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There are two basic questions auditors and accountants mustd=nsi
when developing testing and estimation applications using Bayes-Th
rem: What prior probability function should be used and whaglitkood
function should be used. In this paper we propose to use a maximum en
tropy prior probability function MEP with the most likely liklebod func-

tion MLL in the Quasi-Bayesian QB model introduced by McCray (1984)
It is defined on a adequate parameter. Thus procedure only needs an ex-
pected value oy known (in this paper the expected tainting) to obtain a
MEP all an auditor or accountant need to suply are the range, as aiity
other prior, and the expected taintingy. We will see some practical ap-
plications of the methodology proposed about internal controluataon

in auditing.
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1. INTRODUCTION

Bayes’ Theorem has not been widely used in auditing and accounting because ac-
countants find some dificulties in assessing a prior probability tlefisiction about

the average tainting (or total error in an account or file). There are severahseaso
for these inconveniences. Firstly, it is difficult for accounting firmslefine standard
specific procedures to obtain the prior distribution using audiévigence accumula-

ted in the normal course of the evaluation of internal accounting conrarefore it

may be difficult for the auditor to justify the parameters in the ppimbability density
function to be used since they have not an intuitive meaning. Procedwelsed

may be also quite complicated and cumbersome to implement without sagmifitaff
training.

This paper suggests the usage of the class of prior probability gémsitions known
as maximum entropy priors MEP’s because they do not have any of theeprsbl
mentioned above such a class of distributions includes not only @sects about
the prior density which are unquestionable, but they are also the ropstfarmative
priors available.

Moreover, this is a very simple procedure to use. For instance, if aniragiditm
is about using MEP in internal accounting control evaluation and analygeaws,
two steps should be considered:

The former one includes the specification by the auditing firm of a medtating any
of the possible evaluations to one or more of the statistical measunsgleced to
be relevant in the prior distribution, i.e. the mean value, one or twantle values.
This matrix will be specific for this particular auditing firm and wike weflecting its
own criteria.

In the second step, once that matrix has been established, the MEP tistriisu
completely defined and it can be used in bayesian analysis for DUS (Dollar Unit
Sampling) or phisical unit sampling.

This paper introduces a new method to specify the posterior distibtiat uses the
MEP. This method is called MLPC (most likely posterior curves) and do¢sieed
to know the probability distribution for the tainting in the pdation.

The remainder of this article is organized as follows: Section 2 describesnumax
entropy approach used later. Section 3 shows how maximum entropy prébreast

likely likelihood have been used to obtain the posterior distrilbutb total amount

of error in an accounting population. By illustrations, Section 4 dbssrhow a firm
could establish a relationship between the evaluation of internal accouwdmepl

and analytical review and the MEP characteristics. Finally, Section 5 contains a
summary and some concluding remarks.
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2. MAXIMUM ENTROPY PRIORS

Let the parameter spa& be a continuous and bounded subset of the real line. In
practice® will be a closed and bounded interval of the real li@= [a,b], and
represents the taint in an accounting population.

Even, if the parameter space is continuous and unbounded there is notral natu
definition of entropy. We will use the definition proposed dgynes (1968)for a
probability distributionrt as follows:

1) Ent(m) = E{Iog%} - 7/911(9) log (%) .de

whereTy is the naturakinvariant noninformative prior for the problem, usually we
use the natural noninformative prior uniform.

It is well known (seeBerger (1985) pp. 92-93) that if partial prior information is
given by:

) E"[0(0)] = [ 0(6)-(6)-d0 = i, k=1,...m
and we try to solve:

max Ent(T)

subject to:

E™[gk(8)] = /@ 0(6) -T(6) - dB = i, k=1,...m
then, the solution is given by the expression:

®3) T(6) 0 10(6) 'eXIO{ Z Ak gk(e)}

whereAy (k= 1,2,...,m) are constants to be determined from the constraints in (2).
Notice that:

e If g1(8) =0 and,ge(8) = (68— )X, 2 < k < m, restrictions and hence partial infor-

mation consists of specifyingn central moments in the distribution,
o If gk(6) =1(_w (), restrictions are now refered to the specificatiomafuantiles.
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There are some interesting applications in statistical auditing imglthe bayesian
approach.

2.1. Partial Information given by the Mean

The maximum entropy prior for a location parameter specified by the rfgas
given by

AeM®
(4) T(8) = ob_oa
where the unique restriction & (0) = 0, pup = 8, anda andb are specified (in the
domain ofB) andA is obtained by solving the nonlinear equation

AMae @ —be MP) ;g Aa_gAb
AP oa)

(5) =60

if 8o is less than(a+ b)/2, thenA is positive, A is negative otherwise. 18y =
(a+b)/2, equation (5) cannot be solved, but it can be shown that in the Ignitin
shape of the MEP is that of the uniform prior betweeandb. Equation (5) is not
restricted to positive values fa andb as constraints above might suggestalis
negative, it is a simple matter to perform a linear transformation taiok MEP
satisfying the boundary constraints in equation (5).

2.2. Partial Information when one quantile is given

In this case the restriction ig1(6) = l(_. ,,(8), wherez is the knowna-quantile
(o € (0,1)). We can obtain the maximum entropy prior through by easy algebraical
manipulations:

e .
S —=amSs - I as<é<zn

(6) n(e) = (7 a)1+(b z) |
F@maTe o o T a<<b

Zan
wherek is a constant to be determined from the constrairai/ 1(0)d6. Easy

a
computation gives ux =log((b—z)a/(1—a)(z —a)). Finally the MEP obtained
from one quantile given is the two piece uniform distribution,

S if a<@8<z

z-a >’ ==
(7) n(e)—{ e

b7—21 B |f Zl<e§b
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2.3. Partial Information when two quantiles are given

Now the restrictions ar@i(8) = I(_e 2,1(8) ; 92(6) = 1(_« 2, (6), Wherez, is the known
a;-quantile andz, is the knownaz-quantile fi1,a, € (0,1)), a1 < dz , z1 < 2, then

(6) O exp{K101(8) +K202(8) }

wherek1,K» are constants to be determined from the constraints,

2

Z
a = /1n(9)d9, andazz/ m(8)de.
a

a

Calculations involved can be easily performed obtaining the three pietarmniis-
tribution MEP given by,

Zf‘—ja , if a<@<z
8) me)=¢ ¥ , if 2a<6<z
2, if Z<6<b

Obviously, if we consider three 0 more quantile the procedure yigds or more
piece uniform distributions MEP. The three cases considered aboveemialpatrac-
tive to use in auditing and accounting settings as we will show in e section.
Furthermore, it should be used with the most likely likelihoodha Quasi-Bayesian
Model (McCray (1984,1986)

3. MEP AND MLPC IN AUDITING

A magnitude of prime interest in accounting auditing is the total arhadirerror

since it has an intuitive meaning for auditors and it is also somethiogethave prior
relevant information about. Suppose a range of equally spaced posgdilarmount
of error is defined (for example 500 or 1000).

There are various sampling techniques in auditing. Dollar unit sagniuS) maybe
particularly appealing to auditors. Roughly speaking, this is a mdthedlect sample
items such that the probability of any given item being selected is direaifygotional

to its record value in the book. If the auditor is interested in inclgdiero and/or
small recorded value (wich have a small chance of being selected), then he/sthe coul
design specific audit test about them.

Suppose DUS sampling is used ($&tix and Grimlund (1977)Cox and Snell (1979)
andGodfrey and Neter (1982among others) and we are interested in combining our
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sample observations to prior information to get a posterior prdibathistribution over
all possible states of nature, the possible total amounts of erroiopisdy specified.

In DUS, the population size is the known Recorded Book VaRB\{ and the sample

plan consists of selecting dollar units with equal chance of being selectedariibunt

of error for each dollar selected is the difference between its two associated:values
its book value and its audited value (presumed to be correct). The fracdmor /

book value ) is calledaint of the dollar-unit randomly selected. Taintings in a dollar
unit sample are recorded and used to make inference about the total errort@moun
the population. In a empirical situation, most of these tainting eslare zero. We
assume that no amount can be overestimated or underestimated by a qugggty bi
than its book value, therefore the variation range of taintings goes {60 to +100

per cent.

We have then 201 categories of taintings:ioo, --., T-1, To, T+1, ---, T+100, associated
to different taintings:—100%...,+100%. When the error tainting in the sample is
zero, the sample dollar is counted in categdsy and when it is in between the
categoryTi_1 andT; it is counted in category;. Let6; (i=—100,...,+100) denote
the population proportion of dollar-units withpercent error. For a random sample

of dollar units of sizen, let n; (i = —100,...,4+100) be the observed frequencies
in categoryT; (i = —100...,4100). The counts in categories follow a multinomial
modet

_ n! 100 i
(9) M(efloo, ‘9100) == niloo! . nloo! rllzilooei

The relevant magnitude for auditors is the total amount of ekxprand the prior
knowledge is assessed ansay&(A). This parameter is given by:

100
»= RBV. > i
100 {_%q

Bayes’ Theorem asserts that the logical way to modify prior beliefs abonkaown
parameter is to combine prior and likelihood distributions resgliim a posterior
one. Prior and likelihood function must be referred to same unknowanpeter.
However in our model, likelihood function refers to proportions abes, 6;'s, and
prior refers to total amount of error (a linear combination of the prigo of error).
Thus, a traditional Bayesian would require that auditors supply @r riobability
mass function for each possible proportion of erf@fs. However, there has been a

1Exactly, the multinomial model appears when the random misghosen with replacement. In other
case, because in practice the total book value is very largelation to sample size, the multinomial
model is a good approximation of the likelihood function.
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development which can be considered to be a modification of the usual dikdlifor
handling data from a QB scheme. Briefly, the approach defines the likelfaootion
for the unknown\ as the likelihood induced b (6_100,...,8100) in Zehna (1966)
notation. An intuitive approach of that function isihcCray (1984) For a complete
development of that function séternandez et al. (1996nd other references therein.

The posterior mass function, called Most Likely Posterior Curve ()?Pcould be
calculate by:
M*(A) - E(A

_ o w )
S a8 = SN e

M*(A) = ( sup M(eloo,---,9+1oo)> g 1¢a1) (8-100, -, 0+100)
~ \o YA

LA ] ) +1OOe a8V 5 6 = A
@ “({A}) = 1 (8100, ---,84100) | 2 i =1an 1000°, 2 00|- =

Therefore the QB formulation can be summarized via Bayes'Theorem with & max
mized likelihood function. Any prior can be used.

This posterior distribution has two advantages,

1. it does no require modelling the accounting population taintigotaio the likeli-
hood (as in the most of the audit modeBxnx and Snell (1979)Godfrey and Neter
(1984) andFelix and Grimlund (1977%)

2. the user doesn’t have to asses neither prior distribution on fextive magnitudes
nor a prior distribution on a high dimensional parameter sp@sai (et al. (1985)

Despite this two advantages, this model needs to elicit a complet priwibdigon
and it can be a very difficul task for auditors, though this is a pristritiution on
one parameter, with a strongly intuitive meaning, the total amouetmir. But this
assignment is allways a subjective matter, and it could cause problemstify jts
functional form.

It should be very useful a more objective procedure such that the gistibution
could include those issues with the most certainty, and outsideosgtht could be
the least informative prior distribution.

2The Quasi-Bayesian educational PC share Wak#C v.3.02 and manual are available through the
Internet at the anonymous ftp sitesg.uwaterloo.cain the directory: pub/dmg/mipc.
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This procedure even could include qualitative judgements digercellent, «very
good», ... about the evaluation of internal accounting control of the firm. lic¢de
possible to identify each of the previous judgements with some aspkttie @rior
distribution, like the mean, one or more quantiles,... (of coudepending on the
policy of the firm). This method can be possible using the Maximurirdpy Prior
distribution, and this is the method we propose in this work, gfeaore advantageous
than the other usual estimation procedures of the total amount of erauditing.

4. ILLUSTRATIONS

The following examples illustrate how above MEP’s might be used ditaituations
and the effect of different mean and/or quantiles on a few descriptives posteri
upper boundsgbsp, gbso, qboo, qbys, gbeg. Consider the following DUS data from an
inventory with a reported book value of FID0 000, a sample size of 100 items, and
taints observed of 0, 10, 90 and -25 with number of cases of 94, 1, 1,pkatesely.

As an example, we give in Table 1 below a matrix of possible relationskiyween
Internal Control and/or Analitical Review Evaluation (IC/AR) and priiaformation
about the total amount of error in the inventory (usually, overstatéereor).

Table 1. Matrix of Possible Relationships between IC/AR Evaluatind Prior Information

IC/AR Evaluation Prior Information
Expected average taintirly (percent)
Excellent 3
Very Good 5
Good 10
Poor 15
\ery Poor 30

One Quantile
Maximum Tainting Percent (MTP) Credibility (CR)

Excellent 3 0.95
Very Good 5 0.95
Good 10 0.95
Poor 15 0.80
\ery Poor 30 0.70
Two Quantiles
MTP CR MTP CR
Excellent 3 0.95 5 0.99
Very Good 5 0.95 10 0.99
Good 10 0.95 15 0.99
Poor 15 0.80 30 0.95
\ery Poor 30 0.70 50 0.80
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For instance, in the one quantile case if IC/AR evaluation yields an bafpuery
Good, then auditors can feel comfortable accepting that the probabilitytdbedt
amount of error be minor than 5% is 0.95. The following table shthesbehaviour
of posterior probability in these situations. MEP refers to MEFhwitean known,
and MEP1 and MEP2 refer to MEP with one and two quantiles given, respgctivel

Table 2. Posterior Descriptive Quantities of Total Amount of Efor

Distribution IC/AR Evaluation

Excellent V. Good Good Poor V. Poo
MEP  27872.07 26690.69 31237.37 31802.57 32488.20

Post. Mean  MEP1 32863.98 32972.65 32972.65 32972.65 3®72.
MEP2 32873.64 32972.65 32972.65 32972.65 32972.65
MEP  21050.04 28476.98 23682.89 24121.46 24651.69

Post. Mode  MEP1 25177.08 25040.71 25040.71 25040.71 2BD40.
MEP2 25164.96 25040.71 25040.71 25040.71 25040.71
MEP  25598.06 27286.12 28719.21 29242.20 29876.03
Post. Median MEP1 30301.68 30328.67 30328.67 30328.67 83687
MEP2 30304.08 30328.67 30328.67 30328.67 30328.67
MEP  35876.41 38302.43 40367.56 41122.54 42038.42
gbsg MEP1 42618.63 42694.82 42694.82 42694.82 42694.82
MEP2 42625.43 42694.82 42694.82 42694.82 42694.82
MEP  42263.74 45155.88 47620.98 48522.93 496171.84
qbgo MEP1 50253.08 50407.74 50407.74 50407.94 50407.74
MEP2 50266.88 50407.74 50407.74 50407.94 50407.74
MEP  48095.48 51417.08 54252.19 55290.94 56553.19
gbos MEP1 57152.31 57450.34 57450.34 57450.34 57450.34
MEP2 57178.19 57450.34 57450.34 57450.34 57450.34
MEP  60458.79 64718.94 68390.80 69748.42 71409.98
Qbgg MEP1 7122128 72615.84 72615.84 72615.84 72615.84
MEP2 71336.30 72615.84 72615.84 72615.84 72615.84

3These calculations were made using the educational freepragram MLPC, a Quasi-Bayesian soft-
ware package. Number of data points was set at 500.
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These results are shown in Table 2. For example, if there is a good ewaluati
of IC/AR, the gbgp is $40367. This means the most likely probability the actual
overstatement in the inventory balance is less than $40368@s @lso forghgs, an
excellent evaluation of IC/AR results in almost a 15% reduction in theeuppund
compare with a very poor evaluation of IC/AR.

5. COMMENTS AND CONCLUSIONS

In the proposed model in this paper, we must bear in mind that the rodgitis
commonly more familiar to the auditor, the simplification is clear. dtover, if we
compare this model with other models based in the multinomial likelih@eeTsui

et al. (1985)or Byekwaso (1994)we may take out some conclusions. All this models
have the inconvenience of a high dimensional parametric space. Therefarthotbe

of prior distribution, in practice, may only be carried out, if Diriehdistribution is
selected, requiring also a big effort to get the posterior.

The proposed model in this paper can be seen as a more simplified methodolog
compared to most of proposed models in the literature. This simplditasi clear

both is the conceptual level and for practical applications. Finally, sincénave
insisted on the advantage of this model for practical purposes, it istedsemmptimize
some nonlinear restricted mathematical programs. This equations can kd bglv
finding the minimum of an unconstrained function. These calculationsnaheded

in the MLPC software.

The combination of a maximum entropy prior and the most likely Ih@did function
appears to be well suited for audit and accounting applications of Bayesiarsianaly
because it is easy to defend and support. The above example suggestsrimilthneg
upper bounds are consistent with the prior and likelihood used.

In all situations, the fact that the mean is greater than the mode reflectshéhat t
posterior distribution has a moderate skew towards higher amountaf €&erhaps
because one taint of 90% has been observed and the model is very sensible to it

Respect to IC/AR initial classification, more conservatives upper bouedstdained
when quantiles are given than mean is given.

The use of the mean as prior information yields differents posterigtriloltions
according to different IC/AR evaluation, note a reduction in the uppends from
Very Poor to Excellent classification.

Using quantiles no differences are appreciated in the posterior digritngspect to
IC/AR evaluation, only between Excellent and the remainder situations.eTibe't
difference between this situations because all priors are identical in pp@gwf the
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most likely likelihood and differ where the likelihood is almost zeAlso, this fact
occurs between MEP1 and MEP2.

Thus, when the minimum amount of information is required prior meaa good
election. It maybe better than quantiles, because in auditing context uS&aind
99 quantiles are very close. Possibly, 50 and 95 quantiles yields betidtsres

This work could be extended incorporating another intuitive magaitiké the mode
(seeBrockett et al. (1989)
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