

MSc in Bioinformatics

 Universitat Autónoma de Barcelona

Supervised by

Víctor Guallar Tasies (BSC), director

Xavier Daura Ribera (UAB), tutor

Machine learning based prediction of

esterases’ promiscuity

Sign here: Sign here:

1

Index

Main structure

Acknowledgement 3

Abstract 3

Introduction 4

Objectives 15

Methodology 16

Results and discussion 23

Conclusion 29

Future perspectives 29

Bibliography 30

List of figures

Fig. 1 | Splitting strategies of the dataset 8

Fig. 2 | Fundamental parts of a support vector machine (SVM) 10

Fig. 3 | How K-nearest neighbours (KNN) classifies 11

Fig. 4 | Reaction catalyzed by an esterase 14

Fig. 5 | Feature selection strategies 22

List of tables

Table 1 | Features extracted from iFeatures 17

Table 2 | Features extracted from Possum 17

Table 3 | Algorithms used for outlier detection 19

Table 4 | Mathews correlation coefficient (MCC) and precision of a binary SVM 24

Table 5 | MCC and precision of a binary Ridge classifier 25

Table 6 | MCC and precision of a binary KNN 25

Table 7 | MCC and precision of a multi-classifier KNN 27

2

List of equations

Eq. 1 and 2 | Distance metrics for KNN 11

Eq. 3 | Linear models 11

Eq. 4, 5, 6, 7 and 8 | Performance metrics 12-13

Eq. 9 and 10 | Number of models generated 21

3

Acknowledgements

I would like to thank Dr. Victor Guallar for giving me the opportunity to work in his

laboratory and to his assistance on the ongoing research. His participation conjointly with

Dr. Gerard Santiago has been of important help in setting up several of the objectives

defined in this report. Furthermore, I would like to acknowledge Daniel Soler for his

guidance during the development and execution of the project, without his expertise the

research would have been more difficult and time consuming.

Abstract

Enzymes are of great interest for a vast variety of industries; however, the experimental

characterization is very time consuming and expensive which has led to the development

of plentiful of machine learning based platforms capable of predicting enzymes’ function,

de novo. Nonetheless, industrial enzymes need to adapt to nonbiological conditions while

maintaining high activity, promiscuity and stereo-selectivity, properties that are not well

covered, currently, by prediction technologies which means that their characterization still

relies solely on experimentation.

This project has the intention of mitigating the problem by developing binary classifiers

and multi-classifiers that can predict the promiscuity of esterases, one of the many

industrially relevant enzymes.

The results are quite promising with all the developed classifiers achieving high metric

scores and presumably without overfitting, however, the performance of the predictors

will need to be confirmed with experimental data. If it is verified, the next step would be

to extend the same process to other enzymes in demand, such as the phosphatases.

4

Introduction

For more than 90% of identified protein sequences, no characterization has been carried

out experimentally due to the overwhelming speed at which new sequences are being

added, meaning that most of them will be and have been annotated computationally1.

An especially interesting category of proteins are enzymes, considering their important

role in our daily lives and in a variety of industries such as food, detergent, agriculture,

chemical, cosmetic and drugs.

Specifically, the demand of certain enzymes like lipases/esterases, proteases,

hydrolases and polymerases that can work in industrial conditions has increased

exponentially2, thus requiring constant search for newer and better enzymes.

Knowing the cost and the difficulty for experimental function characterization, faster and

more accurate in silico annotation is key to accommodate the vast amount of sequence

data available3.

Thankfully, a large number of methods have already been proposed and exists to identify

and predict the class of enzymes, based broadly, on sequence, structure information or

de novo predictions4.

De novo predictions

De novo predictions have an undeniable advantage over other methods which is the fact

that they don’t rely on similarity to previously characterized enzymes but rather on

properties or features that are shared by proteins with the same functions4, which

increases their applicability.

Within the de novo methods, machine learning algorithms seem to be the most

extensively studied direction5 especially for low similarity proteins3,6.

Several types of algorithms have been applied with varied success: Linear regression, k

nearest neighbor classifier (KNN), support vector machines (SVM), random forest (RF),

artificial neural networks (ANN) and deep neural networks (DNN)7,8, from which several

5

technologies have surfaced: ECPred (2018)7, DEEPre (2017)5, EzyPred7 all of which are

designed to predict enzyme EC numbers.

Nonetheless, biocatalysts in industrial settings are subject to nonbiological conditions,

therefore, it is insufficient to know only their function but also if they will be able to

withstand the harsh environment and industrial requirements. Basically, an ideal industrial

enzyme should be thermostable, pH stable, halo stable (stable in high concentrations of

salt) and promiscuous while keeping high chemo and stereo-selectivity9.

In this case, fewer methods have been proposed to predict the enzyme’s characteristics,

and most of them focus on predicting thermostability, although some quite old studies

exist about halo-stability10 and pH stability11. Notably, most of these studies involve, again,

machine learning except maybe for Scoop12, which derives thermal stability curves with

mathematical approximations.

Steps in machine learning projects

There are several steps to consider if one must carry out a machine learning project. The

first and definitely one of the most important steps is the dataset and its processing.

1. SAMPLE COLLECTION

Needless to say, there is no project without a proper dataset and the first question one

should answer is if the size of the data is enough to solve the biological problem in hand,

because the more you have the better you will be able to generalize13.

Additionally, one should make sure to minimize the experimental errors at annotating the

samples since it will have a direct influence on the results and its credibility.

Nonetheless, there are domains where obtaining more samples might be time consuming

or/ and very expensive, such would be the case for the characterization of enzymes, then

one should focus on what the minimum size would be to achieve a reasonable predictive

performance. Unfortunately, there is no exact answer to this question but, from another

study in the domain of neuroimaging, it has been shown to still achieve good

performances while using only a median of 80 subjects or samples14. In spite of that, it is

hard to tell if in other domains the same applies.

6

There are other factors or steps that influence the performance and the reliability of the

results in a machine learning project that can be easier to control.

2. FEATURE EXTRACTION

For biological sequences where the properties are encoded into the sequence itself, it is

in a format that machine learning algorithms cannot understand directly, therefore a

preprocessing step or feature extraction is necessary to parse the biological data into

vectors of numerical values15.

There are numerous features available for proteins that have been used throughout the

literature which can be categorized loosely into 2 families:

Evolutionary based information

Evolutionary-based information Is regarded as a highly informative feature16 and as such

it has been widely used in different studies with a variety of applications, such as enzyme

EC number prediction5, catalytic site prediction17, protein-protein interaction16 etc.

This information encoded in the form of PSSM (position specific scoring matrix) is variable

in length as it depends on the primary structure of the protein, which is unsuited as input

for machine learning algorithms, therefore numerical transformations are needed to keep

the matrix size constant.

3 types of transformations have been conceived by different authors such as row

transformations, column transformations, and mixture of row and column transformation

that sum up to over 18 different PSSM based features16.

Primary sequence-based features

Primary sequence-based features are the classical ones, used to represent

physicochemical properties such as hydrophobicity, charge distribution, volume,

aminoacidic composition, secondary structure, disorder content, etc. They are regarded

also as essential for training machine learning models specially when combined with the

evolutionary information.

7

3. DATA CLEANING, SHUFFLING, SPLITTING AND SCALING

It is hard to decide which features are more important when extracting them from the raw

sequence, so generally all of them will be used.

As a result, too many features will be generated which means selection methods are

needed in order to avoid the high dimensionality curse, when there are far more

features than samples, causing overfitting, as well as to reduce computation time and

possibly to increase the performance of the models by eliminating noise18.

However, before selection, it is a good practice to perform some data cleaning, that is,

discarding possible inconsistencies, inaccuracies and outliers13, observations that differs

from the general distribution of the sample population19, since they will, most likely,

influence the selection results. In addition, some data rearrangements are preferred

previous to selection to prevent other problems such as overconfidence in the results,

specially, for small datasets.

Shuffle

First, shuffling the data removes possible trends related to the order of the samples13 that

might, otherwise, affect the results of the selection for methods that rely on machine

learning scores.

Split

Second, according to a study14, in order to get robust and unbiased performance

estimates of a prediction model, it is highly advised not to use the whole dataset for

feature selection because it might generate overoptimistic results. Furthermore, it proved

that a train/test split strategy or a nested cross-validation (ncv) strategy, essentially a

train/test split but with different train and test sets each time, are the most robust ones

regardless of sample size. In consequence, the dataset should be separated into 2

subsets, one used for feature selection and training and the other for evaluating the

model.

8

B.

Fig. 1 | The 2 splitting strategies that yield robust performance estimates, the model development, in blue,

includes feature selection and hyperparameters tuning. Adapted from Vabalas, A. et al14

Scale

Finally, scaling the feature vectors into a normalized range is also a very necessary step

since the algorithms are quite sensible to the magnitude of the features and it might cloud

the importance of smaller but relevant features otherwise13.

4. FEATURE SELECTION

Once taken care of the previous step, several selection methods are available, and it is

advisable to use all of them to have different subsets of features to compare with:

Filter methods

Filter methods doesn’t rely on the scores of the machine algorithms to calculate feature

importance but rather assess: I) the degree of dependence of individual variables with the

labels in case of statistical-based filters20; II) how much information (negative of entropy)

it provides on the distribution of the samples of each class in case of the information

theory based filters21.

9

Wrapper and embedded methods

Wrapper and embedded methods, unlike the previous one, apply machine learning

algorithms to search for those features that increase its performance, but they differ in

their mechanism.

In embedded methods, the machine learning itself produces a relevance score of the

features during the training, it is intrinsic to the algorithm such as random forest or

XGBoost, however in wrapper methods, the scoring and the machine learning are 2

independent parts that are combined, for example RFE (recursive feature elimination)18.

5. CHOOSING AND TUNING LEARNING ALGORITHMS

At this point, the dataset has been properly cleaned, rearranged, split and the features

selected which means it is time to choose the algorithm and tune its hyperparameters.

The algorithm of choice will greatly depend on the biological problem and the nature of

the dataset and, in this case, it involves classification tasks, that is, we want to identify

the class, or the category of a sample, being binary, or multiclass.

The algorithms employed in this study are explained below:

Support vector machines (SVM)

SVMs are a type of supervised learning algorithm that performs binary classifications and

are widely used due to its high accuracy and the ability to deal with high dimensional

data22.

To understand its essence, one needs to grasp its 4 basic components:

• The separating hyperplane: The data is represented as points in the space and

the separation between the 2 (binary classifications) classes of data is performed

through a line if we are dealing with 2 dimensions, a plane if is in 3D and a

hyperplane when we deal with high dimensional data23.

• The maximum margin hyperplane: The hyperplane method is not unique to SVM

but, unlike other classifiers, it tries to maximize the distance with the nearest data

point (also called as margin)23.

10

• The soft margin: Many data sets cannot be separated cleanly, few data points

from one class may be similar to the other class, to handle these cases SVM

algorithms adds a soft margin that allows some points to be in the other class

without modifying the results. However, we must control how many

misclassifications are allowed and how far from the hyperplane they can be23.

• The kernel function: The data will not always be separable with a straight line (if

we are in 2D), so sometimes kernel functions, a mathematical trick that projects

data from a low dimensional space to a higher dimensional space, can be applied

since it is proven that for any given data set there exist a kernel function that will

allow the data to be lineally separated23.

Fig.2 | A graphical representation of the workings of an SVM. By Alaa Tharwat24

After the explanation it is easy to understand that there are hyperparameters that needs

to be searched and optimized by try and error such as the size of the soft margin, that is

the penalization of misclassifications, named C, the type of kernel function and a kernel

parameter gamma24.

K-Nearest Neighbours (KNN)

KNN is one of the simplest and most common classifiers, yet its performance competes

with the most complex classifiers in the literature and it is placed among the top 10

methods in data mining.

11

The core of this method depends mainly on measuring the distance between the test

examples and the training examples and the classification is produced based on how

many data points of each class are closest to the test sample. Therefore, the performance

will depend greatly on the type of distance measurement used25. KNN is simple but

proved to be highly efficient and effective algorithm

Fig.3 | How the KNN classifies, the triangles and the squares represent different classes. In this case the new data

point will probably be classified as triangle, since more points are closer. By Abu Alfeilat et al25.

In KNN, the hyperparameters to be tuned would be the distance metric, for instance the

Minkowski distance, a very used and generalized metric defined as25:

𝐷(𝑥, 𝑦) = √∑|𝑥𝑖 − 𝑦𝑖|𝑝

𝑛

𝑖=1

𝑝

 (𝐸𝑞. 1)

where P is a positive number and also a hyperparameter, or the Canberra distance

presented as25:

𝐶𝑎𝑛(𝑥, 𝑦) = ∑
|𝑥𝑖 − 𝑦𝑖|

|𝑥𝑖| + |𝑦𝑖|

𝑛

𝑖=1

 (𝐸𝑞. 2)

and finally, the number of neighbours, K.

12

Linear models

Linear models are also one of the simplest algorithms and the concept behind them is

very easy to understand. It is the linear relationship between one or more features (X)

and one dependent label26 (Y) and although most of the time they are used for regression

tasks, there are variants such as the implementation of Ridge Classifier from Scikit-learn

that can be applied in classification tasks by transforming the binary classes into {-1,1}

and treating it as a regression problem27.

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑖𝑋𝑖 (𝐸𝑞. 3)

The hyperparameter to be tuned, in Ridge Classifier is α, which penalizes the size of the

coefficients βi.

Again, there are no clear answers on which algorithm is the best, so usually, several

different models are trained simultaneously and compared or even combined.

6. PERFORMANCE EVALUATION

As a result of the previous step, several models will be trained but the final goal is to be

able to predict the class of future incoming samples as accurately as possible, so logically

metrics to measure, compare and identify the best performing models are essential.

Let’s start by defining the 4 fundamental quantities in classification that are the basis for

all the metrics.

▪ True negatives (TN): The number of predicted negatives that are truly negative

▪ True positives (TP): The number of predicted positives that are true

▪ False positives (FP): The number of predicted positives that are negative

▪ False negatives (FN): The number of predicted negatives that actually are positive

From the above quantities we can define the metrics most used in the literature such as:

• Accuracy: the proportion of correctly classified simples28:

𝑎𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 + 𝑇𝑁
 (𝐸𝑞. 4)

Accuracy: worst value= 0, best value = 1

13

• Precision: The proportion of true positives in all the predicted positives28

𝑃𝑟 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
 (𝐸𝑞. 5)

Precision: worst value= 0, best value = 1

• Recall: The probability of detecting true positives28

𝑅𝑒 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 (𝐸𝑞. 6)

Recall: worst value= 0, best value = 1

• F1: a combination of precision and recall28

𝐹1 =
2 ∗ 𝑃𝑟 + 𝑅𝑒

Pr + 𝑅𝑒
 (𝐸𝑞. 7)

F1: worst value= 0, best value = 1

• Matthews correlation coefficient (MCC): It is only high when negative and positive

classes are well identified so it serves as a general measure of the quality of a

model13.

𝑀𝐶𝐶 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)
 (𝐸𝑞. 8)

MCC: worst value= -1, best value = 1

Apart from comparing the performance of the predictions on testing samples, the trained

models should also predict on samples used for training because if the metric scores are

not equal or higher than those of the training samples, it would mean that the classifier

has overfitted and cannot perform as well for samples other than the training.

7. APLICABILITY DOMAIN

Now that the best models have been chosen because of their high scores in different

metrics, a new platform or a new technology can be built around them. However, the

reliability of the predictions is limited. There is a restriction on the applicability of the model

to those samples that are similar enough to the training samples, because otherwise it

14

would be predicting something that it has not seen and fitted before so logically its

prediction on that data would not be trustworthy.

This limitation is the applicability domain29 and as a consequence, any dissimilar data

should be filtered out before applying the new technology.

The focus of this project

Now, let’s focus on the research we are aiming at here. This specific study can be seen

as a continuation of another project that the group was involved in where the goal was to

find the determinants of esterase promiscuity.

Esterases, which catalyze the hydrolysis of ester bonds, are very relevant industrially and

are involved in many applications such as the synthesis of chiral drugs for

pharmaceuticals or the production of various acids that are widely used in food, beverage,

perfumes industries and so on30. Thus, the identification of newer and more promiscuous

ester hydrolyses might have a positive impact on society.

R-COOCH2-R R-COOH + OH-CH2-R

To assess the substrate range of the 145 diverse esterases31 generated during the

previous project, a customized library of 96 different esters, consisting of mostly aromatic

and alkyl esters, were used.

After correlating the specificity of the enzymes with structural analysis of their catalytic

center, it was found that the active site’s effective volume, which is the active site cavity

volume corrected by the relative solvent accessible area (cavity volume/SASA), was able

to identify with a 94% accuracy those esterases with activity for 20 or more substrates31.

Nevertheless, this method requires 3D structures that are difficult to obtain which greatly

reduces its applicability. As an alternative, it was proposed to generate a model that could

predict promiscuity based solely on sequence information since it is known that the

primary structure of a protein greatly determines its 3D structure.

Esterases + H2O
ester acid alcohol

Fig. 4 | The hydrolysis of an ester to an acid and alcohol is catalyzed by an esterase

15

 Objectives

The main goal of this Master Thesis is:

✓ To generate a machine-learning based prediction model of esterases promiscuity

based on sequence information alone by using the experimental data produced in

the other project31, while alleviating the scarcity problem of developed technologies

that can predict enzyme’s industrial fitness.

▪ A simple binary classifier will demonstrate that it is possible to generate a

model using the mentioned dataset and the features extracted.

▪ A multi-classifier will provide finer predictions and might be preferred over

the binary classifier.

16

Methodology

1. DATASET

As stated before, this project can be treated as a continuation of a previous study on

esterase promiscuity, thus the dataset employed is the same and it is formed by 145

phylogenetically, environmentally and structurally diverse microbial ester hydrolases, plus

2 commercially available esterases with an average pairwise sequence identity of

13.7%31.

• For the classification, the dataset was separated into 2 classes, taking as threshold

20 substrates; promiscuous if it was able to hydrolyze 20 esters or more and non-

promiscuous if less, yielding 67 promiscuous or positives and 80 negatives.

• For the multi-classification, the dataset was split into 3 classes, 30 substrates or

more was considered highly promiscuous, less than 30 but more than 10 substrate

as moderately promiscuous and less than 10 as non-promiscuous according to the

same definitions in the study31, as a result 32, 71 and 44 samples ended up in

each class respectively.

2. FEATURE EXTRACTION

2 webservers Possum16 and ifeature32 were used to extract evolutionary information and

physicochemical properties, respectively, from the protein sequences.

iFeature

iFeature is capable of generating 53 different types of descriptors, from which 32 features

types were extracted resulting in a total of 4.662 number of features or dimensions, the

rest of feature types were discarded because they can only be applied to sequences of

the same length.

17

Table 1 | The features extracted from iFeature32 used in this project

Possum

Possum is a server that generates features based on the PSSM profiles of each protein

by applying different matrix transformations to make it length independent. 18 features,

all the default features, were extracted and 4 more by varying the default values resulting

in 18.730 dimensions.

 Table 2 | Features extracted from possum36

Mathematical transformations applied Possum descriptors

Row transformations

AAC-PSSM

D-FPSSM

S-FPSSM

AB-PSSM

RPM-PSSM

smoothed-PSSM window size (5)

smoothed-PSSM window size (7)

smoothed-PSSM window size (9)

PSSM-composition

iFeaure descriptors definition

Grouped amminoacid composition
aa composition and its variants are the % of each aa, dipeptide,

tripeptide in the sequence33. Grouped dipeptide, tripeptide composition

K-spaced aa group pairs composition

Moran Autocorrelation

It describes the correlation between 2 aa in terms of 8 aa properties33 Geary Autocorrelation

Normalized Moreau-Broto Autocorrelation

Composition The 20 aas are divided into 3 groups for each of the 7 properties

considered and then it looks the class composition, how frequent are

the transitions to other classes and the overall distribution along the

sequences33.

Transition

Distribution

Conjoint triad It clusters 20 aa into 7 classes, it treats tripeptides as an unit and

counts the frequency of each unit in the sequence34. K-spaced conjoint triad

Sequence-order coupling number It can be used to represent aa distribution patterns of a specific

physicochemical property along a protein33 Quasi sequence order

Pseudo-aa-composition

It counts the composition of the aa in the sequence, but it adds a

coupling term to not lose order information of the aa35.

Amphiphilic Pseudo aa composition

Pseudo K-tuple reduced aa composition type1 to 16

18

Column transformations

DPC-PSSM

k-separated-bigrams-PSSM

tri-gram-PSSM

EEDP

TPC

Mixed of row and column transformations

EDP

Pse-PSSM (ξ = 1)

Pse-PSSM (ξ = 2)

Pse-PSSM (ξ = 3)

DP-PSSM

PSSM-AC

PSSM-CC

RPSSM

3. DATA CLEANING, SHUFFLING, SPLITING AND SCALING

Cleaning

After generating the features, some cleaning was needed because many columns had

many zeros or identical values in most of the rows which carried little information.

As a result, 4.662 iFeature features and 18.730 possum features were reduced to 2.572

and 14.601 features respectively.

Shuffling, splitting and scaling

The dataset was shuffled and split together using the train_test_split (TTS) class in scikit-

learn, the python’s default machine learning library and the features scaled in the range

of [0,1] using MinMaxScaler class of the same library.

Code 1

19

Notably, the shuffle and split strategies were different for binary and multi-classification.

For the former only one major split using the mentioned class was performed and slightly

different train/test sets generated by changing the random state variable within the

function (Fig 1. A). For the multi-classification, however, besides the previous approach,

2 more systems were tested:

a) By combining TTS class and the Kfolds class in scikit-learn, the 2 schemes

depicted in Fig 1, A and B, were merged. The dataset was first split using TTS,

with 1 random state, and then the resulting training set was further split into 6

train and non-overlapping test sets with Kfolds.

b) In approach B, TTS was omitted, and the dataset was first shuffled using the

Shuffle class in scikit-learn, then split with Kfolds, essentially it would be a

nested cross-validation (Fig 1. B).

In regard to outlier detection, PyoD19 was the library used to recognize the abnormal

samples from the distribution of the features. This library contains a comprehensive set

of more than 20 different algorithms, some based on machine learning, from which 6 were

selected arbitrarily and the results summed together to find those predicted to be outliers

most of the time.

Table 3 | Definitions of the different outlier detection algorithms used37

Outlier models Definitions

KNN (K nearest

neighbours)
For a sample its distance to its kth nearest neighbor could be viewed as the outlying score

ABOD (Angle based

outlier detection)
The variance of its weighted cosine scores to all neighbors could be viewed as the outlying score

CBLOF (Clustering

Based Local Outlier

Factor)

It generates clusters and decides if it is an outlier based on the size of the cluster the point

belongs to as well as the distance to the nearest large cluster

LOF (Local Outlier

Factor)
It measures how isolated the sample is with respect to the surrounding neighborhood

IForest

(IsolationForest)

It has a tree structure; it detects anomalies by noticing those samples that are easily split at the

beginning of the root of the tree.

HBOS (Histogram-

based outlier

detection)

It detects anomalies by building histograms around the samples and those out of the boundary

are anomalies.

Feature Bagging
It is a meta estimator that fits a number of base detectors (LOF) on various sub-samples of the

dataset and use averaging methods to improve the predictive accuracy

20

4. FEATURE SELECTION AND MODEL TRAINING

Even with the cleaning, the number of original features remained exceedingly high, a total

of 17.173 dimensions, therefore selection was needed to avoid overfitting.

5 libraries were used ITMO_FS(1)38, Boruta(2)39, Scikit-feature(3)40 , Scikit-learn(4)

and XGBoost(5)41 to implement 10 different feature selection methods.

• Statistical-based filters: (1) Chi square, (4) fisher score

• Information theory-based filters: (1) Information gain (IG), (3) MRMR (minimum

redundancy maximum relevancy), CIFE (conditional infomax feature extraction),

(4) mutual information

• Wrapper methods: (4) RFE (recursive feature elimination) combined with a linear

model Ridgeclassifier or SVM

• Embedded methods: (2) Boruta, (4) Random forest (RF), (5) XGBoost

Binary classifier

For binary classifiers, each of the stated methods was performed independently for the 2

families of features and combined afterwards. The total number of dimensions was

reduced to 70 features, 30 iFeatures and 40 possum, which is less than a ½ of the

number of samples, a proportion that was proven to decrease overfitting14.

The reason why possum features were given more importance was that many

authors16,42,43 seemed to claim that evolutionary information was more informative. In

addition, the study; where the dataset came from, proved that phylogeny could be an

indicator of promiscuity31.

Moreover, with the intent of decreasing even further the complexity of the models, new

feature subsets were constructed by subtracting 10 features (5 iFeature and 5 possum)

each time from the initial feature set, until 20, resulting in 10 (filters) X 6 (numbers) total

feature sets.

Each of these sets were then used to train each of the 3 learning algorithms with 5

different random states in the case of Ridge Classifier and SVM while in the case of KNN,

a preprocessing step of the scaled features using Neighbourhood Component Analysis

21

(NCA) function in scikit-learn was added or omitted to compare their difference44,

yielding a total of 720 trained and tuned models.

(2 𝑠𝑣𝑚 𝑎𝑛𝑑 𝑟𝑖𝑑𝑔𝑒 ∙ 5 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑡𝑎𝑡𝑒𝑠 + 2 𝑘𝑛𝑛 𝑎𝑛𝑑 𝑁𝐶𝐴) ∙ 60 𝑠𝑒𝑡𝑠 = 720 𝑚𝑜𝑑𝑒𝑙𝑠 (𝐸𝑞. 9)

Multi-classifier

For multi-classifiers, besides the previous selection strategy that generates 720 models,

2 more splitting and selection methods were tested as mentioned before:

a) For the splitting approach A, features from the 2 families were first combined and

then selection was applied afterwards, and again new feature subsets were

constructed using the same idea from the first strategy. However, this time the

process was repeated for each of the splits generated by Kfolds, returning a total

of 6 (folds) X 9 (without Boruta selection) X 6 feature sets.

The subsets were used to train each of the 3 algorithms and an additional

preprocessing step for KNN which generates a total of 1296 models

4 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠 + 𝑁𝐶𝐴 · 324 𝑠𝑒𝑡𝑠 = 1296 𝑚𝑜𝑑𝑒𝑙𝑠 (𝐸𝑞. 10)

b) For approach B, TTS were omitted but the rest remains the same with the

difference that more data were available for the train/test sets of each fold. Again,

at each of the 6 folds, 54 features subsets were generated and then used to train

the algorithms yielding a total of 1296 models.

A remark, that is unrelated but relevant, should be made about the features used to detect

outliers. It was possible to utilize the original features but, in this case, the selection

strategy in binary classifications was applied to generate 60 different feature sets for both

the binary and multi classifications.

Then they were used for outlier detection and once the outliers were eliminated, the

selection strategies were applied again on the original features since their presence can

affect the selection.

As a result, 5 outliers were eliminated during the training of binary classifiers and 4 outliers

for the multi-classifiers.

22

iFeatures:

2.572

Possum:

14.601

Filter 1

70 features

17.173 features

-10

60 features

9 filters

20 features

6 feature sets

4 subtractions

Repeated 6 times by the

number of folds in the

Cross-validation

B

A

iFeatures:

2.572

Possum:

14.601

Filter 1 Filter 1

Ifeatures: 30 Possum: 40

70 features

-10

60 features

10 filters

20 features

6 feature sets

4 subtractions

Performed only for

one of the random

states

Fig 5 | Feature selection strategies. A) represents the selection approach for binary classification, a total

of 60 feature sets are generated on 1 random state, in the other states the models are trained using the

same features. B) represents the feature selection strategy for the multi-classification, it is the same for

both splitting approaches but, the difference is that there are more samples available for feature selection

in the splitting approach b).

23

Results and discussion

BINARY CLASSIFICATION

Following the split, feature selection and training strategies explained in the methodology

section, 60 feature sets and 720 binary models were generated and compared using all

the metrics described in step 6 of the introduction to find the subset that produced the

best performing models for each algorithm.

The following criteria were used to identify the optimal feature sets: first the overall MCC

and the number of dimensions, the fewer the better as it reduces the complexity of the

models, and then by the precision score of class 1, those considered promiscuous.

Only these 2 metrics are presented because they are the most informative for this project.

The overall-MCC represents how well the TN and TP are identified, so a general measure

of the model’s performance.

It is preferred over F1 because it takes into consideration the effects of class imbalances13

in the dataset. Additionally, class 1 precision assesses how reliable are the predictions,

allowing to identify promiscuous new enzymes, the ultimate goal of this project.

Surprisingly, there was a single feature set, filtered using Chi squared and further purged

into 20 dimensions (chi-20), that performed the best in SVM and Ridge, independently of

the random states as displayed in table 4 and 5.

Unlike the others, KNN had the best precision scores while training with Random Forest

(RF) features with 30 dimensions as seen later in table 6.

24

SVM

Table 4 | Overall MCC and precision scores at different random states using chi-20 as input to an SVM, in addition to

its hyperparameters

 Hyperparameters Overall Class 1

Random

states
kernel C gamma Test MCC Train MCC

Train

Precision

Test

Precision

20 RBF 0,31 0,91 0,57 0,50 0,79 0,77

40 RBF 0,61 0,91 0,59 0,51 0,772 0,89

70 RBF 0,61 0,61 0,60 0,47 0,769 0,83

80 RBF 3 0,31 0,68 0,56 0,825 1

90 RBF 0,91 0,31 0,62 0,54 0,804 1

 Mean 0,61 0,52 0,79 0,89

 Standard deviation (std) 0,04 0,03 0,02 0,10

Table 4 shows that SVMs would be a good choice as the prediction model for esterase

promiscuity, since both the overall test MCC and precision scores are considerably high,

with a mean around 0.61 and 0.9 respectively, and consistently superior than the training

scores, with a mean around 0.52 and 0.8 respectively. This indicates lack of overfitting

and it is true regardless of the train/test sets examined here, except for the first random

state where the training precision is slightly superior than the test precision.

With regards to the best performing hyperparameters there is a clear preference for the

gaussian type kernel function, RBF (radial basis function), where the distance between

all samples is rescaled according to its width or variance and where higher variances

leads to smaller distances between samples24.

In addition, there is also a tendency towards smaller values of gamma and C. Gamma,

being a parameter of RBF, controls the width of the gaussian and it is the inverse of the

variance24, which means smaller values will lead to gaussians with higher width and

samples that are further away in the feature space to appear more similar. Regarding C,

that penalizes misclassifications, smaller values will generate margins that are more

permissive.

25

Ridge Classifier

Table 5 | Overall MCC and precision scores at different random states using chi-20 as input to a Ridge Classifier, in

addition to its hyperparameters.

 Hyperparameter Overall Class 1

Random states α Test MCC Train MCC Train Precision Test Precision

20 8 0,64 0,55 0,85 0,83

40 3 0,68 0,54 0,82 1

70 5 0,60 0,53 0,83 0,83

80 0,51 0,68 0,54 0,82 1

90 2 0,62 0,56 0,84 1

Mean 0,64 0,54 0,83 0,93

std 0,03 0,010 0,01 0,09

Similarly, the Ridge linear model could also be used to predict promiscuity because of the

same reasoning as in SVM, and might even be preferred over the previous one due to

higher mean performances, 0.64 for MCC and 0.93 for precision, and lower deviations as

evidenced in table 5. However, in this case there is no clear tendency with the α

hyperparameter.

KNN

Table 6 | Overall MCC and precision scores for both class 1 and class 2 using RF-30 with different processing steps

as input to a KNN, in addition to its hyperparameters.

 Hyperparameters Overall class 1

Processing Neighbours p Distance Test MCC Train MCC
train-

precision
test

precision

NCA 3 3 Minkowski 0,71 0,94 1 0,84

no-NCA 7 5 Minkowski 0,78 0,63 0,87 0,91

Finally, KNN, if trained using RF features, would also be a great option as a prediction

model, with a test MCC of 0.78 and test precision of 0.91. No NCA preprocessing seems

to be needed since it causes overfitting as indicated by the scores of the training samples

being superior than the test samples.

26

Regarding the hyperparameters, the Minkowski distance with a p = 3 and 10 neighbours

seems to be the optimal choices.

It is hard to tell if KNN performs better than the others merely by looking at this one score,

even though it is much higher than the others specially regarding the overall MCC and

further studies, possibly experimental verification, might be required to discern which one

is better. It might even be preferable to combine the 3 algorithms together into a single

predictor and classify via a voting system. Such procedure should reduce the error and

increase precision, given that an esterase would only be considered promiscuous if 2 or

model models predicts so.

MULTI-CLASSIFICATION

In multi-classification more strategies needed to be tested because, by applying the

binary strategy, it became clear that no feature set were able to generalize for all the

random states considering that, for some of them, training MCC scores were higher than

the test MCC scores, a clear indication of overfitting.

After speculating about the source of the problem, it was theorized that maybe the feature

selection should be performed with the features from the 2 web servers combined (Fig. 5

B). Such a set up would facilitate the selection methods to consider the most important

features from the whole set and not only a part of it.

In addition, it was thought that feature selection should also be performed at each cross-

validation round or fold (Fig. 5 B), unlike in binary classification where it was only

performed at one random state and used for the rest of the states (Fig. 5 A).

Because, by combining the models generated at each fold with different features into a

single predictor, it would potentially be the same as having 1 feature set that can

generalize to all random states. In consequence the splitting approach A and feature

selection strategy B was implemented, however the results were not satisfactory. There

were still some folds that had training MCC scores higher than the test MCC scores for

all the subsets generated.

27

After some considerations, It was hypothesized that the first train/test split in splitting

approach A might had been the problem since it was reducing the samples available for

testing and training of an already small dataset, from 120 and 23 samples for training and

testing respectively to 102 and 20 samples. However, it was desirable to reserve a test

set to compare the performance of individual models with that of the single predictor.

Consequently, strategy B was developed and implemented for the 3 algorithms and

finally, positive results were returned although only for KNN as seen in table 7. The

criteria for choosing the best performing models and feature subsets are similar than in

binary classification with the addition of the precision of a class 2, those highly

promiscuous.

KNN

Table 7 | Overall MCC and precision scores of class 2 and class 1 for different KNN models and feature sets, in

addition to its optimal hyperparameters.

As displayed, the overall MCC is consistently higher for the testing samples, with a mean

score of 0.63, a demonstration of the models’ general performance. Nevertheless in the

case of precision, even though the mean testing scores for class 1 and class 2, 0.77 and

0.76 respectively, surpass those of the training samples, there are splits where that is

untrue, for example the precision of class 2 in split 2. A s results, standard deviation is

high, around 0.25. However, each of the splits should be treated independently, because

they are unrelated models using different feature sets, so the individual scores might be

more informative.

 Hyperparameters Overall Class 2 Class 1

Split Features Processing Neighbours p Distance MCC
train
MCC

precision
train
prec.

precision
train
prec.

0
xgboost-

20
NCA 9 1 Canberra 0,49 0,46 0,66 0,64 0,84 0,63

1 RFE-20 No-NCA 3 2 Minkowski 0,67 0,64 0,71 0,67 0,81 0,72

2 IG -50 NCA 8 1 Minkowski 0,63 0,40 0,33 0,58 0,92 0,63

3 RFE-40 no-NCA 8 5 Minkowski 0,62 0,58 0,85 0,74 0,63 0,72

4
RForest-

30
no-NCA 10 1 Minkowski 0,58 0,40 1 0,77 0,66 0,65

5 RFE-20 NCA 5 1 Canberra 0,81 0,77 1 0,87 0,72 0,80

Mean 0,63 0,54 0,76 0,71 0,77 0,69

std 0,10 0,14 0,25 0,10 0,11 0,06

28

Despite this, it is still a major improvement compared to the results from strategy A, where

testing MCC scores for some splits were lower than those of the training sets. This shows

the importance of the size of the dataset specially for a multi-classifier since the samples

available for each class is smaller in comparison to a binary classification.

Concerning the hyperparameters, there is a tendency for higher numbers of K or

neighbours probably because of the low similarity between the samples, in addition to a

preference for the Minkowski distance and smaller numbers of P. Regarding NCA

preprocessing, it is only preferable in certain splits.

With respect to why only KNN succeeded, the most logical answer would be that the

algorithm’s biases were favorable in this case. However, if more samples were provided

for each class, the other algorithms would, likely, perform well too similarly as in binary

classification.

As a side note, the same strategies from both binary and multi-classification were applied

to phosphatases to see if they were transferable, because in the case they are, it would

potentially mean that the results could be replicated for all the other industrially interesting

enzymes. Nevertheless, none of the approaches tested here were reproducible in

phosphatases (results not shown) probably due to the dataset composition.

Unlike the esterases, where the majority of the samples share little sequence similarity,

in the phosphatase’s dataset, there are clusters of samples that share more than 40% of

sequence similarity but less than 40% if they are from different clusters. In addition, there

is one or two clusters that contain most of the samples leaving the others scattered around

the other clusters45. Thus, proving the importance of the dataset for any machine learning

project, although there might be other causes to this issue such as that the features used

are not suited for phosphatases, even though is already a very thorough list.

Still, the fact that different algorithms were successfully trained in binary classifications

for esterases implies that promiscuity might be a property that can be deduced from the

sequence, given the right dataset. This possibility opens a new avenue that might make

massive sequence-wide screening of promiscuous ester hydrolases feasible.

29

Conclusions

In conclusion, the objectives set up for this thesis were accomplished satisfactorily. For

the binary classification all the 3 algorithms tested were successfully trained and achieved

relatively high mean precision and MCC scores individually.

In contrast, for multi-classification only KNN models were generated without overfitting,

probably, due to the fact that the design of the algorithm was more suited in this case.

Nevertheless, it has achieved acceptable mean test performances, 0.63 ± 0.2 for MCC,

0.77 ± 0.22 for precision of class 1 and 0.76 ± 0.50 for precision of class 2 despite having

less samples per class. Overall, having a sequence predictor for promiscuity in hydrolases

will introduce a significant boost in future enzyme bioprospecting.

Future perspectives

The project is not finished, there are still several tasks left by the time of the writing, such

as building the single predictor from all the binary classifiers or the single multi-classifier

from all the KNN models.

Preliminary results suggest that the ensemble of binary classifiers can produce a MCC

score of 0.76 in the test set compared to the mean score of 0.67 ± 0.09 of the 3 separate

models, thus demonstrating that the ensemble learner can indeed produce better results.

In addition, the identification of the applicability domain of the models is also an essential

step to be developed in the future if they are to be used for making predictions on

uncharacterized esterases. Moreover, the performance of the predictors needs to be

verified by experimental data and models retrained if they differ substantially.

Finally, esterases are the first enzymes of industrial interest tested in this project but

eventually, the group’s interest would be to extend the process to other enzymes such as

phosphatases, from which promiscuity data is also available.

30

Bibliography

1. Peled, S. et al. De-novo protein function prediction using DNA binding and RNA binding proteins as a test

case. Nat. Commun. 7, 1–9 (2016).

2. Kamble, A., Srinivasan, S. & Singh, H. In-Silico Bioprospecting: Finding Better Enzymes. Mol. Biotechnol. 61,

53–59 (2019).

3. Radivojac, P. et al. A large-scale evaluation of computational protein function prediction. Nat. Methods 10,

221–227 (2013).

4. Punta, M. & Ofran, Y. The rough guide to in silico function prediction, or how to use sequence and structure

information to predict protein function. PLoS Comput. Biol. 4, (2008).

5. Li, Y. et al. DEEPre: Sequence-based enzyme EC number prediction by deep learning. Bioinformatics 34,

760–769 (2018).

6. Watanabe, N. et al. Exploration and Evaluation of Machine Learning-Based Models for Predicting Enzymatic

Reactions. J. Chem. Inf. Model. (2020) doi:10.1021/acs.jcim.9b00877.

7. Dalkiran, A. et al. ECPred: A tool for the prediction of the enzymatic functions of protein sequences based on

the EC nomenclature. BMC Bioinformatics 19, 1–13 (2018).

8. Camacho, D. M., Collins, K. M., Powers, R. K., Costello, J. C. & Collins, J. J. Next-Generation Machine

Learning for Biological Networks. Cell 173, 1581–1592 (2018).

9. Thapa, S. et al. Biochemical Characteristics of Microbial Enzymes and Their Significance from Industrial

Perspectives. Mol. Biotechnol. 61, 579–601 (2019).

10. Zhang, G. & Ge, H. Support vector machine with a Pearson VII function kernel for discriminating halophilic

and non-halophilic proteins. Comput. Biol. Chem. 46, 16–22 (2013).

11. Lin, H., Chen, W. & Ding, H. AcalPred: A Sequence-Based Tool for Discriminating between Acidic and

Alkaline Enzymes. PLoS One 8, (2013).

12. Pucci, F., Kwasigroch, J. M. & Rooman, M. SCooP: an accurate and fast predictor of protein stability curves

as a function of temperature. Bioinformatics 33, 3415–3422 (2017).

13. Chicco, D. Ten quick tips for machine learning in computational biology. BioData Min. 10, 1–18 (2017).

14. Vabalas, A., Gowen, E., Poliakoff, E. & Casson, A. J. Machine learning algorithm validation with a limited

sample size. PLoS One 14, 1–21 (2019).

15. Saidi, R., Aridhi, S., Maddouri, M. & Nguifo, E. M. Feature extraction in protein sequences classification : A

31

new stability measure. 2012 ACM Conf. Bioinformatics, Comput. Biol. Biomed. BCB 2012 683–689 (2012)

doi:10.1145/2382936.2383060.

16. Wang, J. et al. POSSUM: A bioinformatics toolkit for generating numerical sequence feature descriptors

based on PSSM profiles. Bioinformatics 33, 2756–2758 (2017).

17. Pai, P. P., Shree Ranjani, S. S. & Mondal, S. PINGU: Prediction of eNzyme catalytic residues usinG

seqUence information. PLoS One 10, 1–15 (2015).

18. Guyon, I. & Elisseefl, A. An introduction to feature extraction. Stud. Fuzziness Soft Comput. 207, 1–25

(2006).

19. Zhao, Y., Nasrullah, Z. & Li, Z. PyOD: A python toolbox for scalable outlier detection. J. Mach. Learn. Res.

20, 1–7 (2019).

20. Guyon, I., Gunn, S., Nikravesh, M. & Zadeh, L. A. Feature Extraction. Studies in Fuzziness and Soft

Computing vol. 207 (2006).

21. Zadeh, L. A. Studies in Fuzziness and Soft Computing: Foreword. in Studies in Fuzziness and Soft

Computing vol. 261 121–122 (2010).

22. Ben-Hur, Asa; Weston, J. A User’s Guide to Support Vector Machines. in Springer Protocols - Methods in

Molecular Biology 609 vol. 1415 17 (2010).

23. Noble, W. S. What is a support vector machine? Nat. Biotechnol. 24, 1565–1567 (2006).

24. Tharwat, A. Parameter investigation of support vector machine classifier with kernel functions. Knowl. Inf.

Syst. 61, 1269–1302 (2019).

25. Abu Alfeilat, H. A. et al. Effects of Distance Measure Choice on K-Nearest Neighbor Classifier Performance:

A Review. Big Data 7, 221–248 (2019).

26. Lee, W. Python® Machine Learning. in Python® Machine Learning 119–146 (2019).

doi:10.1002/9781119557500.

27. 1.1. Linear Models — scikit-learn 0.23.1 documentation. https://scikit-

learn.org/stable/modules/linear_model.html#ridge-regression-and-classification.

28. Kubat, M. An Introduction to Machine Learning. in An Introduction to Machine Learning 213–233 (2017).

doi:10.1007/978-3-319-63913-0.

29. Sahigara, F., Ballabio, D., Todeschini, R. & Consonni, V. Defining a novel k-nearest neighbours approach to

assess the applicability domain of a QSAR model for reliable predictions. J. Cheminform. 5, 1 (2013).

30. Panda, T. & Gowrishankar, B. S. Production and applications of esterases. Appl. Microbiol. Biotechnol. 67,

32

160–169 (2005).

31. Martínez-Martínez, M. et al. Determinants and Prediction of Esterase Substrate Promiscuity Patterns. ACS

Chem. Biol. 13, 225–234 (2018).

32. Chen, Z. et al. IFeature: A Python package and web server for features extraction and selection from protein

and peptide sequences. Bioinformatics 34, 2499–2502 (2018).

33. Ong, S. A. K., Lin, H. H., Chen, Y. Z., Li, Z. R. & Cao, Z. Efficacy of different protein descriptors in predicting

protein functional families. BMC Bioinformatics 8, 1–14 (2007).

34. Wang, Y. C., Wang, Y., Yang, Z. X. & Deng, N. Y. Support vector machine prediction of enzyme function with

conjoint triad feature and hierarchical context. BMC Syst. Biol. 5, 1–11 (2011).

35. Chou, K.-C. Pseudo Amino Acid Composition and its Applications in Bioinformatics, Proteomics and System

Biology. Curr. Proteomics 6, 262–274 (2009).

36. POSSUM | Server Page. http://possum.erc.monash.edu/server.jsp.

37. All Models — pyod 0.8.1 documentation.

https://pyod.readthedocs.io/en/latest/pyod.models.html#kriegel2008angle.

38. Pilnenskiy, N. & Smetannikov, I. Feature selection algorithms as one of the python data analytical tools.

Futur. Internet 12, (2020).

39. Kursa, M. B. & Rudnicki, W. R. Feature selection with the boruta package. J. Stat. Softw. 36, 1–13 (2010).

40. Li, J. et al. Feature selection: A data perspective. ACM Comput. Surv. 50, (2017).

41. Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. Proc. ACM SIGKDD Int. Conf. Knowl.

Discov. Data Min. 13-17-Augu, 785–794 (2016).

42. Chou, K. C. & Shen, H. Bin. MemType-2L: A Web server for predicting membrane proteins and their types by

incorporating evolution information through Pse-PSSM. Biochem. Biophys. Res. Commun. 360, 339–345

(2007).

43. Zahiri, J., Yaghoubi, O., Mohammad-Noori, M., Ebrahimpour, R. & Masoudi-Nejad, A. PPIevo: Protein-protein

interaction prediction from PSSM based evolutionary information. Genomics 102, 237–242 (2013).

44. sklearn.neighbors.NeighborhoodComponentsAnalysis — scikit-learn 0.23.1 documentation. https://scikit-

learn.org/stable/modules/generated/sklearn.neighbors.NeighborhoodComponentsAnalysis.html.

45. Huang, H. et al. Panoramic view of a superfamily of phosphatases through substrate profiling. Proc. Natl.

Acad. Sci. U. S. A. 112, E1974–E1983 (2015).

