similarities in excitability between neural and laser

systems, it is pertinent to inquire as to which features

of the regenerative process are common to both and

which differ, noting that such dynamics have previ-

ously been observed in delay-coupled recurrent neu-

ral loops subject to continuous long-term stimulation

[27, 28].

A mathematical description of neuronal excitability

by Hodgkin and Huxley [29] paved the way for theo-

retical investigations of the nonlinear dynamics asso-

ciated with neural response. Since then, the essence of

excitability has been refined into simpler models, such

as the FitzHugh–Nagumo model [30, 31] and Morris–

Lecar models [3]. Theoretical analysis of such models

offers a powerful approach to gain insight into the gen-

eration of rhythmic activity in electrically excitable

cells by identifying and quantifying the contribution

of specific processes to the overall dynamic response.

Since the refined models capture the key features of

excitability, observations from such analysis can be

mapped to a wide range of different cell types.

In this paper, we combine theory and experiments

to systematically investigate the interplay between ex-

citability and delayed feedback and its implications

for information processing. We append a delayed-

feedback term to a well-established, widely-used math-

ematical model of cellular excitability and use numer-

ical continuation (bifurcation analysis) to characterise

the behaviour of the model as the feedback strength

and delay period of the feedback are varied. The form

of feedback we incorporate has a form akin to that of

an autapse, which is a chemical synapse from a neuron

to itself. Autaptic connections have previously been

shown to be important in establishing and maintain-

ing rhythmic activity in mathematical models of small

[32] and large [33] neural networks. Here, we inves-

tigate the interplay between autaptic processing and

excitability dynamics in a single cell. To test our the-

oretical results, we employ dynamic clamp [34] and

confirm our theoretical predictions in a living mam-

malian system represented by an excitable cell as a

natural platform for studying excitation and regener-

ation patterns.

Theoretical predictions

We adopt the canonical Morris–Lecar (ML) model [3]

to describe somatic membrane potential dynamics and

extend it with a delayed-feedback term to describe a

transient input stimulus to the model cell. The ML

model belongs to the general class of Hodgkin–Huxley-

type models, which form the basis for almost all bio-

physical characterisations of electrical excitability in

cell membranes [29]. The feedback term incorporates

a fixed delay, that could be seen as a representation

of conduction delay of the voltage signal, for exam-

ple. We assume negligible attenuation of the signal

and that the delay in the system is due to finite con-

duction velocity and synaptic transmission. Based on

these assumptions, we describe the delayed-feedback

via a current-based model of post-synaptic activity

with Is(t) = κs with the dynamics for s given by [35]:

τsṡ = s∞(Vpre)−s, s∞(V ) = (1+tanh((V−Vs)/Vh))/2.

(1)

Here Vs is the threshold for synaptic activation, Vh

is the sensitivity of the synapse around the threshold

and Vpre is the voltage of the pre-synaptic cell, which

is the same as the post-synaptic cell in our one cell

system. For simplicity, we neglect synaptic dynamics

and assume that s is at quasi-steady state but note

that the synaptic delay may still be incorporated into

τ . These observations allow us to write the current

induced by the delayed-feedback as

Is(t) = κ s∞(V (t− τ)), (2)

where the parameter κ scales the feedback strength.

This current is added to the standard ionic and applied

currents to produce the follow complete model:

CV̇ = Iapp − gCam∞(V )(V − VCa)− gKw(V − VK)

− gL(V − VL) + κs(V (t− τ)),

ẇ = λ(w)(w∞(V )− w),

(3)
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Table 1: Parameter definitions and values

Parameter Definition Value

C Capacitance of cell membrane (µF/cm2) 5
φ Time-constant of K+ channel (ms−1) 0.0125
Iapp Applied current density (µA/cm2) Varies
κ Gain of delayed synaptic feedback (dimensionless) Varies
τ Period of delay (ms) Varies
gCa Conductance of Ca2+ channel (mmho/cm2) 4
gK Conductance of K+ channel (mmho/cm2) 8
gL Conductance of leak channel (mmho/cm2) 2
VCa Reversal potential of Ca2+ channel (mV) 120
VK Reversal potential of K+ channel (mV) -91.89
VL Reversal potential of leak channel (mV) -60
V1 Threshold for Ca2+ channel activation (mV) -2.8
V2 Sensitivity of Ca2+ channel activation (mV) 26
V3 Threshold for K+ channel activation (mV) 12
V4 Sensitivity of K+ channel activation (mV) 17.4
Vs Threshold for synaptic activation (mV) 0 (-20 in DC)
Vh Sensitivity of synaptic activation (mV) 5

where

m∞(V ) = (1 + tanh ((V − V1)/V2)) /2, (4)

w∞(V ) = (1 + tanh ((V − V3)/V4)) /2, (5)

λ(V ) = φ cosh ((V − V3)/2V4) , (6)

s(V ) = (1 + tanh ((V − Vs)/Vh)) . (7)

Parameter definitions and values are listed in Table 1.

Bifurcation analysis

To identify regions of spiking activity in the ML model

with delayed-feedback, we appeal to bifurcation the-

ory, which allows for the rapid classification of dy-

namic behaviour as model parameters are varied. The

bifurcation diagram for the system under variation of

the feedback strength, κ, and delay, τ , is shown in

Fig. 1(a), where we observe coexistence of stable spik-

ing periodic orbits for sufficiently high κ and τ . Along

the blue line, we fix κ = 60 and vary τ , upon which

we observe a sequence of bifurcations (folds of peri-

odic orbits) with increasing τ , each of which gives rise

to a new pair of spiking solutions, one of which is sta-

ble. Fig. 1(b) demonstrates that the branches of stable

spiking solutions have approximately equal amplitude

(except close to the bifurcation at which they origi-

nate), concordant with the intuition that action poten-

tials in an individual cell are stereotyped events so that

information is conveyed through spike timing rather

than amplitude. In contrast, Fig. 1(c) highlights that

the period of the spiking solutions varies significantly

between different branches, while depending approxi-

mately linearly on the delay τ along each branch. In

particular, each stable branch can be mapped to a so-

lution with n ∈ N spikes per delay interval, with a

common interspike interval (ISI) between each spike.

The number of spikes that can be fitted within the

delay interval is limited by the minimal period of spik-

ing activity and the neuron’s refractory (or recovery)

period (since new action potentials cannot be gener-

ated during this time). This imposes limits on the in-

formation that can be encoded if one regards spikes as

bits of information as suggested in [21, 22]. Examples

of stable one-spike (per delay interval) and two-spike

(per delay interval) solutions for κ = 60 and τ = 400

are shown as voltage profiles over two delay intervals

in Fig. 1(d) and Fig. 1(e), respectively. The solution

to which the system ultimately converges is dependent

on the initial condition (given by the history over the

delay interval). For a cell initially at rest, this is deter-

mined by the timing and form of the current stimulus

to which it is exposed. The insets in Fig. 1(d) and

Fig. 1(e) depict the Floquet multipliers, which deter-

mine the (linear) stability of periodic solutions. We

find that the two-spike solution, while indeed stable,

possesses a nontrivial multiplier close to the unit circle

(the boundary for stability); this scenario is repeated

for other n-spike solutions. Hence, equidistant spiking

solutions are weakly stable and approached slowly by

trajectories over long periods of time.

To examine the effect of multistability on memory

encoding, we perform numerical simulations. Here, we

use a paired-pulse protocol in which two square-wave

current pulses with a finite inter-pulse interval are ap-

plied to the cell, as depicted by the purple trace in
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Figure 1: Illustration of co-existence of spiking peri-
odic solutions in the ML model with delayed-feedback.
(a)–(c): bifurcation diagrams illustrating how: the
number of co-existing periodic solutions (a), their am-
plitudes (b) and periods (c) depend on the delay, τ
(and feedback strength, κ, in (a)). In (a): colours
indicate the number (as labelled) of coexisting stable
periodic solutions; thin black curves are branches of
folds of periodic solutions; the thick black curve is a
branch of period-doubling bifurcations; the horizontal
blue line indicates κ = 60 used in (b)–(g). In (b)-
(c): symbols indicate bifurcations: dot - homoclinic,
triangle - fold of periodic solutions, square - period-
doubling; thin grey curves are branches of unstable
solutions; thick green curves are branches of stable so-
lutions; the vertical blue line indicates τ = 400 used in
(d)–(g). (d)&(e): two out of six co-existing stable peri-
odic solutions for κ = 60 and τ = 400, with periods of
412 ms (d) and 206 ms (e); time in multiples of τ . The
insets illustrate Floquet multipliers: the grey curve is
the unit circle, the grey diamond indicates the trivial
multiplier 1, and green diamonds depict multipliers of
amplitude < 1. (f)&(g): voltage time-traces (blue) of
simulations initiated with different initial stimuli (red);
pulse width 16 ms; initial inter-spike interval of 56 ms
(f) and 120 ms (g).
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Figure 2: Schematic representation of the dynamic
clamp experimental system. (a): A whole-cell patch
clamp protocol is used to obtain intracellular access
to the cell. In current clamp mode, the voltage of
the cell as recorded by the amplifier is used as the in-
put to a mathematical model. This model computes
a current that describes the delayed-synaptic feedback
term, parametrised by the delay, τ , and the gain, κ,
which is subsequently sent back to the amplifier and in-
jected into the cell. (b): In silico simulations of the ML
model demonstrate the establishment of self-sustained
spiking activity when the feedback is active. The top
trace shows the voltage of the cell whilst the bottom
trace is an externally provided current input to in-
duce initial excitation in the cell. In the unshaded
region, the feedback is inactive (κ = 0). Here, a cur-
rent pulse induces a single spike, after which the cell
returns to rest. In the shaded region, the feedback is
active (κ = 60) and repetitive spiking activity with
a period approximately equal to the delay interval is
observed even though only one input current pulse is
issued. The delay, τ , is marked in the upper trace for
reference.
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Fig. 1(f) and Fig. 1(g). Following these initial pulses,

no other external inputs are applied to the system. In

Fig. 1(f), the first current pulse elicits a full amplitude

spike, but the second does not, because it falls into

the refractory period of the action potential. Dur-

ing the second delay interval after the initial excita-

tion, the response of the system to the second cur-

rent pulse has decayed entirely and the trajectory set-

tles rapidly into a one-spike solution. In Fig. 1(g),

the interval between the two current input pulses is

well beyond the refractory period, and they both elicit

large-amplitude action potentials that persist in subse-

quent delay intervals with heterogeneous ISI patterns

(i.e., non-equispaced in time) approximately conserved

across many subsequent delay intervals. Nevertheless,

the effect of the weak convergence to the stable so-

lution (Fig. 1(e)) is evident: ultimately, the neuron

settles to the stable solution with two equally spaced

spikes in a similar manner to that observed in laser

systems [20].

Experimental verification

We next seek to test our theoretical predictions in an

excitable mammalian cell (a GH4 cell; see Materials

and Methods) by using the dynamic clamp technique

to control the delay time and feedback strength. Dy-

namic clamp is an electrophysiological technique used

to manipulate the excitability properties of individ-

ual cells [36, 34]. It is typically used to modify the

activity of ion channels (the primary drivers of spik-

ing behaviour) according to pre-defined mathematical

models, which allows one to quantify their contribu-

tion to overall excitability [37]. Here, we use it to ap-

ply delayed-feedback to an isolated cell. In this way,

the spike generating mechanisms of the cell are pre-

served, whilst parameters of the feedback are directly

modifiable during the experiment. A schematic of the

dynamic clamp protocol is shown in Fig. 2(a). Briefly,

the voltage signal recorded via the amplifier is used as

an input to our mathematical model of the delayed-

feedback, (2). The resulting feedback current is sent

back to the amplifier to be injected into the cell to

provide real-time closed-loop feedback.

Synthetic data from the augmented ML model are

shown in Figure 2(b), in which we apply a solitary

current pulse to the cell of sufficient amplitude and

duration to trigger a spike. In the unshaded region,

the feedback term is absent (i.e., the synaptic gain is

κ = 0). Following the first spike, which occurs in direct

response to the current pulse, the cell returns to rest.

In the shaded region, the gain is now set to κ = 60.

Now, after the application of the initial current pulse

and subsequent spike, recurrent excitation builds up

in the cell and self-sustained spiking activity is gener-

ated with a period approximately equal to the delay

interval.

We experimentally emulate the paired-pulse proto-

col performed in the mathematical model in Fig. 1(f),

Fig. 1(g) and Fig. 2(b) in a real cell. The results of a

typical experiment are shown in Fig. 3, with full traces

displayed in Figs. S1-S3 in the Supplementary Mate-

rials. The left-hand column of Fig. 3 shows the first

8 seconds of the overall recording, including the ini-

tial current pulse. To facilitate viewing, the green and

orange arrows above the spikes indicate by which ini-

tial current pulse they were originally generated; the

right-hand column of Fig. 3 shows the same data in

a pseudo-space plot where the respective time series

is folded over the delay interval to show the evolution

of pulses in the delay interval from cycle-to-cycle. In

Fig. 3(a)-(b), the synaptic gain is set to κ = 40, which

is not large enough for the initial current pulses to

generate self-sustained activity, and the cell returns to

rest. Upon setting κ = 60, the spikes produced by the

initial current pulse (indicated with an orange arrow)

die out, whilst those produced by the second current

pulse (indicated with a green arrow) grow in amplitude

until self-sustained spiking activity with one spike per

delay interval is obtained, as shown in Fig. 3(c)-(d),

echoing the findings in Fig. 1(f). Keeping κ = 60 but

increasing the inter-pulse interval results, as reported

in Fig. 3(e)-(f), in the growth of action potentials gen-

erated by both initial current pulses until recurrent

activity with two spikes per delay interval is estab-

lished, thus, recapitulating the result from Fig. 1(g).

This experiment highlights the capability of the cell

to encode distinct and persistent multi-spike rhythms

(activity patterns) and confirms the predictions from

the analysis of the mathematical model.

Discussion

In this study, we demonstrate that a single excitable

cell with delayed self-feedback is a rhythm-generating

system capable of sustaining regular spiking oscilla-

tions of different periods in response to an initial exci-

tation pattern. The number of distinct patterns that

can be realised by the neuron is heavily dependent on

the strength and delay interval of the self-feedback. In
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Figure 3: Summary of paired-pulse experiments. Pan-
els (a), (c) &(e) represent the voltage dynamics (blue)
of a cell in response to a paired current pulse (red).
In each experiment, an initial current pulse is followed
after some time by a second current pulse. In pan-
els (a)-(b), κ = 40, whilst κ = 60 in all other pan-
els. Across the entire experiment, the delay is fixed
at τ = 800. The inter-pulse interval was set to 600
ms in panels (a) & (e) and 400 ms in panel (c) (and
the same for the corresponding plots to their right).
The orange and green arrows above the spikes indi-
cate which initial current pulse induced the spiking
behaviour. Observe that in panel (c), the spikes in-
duced by the orange pulse, alone, die out, whilst the
ones induced by the green pulse grow and ultimately
give rise to a self-sustained oscillation with one spike
per delay interval. This is in contrast to panel (e) in
which the spikes induced by both the orange and green
pulse are sustained, resulting in a two-spike per delay
interval pattern. Panels (b), (d) & (f) show the same
data as the panels above them but with the time series
plotted against successive cycles of the delay interval.

particular, if the feedback strength is too low, the ex-

citation in the cell cannot be regenerated and no per-

sistent activity is generated. If the feedback strength

is sufficiently high, the number of supported patterns

increases with the delay interval. This latter obser-

vation results from the interplay between excitability

properties and the delay: the number of spikes that

can be accommodated over a fixed delay is limited by

the cell’s spiking and refractory periods. Mathemati-

cal analysis of such dynamic behaviours makes these

observations rigorous, whereupon we find that the gen-

eration of each spiking pattern can be attributed to a

specific bifurcation. Which of the potentially many

spiking patterns is ultimately observed depends on

the initial stimulus. The mathematical model predicts

that changing the inter-pulse interval in a paired-pulse

stimulus experiment is sufficient to switch the result-

ing activity pattern from a one-spike per delay interval

to a two-spike per delay interval solution. The corrob-

oration of these results in a real cell confirms these

predictions and validates the modelling approach.

In the experimental verification of our model pre-

dictions, we showed that the delayed feedback of the

form chosen is sufficient to produce stable rythms with

one-spike and two-spike per delay period. Our bifur-

cation analysis demonstrated that the associated pe-

riodic solutions possess Floquet multipliers close to

(but inside) the unit circle, suggesting slow rates of

attraction to equidistant pulsing rythms. Addition-

ally, biological systems display considerable complex-

ity and heterogeneity. In particular, neurons are well-

known to exhibit different classes of excitability [38],

and may generate complex spiking rhythms even in

the absence of external input or feedback [39, 40]. It

is therefore a pertinent question for careful future at-

tention to inquire how robust such multiple-spike so-

lutions are in real cells. In this direction, we make

two remarks. Firstly, our model of choice is general

in that we did not tune our analysis to any particular

cell type. Moreover, the Morris–Lecar model can, in

different parameter regimes, exhibit properties of the

different excitability classes. As such, our framework

provides flexibility to explore such avenues. Secondly,

whilst repetitive activity of the kind we discuss here

may be fragile in certain experimental systems, recent

work in laser physics found sufficiently large parameter

ranges over which different multiple pulse rhythms due

to excitability and delayed feedback can be found sta-

bly over very large timescales [20, 41]. This suggests

that these dynamics may be quite robust in practice

also when the excitable element is a cell of suitable
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type. A more detailed investigation of how multiple-

spike rythms of the clamped cell experiment depend

on the properties of the feedback loop, as well as those

of the cell itself, is a challenging task and the subject

of ongoing research.

Given the nature of the Hodgkin–Huxley-type

model and of the experimental setup, we believe that

our results capture key hallmarks of physiological ex-

citability fundamental to neural processing in a wide

array of contexts. Notably, the striking similarity

between the theoretical predictions and experimental

data were not produced by fitting a specific mathemat-

ical model to the chosen cell type, but were reflective

of general properties of excitability that are present in

most neurons, as well as other cell types [4, 5, 6, 7, 8].

The parallels of our results with those observed in laser

systems [18, 20] further highlight the ubiquitous na-

ture of the regeneration of activity in excitable sys-

tems with delay. Our experimental setup showcases

that a living mammalian system, represented by an

excitable cell, is a feasible platform for studying this

phenomenon in a neural context. The framework we

have established is flexible and will allow further ex-

ploration of the interplay between delay and important

biophysical aspects such as the aforementioned role of

different excitability sub-classes, and of complex in-

trinsic spiking patterns.

The ability to control multi-spike behaviour in bio-

logical cells more widely opens a new avenue towards

investigating how memories can be robustly encoded.

This may well have significant implications for bet-

ter understanding not only normal brain function [42],

but also debilitating conditions such as Alzheimer’s

Disease [43, 44]. Knowledge of the interplay between

excitability and delay is also crucial for designing ef-

fective stimulation protocols for brain–machine inter-

faces. We expect that these issues, among others, will

dictate how delays can be incorporated in useful de-

vices based on excitable systems, whether in the neu-

rological, sensory, motor, or other domains.

Materials and methods

Bifurcation analysis Bifurcation analysis was

performed with the package DDE-BIFTOOL v3.1.1

(http://ddebiftool.sourceforge.net) in Matlab R2020a

(https://uk.mathworks.com) on a standard laptop

computer. Branches of codimension-one bifurcations

of periodic orbits (folds of periodic orbits, period-

doubling bifurcations) were computed with the ex-

tension debiftool extra psol [45, 46]. Code to produce

the bifurcation diagrams and replicate model simula-

tions may be downloaded from the GitHub repository

(https://github.com/SlowinskiPiotr/MorrisLecarDDE).

Cell culture The rat norvegicus pituitary tumor

GH4C1 (GH4) cell line was cultured in Hams F-10

nutrient mixture (81.5%), supplemented with horse

serum (15%), FBS (2.5%) and Glutamax (1%). Cells

were thawed following standard procedures and cul-

tured for 2 weeks in a 5% CO2 incubator at 37◦C,

passaging every 3-4 days in T75 vented flasks. Prior

to experimentation, cells were transferred to 15 mm

glass cover slips for patching, seeded at a sufficiently

low density to easily identify isolated cells. Immedi-

ately prior to experimentation, cells were washed three

times in PBS to remove any residual serum.

Patching solutions The extracellular solution was

comprised of 2.8 mM glucose, 132 mM NaCl, 5 mM

KCl, 2.6 mM CaCl2, 1.2 mM MgCl2, 10 mM HEPES,

100 µM paxilline (pH 7.4 adjusted with NaOH, osmo-

larity 295 mOsm/L adjusted with sucrose). Paxilline

was added to the solution to block BK channels to re-

duce the probability of bursting activity typically seen

in GH4 cells [47].

The intracellular solution was comprised of 100 mM

K-gluconate, 20 mM KCl, 4 mM NaCl, 1 mM CaCl2,

4 mM MgCl2, 10 mM EGTA, 10 mM HEPES (pH 7.2

adjusted with KOH, osmolarity 285 mOsm/L adjusted

with sucrose). Immediately before patching, ampho-

tericin B (Sigma) was added to the internal solution at

a final concentration of 0.6 mg/mL. When not in use,

the internal solution was kept on ice and away from

light.

Patching equipment Recordings were taken with

a MutliClamp 700A amplifier (Molecular Devices,

https://www.moleculardevices.com) and a NIDAQ

6363 (National Instruments, https://www.ni.com/en-

gb.html). Stimulation and recording protocols were

performed with the Matlab-based Symphony software

(OpenEphys, https://open-ephys.org/symphony).

Data were analysed with bespoke python code

(Anaconda, python 3.6.3, https://anaconda.org).

Dynamic clamp Dynamic clamp was achieved

through the Teensy 3.6-based breadboard cir-

cuit as presented in [34] with updates as

presented at the homepage for that project
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(www.dynamicclamp.com/updates). Com-

puter code to simulate the delayed synapse

model was developed in Arduino and can

be downloaded from the GitHub repository

(https://github.com/SlowinskiPiotr/MorrisLecarDDE).

To account for the more depolarised membrane

potential of the GH4 cells relative to the Morris–

Lecar model, the value of Vs in the experiments

was set to -20 mV. The Teensy device was con-

trolled by bespoke software developed in Matlab

which is freely available at www.github.com/Kyle-

Wedgwood/DynamicClampController.

Protocol On the day of recording, thick walled

patch pipettes were pulled to a resistance of ∼ 3.0

MΩ and subsequently fire polished. Cover slips were

loaded into the recording chamber and allowed to set-

tle for 5 min under constant perfusion at 1.5 mL/min

in external solution. During this period, isolated cells

were marked as candidates for patching. Following the

settling period, pipettes were front-filled for 10 s with

internal solution without amphotericin B and subse-

quently back-filled with amphotericin B containing in-

ternal solution. Perforated whole-cell patch clamp was

then achieved within 60s of filling the pipette, with

seals of > 5 GΩ achieved. Perforation was continued

until the series resistance fell below 20 MΩ, which took

around 15 min.

Following successful perforated patch, the amplifier

was switched to current clamp. Bridge balance was

applied to compensate for residual series resistance.

Initial gap free recordings were obtained to verify that

cells were capable of spiking activity. Following this, a

holding current of -30 pA was applied to silence spon-

taneous spiking activity. Paired pulses of 10 ms du-

ration and 50 pA amplitude with varying interpulse

intervals ranging from 200 - 600 ms were applied to

the cell. Following the initial pulses, recordings were

continued for a further 30s. Recordings were taken at

a temperature of 34-36◦C with a sampling frequency

of 20 kHz and filtered with a Bessel filter at 2.8 kHz.

Throughout the recordings, the delay period was set

to 800 ms and the feedback gain was set to either 40

or 60.
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We thank Joël Tabak for gifting the GH4 cells used

in this study, Andrew Randall for help in setting

up the electrophysiology rig, Niraj Desai for help

with calibrating the dynamic clamp system and

two anonymous referees for their suggestions for

manuscript improvements. Funding statement:

K.C.A.W. graciously acknowledges funding from the

MRC Fellowship MR/P01478X/1. The work of P.S.

was generously supported by the Wellcome Trust In-

stitutional Strategic Support Award 204909/Z/16/Z.

K.T-A. gratefully acknowledges the financial support

of the EPSRC via grant EP/N014391/1 and the

support of the Technical University of Munich –

Institute for Advanced Study, funded by the German

Excellence Initiative. B.K. gratefully acknowledges

financial support from Royal Society Te Apārangi
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[19] K. Lüdge, L. Jaurigue, B. Lingnau, S. Terrien,

and B. Krauskopf, “Semiconductor mode-locked

laser with external feedback: emergence of multi-

frequency pulse trains with an increasing num-

ber of modes,” The European Physical Journal

B, vol. 92, no. 4, p. 89, 2019.

[20] S. Terrien, V. A. Pammi, N. G. R. Broderick,

R. Braive, G. Beaudoin, I. Sagnes, B. Krauskopf,

and S. Barbay, “Equalization of pulse timings in

an excitable microlaser system with delay,” Phys-

ical Review Research, vol. 2, p. 023012, 2020.
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