New Jersey Institute of Technology Digital Commons @ NJIT

Chemical and Materials Engineering Syllabi

NJIT Syllabi

Spring 2021

MTEN 613-102: Characterization of Materials

Mirko Schoenitz

Follow this and additional works at: https://digitalcommons.njit.edu/cme-syllabi

Recommended Citation

Schoenitz, Mirko, "MTEN 613-102: Characterization of Materials" (2021). *Chemical and Materials Engineering Syllabi*. 175. https://digitalcommons.njit.edu/cme-syllabi/175

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Chemical and Materials Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

MTEN613, Characterization of Materials

NJIT, Spring 2021 Syllabus

Time and Location: Thursday, 6pm-9pm ---

online via Webex: https://njit.webex.com/meet/schoenitnjit.edu

Instructor: Mirko Schoenitz, Email: schoenit@njit.edu Phone: office 973-596-5260, cell 609-902-3445 Course materials: canvas.njit.edu "Office hours"

Mo-Fr 10am-5pm by phone, or via Webex;

I will be available with 24 h notice – I may be available on shorter notice.

Books:

(recommended, available electronically at NJIT library)

- Materials Characterization, Introduction to Microscopic and Spectroscopic Methods, Leng, Y., Wiley, 2013: https://primo.njit.edu/permalink/01NJIT_INST/dcbe8h/alma994911658605196
- ASM Handbook Vol 10: Materials Characterization (2019 Edition): https://primo.njit.edu/permalink/01NJIT_INST/dcbe8h/alma992240273405196

(also useful)

Materials Characterization Techniques, <u>Zhang</u>, S., Li, Lin., Kumar, A., CRC Press, 2009 *Introduction to the Principles of Materials Evaluation*, <u>Jiles</u>, D.C., CRC Press, 2008

Grading:	Exams (30 % each), research presentation (30 %), weekly assignment (10 %)
Exams:	Exams will be administered using Canvas+Lockdown browser+Respondus.

Date	Topics	Assigned reading
21-Jan	Introduction/Overview: materials structure	
	and matter-radiation interactions	
28-Jan	Electron Microscopy I: SEM, Microanalysis	Zhang Ch. 7, Leng Ch. 4 & 6
4-Feb	Electron Microscopy II: TEM	Leng Ch. 3
11-Feb	Probe Microscopy: STM, AFM	Zhang Ch. 4
18-Feb	Surface Analysis: XPS, AES	Zhang Ch. 3 (+Ch. 2)
25-Feb	Diffraction I: XRD, Phase ID	Zhang Ch. 5
4-Mar	Diffraction II: Phase Analysis, Rietveld	ТВА
	(research paper selection for presentation is due)	
11-Mar	Midterm	
25-Mar	Vibrational Spectroscopy: IR, Raman	Leng Ch. 9
1-Apr	Thermal Analysis I: Fundamentals	Zhang, Ch. 10
8-Apr	Thermal Analysis II: Kinetic analysis	ТВА
15-Apr	Mechanical testing	ТВА
22-Apr	Optical Microscopy	Zhang Ch. 11, Leng, Ch. 1
29-Apr	Research Presentations	
13-May	Final	

revision 2021-01-15