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1. INTRODUCTION

Haff (1977, 1979a, 1979b, 1980) introduced a scalar function based on the derivatives
of the elements of asquare matrix functionF(X) with respect to the elements of a
symmetric argument matrixX. We shall name it the scalar Haffian. It was used by Haff
in various applications in multivariate statistical analysis. Several authors, among others
Konno (1988, 1991), Leung (1994) and Leung & Ng (1998) made use of it later. The
exposition and notation vary over authors and time, the derivations tend to be obscure
and sometimes unnecessarily complicated.

In this note we shall attempt to give a uniform transparent presentation of the scalar
Haffian, and generalize some of the well-known results.

Basic is a differentiablesquarematrix functionF(X), shortlyF , which depends on a
symmetric matrixX. Both matrices are of the same dimension. A strategic rôle is being
played by a square matrix∇ = (di j ) of differential operatorsdi j := 1

2(1+δi j )
∂

∂xi j
, where

δi j is the Kronecker delta(δii = 1,δi j = 0 for i 6= j).

In the work mentioned earlier the symbolD is used instead of∇. We prefer∇, becauseD
will denote the so-called duplication matrix which will be extensively used. The matrix
∇ is being applied toF and ultimately produces the scalar Haffian tr∇F , where«tr»
stands for the trace operator. Haff usesD∗F(1/2) to denote this function, withF(1/2) :=
1/2(F −Fd), Fd being the diagonal matrix obtained from the diagonal ofF . The scalar
Haffian tr∇F will be studied in this note. It will be related to the derivative matrix ∂ f

∂x′

as developed by Magnus and Neudecker (1999).

In the exposition frequent use will be made of matrix vectorization, Kronecker products,
the duplication matrixD and the commutation matrixK. For these concepts and some
of their properties see Magnus and Neudecker (1979, 1980, 1999).

2. THE SCALAR HAFFIAN

Consider a differentiablesquare matrix functionF(X) with symmetric matrix argu-
mentX, both of dimensionm. The application of∇ = (di j ), a (square) matrix of diffe-
rential operatorsdi j := 1/2(1+δi j )

∂
∂xi j

to F yields∇F from which follows tr∇F , the

scalar Haffian.

Clearly tr∇F = ∑
i j

di j f ji = ∑
i

dii fii + ∑
j 6=i

di j f ji

= ∑
i

∂ fii
∂xii

+
1
2∑

j 6=i

∂ f ji

∂xi j
= ∑

i

∂ fii
∂xii

+
1
2∑

j<i

∂( fi j + f ji )

∂xi j
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Clearly = ∑
i

∂gii

∂xii
+ ∑

j<i

∂gi j

∂xi j
= tr

∂g
∂x′

where

gii := fii , gi j := 1/2( fi j + f ji )

g := (g11· · ·gm1g22· · ·gm2 · · ·gmm)′

x := (x11· · ·xm1x22· · ·xm2 · · ·xmm)′.

( j < i)

The expression∂g
∂x′ is the Magnus-Neudecker derivative for the vector functiong(x),

with x := v(X), g := v(G) andG := 1/2(F +F ′).

We have thus established the identity

(1) tr∇F = tr
∂g
∂x′

for the scalar Haffian tr∇F and the Magnus-Neudecker derivative matrix∂g
∂x′ .

Mind that∇F 6= ∂g
∂x′ ! In fact ∇F is another useful concept also developed and applied

by Haff.

See Haff (1981, 1982). Obviously the scalar Haffian can then also be obtained from
∇F . We shall name∇F the matrix Haffian. It will be examined in another paper.

An attractive alternative expression for the scalar Haffianis tr ∂v(F+F ′)
∂v′(X) which shows

immediately that

(2) tr∇F ′ = tr∇F.

WhenF is symmetric

(3) tr∇F = tr
∂ f
∂x′

where f := ( f11· · · fm1 f22· · · fm2 · · · fmm)′ = v(F).

Proof

In the creation of (1) we now havefi j = f ji , , henceg = f .
¤

3. A GENERAL RESULT

Instead of deriving umpteen specific scalar Haffians we shallestablish a general result
from which other specific results can be derived.
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Theorem

For symmetric X and square constant matrices P and Q

tr∇PXQ′ = 1/2(trP) trQ+1/2trPQ.

Proof

TakeF := PXQ′. AgainG := 1/2(F +F ′). Then

dvecG = 1/2(dvecF +dvecF ′) = 1/2(Im2 +Kmm)dvecF,

and
dg = 1/2D+

m(Im2 +Kmm)dvecF = D+
mdvecF

= D+
mvecP(dX)Q′ = D+

m(Q⊗P)dvecX

= D+
m(Q⊗P)Dmdx.

Hence
∂g
∂x′

= D+
m(Q⊗P)Dm.

Therefrom

tr∇F = trD+
m(Q⊗P)Dm = trDmD+

m(Q⊗P)

= 1/2tr(Im2 +Kmm)(Q⊗P) = 1/2tr(Q⊗P)+1/2trKmm(Q⊗P)

= 1/2(trP)trQ+1/2trQP= 1/2(trP)trQ+1/2trPQ.

We used various results from Magnus and Neudecker (1999, pp.30, 47 and 49) and
Magnus and Neudecker (1979, Theorem 3.1, xiv).

¤

Corollary

For any function F= F(X) such that dF= P(dX)Q′, the scalar Haffian is

tr∇F = 1/2(trP)trQ+1/2trPQ.

With the help of this corollary we can now derive scalar Haffians in practice.
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4. VARIOUS SCALAR HAFFIANS

(ii) tr∇PX−1Q′ = −1/2(trPX−1)trQX−1−1/2trPX−1QX−1.

Proof

Now F := PX−1Q′ anddF = P(dX−1)Q′ = −PX−1(dX)X−1Q′.

Replacing thenP by−PX−1 andQ′ by X−1Q′ in the Corollary, one immediately obtains

tr∇PX−1Q′ = −1/2(trPX−1)trQX−1−1/2trPX−1QX−1.
¤

(ii ) tr∇PXQXR′ = 1/2(trP)trRXQ′+1/2trPRXQ′+1/2trPXQR+1/2(trR)trPXQ.

Proof

As F := PXQXR′ anddF = P(dX)QXR′+PXQ(dX)R′ we have to make the following
substitutions:

{

P P

Q′ QXR′
and

{

P PXQ

Q′ R′

This then leads to the scalar Haffian

tr∇PXQR′ = 1/2(trP)trRXQ′ +1/2trPRXQ′ +1/2(trR)trPXQ+1/2trPXQR.
¤

(iii ) tr∇PX−2Q′ = = −1/2(trPX−1) trQX−2−1/2(trPX−2) trQX−1

− 1/2trPX−1QX−2−1/2trPX−2QX−1.

Proof

In this caseF := PX−2Q′ and

dF = P(dX−2)Q′ = P(dX−1)X−1Q′ +PX−1(dX−1)Q′

= −PX−1(dX)X−2Q′−PX−2(dX)X−1Q′.

We shall make the following substitutions
{

P −PX−1

Q′ X−2Q′
and

{

P −PX−2

Q′ X−1Q′

and get the above given result. ¤
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(iv) tr∇PX3Q′ = 1/2(trP)trQX2 +1/2trPQX2 +1/2(trPX)trQX

+ 1/2trPXQX+1/2trPX2Q+1/2(trQ)trPX2.

Proof

Now F := PX3Q′, hence

dF = P(dX)X2Q′ +PX(dX)XQ′ +PX2(dX)Q′,

which leads to the substitutions
{

P P

Q′ X2Q′
,

{

P PX

Q′ XQ′
and

{

P PX2

Q′ Q′

Hence the scalar Haffian obtains.
¤

NOTES

1. Haff (1979a, 1980), Konno (1988) and Leung (1994) considered tr∇XQ′ and tr∇PX,
with occasionally positive definiteQ andX.

2. Clearly the Theorem also holds for symmetricP,Q andPXQ′.

3. tr∇X−1Q′ was derived by Haff (1979a), tr∇X−1 was given by Haff (1980) for posi-
tive definiteX.

4. tr∇X2Q′ was derived by Haff (1979a), the identical tr∇QX2 was found by Konno
(1991). In fact these are special cases of (ii ).

5. Konno (1988) gave tr∇XQX, with positive definite X. Leung (1994) and Leung &
Ng (1998) considered tr∇XQX with symmetric, even positive definiteQ.

6. Haff (1980) presented tr∇X−2 for positive definiteX.

7. Konno (1991), gave tr∇X3 for positive definiteX.
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