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1 Introduction

In the report of the World Bank Commission on Monitoring Global Poverty that he
chaired, Sir Tony Atkinson observed that the exercise of measuring global poverty is
“highly controversial”. While acknowledging that some might even regard the exercise
as futile, he argued that “estimates of global poverty are flawed but not useless. By
focusing on changes over time, we can learn—taking account of the potential margins of
error—about the evolution of global poverty” (World Bank, 2017, p xvi). That report
articulated precise yet practical strategies to address many of the fundamental issues
in assessing poverty trends, where poverty is considered according to both national and

international definitions and is measured in monetary and multidimensional spaces.

A more detailed account of the evolution of poverty directs attention towards the exact
poverty trajectories that countries follow. Any such exercise is, however, challenged by
another set of issues. In particular, for many countries, poverty estimates are only avail-
able for very few points in time. Underlying survey datasets are usually only updated
every 3-5 years or even only once a decade. As a consequence, information is often not
available to account for the most recent progress, nor to determine the extent to which it

could be affected by external shocks.

These issues also cause challenges for obtaining global aggregates where, moreover, coun-
try estimates are observed in different years and with different periodicities. Thus, it is
not obvious how to aggregate achieved trends across countries in a coherent and rigorous
way. Likewise, little can be said about the recent levels of poverty at the global level.
Methods have been developed for predicting global monetary poverty aggregates, and
underlie claims such as that in 2015 more than a billion fewer people globally were living
in extreme monetary poverty than in 1990 (World Bank (2018) cf. Ravallion (2013)).
While sharing several data limitations, analogous multidimensional poverty analyses en-
tail additional methodological challenges. This may partly explain why projections of
multidimensional poverty are still rare in the literature; to our knowledge, Ram (2020) is
the first such study. There has therefore been no basis to assess the impacts of exogenous

shocks on such trends. To close this gap is the aim of our paper.

We draw upon the just-released study of harmonized trends in the global Multidimensional
Poverty Index (MPI), which covers 75 countries with a combined population of about five
billion people at two points in time (Alkire et al., 2020c,d).! The global MPT as proposed
in Alkire and Santos (2014) uses the method proposed by Alkire and Foster (2011) and

LAlkire et al. (2020c,d) update and extend Alkire et al. (2017), which covered 34 countries using
earlier datasets. Burchi et al. (2020) is another recent study that computes trends in multidimensional
poverty, measured with a different index, across 55 countries using the International Income Distribution
Database.



is widely recognized as an internationally comparable multidimensional poverty measure.
Alkire et al. report extensive progress in global poverty reduction. During the measured
periods, 65 out of the 75 countries made significant progress in reducing multidimensional
poverty, while over 50 reduced the number of people in poverty. Yet the trends story is
incomplete: the time periods covered range from three to twelve years; the years span
20002019, with the starting year of some countries well after the ending point for others.
While informative, related analyses are limited to annualized absolute or relative rates of
change during the measured period, from which it is not possible to summarise aggregate

trends.

To address these methodological challenges, we develop a modelling framework to compute
projections of global multidimensional poverty. We use these projections in two ways.
First, we seek to answer a question inspired by SDG 1 target 1.2: which countries are
on track to halve multidimensional poverty between 2015 and 20307 Second, recognising
that the COVID-19 pandemic that has taken hold in early 2020 has jeopardised progress,
we also ask what are the plausible impacts of the pandemic on recent progress in poverty

reduction in the developing world?

In seeking to make poverty projections, our work relates to similar exercises that have
been conducted with other development indicators, in particular the World Bank (2018)
on extreme income poverty, the work of the UN Inter-agency Group for Child Mortality
Estimation (UN IGME, 2019), the monitoring of child malnutrition by WHO-UNICEF
(2017), and the analysis of child mortality and education indicators by, e.g., Klasen and
Lange (2012). While we build on this earlier work, none of these approaches is immediately

applicable to our context.

To develop the modelling framework for our study, we consider and evaluate different
approaches to model country-specific trajectories of achieved and future poverty reduc-
tion; these include linear, exponential (or constant rate of change), and logistic models.
To identify the most appropriate models, we seek to respect the theoretical bounds of
our poverty measures, consistency given the relationships among them, and the available
empirical evidence. Specifically, we make the case for a logistic model as the most ap-
propriate for the incidence of poverty, an appropriately modified logistic model for its

intensity, and their product for multidimensional poverty itself.

Among our most salient results, we find that if observed trends continue, 47 out of 75
countries will halve multidimensional poverty between 2015 and 2030—irrespective of the
underlying model. However, 18 countries are off track according to all models, while for
10 countries results are model-dependent. These results are stress-tested in counterfactual
analyses, in which implied trajectories under alternative model parameters are examined.

We find, for instance, that 15 countries that are off track to meet the poverty target



according to our preferred model could halve poverty by 2030 if their performance in
poverty reduction were boosted to that of the median performing country. We also find
that some countries that are on track to meet the poverty target may falter if their

observed performance in terms of poverty reduction slows down.

As the current COVID-19 pandemic threatens to severely disrupt progress in poverty
reduction, we also assess the expected increase in poverty using simulation techniques
and evaluate the resulting setback. We expect substantial impacts on multidimensional
poverty through two indicators which are being severely affected by the pandemic—
nutrition and children’s school attendance. We explore several scenarios that are informed
by studies of the impact of COVID-19 conducted by international agencies, in particular
UNESCO (2020) on school closures and WFP (2020) on food insecurity. Our analyses
suggest a setback to aggregate poverty reduction across the 70 included countries by about

3-10 years depending on the underlying scenario.

The paper proceeds as follows. In section 2, we describe the data used in the study. In
section 3, we briefly discuss approaches in the related literature, identifying those that
are feasible to explore and build on in our study context. In section 4, we explore alter-
native models for country-level multidimensional poverty dynamics, identifying logistic
trajectories as our preferred model on the basis of both theoretical adequacy and com-
pelling cross-country evidence. In section 5, we implement these models to nowcast and
to forecast multidimensional poverty, and to discuss counterfactual trajectories as stress-
tests of predicted trends. In section 6, we assess the potential impact of the COVID-19
pandemic on multidimensional poverty in 2020, through simulations of scenarios based
on deprivation increases predicted by UN agencies. Section 7 presents some concluding

remarks.

2 Data

The primary data source for this study is the Changes over Time dataset constructed
by Alkire et al. (2020c), which contains harmonized estimates of aggregate measures of
multidimensional poverty for 80 countries in the developing world based on the structure
of the global MPI. Of those, results reported in this paper focus on the 75 countries that
are jointly analysed by OPHI and UNDP’s Human Development Report Office (UNDP,
OPHI, 2020).?

2To align with the OPHI-UNDP collaboration, results reported in this study omit five countries that a)
dropped a health or education indicator in the harmonisation process, and b) experienced large absolute
or relative changes in the harmonised MPI value in comparison with the non-harmonised value. The
omitted countries are Afghanistan, Montenegro, Trinidad & Tobago, Viet Nam, and Yemen.



Table 1: Global MPI

Dimension

of Poverty Indicator Deprived if ... SDG area  Weight
Nutrition Any person gnder 70 years of age for whom there is nutritional SDG 2 1
Health information is undernourished. 6
ca Child A child under 18 has died in the household in the five-year 1
. . . SDG 3 =
mortality period preceding the survey. 6
Years of No eligible household member has completed siz years of 1
. ; SDG 4 =
Educati schooling schooling. 6
ucation School Any school-aged child is not attending school up to the age at PG 4 1
attendance which he/she would complete class 8. 6
Cooking fuel A household cooks using solid fuel, such as dung, agricultural PG 7 1
crop, shrubs, wood, charcoal or coal. 18
e The household has unimproved or no sanitation facility or it 1
Sanitation is improved but shared with other households. SDG 6 18
Drinkin The household’s source of drinking water is not safe or safe
Living water g drinking water is a 30-minute walk or longer walk from home, SDG 6 %
Standards roundtrip.
Electricity The household has no electricity. SDG 7 %
Housing The household has inadequate housing materials in any of the PG 11 1
three components: floor, roof, or walls. 18
The household does not own more than one of these assets:
Assets radio, TV, telephone, computer, animal cart, bicycle, motor- SDG 1 %

bike, or refrigerator, and does not own a car or truck.

Notes: This is a simplified version, for more details on global MPI and Changes over Time data, see
UNDP, OPHI (2020) and Alkire et al. (2020d), respectively.

First published in the 2010 UNDP Human Development Report, the global MPI is a
poverty index that is based on the joint distribution of 10 indicators, which are grouped
under the dimensions of Health, Education and Living Standards (Alkire and Santos,
2014). The definitions of these indicators were revised in 2018 to better align to the
SDGs (Alkire et al., 2020a; Alkire and Kanagaratnam, forthcoming). Table 1 shows the
current structure of the global MPI, which is the basis of all the information contained
in the Changes over Time dataset, our main data for projections of multidimensional
poverty. This structure also underpins the 2020 release of the global MPI (Alkire et al.,
2020b), whose underlying micro datasets are used for our COVID-19 impact simulations
in section 6. In the global MPI structure, each dimension is assigned an equal weight
(1/3), and indicators are also assigned equal weights within dimensions. A person is iden-
tified as being multidimensionally poor if they simultaneously suffer 33% of the weighted

deprivations or more.

In order to ensure inter-temporal comparability for each country, the harmonisation pro-
cess means that, for some of them, the Changes over Time estimates rely on slightly
different indicator definitions and datasets from the 2020 global MPI. For 62 out of the
75 considered countries, the underlying microdatasets are identical in both Changes over
Time and 2020 global MPI data, and for 29 countries the MPI estimates are identical (see
Alkire et al., 2020c,d, for more details).

Two observations are available for each country in the Changes over Time dataset. The

timing of these observations depends on survey availability; the earlier observations are

4



dated between 2000 and 2014 (median 2010) while the later observations are dated be-
tween 2008 and 2019 (median 2014). The elapsed time between observations is between
3 and 12 years (median 5 years). The distribution of survey dates is illustrated in Figure
1, where one can see that for most countries, including Ethiopia and Sierra Leone, the
difference between the observed poverty levels is between 3 to 6 years, and in many cases,
both surveys are at least as recent as 2010. For some other countries, such as India and
Madagascar, the available data is slightly older (2008 and 2006, respectively) and the
observed poverty levels cover a 9-year time span or more. In fewer cases, we can only on
data prior to 2005 for the first observed poverty level, such as in Mozambique and Bolivia.
For a complete list of countries, datasets, and years of the surveys, see Table A.1 of the

appendix.

Figure 1: Survey Dates
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Figure 2 provides a first view of the Changes over Time data. Each dot represents the ob-
served MPI value for a specific country at a specific point in time, and they are connected
by a line when they correspond to the same country. Several insights emerge at first
glance. There is considerable heterogeneity in terms of the first and second observed MPI
values for each country, as well as in terms of the elapsed time span between observations.
Most countries experience poverty reductions in the observed period, albeit to varying
extents and with some visible exceptions, such as Benin or Serbia, where poverty has
increased. Also, note that in some cases, changes in multidimensional poverty over time
are minimal, such as in Benin and Serbia, and also Cameroon, Togo, Chad and Niger,

among others. Finally, some countries achieved substantial poverty reduction in absolute



Figure 2: Changes over time data: The adjusted headcount ratio (MPI)

-

S -

BGD

o

T T
2000 2005 2010 2015 2020
year

Notes: Dots represent point estimates based on micro data; Countries are colour-coded by world region: e
Arab States; ® East Asia and the Pacific; @ Europe and Central Asia; @ Latin America and the Caribbean;
e South Asia; @ Sub-Saharan Africa.

terms, for example Sierra Leone and India. For a more detailed analysis of these data see
also Alkire et al. (2020d).

3 Projection Approaches for Development Indicators

In this study we aim to establish a modelling approach for projections of multidimensional
poverty that respects theoretical requirements, which are in part specific to our measure.
It must also be feasible to implement with the available data, and rest on sound empirical
evidence. In this section we review the methods and applications used in similar exercises
for other development indicators, as well as an earlier approach for multidimensional
poverty. We assess the extent to which we may be able to adopt earlier approaches and

identify where we will need to build on them.

The World Bank publishes nowcasts and forecasts of extreme monetary poverty biennially,
World Bank (2018) reporting the most recent results. Nowcasting is necessary because,
like our estimates of multidimensional poverty, monetary poverty estimates rely on data
from household surveys that, in most developing countries, are conducted every 3-5 years.
The World Bank’s approach to nowcasting relies on covariates of monetary poverty that

are observed more frequently, together with assumptions about the evolution of income



or consumption distributions. Specifically, the pass-through of per-capita GDP growth
to household income or consumption expenditure is assessed on the basis of historical
data for each country. The assumption of distribution-neutral growth since the date of
the most recent poverty estimate then allows poverty to be nowcasted on the basis of the
most recent growth data. Future projections are conducted under alternative hypothetical
scenarios of future growth and its distributional incidence. An application that is related
to our research questions is the exploration in World Bank (2018) of the conditions under
which the SDG target of reducing extreme monetary poverty to less than 3 percent of the

global population might be achieved.

In our present study, with observations at only two time-points for each country, we
cannot estimate country-specific stable pass-through from growth or any other covariates
to multidimensional poverty. This will, however, be a promising avenue to explore if in
the future we have a longer panel. In principle, adopting a covariate-based approach
to nowcasting may be less straightforward for multidimensional than monetary poverty,
as there is some evidence from cross-country analyses to suggest that multidimensional
poverty has a less direct relationship with economic growth than does monetary poverty

(Santos et al., 2019). Other covariates may turn out to be better predictors.

Child mortality is another important development indicator, whose estimation is chal-
lenging in the absence of well-functioning vital registration systems in many developing
countries. Much like our multidimensional poverty measures, estimation therefore relies
on periodic household surveys, in this case typically the birth history data collected in
DHS and, increasingly, in MICS surveys (UN IGME, 2019). Birth history data yield an
annual panel of estimates, often with significant sampling error but also with multiple
observations for many periods due to overlap of histories gathered in different surveys.
This makes non-parametric modelling of countries’ child mortality trajectories feasible,
in particular the Bayesian B-spline bias-reduction (B3) model proposed by Alkema and
New (2014) and adopted by the UN Inter-agency Group for Child Mortality Estimation.
This method can account for sampling and non-sampling errors, and capture short term
fluctuations in the mortality rate. In contrast to the monetary poverty nowcasts and fore-
casts described above, covariates are not used to derive estimates or make projections.
However, non-parametric methods are hardly feasible in our study because, in contrast
to the data available to estimate child mortality, we have only two observations available
for each country. We are thus forced to rely on simpler parametric methods, using cross-
country variation to identify plausible parametric trajectory models for multidimensional

poverty.

The monitoring of child malnutrition (latest results in JCME, 2020) again relies on similar

surveys. In this case, like in our study, the number of observations for each country is



relatively low. Assessment of each country’s progress is computed as its average annual
rate of reduction (AARR) either analytically in the case of two observations, or on the
basis of a low-n log-linear regression (WHO-UNICEF, 2017). This imposes the assumption

that countries’ trajectories each follow an exponential path.

Ram (2020) implements a similar approach to make projections of multidimensional
poverty, assessing whether the 34 countries analysed by Alkire et al. (2017) are on track
to halve the proportion of people in multidimensional poverty between 2015 and 2030,
should the annual rates of change reported by Alkire et al. persist. We explore and im-
plement a similar approach, among others, in this paper. We make use of the more recent
data now available for more countries (Alkire et al., 2020c) and extend to multidimen-
sional poverty as well as its sub-indices, accounting for the relationship between them.
However, as we will compellingly show, a more suitable modelling assumption is that
countries’ trajectories of multidimensional poverty follow logistic rather than exponential

paths.

This finding aligns with the results of Klasen and Lange (2012), who show that logistic
models capture a remarkable proportion of progress over time and across countries in
both child mortality and education indicators (primary completion rate and gender bal-
ance). See also the earlier work by Meyer et al. (1992) and Clemens (2004) on education.
Moreover, Lange (2014) applied similar models to projections of primary and secondary
completion as well as literacy rates. In the next section we develop this approach further,

adapting it to the specific case of multidimensional poverty and its sub-indices.

4 Modelling Multidimensional Poverty Dynamics

With multidimensional poverty estimates available at just two points in time for each
country, we cannot precisely estimate nor forecast individual countries’ multidimensional
poverty trajectories. Given our data constraints, in this section we explore alternative
dynamic models that we may use to implement projections of countries’ trajectories. We
identify preferred models, which respect theoretical bounds on multidimensional poverty
levels and are strongly supported by cross-country evidence on countries’ trajectories. We

conclude the section by implementing country-specific calibrations of these models.



4.1 Analytical Framework and Notation
4.1.1 Multidimensional Poverty

Multidimensional poverty is measured following the method established by Alkire and
Foster (2011), in particular its global MPI implementation described in section 2. The
standard exposition (see, for example, Alkire et al., 2015) develops sample estimators

appropriate for a simple random sample; we establish the population analogue here.

Given achievements x;; in d indicators j = 1,2,...,d, each of which is assigned a depri-
vation cutoff z; and weight w; such that Z?Zl w; = 1, an individual ¢’s deprivation score

1S

x” < ZJ (1)

HM&

Given also a poverty cutoff k (which Alkire and Santos, 2014, set to % for the global MPI),
the individual is considered multidimensionally poor if ¢; > k; her censored deprivation
score c;(k) = ¢;l(c; > k).

The level of Multidimensional Poverty (MPI) in a population is then M = E(¢;(k)),
the average censored deprivation score in that population.® Applying the law of iterated

expectations,

M =E(¢;(k)|lc; > k)P(e; > k) + E (¢;(k)|e; < k)P(¢; < k)
=E (¢;(k)|c; > k)P(¢; > k) +0 x P(¢e; < k)
=E (¢i|le; > k)P(c; > k)
=AxH (2)

where A is the intensity of multidimensional poverty E (¢;|¢; > k), the average deprivation
score among the poor, and H is the incidence or headcount P(¢; > k) = E(I(¢; > k)). By
construction, H € [0,1], A € [k,1] and M € [0, 1].

4.1.2 Trajectories

Countries are indexed s = 1,2, ...,S. Our objects of interest are countries’ time-paths (or
trajectories) of multidimensional poverty, M(t), its intensity As(t) and incidence H(t).

We may write y;(t) to represent any of these outcomes of interest, or y(¢) when we do not

dy

refer to a specific country. Time-derivatives are notated with dots, so g(t) = .

3Following Alkire and Foster (2011), the usual notation is My. To simplify notation, we drop the sub-
script 0 in this paper as we do not use any other members of Alkire and Foster’s class of multidimensional
indices.



An estimate obtained from microdata will be labelled with a hat, so Ms(tST) is the esti-
mated level of multidimensional poverty in country s at time t4,. (As discussed in section
2, we have poverty estimates at two discrete points in time for each country, so 7 = 1,2,
but these points in time are different for different countries, thus ¢ must be labelled by s
as well as 7). An alternative, abbreviated notation for such estimates, which constitute
the observations for our empirical models, is MST or even My, (respectively, Hy,, As, and
in general y,,). A projection obtained from a projection model is labelled with a wedge,

so, for example, H,(t) is the projected incidence in country s at time ¢ (continuous).

We observed above that multidimensional poverty may be decomposed as the product of
intensity and incidence; at most two of M(t), As(t) and H,(t) can vary independently.

Therefore, to ensure consistency, we shall model M;(¢) indirectly as
M (t) = Hy(1)As(t) (3)

throughout this paper.

4.1.3 Canonical Dynamic Models

A very simple dynamic model for the trajectory of outcome y(t) is the linear model
y(t) — alin . Blint (4)

in which the rate of change g(t) = —g" is constant. While simple, linear models are
rarely used for projections of development indicators; an exception is Nicolai et al. (2015)
who implemented simple linear projections for many SDG indicators. In the case of
multidimensional poverty, a linear model does not respect the bounded nature of all

outcomes of interest.

Another simple dynamic model for the trajectory of outcome y(t), which respects a lower

bound at 0, is the exponential or constant relative change* model

y(t) _ eacrc_ﬁcrct (5)

in which the relative rate of change % = — ¢ is constant; equivalently, the rate of change
y(t) = —(5°°y is proportional to y. Note that the log-transformation g(t) = In(y(t)) =
o — 3t is linear in the parameters. This is the dynamic model implemented to assess
progress in child malnutrition (WHO-UNICEF, 2017) and by Ram (2020) to project the

incidence of multidimensional poverty. It is a plausible candidate for trajectories of H(t)

“Described as proportional in Alkire et al. (2020b)
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and M (t), which are bounded below at 0, and could be adapted for A(t), which is bounded
below at k.

A slightly more complex dynamic model for the trajectory of outcome y(t), which respects

both lower and upper bounds, is the logistic model

1
y(t) = 1 _I_ e—OélOg-f-ﬁlOgt (6)

in which the rate of change 9(t) = —3"°y(1 — y) is quadratic in y, passing through (0, 0)
and (1,0). Note that the logit-transformation ¢(¢) = In (y(¢)/(1 — y(t))) = a'°® — st
is linear in the parameters. Logistic models were implemented by Klasen and Lange
(2012) and Lange (2014) to model child mortality and education indicator dynamics.
The logistic model is a plausible candidate for trajectories of H(t) and M(t), which are
bounded between 0 and 1, and could be adapted for A(t), which is bounded between k
and 1.

Figure 3: Canonical Dynamic Models

Notes: Linear model — ; exponential model — ; logistic model —.

Several observations are pertinent:
e For each of these models, there is a transformation §(t) = o — St that is linear in
the parameters; that shall prove useful in the subsequent empirical modelling.
e In each case, the parameter J represents the rate of change or speed of transition.

e Each model is characterised by a first-order ordinary differential equation (ODE):
y(t) is constant in the linear model, linear in y(¢) in the exponential (constant

relative change) model and quadratic in y(¢) in the logistic model.

Figure 3 illustrates linear (4), exponential (5) and logistic (6) trajectories calibrated to

pass through a particular point with a particular rate of change.
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4.2 Cross-Country Evidence on Poverty Dynamics

As noted above, with observations at only two time-points for each country, we cannot es-
timate or forecast trajectories at country level. We therefore utilise cross-country evidence

to inform our choice of projection models.

Figure 4: Cross-Country Evidence
(a) Incidence (H) (b) Intensity (A) (c) Poverty (M)

T T T T T
0o 1 2 3 4 5 6 7 8 9 1 0o 1 2 3 4 5 6 7 8 9 1 0o 1 2 3 4 5 6 7 8 9 1

Notes: Own calculations, changes on vertical axis are average annual changes, black line shows quadratic
fit, grey line linear fit. Countries are colour-coded by world region: @ Arab States; ® East Asia and the
Pacific; ® Europe and Central Asia; @ Latin America and the Caribbean; ® South Asia; ® Sub-Saharan
Africa.

For each outcome of interest, Figure 4 illustrates the cross-country relationship between
average annual change Ay, a proxy for g(t), and level. In the case of H and M, the
relationship is clearly nonlinear; in the case of A the pattern is less clear. While countries
from different world regions tend to cluster at different levels of the outcomes, the emerging
relationship between levels and changes is not driven by one particular world region, but
rather supported by countries across the globe. There is, of course, substantial variation

across different countries.

To explore the dynamics more systematically, we estimate cross-country models of average
annual changes in the outcomes of interest Ay as polynomial functions of levels of the
outcomes. As the average annual change is a proxy for ¢(t) at both ¢; and ¢,, we retain
both observations for each country. We are relaxed about any artificial inflation of sample
size, as this exercise is purely for model selection purposes and any effect will have a similar

impact on all models.

Table 2 reports results for H, the incidence of poverty. A linear function of H (model 1)
is strongly rejected in favour of a quadratic (model 2). Adding a cubic term (model 3)
slightly improves the fit, but the cubic coefficient is not significantly different from zero
and the improvement in fit is too slight to justify the considerable extra complexity in

the dynamic model.” Interestingly, a model with H, A and their product (model 4) gives

5The corresponding ODE may not have a closed-form solution.
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equally good fit, and adding H* (model 5) even better, but again, the slight gain does not

outweigh the considerable extra modelling complexity. We conclude that the quadratic
model H(t) = aH? + bH + ¢ is most appropriate.

Table 2: Dynamic Model Selection for H ()

(1) (2) (3) (4) (5)
AH AH AH AH AH
H -0.0148*** -0.0918*** -0.127*** -0.161*** -0.131%**
(-5.24) (-11.80) (-6.42) (-11.53) (-7.13)
H? 0.0966*** 0.203*** 0.0562*
(10.31) (3.63) (2.48)
)ZE: -0.0810
(-1.93)
A -0.0497 0.00864
(-1.96) (0.25)
HA 0.269*** 0.117
(9.60) (1.73)
Constant -0.00816*** -0.00106 0.000492 0.0163 -0.00489
(-6.34) (-0.87) (0.34) (1.62) (-0.37)
Observations 160 160 160 160 160
Adjusted R? 0.143 0.486 0.494 0.496 0.512

Notes: Own calculations, t-statistics in parentheses, indicated levels of significance are * p < 0.05, **
p < 0.01, ** p < 0.001. See A.1 for the list of datasets underlying these results.

Recalling that the characteristic ODE for the logistic dynamic model is ()

—By(1-y),

this is equivalent to the quadratic coefficients satisfying a +b = 0 and ¢ = 0. The p-value

for a Wald test of the joint hypothesis is 0.2078; we fail to reject it and so conclude that

the logistic model (equation 6, illustrated in Figure 5), is most appropriate for H ().

Figure 5: Dynamic Model for H(t)

Note: Own analysis. Illustration of logistic trajectory with parameter roles illustrated through identifi-
cation of time, level and rate of change at the point of inflection.

As is clear in Figure 4, the relationship between changes in A, the intensity of poverty,



and its level, is less strong than for H or M. Table 3 reports results for regressions of
AA on polynomial functions of A and H. A linear function of A (model 1) explains only
18% of the variation in AA and adding the quadratic term (model 2) increases that to
just 21%. Interestingly, H has similar explanatory power (models 3 and 4), and a model
with A, H and their product (model 5) slightly more. But the gain is marginal over
model (2). Despite the small difference in explanatory power between models (1) and
(2) we prefer the quadratic function, which corresponds to a logistic trajectory, over the
linear function, which corresponds to an exponential trajectory. Several countries actually
experience increases in intensity of poverty, so it is important that our projection model

respects the upper bound on A.

Table 3: Dynamic Model Selection for A(t)

(1) (2) (3) (4) (5)
AA AA AA AA AA
A -0.0184*** -0.104*** -0.0276**
(-5.97) (-3.39) (-2.78)
A2 0.0871**
(2.81)
H -0.00516*** -0.0131*** -0.0175**
(-5.94) (-4.31) (-3.21)
H? 0.00991**
(2.72)
HA 0.0330**
(3.01)
Constant 0.00465** 0.0253*** -0.00222*** -0.00149** 0.00895*
(3.15) (3.37) (-5.59) (-3.15) (2.28)
Observations 160 160 160 160 160
Adjusted R2 0.179 0.213 0.177 0.209 0.220

Notes: Own calculations, ¢-statistics in parentheses, indicated levels of significance are * p < 0.05, **
p < 0.01, *** p < 0.001. See A.1 for the list of datasets underlying these results.

Given A(t) = aA%+bA+c (model 2), the p-value for the Wald test of the joint hypothesis
a+ b =0 and ¢ = 0 is indistinguishable from zero; we strongly reject the hypothesis and
so cannot adopt the simple logistic model (equation 6) for A(¢). This is natural, as A is
bounded below at % rather than 0. The modified (three-parameter) logistic function that
respects the bounds at 3 and 1 is characterised by the ODE A(t) = IB(3A% —4A + 1),
which is equivalent to the quadratic coefficients satisfying a = 3¢ and b + 4¢c = 0. The
p-value for a Wald test of the joint hypothesis is 0.4990; we fail to reject it and conclude
that the modified logistic model

1 _'_ 3€am1_6mlt

y(t) = 3(1 T eaml_ﬁmlt)7 (7)
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illustrated in Figure 6, is most appropriate for A(t). In this case, the modified logit-
a/m

transformation §(¢) = In ((3y(t) — 1)/3(1 — y(t))) = o™ — 3™t is linear in the parameters.

Figure 6: Dynamic Model for A(t)

Note: Own analysis. Illustration of modified logistic trajectory with parameter roles illustrated through
identification of time, level and rate of change at the point of inflection.

Finally, we turn to dynamic model selection for M (t), reported in Table 4. As noted
above, M(t) = H(t)A(t), so M(t) = H(t)A(t) + H(t)A(t). Given our preferred models
for H(t) and A(t), we thus expect M(t) to be a polynomial function of H, HA, H?>A
and HA?. Such a function (model 1) explains 54% of the variation in AM. We may ask
whether modelling M (t) as a function of H and A performs any better than as a function
of M itself; model (1) does indeed explain more of the variation in AM than polynomial
functions of M (models 2-4). This reassures us that our approach to modelling M(t) is

appropriate.

4.3 Assessment of the Dynamic Models

We established in section 4.2 above that the logistic model (6) is supported by both
theoretical bounds and cross-country empirical evidence as the preferred model for the
incidence of multidimensional poverty, H(¢). Similarly, the modified logistic model (7)
is supported by theoretical bounds and, to a lesser extent, by cross-country empirical

evidence as the preferred model for the intensity of multidimensional poverty, A(t).

The model-selection exercise above allowed us to identify our preferred parametric models,
but relied on the approximation of taking Ay as a proxy for ¢(¢) for each variable. Having
identified the preferred parametric models, we may now estimate their parameters and

assess model fit with properly-specified models.
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Table 4: Dynamic Model Selection for M (t)

(1) (2) (3) (4)
AM AM AM AM
H -0.210%**
(-3.81)
HA 0.581**
(3.08)
H?A 0.0310
(1.59)
HA? -0.464**
(-2.92)
M -0.0213*** -0.0750™** -0.124%*
(-7.72) (-10.71) (-7.70)
M? 0.108*** 0.343***
(8.13) (4.82)
M3 -0.271%*
(-3.36)
Constant 0.0000438 -0.00440*** -0.00133 -0.0000559
(0.06) (-6.25) (-1.90) (-0.07)
Observations 160 160 160 160
Adjusted R? 0.539 0.269 0.482 0.514

Notes: Own calculations, ¢-statistics in parentheses, indicated levels of significance are * p < 0.05, **
p < 0.01, ** p < 0.001. See A.1 for the list of datasets underlying these results.

Recall that each of the models considered above could be expressed in a transformed
version g(t) = a — ft that is linear in the parameters 3, which represents speed or rate of
poverty reduction, and «, which, given 3, represents temporal location of the trajectory.

We assume that [ is fixed across all countries, but allow « to vary. This yields the model
Usr = Qg — PBlor + Egr Vs=1.5;7=1,2 (8)

where 7, is the appropriately transformed outcome of interest for country s at time ¢,

a, are country fixed effects and e, are idiosyncratic error terms.

Applying the within transformation,

Usr — Ys = —B(tsr — ts) + (€sr — &) Vs=1.57=1,2 9)

where 7,, t, and €. are within-country averages of the transformed outcome, time-points,
and error terms, respectively, allows us to arrive at an estimable form of (8). Moreover,

an intercept fixed across countries, i, can be introduced in (9) by adding the pooled mean
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of s, (denoted as § = & — Bt + €) to both sides of the equation such that
Jor —Ps+ G =p— Bty —ts+8) + (e — & +2)  Vs=1.571=12 (10)

where © = @, thus corresponding to the average of the country-fixed effects. An OLS
fit of (10) yields the within-estimates of 5 and p, and its coefficient of determination

corresponds to the within-R? goodness of fit measure of the fixed-effects model (8).

Table 5: Fixed-effects estimation results (75 countries)

(1) (2) (3) (4) () (6)
th cre Hlog Ahn Acre Alog

B 0.0138** 0.0616*** 0.0934*** 0.0040** 0.0081*** 0.0164**
(14.2623) (13.8100) (22.8832) (14.2527) (14.0851) (14.2507)

o 019127+ -2.51024%  -2.3011** 0.4247%*  -0.8599***  -0.3071***
(15.7763) (-44.9450)  (-44.9258)  (120.3718)  (-119.9381)  (-21.2544)

R? 0.64 0.62 0.80 0.63 0.62 0.63

N 150 150 150 150 150 150

Notes: Own calculations, t-statistics in parentheses, indicated levels of significance are * p < 0.05, **
p < 0.01, ** p < 0.001. See A.1 for the list of datasets underlying these results.

We estimate and assess the fit of three alternative dynamic models for H and three for
A: linear (4), exponential (5) and logistic (6). Estimation results are reported in Table 5.
While the estimates of p and 3 are not directly comparable across models, the (within-)R?
is. These results confirm the logistic model (column 3) as the best dynamic model for
H(t); even without allowing (3 to vary across countries, this model explains 80% of the
within-country variation in incidence of multidimensional poverty. Nevertheless, we shall

also implement linear and exponential projection models, for comparison of results.

Results for A(t) (columns 4-6) are less clear-cut; all models explain a similar amount of
the within-country variation in intensity of poverty over time. In our applications, as
discussed in section 4.2, we shall restrict attention to the modified logistic model, which

respects the theoretical bounds on intensity.

4.4 Calibration of Projection Model Parameters

The dynamic models developed above account for a remarkable proportion of the changes
in multidimensional poverty across the countries in our dataset. Of course, there remains
significant unexplained variation across countries, so in order to implement projections for
individual countries we calibrate the model parameters separately for each country. As
each of our models is an two-parameter model that may be linearised in the parameters,

this is straightforward.
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4.4.1 Logistic Projection Models

Given incidence and intensity estimates H,y, Ag and Hy, Ay for country s at tg; and

~log PAlog «ml Aml
ts2, its calibrated parameters &, 3,., &g, and 35, solve

1

. log Hlog
Hlog to
( 8T hS ’/8 ) 1 + _ahg+ﬁlogt87_

= HST) T = 17 27

and

Aml( . vml ml) — 1 + 36 as /Bas tsr
57'7 as - mlt
3<]~ + e%s IBas sv—)

as? :AST7 7—:172.

The calibrated projection models for incidence, intensity and level of multidimensional

poverty are then

HPE(t) =H'5(t; 0%, 5,F),
Asml(t) Aml( vml ml)’ and

as’

MPE(t) =HP5(8) A7 ().

Parameter calibration and trajectory projection for all three outcomes of interest are
illustrated for a hypothetical country in Figure 7 and for India in Figure 8. The coloured
dots represent the observations of H, A and M, while the coloured lines represent the

calibrated projection models.

Figure 7: Parameter Calibration and Trajectory Projection

t

Notes: Illustration of parameter calibration and trajectory projections given hypothetical observations
H517 Hs27 Asl and ASQ-
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Figure 8: Parameter Calibration and Trajectory Projection (India)

2000 t 2010 to 2020 2030

Notes: Illustration of parameter calibration and trajectory projections for India.

The distribution by world region of calibrated parameters B};g , which represent the speed
of poverty incidence reduction, is illustrated in Figure 9. Each country’s calibrated param-
eter is represented by a blue bar. World region medians (circles) and interquartile ranges,
which vary across world regions, are illustrated in red. Regional top performers include
Sierra Leone in Sub-Saharan Africa, Honduras in Latin America and the Caribbean, and
China in East Asia and the Pacific.

Figure 10 illustrates the calibrated logistic model for H by transforming the time variable
for each country s by its calibrated parameters, £°¢ = t,, — d}fsg / B}Zf. This lines up each
country’s calibrated trajectory such that the point of inflection occurs at #1°¢ = 0, allowing
easier comparison across countries. From the figure it is clear that many countries are
following similar trajectories, but are at different points along those trajectories. There is
some variation, with some countries making faster progress (appearing to follow a steeper

curve) while others make slower progress (appearing to follow a shallower curve).
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Figure 9: Distribution of B;;g for logistic model by world region
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Notes: Blue bars represent a countries’ B}fsg as calibrated for the logistic model; world regions
are Arab States (AS), East Asia and the Pacific (EAP), Europe and Central Asia (ECA), Latin
America and the Caribbean (LAC), South Asia (SA), Sub-Saharan Africa (SSA); only selected
countries are labelled for reasons of readability.

Figure 10: Hlustration of Calibrated Logistic Model for H

—
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Notes: Incidence of multidimensional poverty, H,,, against time adjusted according to the calibrated

logistic model, 18 = ¢,

< log / plog
- ahs/ hs *

Selected countries labelled: China (CHN), India (IND), Sierra

Leone (SLE) and Ethiopia (ETH). Countries are colour-coded by world region: @ Arab States; @ East
Asia and the Pacific; @ Europe and Central Asia; @ Latin America and the Caribbean; @ South Asia;

Sub-Saharan Africa.
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4.4.2 Linear and Exponential Projection Models

While the logistic model for H and modified logistic model for A are our strongly preferred
models, we will also implement projections using the linear and exponential models for H.
Calibration is analogous to calibration of the logistic models. Given incidence estimates

H,, and H,, for country s at t, and t,, its calibrated parameters @i, 3i» solve
H. — Hlin to ~lin Hlin\ __ vlln Bhnt —1.2
ST T (ST?Oéh.w hs)— ST T=12
while & and ﬂcrc solve

crc ~ Ccre crc Qe —Brict
HST_H (ts7-7ah5, hS) :e Bhs ST’ T = 1,2.

The calibrated projection models for incidence and level of multidimensional poverty are
then HI(1) = HV(t; af, ), N (t) = HI(0) (1), HE™(t) = (126, F), and
Mge(t) = H () AP(2).

Figure 11: Illustration of Calibrated Linear and Exponential Models for H

(a) Linear (b) Exponential
. NN § \% -
g £ \
L. 7L E] Y
WS
RN
G e
: g
2 | 2 \
N§§m\ \ '\\\ Sl o
= e ® & —
{5151;1 — 57' _ th/ﬁhn t;g_c — ST _ dzrsc/ﬁcrc

Notes: Incidence of multidimensional poverty, Hy., against time adjusted according to the calibrated
linear model, £ = ¢, — @ /B and exponential model, ¢ = t,, — a5°°/A5. Selected countries
labelled: China (CHN), India (IND), Sierra Leone (SLE) and Ethiopia (ETH). Countries are colour-
coded by world region: ® Arab States; @ East Asia and the Pacific; ® Europe and Central Asia; ® Latin
America and the Caribbean; ® South Asia; @ Sub-Saharan Africa.

Figure 11 illustrates the calibrated linear and exponential models for H by transforming
the time variable for each country s by its calibrated parameters, " = ¢, — cin / ﬂlm and
1 =t —ase/ 50“ respectively. In the linear case this lines up each country’s calibrated
trajectory such that H reaches zero at #» = 0, and in the exponential case such that H
passes through 1 at ¢ = 0, allowing easier comparison across countries. There is less
congruence of trajectories for these models than the logistic model illustrated above in

Figure 10.
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5 Projection Results

This section implements projections of the global MPI using the models developed in
the previous section. To explain the three models in tandem, let us illustrate our results
by showing the projected trajectories of poverty reduction for three countries with very
distinct poverty levels as per the most recent observations, are at different stages in their
trajectories, and are located in different regions: Ethiopia (high poverty and early stage),

India (mid poverty and mid stage), and China (low poverty and advanced stage).

Figure 12 depicts the trajectories for these countries based on each model, and clearly
shows that they all cross the corresponding observed poverty levels. All three models imply
very similar projected poverty levels between the observed points, which is particularly
true for low and high poverty countries. Projections outside of this range—either further
back to the past or into the future—vary more considerably depending on the chosen
model. For instance, projections for high poverty countries based on the linear and CRC
models tend to be more pessimistic about poverty levels in the future compared to logistic
model-based projections. This is because, unlike the logistic model, the linear and CRC

models fail to anticipate any improvement in the pace of poverty reduction.

Conversely, projections based on linear models tend to be more optimistic about future
poverty levels in mid poor countries compared to logistic and CRC model-based projec-
tions. In fact, the linear projections regularly anticipate a nil poverty level for some mid
poor countries, while achieving zero poverty is impossible at any finite point in time for

logistic and CRC model-based projections.

Thus, whether or not a country can be expected to meet the target of halving poverty by
2030 may critically depend on the underlying model choice, and yet it is remarkable to find
that in many instances, all three models yield identical qualitative results. To see this, note
that the horizontal dashed lines in Figure 12 indicate the country’s target value for halving
poverty between 2015 and 2030; India and China would meet this target according to all
three models, whereas Ethiopia would not meet the target under any model if recent trend
continue. However, such clear results are not found for every country; in some instances,

our assessment of achieving the poverty target is inescapably model-dependent.

Figure 13 presents the full set of results, which show the expected progress in poverty
reduction for all 75 countries if observed trends continue. Figure 13 contains the projected
2030 MPI levels obtained by all three models, namely logistic (red lines), linear (green
dot), and CRC (purple dot). If all three coloured dots are below the black line for any
country, then we can state that it is on track to halve poverty—as measured by MPI—

between 2015 and 2030 regardless of the considered model. This powerful result holds for
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Figure 12: Projections for Ethiopia (ETH), India (IND), and China (CHN) (different
models)
ETH IND
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Notes: Authors’ calculations, vertical dashed line at 2015; horizontal dashed line at 50% of My in 2015
according to logistic model.

47 out of the 75 countries. All these findings are also summarized in Table 6, and more

details for each country can be found in Tables A.2 and A.3.

Conversely, if all three coloured dots are above the black line, then the country is off track
to halve poverty regardless of the considered model. If observed trends continue, this is
the case of 18 out of the 75 countries. Fourteen of these off-track countries, all in Africa,
are among the poorest, suggesting that they will require a significant boost of resources

and actions in order to halve poverty.

For 10 countries, our results are model-dependent; they may or may not halve poverty by
2030, depending on which model is posited to represent their poverty dynamics. Neverthe-
less, 9 of these countries would effectively halve poverty if recent linear trends continued.
This positive result arising in light of the linear model is unsurprising given that most
of these countries are around the mid stage of their respective trajectories in terms of

poverty reduction (see Figure 12).

Importantly, by definition, we measure multidimensional poverty by the MPI, as this
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adjusted headcount ratio simultaneously accounts for both incidence and intensity of
poverty. However, it is also informative to assess progress in poverty reduction only in
terms of the simple poverty headcount ratio (i.e. H). Although it is just a partial index of
multidimensional poverty, this ratio has the advantage of being familiar in many poverty
analyses. Table 6 also provides results for the simple headcount ratio, showing that 43
countries will be on track to having the incidence of multidimensional poverty, whereas

18—the same ones as in our MPI analysis—would be off track.

Figure 13: MPI projections for 2015-2030 (if observed trends continue)
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Notes: Authors’ calculations; ¥ indicates that estimated change is not significantly different from 0.

Once we have established whether or not each country is expected to meet the poverty
target by 2030 if observed trends continue, it is necessary to stress-test these results. An
informative analysis for policy actions against poverty consists of identifying meaning-
ful counterfactual trajectories for each country defined by alternative model parameters,
different than those actually obtained through calibration (i.e. 8, «). This allows us to
examine what would happen if poverty followed a different trajectory from the most recent
observed poverty level onward. This analysis is useful to assess the sensitivity of results
to calibrated parameters. On the one hand, it gives an idea of what kind of performance
would be required for a country to meet the poverty target by 2030. On the other hand,

it shows the extent to which countries that are expected to meet the target given their
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Table 6: Number of countries target met status and model
(a) Adjusted headcount ratio (MPI)

CRC Linear Logistic
Robust to model Not met Met Not met Met Not met Met
No 10 1 9 4 6
Yes 18 47 18 47 18 47
Total 28 47 19 56 22 53
(b) Headcount ratio
CRC Linear Logistic
Robust to model Not met Met Not met Met Not met Met
No 14 2 12 6 8
Yes 18 43 18 43 18 43
Total 32 43 20 55 24 51

Notes: Authors’ calculation.

observed performance are at risk of missing it if their observed pace of poverty reduction

decreases.

Based on its theoretical adequacy and good empirical fit, we focus on the logistic model
for these counterfactual analyses. To identify a parsimonious set of meaningful alternative
calibrations, we consider the empirical joint distribution of 4'*9 and Blog across countries
to define ‘median’ performance as a logistic trajectory of MPI corresponding to the median
values of both parameters. In a similar way, we define ‘lower quartile’ and ‘upper quartile’
performance, and interpret them as benchmarks of plausible (i.e. realistic in the sense that

other countries demonstrate similar levels of) ‘slow” and ‘good’ performance, respectively.

To illustrate this, let us revisit the trajectories of MPI for Ethiopia (a high poverty,
early stage country) and India (a mid poverty, mid stage country). Figure 14 shows
that Ethiopia’s observed performance in poverty reduction (red line) is close to being a
‘median’ performance in our dataset (blue dashed line). Given its observed performance
(i.e. with nationally calibrated model parameters), Ethiopia is not expected to meet the
target by 2030, but this would be achievable under an ‘upper quartile’ performance. This
is a powerful result because it shows that meeting the target may be feasible even for a

large country with one of the most challenging poverty conditions globally.

Turning now to India, Figure 14 shows that it is the typical ‘upper quartile’ performing
country in our dataset, and it is expected to meet the target by 2030 of observed trends
continue. Exploring different counterfactual trajectories, we find that India can be ex-
pected to halve poverty by 2030 even if its performance is pushed down to a ‘median’
and even a ‘lower quartile’ performance in poverty reduction. This result is of interest

because even though there was remarkable performance in terms of poverty reduction in
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2005/6 to 2015/16 Alkire et al. (2018), that period ended close to the start of the fifteen

year period under study.

Figure 14: Projections for Ethiopia (ETH) and India (IND) under counterfactual perfor-
mance levels

ETH IND
™ i i i .
| | logistic
} } lower quartile performance
29 | | median performance
° } - } upper quartile performance
o ; - : . } ® M (observed)
| |
| |
= I |
| |
= | S o4 |
- | I
: ! |
———————————————————— |
®.
A logistic } - }
lower quartile performance | . |
- median performance } ******************** % *******************
upper quartile performance } }
® M (observed) | |
[=h o —
T T L T T T T L T T
2000 2010 2020 2030 2000 2010 2020 2030

Notes: Authors’ calculations, vertical dashed line at 2015; horizontal dashed line at 50% of My in 2015
according to logistic model.

Turning now to all 75 countries in our dataset, Figure 15 shows the results under counter-
factual performance in two panels for increased visibility: panel (a) depicts high poverty
countries, and panel (b) low poverty countries. We posit ‘median’ performance in terms
of poverty reduction (yellow dots) as a meaningful benchmark for countries that are found
to be off track according to projections by the logistic model. This regularly implies a
moderate (i.e. realistic) improvement in their observed performance. For countries that
are found to be on track according logistic model-based projections, it is important to note
that, normally, they already perform at a level corresponding to ‘median’ performance or
better. Thus we consider ‘lower quartile’ performance as an appropriate counterfactual

benchmark (green dots) for these countries.

Recall that 22 countries that are off track to meet the target by logistic model-based
projections (see Table 6), 18 of which were off track by all three considered models,
plus 4 additional countries where models disagree. Fifteen of them (10 high poverty, 5
low poverty) would manage to achieve this goal if they boost their poverty reduction
performance to a ‘median’ level. These results show that relatively slow trajectories of
poverty reduction are not pre-determined; there is a chance to increase the likelihood of
halving poverty by 2030 if some of the countries shifted gear. However, Figure 15 also
makes it visible that the challenge is greater some of the poorest countries, which are all
in Africa, as these would not halve poverty by 2030, even if current performance were
boosted.

Conversely, we also find that several countries among the 53 that would be expected

to meet the target according to the logistic model-based projections if observed trends
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Figure 15: MPI projections for 2015-2030 for alternative scenarios
(a) high poverty countries
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continue are actually at risk of failing to halve poverty if their poverty reduction dynamics
are interrupted. This is the case of 9 high poverty countries and 2 low poverty countries.
These results are as important as the previous ones in the sense that they offer compelling
evidence for the need of continuity and sustainability of policy efforts in the quest to halve

poverty by 2030.

6 The Impact of COVID-19 on Multidimensional Poverty

The COVID-19 pandemic spread rapidly throughout the world in the early months of
2020 and is anticipated to have significant impacts on multidimensional poverty levels and
trends, disrupting the projections developed above. Real world data are not yet available
to measure the impact of the pandemic on multidimensional poverty, so we conduct micro-
simulations at the country level, which we then combine with our projection models to
determine the potential impact on global multidimensional poverty in 2020. This enables
us to assess the potential setback in years of poverty reduction on the global level due to
the COVID-19 pandemic.

6.1 Microsimulations of COVID-19 Impact

Initial microsimulations were implemented using the underlying micro datasets of the
global MPT 2020 (Alkire, Kanagaratnam, and Suppa, 2020b), which cover 107 countries.
Ten of these countries, however, lack the nutrition indicator, which is essential for our sim-
ulations.® We therefore implemented the microsimulations for the remaining 97 countries.
For a list of these countries and the underlying datasets, see Table A.1 of the appendix. In
order to determine the potential impact of the pandemic on multidimensional poverty in
2020 we need to combine the microsimulation results with results of our projection mod-
els (section 5), so our analysis in section 6.3 below will focus on those 70 countries that
both include the nutrition indicator and for which we have projection results. A detailed

explanation of the assumptions behind our microsimulations is presented in Appendix B.

The currently unfolding COVID-19 pandemic is impacting the lives and livelihoods of
people across the globe in numerous ways. Considering the indicators of multidimensional
poverty as measured by the global MPI, we expect substantial impacts through two that

are being severely affected by the pandemic—nutrition and children’s school attendance.”

6Relevant information for the nutrition indicator is not collected in the surveys of Afghanistan, Brazil,
Colombia, Cuba, Dominican Republic, Indonesia, Papua New Guinea, Philippines, Ukraine or Viet Nam.

"The COVID-19 pandemic is also likely to have medium- and long-term impacts on other global MPI
indicators. For example, child mortality is anticipated to increase where health systems are disrupted
(Roberton et al., 2020).
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A common policy response to the COVID-19 pandemic across countries of all levels of
development has been to close schools as a part of national or local lockdowns. UNESCO
data suggest that school closures peaked in April 2020, with over 91 percent of the world’s
learners out of school. Subsequently, however, this proportion fell gradually to just over
60 percent in July 2020.°

In order to simulate the shock to school attendance, we assume that 50 percent of chil-
dren attending school experience continued interruption to school attendance, which can
be considered a conservative assumption allowing for moderate improvements over the
remainder of 2020. More specifically, we randomly draw 50% of those children, who given
their age should attend primary school. This procedure takes both country-specific entry
age and duration of primary schooling into account.’ If a child is selected not to attend
school, the entire household is considered deprived in school attendance, which follows
the indicator definition of the global MPI.*

The COVID-19 pandemic has also disrupted livelihoods and food supply chains globally.
The World Food Programme (WFP) estimates that the number of people facing acute food
insecurity may increase by 130 million across 55 countries (WFP, 2020). Extending this
to all 70 countries covered in our analysis, we anticipate that around 25 percent of people
who were multidimensionally poor or vulnerable but who were not undernourished before
the pandemic may become undernourished.'! We focus on those who were vulnerable or
already poor, to account for their elevated risk of experiencing such a disruption. We
consider this a moderate scenario for simulating the potential impact of the pandemic on

the nutrition indicator.

In order to simulate the shock to nutrition we randomly draw 25% of those individuals
who are either vulnerable to multidimensional poverty or are already multidimensionally
poor, but do not suffer from undernutrition. If an individual is selected to suffer from un-
dernutrition, their entire household is considered to be deprived in the nutrition indicator,

which follows the respective indicator definition of the global MPI.'?

8Data accessed via https://en.unesco.org/covid19/educationresponse on 2 July 2020, see also
UNESCO (2020).

9Data on entrance age and duration of primary school is provided by UNESCO under http://data.
uis.unesco.org/.

1ONote that, for each child selected, there may or may not result an increase in multidimensional poverty,
but it cannot decrease. If the child’s household has no other deprivations then the school attendance
deprivation is not sufficient for it to reach the threshold to be considered multidimensionally poor. If
there had already been a child in the household in the relevant age bracket who was out of school, the
household would already have been deprived in school attendance and so deprivation according to the
indicator definition of the global MPI will not increase.

1A household is considered to be vulnerable to multidimensional poverty as measured by the global
MPT if its weighted deprivation count is between 20-33% of the maximum possible deprivations (see e.g.
Alkire et al., 2020b,a).

12Note that there may or may not result an increase in multidimensional poverty, but it cannot decrease.
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Figure 16: Simulated Impact of COVID-19 on Multidimensional Poverty
(a) Upper Impact on Nutrition (50%)
(1) With School Attendance (50%) (ii) Without School Attendance
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Notes: Simulated increase in multidimensional poverty under microsimulations implementing indicated
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Besides the 25% risk scenario, we also explore other risk levels to simulate the shock to
nutrition. A lower risk of 10% is motivated by the potential implementation of policy
measures throughout 2020 that seek to prevent the rise in food insecurity as well the
possibility that COVID-induced deprivations in nutrition might be less associated with
other deprivations and thus not focused on the multidimensionally poor or vulnerable.
This we consider a lower-impact scenario. Finally, there is also reason to consider a
worst-case or upper-impact scenario with 50%-risk of pandemic-induced undernutrition
for the vulnerable or already poor (but not undernourished). The WFP estimates only
represent a part of the populations of the countries that they analyse; in a worst-case
scenario similar impacts may arise for the remainder of their populations as well as the

remaining countries that we analyse.

We implement microsimulations of the impact on multidimensional poverty for each of
the 97 countries, under each of these scenarios. As the impact on school attendance may
be less persistent than the impact on nutrition, we explore the nutrition scenarios also on
their own, yielding a total of six scenarios. The simulated impact on multidimensional

poverty (M) under all six scenarios is illustrated in Figure 16.

6.2 Modelling COVID-19 Impact in the Context of Changing
Poverty

Our microsimulations necessarily model the impact of the COVID-19 pandemic had it
taken place at the same time as the surveys. In fact, the pandemic took hold globally in
the early months of 2020.

We will need to account for the progress in poverty reduction that countries have made
since the time of their surveys, acknowledging not only that baseline poverty levels (and
the underlying distribution of deprivations) will have changed in each country, but also
that the impact of the pandemic may be different from the result of our simulation,
as a result of these changes. From Figure 16, where the relationship between level of
poverty and simulated impact of the pandemic is increasing over much of the domain, it
is apparent that most countries that have reduced poverty since their survey are likely
to experience a smaller impact from the pandemic in 2020 than they would have done
at the time of their survey. Conversely, at very high levels of multidimensional poverty
the relation between level and simulated impact reverses. This is quite natural, as in

the poorest countries where many households are already deprived in the nutrition and

If there had already been an individual in the household who was undernourished, the household would
already have been deprived in nutrition and so deprivation according to the indicator definition of the
global MPI will not increase.
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school attendance indicators, there is less ‘space’ for the pandemic to increase deprivations.
Therefore, some of the poorest countries that have reduced poverty since their survey may
actually experience a greater impact from the pandemic in 2020 than they would have

done at the time of their survey.

To account for these effects, we start by modelling the relationship between simulated
effects of the pandemic and baseline poverty levels across countries. For each scenario
we estimate simple parametric models of simulated impacts on multidimensional poverty
M and its incidence H, as a function of incidence H and intensity A. There is one
observation for each country, whose time-period is the global MPI survey date in each

case; time subscripts are dropped to simplify notation.

Table 7: COVID-19 Model Selection for H (Moderate Nutrition (25%) and Education
(50%) Scenario)

(1) (2) (3) (4) (5)
N H AN H AN H ANH AH
H 0.125*** 0.743*** 0.999*** 1.550*** 1.106***
(4.94) (15.68) (9.02) (14.58) (5.54)
H? -0.830*** -1.666*** -0.551*
(-13.72) (-4.98) (-2.60)
H? 0.662*
(2.54)
A 0.432* -0.141
(2.24) (-0.49)
HA -2.683*** -0.930
(-13.41) (-1.33)
Constant 0.0907*** 0.0409*** 0.0316*** -0.115 0.0954
(9.07) (5.97) (4.17) (-1.56) (0.88)
Observations 97 97 97 97 97
Adjusted R? 0.196 0.729 0.744 0.731 0.747

Notes: Own calculations, ¢-statistics in parentheses, indicated levels of significance are * p < 0.05, **
p < 0.01, *** p < 0.001. See A.1 for the list of datasets underlying these results.

Table 7 reports results from regressions of A*H, the simulated impact of the pandemic on
H, on powers of H and A. The simulated impacts are those obtained under the scenario in
which the pandemic has a moderate impact on nutrition (25% of the poor or vulnerable
but not undernourished become undernourished) and an impact on education (50% of
primary aged children in school stop attending). The quadratic specification in H (model
2) explains 73% of the variation in A*H across countries, clearly dominating the linear
specification (model 1). Adding a cubic term (model 3) or A and its interaction with H
(models 4 and 5) increases fit only marginally, so we select the quadratic model. Similar

results are obtained for all six scenarios. The chosen model is thus

N H, = o+ 1 Hg + o H? + us. (11)
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Given least squares estimates 4y, 41 and 7., the residual for country s is
ﬁs = A*]{s - f)?O - ,)//\IHS - VQHSQ (12>

The Breusch-Pagan test rejects the hypothesis of homoskedasticity (p = 0.008 for this

scenario).

Table 8: COVID-19 Model Selection for M (Moderate Nutrition (25%) and Education

(50%) Scenario)

(1) (2) (3) (4) (5) (6) (7) (8)
A M A M A M A M A M A M A M A M
H 0.156***  0.458***  0.896***  0.808***  0.899***
(11.98)  (17.42)  (16.51)  (7.71)  (16.54)
H? -0.406*** -0.108
(-12.09) (-0.97)
A 0124  0.0122
(1.27) (0.08)
HA -1.348%*  -1.004**  -1.206***
(-13.21)  (-2.72)  (-13.80)
M 0.242%**  0.778***  1.143**
(9.47) (17.09)  (11.92)
M? 1178 -3.166***
(-12.54)  (-6.64)
M3 2.526%**
(4.24)
Const.  0.0386™* 0.0142***  -0.0299  0.0113  0.0176*** 0.0475***  0.0220***  0.0144"**
(7.54) (3.75) (-0.79)  (0.20) (5.31) (8.64) (5.58) (3.55)
Obs. 97 97 97 97 97 97 97 97
Adj. R 0.598 0.841 0.866 0.866 0.866 0.480 0.804 0.834

Notes: Own calculations, t-statistics in parentheses, indicated levels of significance are * p < 0.05, **
p < 0.01, ** p < 0.001. See A.1 for the list of datasets underlying these results.

Table 8 reports results from regressions of A* M, the simulated impact of the pandemic on
M, on powers of H, A and M. The simulated impacts are again those obtained under the
scenario in which the pandemic has a moderate impact on nutrition (25% of the poor or
vulnerable but not undernourished become undernourished) and an impact on education
(50% of primary aged children in school stop attending). The quadratic specification in
H (model 2) explains 84% of the variation in A*M across countries, again dominating the
linear specification (model 1). Replacing H? with A and its interaction with H (model 3)
increases fit to 87%, not changed by addition of H? (model 4) or dropping A (model 5),

whose coefficient was insignificant in model 3.

We may ask whether modelling A*M as a function of M itself performs any better than
as a function of H and A. Models (3-5) explain more of the variation in A*M than

polynomial functions of M (models 6-8), so we choose model 5 as our preferred model
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for the simulated impact of the pandemic A*M. Similar results are obtained for all six

scenarios. The chosen model is thus

AN'Mg=mno+mHs +neHAs + vs. (13)
Given least squares estimates 7o, 71 and 72, the residual for country s is

0s = &My —1jo — i Hs — 1) H A, (14)

The Breusch-Pagan test rejects the hypothesis of homoskedasticity (p = 0.001 for this

scenario).

We recognise that country-specific factors are fundamentally important in modelling the
impact of the pandemic: the existing joint distribution of global MPI indicators varies
across countries, making poverty in some countries more sensitive than in others to the
simulated scenarios. This is apparent in Tables 7 and 8; our preferred models, despite
achieving high explanatory power, do not explain all of the variation in simulated impacts
across countries. It is also apparent in Figure 16, which illustrates moderate variation in

simulated impacts conditional on the baseline level of poverty.

It would, therefore, be naive to implement predictions from (11) and (13) without ad-
justing for country-specific effects. That is, to predict the impact of the pandemic on

incidence of multidimensional poverty H for country s in 2020 as

AHL(2020) = o + 1 H'°5(2020) + 7, (H°%(2020))” .
Implementing this model, a prediction at the time of the country’s survey would not
coincide with the simulated impact.

This could be corrected by adding the country-specific residual (12), so that
AHL(2020) = o + 31 H'*5(2020) + 5 (H'*5(2020))° + .

However, this approach allows predicted impacts to be negative, which is not possible in
the scenarios implemented, and does not respect the heteroskedasticity observed. Rather
than making additive country-specific adjustments, we therefore make multiplicative ad-

justments, computing country-specific adjustment factors

. ANH,
o+ 1 H, + JoH2

so that

~ ~

AH,(2020) = y (Fo + 1 111°%(2020) + 55 (H1%(2020))°) . (15)
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Figure 17: Country-Specific Models of Simulated Impact of COVID-19 on Incidence of
Multidimensional Poverty
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Notes: Simulated increase in multidimensional poverty incidence (H) under microsimulations imple-
menting the moderate nutrition (25%) and school attendance (50%) scenario. Selected countries labelled:
China (CHN), India (IND), Sierra Leone (SLE) and Ethiopia (ETH). Countries are colour-coded by world
region: @ Arab States; @ East Asia and the Pacific; @ Europe and Central Asia; @ Latin America and the
Caribbean; @ South Asia; @ Sub-Saharan Africa. Lines represent country-specific models.

Equation (15) is our country- and scenario-specific model for the impact of the pandemic
on the incidence of multidimensional poverty. Figure 17 illustrates such models for the
scenario in which the pandemic causes a moderate impact on nutrition (25% of the poor
or vulnerable but not undernourished become undernourished) and and impact on school

attendance (50% of primary age children in school stop attending).

Similarly, for M we compute adjustment factors

. A M,
’ ﬁ0+ﬁ1Hs+ﬁ2HsAs.

giving our country- and scenario-specific model for the impact of the pandemic on the

level of multidimensional poverty

AN M, (2020) = oy (1o + 771 FT°%(2020) 4 135 28 (2020) A™1(2020)) . (16)
Figure 18 illustrates such models for the scenario in which the pandemic causes a moder-
ate impact on nutrition (25% of the poor or vulnerable but not undernourished become
undernourished) and and impact on school attendance (50% of primary age children in

school stop attending).
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Figure 18: Country-Specific Models of Simulated Impact of COVID-19 on Multidimen-
sional Poverty
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Notes: Simulated increase in multidimensional poverty (M) under microsimulations implementing the
moderate nutrition (25%) and school attendance (50%) scenario. Selected countries labelled: China
(CHN), India (IND), Sierra Leone (SLE) and Ethiopia (ETH). Countries are colour-coded by world
region: @ Arab States; @ East Asia and the Pacific; @ Europe and Central Asia; @ Latin America and the
Caribbean; ® South Asia; @ Sub-Saharan Africa. Lines represent country-specific models.

6.3 Impact on Global Poverty Projections

We now combine the results of the microsimulations with our preferred logistic model
projection results from section 5, to model the impact of the COVID-19 pandemic on
global poverty in 2020. Throughout this section we restrict attention to those 70 countries
that include the nutrition indicator and for which we have projection results (see Table
A1 for a list).

Our assessment of the impact of the pandemic on global poverty follows several steps.

(1) For each country, we:

(a) Calibrate the logistic projection models using the Changes over Time data as
described in section 4.4 and apply the calibrated S parameters to project the
global MPI forward to 2020.

(b) Simulate the impact if the pandemic had taken place concurrently with the

survey, as described in section 6.1.

(c¢) Apply the country-, index- and simulation-specific COVID-19 impact model
described in section 6.2 to model the impact of the pandemic, given that it
takes place in 2020.
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(2) For all 70 countries analysed, we then:

(a) Aggregate the projected global MPI (M) trajectories (weighting by UN-DESA

medium-fertility population projections for each year).

(b) Aggregate the simulation-specific COVID-19 impacts on M to determine the
aggregate increase in multidimensional poverty across the 70 countries, again

population-weighted.

(c) Compare the resulting level of aggregate multidimensional poverty (M) to its
aggregate trajectory, to determine the number of years that the pandemic
would set back poverty reduction across the 70 countries under the scenario

implemented.
(3) For all 70 countries analysed, we also:

(a) Combine the simulation-specific COVID-19 impact on H with the UN-DESA
medium-fertility population projection for 2020 to determine the potential in-

crease in the number of people in multidimensional poverty in that scenario.

(b) Aggregate the increases in number of people in multidimensional poverty to
determine the total number of people pushed into poverty in that scenario,

across the 70 countries.

Our aggregate results for each of the scenarios are summarised in Table 9 and illustrated
in Figure 19. Pre-COVID-19 projections are 0.095 for MPI value and 941 million for
the number of people in multidimensional poverty across the 70 countries in 2020. We
find that the COVID-19 pandemic threatens to considerably aggravate this situation,
erasing significant progress achieved in poverty reduction. The impact in the scenarios
with combined nutrition and school attendance shocks is large. The MPI value rises
up to 0.164 in the 50%-nutrition and 50% school attendance (upper-limit) simulation,
which implies 547 million more people living in multidimensional poverty. This situation
corresponds to a 9.9-year setback to achieved progress in poverty reduction. Even in
the scenarios that consider solely nutrition shocks, the MPI value could rise up to 0.134
(50%-nutrition), with 310 million more people in poverty. This corresponds to a 6.4-year
setback in the poverty reduction process. Even in our most conservative scenario, the
low-impact scenario in which 10% of the poor and vulnerable but not undernourished
become undernourished, with no persistent impact on school attendance, we find that
131 million more people would be poor (with an MPI value of 0.112) setting us back 3.1

years.
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Table 9: Summary of COVID-19 Simulation Results

COVID-19 scenario Projection for 2020
Selection probabilities
Nutrition School MPI A # poor Setback
attendance
(%) value (million) (years)
10 - 0.112 131 3.1
25 - 0.125 237 5.2
50 - 0.134 310 6.4
10 50 0.144 413 7.8
20 50 0.156 490 9.1
50 50 0.164 547 9.9

Notes: Authors’ calculations. For a detailed description of the underlying scenarios see section section
6.1.

Figure 19: Impact of COVID-19 on Multidimensional Poverty
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Notes: For a detailed description of the underlying scenarios see section 6.1.

6.3.1 Data Complexities

In most cases (59 of the 70 countries) the global MPI micro data source is the same as

that used for the t, harmonised estimates in the Changes over Time dataset; however, for
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11 countries the global MPI micro data is more recent.'® Furthermore, the harmonisation
process resulted in some minor discrepancies between global MPI and Changes over Time

estimates of multidimensional poverty.*

Our modelling approach allows for discrepancies in timing and estimates by applying the
[ parameters obtained from calibration of the projection models with the Changes over
Time data while adjusting the o parameters where necessary to align with the global
MPI estimates. In the case of timing discrepancies, the implicit assumption is that [ is
stable over time. As the calibrated § parameters vary remarkably little across countries
at different stages of the development process (see section 4.4), we are relaxed about this
assumption. Similarly, the harmonised estimates of multidimensional poverty differ very
little from the global MPI estimates, so we would not expect there to be any significant
differences in the [ parameters, were it possible to calibrate them for the global MPI

estimates.”

7 Concluding Remarks

In this paper, we present projections of multidimensional poverty for 75 countries. Fur-
thermore, to explore the impact of COVID-19 on multidimensional poverty levels globally,
we evaluate plausible setbacks to progress in poverty reduction induced by simulated de-
privations in nutrition and school attendance. The value-added of this paper is two-fold.
On the one hand it proposes methodological advancements to identify multidimensional
poverty time-paths, and on the other hand it offers novel empirical results that are useful
for policy purposes. Throughout the paper we focus on the most widely known approach

to multidimensional poverty measurement—namely the global MPI and its subindices.

This paper develops and calibrates models for multidimensional poverty trajectories draw-
ing on two periods of data for 75 countries in the developing world. Our analytical
approach allows us to accommodate current data limitations while exploring, theoreti-
cally and empirically, alternative canonical models for these trajectories: linear, constant
relative change and logistic. Among these three options, we make a strong case for logis-
tic models as the most appropriate for the subindices of multidimensional poverty, both
because they respect the double-bounded nature of these indices and because their the-

oretical characteristics are strongly supported by our cross-country data. On these solid

13These 11 countries are Democratic Republic of the Congo, Gambia, Guinea, Kyrgyzstan, Lesotho,
Mali, Mongolia, Suriname, Togo, Zambia and Zimbabwe.

14These discrepancies are very small; the correlation between estimates of H in the global MPI and
Changes over Time data is 0.999 across the 59 countries for which the same data source is used, and
0.998 for M.

I5This is not possible, because we need at least two observations at different points in time to calibrate
the 8 parameters.
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grounds, we were able to calibrate a set of country-specific trajectories of multidimen-
sional poverty, yielding projections of yearly poverty levels from 2000 to 2030 for all 75

considered countries.

Our empirical results rely on a unique, strictly harmonized dataset of multidimensional
poverty changes over time, which we used to calibrate all three models for each country
(linear, constant relative change and logistic). This allowed us to perform an empirical
assessment of progress made so far in terms of poverty reduction that is closely related
to SDG 1, target 1.2: we make the first comprehensive evaluation of whether countries
would be on track to halve multidimensional poverty between 2015 and 2030 if observed
trends continue. Our country-specific calibrated trajectories allowed us to a) project the
level of poverty as measured by the MPI, then b) establish the country-specific target of
halving multidimensional poverty, and ¢) compare the latter with the projected poverty
level in 2030. For 47 countries, all three models agree that if the observed trends continue,
the country will be ‘on track’ to halving multidimensional poverty, while for 18 countries,
all three models agree that they will be ‘off track’ to meet this target. For ten countries,
the results are model-dependent. If the trajectory were to be assessed by the simple
headcount ratio (incidence) rather than the full measure of multidimensional poverty (the
value of the MPI), 43 countries would be on track and the same 18 would be off track.

Recognising that trajectories may accelerate or decelerate, we stress-tested these findings
by establishing the stability of these projection results under counterfactual trajectories.
Projections based on the logistic model indicate that 22 countries will off track to meet
the target if observed trends continue—this agrees with the other two models for 18 coun-
tries, and it is model-specific for an additional 4. If we define the ‘median’ performance
in terms of poverty reduction as a trajectory with the observed median annual rate of
poverty reduction adjusted by poverty level, then of these 22 countries, 15 will halve MPI
if their poverty reduction performance is boosted up to that level. Nevertheless, 7 African
countries, some of the poorest ones, will remain off track. Conversely, 11 countries that are
on track could falter if their speed of reduction diminished, but what is somewhat heart-
ening is the stability of the positive trajectories even in the face of moderate deceleration

of progress.

However, the projections are based on trajectories that obtained prior to the COVID-19
pandemic and accompanying economic upheaval. In the present context, it is essential
to adjust expectations of progress given the difficult human tragedies that worryingly
loom ahead. A particularly complicated aspect is that poverty measures and trends
refer to the living conditions of survivors. High rates of fatality among the poor do not
increase measured poverty except insofar as they impact the child mortality indicator

of the global MPI, or leave the survivors worse off. Our simulations of the impact of
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COVID-19, therefore, simulate the potential increase in deprivations among survivors,
using scenarios that reflect predictions of international agencies. Using the underlying
2020 global MPI, the most recent source to compute internationally comparably measures
of multidimensional poverty, increases in undernutrition (10%, 25%, and 50% of the poor
and vulnerable but not undernourished) are simulated, as are increases in out of school
primary children (50% of those in school) across the entire distribution. The increases in
poverty levels as measured by the MPI are then adjusted to account for progress to 2020,
showing that the COVID-19 shock is likely to set back global multidimensional poverty
reduction by at least 3.1 years, and up to 9.9 years.

This paper represents a step forward to a fully-fledged analysis of multidimensional
poverty trends. It manages to accommodate important current data limitations using a
sound analytical parametric approach. As more data becomes available, it will be possible
to introduce complementary statistical approaches, including non-parametric techniques.
It may also become possible to assess the role played by covariates of multidimensional
poverty in predicting its trends and levels. When it comes to assessing the impact of the
COVID-19 pandemic, its fast evolving nature and inherent country context-dependence
must be taken into account. Yet any well-informed and methodologically grounded as-
sessment of its possible effects, albeit partial, sheds useful light, to ignite debates and
hopefully trigger policy action to prevent (more) damage to human lives and to progress

made so far towards ending poverty in all its forms.

In his last book, Measuring Poverty Around the World, Atkinson aimed to “provide the
evidence about the extent and nature of poverty that is necessary to spur action and to
design effective policies” (Atkinson, 2019). Recognising that exercises related to global
poverty may be highly controversial, and flawed, but nonetheless useful, this paper has
sought to complement efforts to improve the measurement of global poverty, by a new
combination of techniques to project multidimensional poverty trajectories and simulate
shocks. Given the relevance and level of complexity, this paper is a first rather than a last
word on the subject. The aim, through critical exchange, is to strengthen the methods

available in ways that might spur both discussion and action.
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A Datasets and Additional Results

Table A.1: Survey datasets

Ch;ri‘if t‘i"er Ch;?izs t‘;ver Global MPI Analysis

Code  Name Survey Year Survey Year Survey Year Projection Simulation
AFG  Afghanistan MICS  2010/11  DHS  2015/16  DHS  2015/16
AGO  Angola DHS 2015/16 °
ALB Albania DHS 2008,/09 DHS 2017/18 DHS 2017/18 . .
ARM  Armenia DHS 2010 DHS 2015/16 DHS 2015/16 . .
BDI Burundi DHS 2010 DHS 2016/17 DHS 2016/17 . .
BEN Benin MICS 2014 DHS 2017/18 DHS 2017/18 . °
BFA Burkina Faso MICS 2006 DHS 2010 DHS 2010 . .
BGD  Bangladesh DHS 2014 MICS 2019 MICS 2019 ° .
BIH Bosnia and Herzegovina MICS 2006 MICS 2011/12 MICS 2011/12 ) .
BLZ Belize MICS 2011 MICS 2015/16 MICS 2015/16 . .
BOL  Bolivia DHS 2003 DHS 2008 DHS 2008 . .
BRA  Brazil PNAD 2015
BRB Barbados MICS 2012 .
BTN Bhutan MICS 2010 )
BWA  Botswana BMTHS  2015/16 °
CAF Central African Republic MICS 2000 MICS 2010 MICS 2010 . .
CHN  China CFPS 2010 CFPS 2014 CFPS 2014 . .
CIV Cote d’Ivoire DHS 2011/12 MICS 2016 MICS 2016 . .
CMR  Cameroon DHS 2011 MICS 2014 MICS 2014 ° .
COD  Congo, DR DHS 2007 DHS 2013/14 MICS 2017/18 . .
COG Congo DHS 2005 MICS 2014/15 MICS 2014/15 . .
COL  Colombia DHS 2010 DHS 2015 DHS 2015/16 .
COM  Comoros DHS 2012 .
CUB  Cuba ENO 2017
DOM  Dominican Republic DHS 2007 MICS 2014 MICS 2014 .
DZA  Algeria MICS 2012/13 .
ECU  Ecuador ECV 2013/14 .
EGY  Egypt DHS 2008 DHS 2014 DHS 2014 . .
ETH Ethiopia DHS 2011 DHS 2016 DHS 2016 . .
GAB Gabon DHS 2000 DHS 2012 DHS 2012 . .
GEO  Georgia MICS 2018 .
GHA Ghana MICS 2011 DHS 2014 DHS 2014 . .
GIN Guinea DHS 2012 MICS 2016 DHS 2018 . .
GMB  Gambia MICS 2005,/06 DHS 2013 MICS 2018 . .
GNB  Guinea-Bissau MICS 2014 .
GTM  Guatemala DHS 2014/15 .
GUY Guyana DHS 2009 MICS 2014 MICS 2014 . .
HND  Honduras DHS  2005/06 ~ DHS  2011/12  DHS  2011/12 . .
HTI Haiti DHS 2012 DHS 2016/17 DHS 2016/17 . .
IDN Indonesia DHS 2012 DHS 2017 DHS 2017 .
IND India DHS 2005/06 DHS 2015/16 DHS 2015/16 . .
1RQ Iraq MICS 2011 MICS 2018 MICS 2018 . .
JAM  Jamaica JSLC 2010 JSLC 2014 JSLC 2014 . .
JOR Jordan DHS 2012 DHS 2017/18 DHS 2017/18 . .
KAZ  Kazakhstan MICS 2010/11 MICS 2015 MICS 2015 . .
KEN Kenya DHS 2008/09 DHS 2014 DHS 2014 . .
KGZ Kyrgyzstan MICS 2005/06 MICS 2014 MICS 2018 ° .
KHM  Cambodia DHS 2010 DHS 2014 DHS 2014 . .
KIR Kiribati MICS 2018/19 .
LAO  Lao PDR MICS- 2011/12 MICS 2017 MICS 2017 . .

DHS
LBR  Liberia DHS 2007 DHS 2013 DHS 2013 . .
LBY Libya PAPFAM 2014 .
LCA Saint Lucia MICS 2012 .
LKA Sri Lanka SLDHS 2016 .
LSO Lesotho DHS 2009 DHS 2014 MICS 2018 . .

45



... Table A.1 continued.

Changes over

Changes over

Time t; Time t Global MPI Analysis
Code Name Survey Year Survey Year Survey Year Projection Simulation
MAR  Morocco PAPFAM 2011 °
MDA Moldova DHS 2005 MICS 2012 MICS 2012 . .
MDG  Madagascar DHS 2008,/09 MICS 2018 MICS 2018 . .
MDV  Maldives DHS 2016/17 .
MEX  Mexico ENSANUT 2012 ENSANUT 2016 ENSANUT 2016 ° °
MKD  North Macedonia MICS 2005/06 MICS 2011 MICS 2011 . .
MLI Mali DHS 2006 MICS 2015 DHS 2018 ° °
MMR  Myanmar DHS 2015/16 .
MNE  Montenegro MICS 2005/06 MICS 2013 MICS 2018 .
MNG  Mongolia MICS 2010 MICS 2013 MICS 2018 . °
MOZ Mozambique DHS 2003 DHS 2011 DHS 2011 . .
MRT Mauritania MICS 2011 MICS 2015 MICS 2015 ° °
MWI  Malawi DHS 2010 DHS 2015/16 DHS 2015/16 . .
NAM  Namibia DHS 2006,/07 DHS 2013 DHS 2013 ° °
NER Niger DHS 2006 DHS 2012 DHS 2012 . .
NGA Nigeria DHS 2013 DHS 2018 DHS 2018 . .
NIC Nicaragua DHS 2001 ENDESA 2011/12 DHS 2011/12 . .
NPL Nepal DHS 2011 DHS 2016 DHS 2016 . .
PAK Pakistan DHS 2012/13 DHS 2017/18 DHS 2017/18 . °
PER Peru DHS- 2012 DHS 2018 ENDES 2018 ° .
Cont
PHL Philippines DHS 2013 DHS 2017 DHS 2017 .
PNG Papua New Guinea DHS 2016/18
PRY Paraguay MICS 2016 .
PSE Palestine, State of MICS 2010 MICS 2014 MICS 2014 . .
RWA  Rwanda DHS 2010 DHS 2014/15 DHS 2014/15 . °
SDN Sudan MICS 2010 MICS 2014 MICS 2014 . .
SEN Senegal DHS 2005 DHS- 2017 DHS 2017 ° °
Cont
SLE Sierra Leone DHS 2013 MICS 2017 MICS 2017 ° °
SLV El Salvador MICS 2014 .
SRB Serbia MICS 2010 MICS 2014 MICS 2014 . .
SSD South Sudan MICS 2010 .
STP Sao Tome and Principe DHS 2008/09 MICS 2014 MICS 2014 . .
SUR Suriname MICS 2006 MICS 2010 MICS 2018 ° °
SWZ eSwatini MICS 2010 MICS 2014 MICS 2014 . .
SYC Seychelles QLFS 2019 °
SYR Syria PAPFAM 2009 .
TCD Chad MICS 2010 DHS 2014/15 DHS 2014/15 . .
TGO  Togo MICS 2010 DHS 2013/14  MICS 2017 . .
THA Thailand MICS 2012 MICS 2015/16 MICS 2015/16 . .
TJK Tajikistan DHS 2012 DHS 2017 DHS 2017 ° °
TKM  Turkmenistan MICS 2006 MICS 2015/16 MICS 2015/16 . .
TLS Timor-Leste DHS 2009/10 DHS 2016 DHS 2016 ° °
TTO Trinidad and Tobago MICS 2006 MICS 2011 MICS 2011 .
TUN Tunisia MICS 2018 °
TZA Tanzania DHS 2010 DHS 2015/16 DHS 2015/16 . .
UGA Uganda DHS 2011 DHS 2016 DHS 2016 . .
UKR  Ukraine DHS 2007 MICS 2012 MICS 2012 .
VNM Vietnam MICS 2010/11 MICS 2014 MICS 2013/14
YEM  Yemen MICS 2006 DHS 2013 DHS 2013 °
ZAF South Africa DHS 2016 .
ZMB Zambia DHS 2007 DHS 2013/14 DHS 2018 ° °
ZWE  Zimbabwe DHS 2010/11 DHS 2015 MICS 2019 . .
Notes: Projection indicates countries analysed in section 5, Simulation indicates those countries for which

COVID-19 impacts were simulated and analysed in sections in sections 6.1 and 6.2. The global setback analysis

is based on (sections 6.3) is based on the intersection of both.
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Table A.2: Calibrated Parameters, Poverty Targets, and Projections

Country 08 M(2015) M (2030) P:l?;egretgf Outcome flz/([) (1)3(11121*5
ALB 0.122 0.004 0.001 0.002 Met Yes
ARM 0.156 0.001 0.000 0.000 Met Yes
BDI 0.067 0.422 0.280 0.211 Not met Yes
BEN -0.035 0.351 0.417 0.175 Not met Yes
BFA 0.056 0.531 0.388 0.265 Not met Yes
BGD 0.128 0.157 0.026 0.079 Met Yes
BIH 0.111 0.006 0.001 0.003 Met Yes
BLZ 0.094 0.021 0.005 0.010 Met Yes
BOL 0.138 0.039 0.005 0.019 Met Yes
CAF 0.067 0.431 0.270 0.216 Not met Yes
CHN 0.217 0.014 0.001 0.007 Met Yes
CIV 0.115 0.252 0.069 0.126 Met Yes
CMR 0.030 0.238 0.171 0.119 Not met Yes
COD 0.032 0.376 0.276 0.188 Not met Yes
COG 0.133 0.108 0.017 0.054 Met Yes
COL 0.043 0.020 0.011 0.010 Not met No
DOM 0.106 0.014 0.003 0.007 Met Yes
EGY 0.088 0.017 0.004 0.008 Met Yes
ETH 0.081 0.500 0.315 0.250 Not met Yes
GAB 0.074 0.056 0.019 0.028 Met Yes
GHA 0.081 0.107 0.031 0.053 Met Yes
GIN 0.109 0.355 0.108 0.178 Met Yes
GMB 0.076 0.255 0.105 0.127 Met No
GUY 0.109 0.012 0.002 0.006 Met Yes
HND 0.149 0.058 0.006 0.029 Met Yes
HTI 0.077 0.207 0.087 0.103 Met Yes
IDN 0.137 0.018 0.002 0.009 Met Yes
IND 0.115 0.129 0.026 0.064 Met Yes
IRQ 0.070 0.044 0.015 0.022 Met Yes
JAM 0.033 0.017 0.010 0.009 Not met No
JOR 0.035 0.002 0.002 0.001 Not met Yes
KAZ 0.146 0.002 0.000 0.001 Met Yes
KEN 0.099 0.167 0.050 0.084 Met Yes
KGZ 0.127 0.011 0.002 0.006 Met Yes
KHM 0.108 0.157 0.038 0.079 Met Yes
LAO 0.148 0.140 0.016 0.070 Met Yes
LBR 0.153 0.281 0.047 0.140 Met Yes
LSO 0.114 0.146 0.032 0.073 Met Yes
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... Table A.2 continued.

Country 08 M(2015) M (2030) P:l?;egretgf Outcome flz/([) (])3(11121*5
MDA 0.080 0.003 0.001 0.001 Met Yes
MDG 0.043 0.391 0.291 0.196 Not met Yes
MEX 0.040 0.026 0.013 0.013 Not met No
MKD 0.251 0.003 0.000 0.001 Met Yes
MLI 0.072 0.417 0.254 0.209 Not met Yes
MNG 0.161 0.043 0.004 0.021 Met Yes
MOZ 0.098 0.338 0.130 0.169 Met No
MRT 0.128 0.260 0.051 0.130 Met Yes
MWI 0.107 0.260 0.081 0.130 Met Yes
NAM 0.049 0.147 0.077 0.074 Not met No
NER 0.065 0.555 0.367 0.278 Not met Yes
NGA 0.039 0.274 0.183 0.137 Not met Yes
NIC 0.123 0.049 0.007 0.025 Met Yes
NPL 0.117 0.143 0.028 0.072 Met Yes
PAK 0.051 0.215 0.125 0.108 Not met Yes
PER 0.100 0.039 0.009 0.020 Met Yes
PHL 0.066 0.032 0.011 0.016 Met Yes
PSE 0.076 0.003 0.001 0.002 Met Yes
RWA 0.151 0.248 0.041 0.124 Met Yes
SDN 0.047 0.271 0.158 0.135 Not met Yes
SEN 0.040 0.299 0.194 0.150 Not met Yes
SLE 0.179 0.355 0.051 0.178 Met Yes
SRB -0.160 0.002 0.017 0.001 Not met Yes
STP 0.161 0.080 0.008 0.040 Met Yes
SUR 0.118 0.020 0.003 0.010 Met Yes
SWZ 0.138 0.072 0.009 0.036 Met Yes
TCD 0.015 0.576 0.504 0.288 Not met Yes
TGO 0.025 0.295 0.236 0.148 Not met Yes
THA 0.141 0.004 0.001 0.002 Met Yes
TIJK 0.110 0.036 0.007 0.018 Met Yes
TKM 0.125 0.004 0.001 0.002 Met Yes
TLS 0.147 0.236 0.039 0.118 Met Yes
TZA 0.083 0.290 0.137 0.145 Met No
UGA 0.090 0.295 0.119 0.147 Met No
UKR 0.083 0.001 0.000 0.000 Met Yes
ZMB 0.073 0.252 0.113 0.126 Met, No
ZWE 0.059 0.147 0.073 0.073 Met No
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Table A.3: Poverty target by model

o . . Model
Country  M'™©8(2015) CRC Linear Logistic Robust
ALB 0.004 Met Met Met Yes
ARM 0.001 Met Met Met Yes
BDI 0.422 Not met Not met Not met Yes
BEN 0.351 Not met Not met Not met Yes
BFA 0.531 Not met Not met Not met Yes
BGD 0.157 Met Met Met Yes
BIH 0.006 Met Met Met Yes
BLZ 0.021 Met Met Met Yes
BOL 0.039 Met Met Met Yes
CAF 0.431 Not met Not met Not met Yes
CHN 0.014 Met Met Met Yes
CIV 0.252 Met Met Met Yes
CMR 0.238 Not met Not met Not met Yes
COD 0.376 Not met Not met Not met Yes
COG 0.108 Met Met Met Yes
COL 0.020 Not met Met Not met No
DOM 0.014 Met Met Met Yes
EGY 0.017 Met Met Met Yes
ETH 0.500 Not met Not met Not met Yes
GAB 0.056 Met Met Met Yes
GHA 0.107 Met Met Met Yes
GIN 0.355 Met Met Met Yes
GMB 0.255 Not met Met Met No
GUY 0.012 Met Met Met Yes
HND 0.058 Met Met Met Yes
HTI 0.207 Met Met Met Yes
IDN 0.018 Met Met Met Yes
IND 0.129 Met Met Met Yes
IRQ 0.044 Met Met Met Yes
JAM 0.017 Not met Met Not met No
JOR 0.002 Not met Not met Not met Yes
KAZ 0.002 Met Met Met Yes
KEN 0.167 Met Met Met Yes
KGZ 0.011 Met Met Met Yes
KHM 0.157 Met Met Met Yes
LAO 0.140 Met Met Met Yes
LBR 0.281 Met Met Met Yes
LSO 0.146 Met Met Met Yes
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... Table A.3 continued.

o . . Model
Country  M'™©8(2015) CRC Linear Logistic Robust
MDA 0.003 Met Met Met Yes
MDG 0.391 Not met Not met Not met Yes
MEX 0.026 Not met Met Not met No
MKD 0.003 Met Met Met Yes
MLI 0.417 Not met Not met Not met Yes
MNG 0.043 Met Met Met Yes
MOZ 0.338 Not met Not met Met No
MRT 0.260 Met Met Met Yes
MWI 0.260 Met Met Met Yes
NAM 0.147 Not met Met Not met No
NER 0.555 Not met Not met Not met Yes
NGA 0.274 Not met Not met Not met Yes
NIC 0.049 Met Met Met Yes
NPL 0.143 Met Met Met Yes
PAK 0.215 Not met Not met Not met Yes
PER 0.039 Met Met Met Yes
PHL 0.032 Met Met Met Yes
PSE 0.003 Met Met Met Yes
RWA 0.248 Met Met Met Yes
SDN 0.271 Not met Not met Not met Yes
SEN 0.299 Not met Not met Not met Yes
SLE 0.355 Met Met Met Yes
SRB 0.002 Not met Not met Not met Yes
STP 0.080 Met Met Met Yes
SUR 0.020 Met Met Met Yes
SWZ 0.072 Met Met Met Yes
TCD 0.576 Not met Not met Not met Yes
TGO 0.295 Not met Not met Not met Yes
THA 0.004 Met Met Met Yes
TJK 0.036 Met Met Met Yes
TKM 0.004 Met Met Met Yes
TLS 0.236 Met Met Met Yes
TZA 0.290 Not met Met Met No
UGA 0.295 Not met Met Met No
UKR 0.001 Met Met Met Yes
ZMB 0.252 Not met Met Met No
ZWE 0.147 Not met Met Met No
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B Simulation scenarios: Background

B.1 Nutrition Scenarios

The WFP projected that 265 million would be food insecure, and that 130 million were
newly food insecure WFP (2020). Their estimation was based on 55 countries. The study
of trends in MPI over time covers 49 of those countries each of which contain data for
nutrition.

Poor or Vulnerable: Our simulations focus on people who are already poor, or are
vulnerable thus deprived in 20% or more of the weighted indicators. If they are vulnerable,
then having one additional deprivation in nutrition (or school attendance) will mean that
they become poor. If they are already poor, their deprivation score will increase. So in
either case there is a visible impact on MPIL.

Nutritional Deprivations: Using 2018 data, the 49 countries covered are home to
about 1.6 billion people of whom nearly 1 billion (995 million) people are MPI poor or
vulnerable. Among these, over 500 million persons (502 million) are poor or vulnerable,
and live in a household where at least one person is undernourished. So about 493 million
people live in a household in which no one is undernourished.

Five Considerations: WFP predicted an increase of food insecurity by 130 million
among sampled areas of those countries. How do we draw on this to set our simulation
scenarios? There are five difficult considerations, whose implications are various and
difficult to quantify:

(1) Different Countries: We only cover 49 of the 55 countries, hence the number of
newly food insecure in these countries is lower.

(2) Not Nationally Representative: The figure of 130 million is an underestimate for
these countries, because as detailed in Table 3 of FSIN report, only 21 countries
were fully sampled; in 34 countries subgroups were sampled. Overall, 55.6% of the
population of the covered countries are sampled in the WFP study . Hence the
number of newly food insecure in the 34 countries will be higher.

(3) Different Variable: Food insecurity is linked to but not the same as undernutri-
tion. The increase in undernutrition is likely to be higher than the increase in food
security, but could be lower

(4) Not all new deprivations change poverty: The MPI will visibly increase when un-
dernutrition strikes households that are not currently deprived. But increases in
food insecurity in already poor and nutritionally deprived households do not change

MPI.

(5) Not all countries not covered. The WFP countries are overall, slightly poorer than
the other countries covered by the global MPI 2020 and even the trend analysis.
But in terms of nutrition, the WFP does not cover India that has a high number of
undernourished.
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In terms of consideration 1, from Table 6 and 9 of Global Report on Food Insecurity,
we do not have nutritional data for Afghanistan and Cabo Verde, where predicted food
insecurity will rise by 11.3 million. So the predicted number of newly food insecure in our
covered areas of 49 countries is 118.7 million.

Medium Scenario: (25%): Here we presume that the considerations 2-5 balance out.
That is, we presume that the significantly higher numbers than 130 million that come
from other regions in the countries which were not sampled, very roughly balance. That
is, the number of food insecure who are not malnourished, broadly translate into new
nutritional deprivations among already poor and nutritionally deprived households. If
this were the case, then 118.7 million / 490 million is 24.2% which we increment to 25%.
That, then, is our medium or base scenario.

Lower Bound (10%): Recognising that the WEFP projections were based on household-
wide food insecurity, we presume that the density of food insecurity by households will be
higher. So we make the assumption that only a subset of the newly food insecure would
visibly affect measured poverty in households who are currently poor or deprived, but not
deprived in nutrition. The other deprivations would accrue in already poor households.
In that case, the increment among poor or vulnerable households would be then 59.4/
490 million or 12.1%. That might be compatible with a ‘low’ scenario of 15%, but to be
definitively lower bound, our lower bound scenario is fixed at 10%.

Upper Bound (50%): Finally, our upper bound scenario seeks to quantify consideration
2. above, plus add in the school attendance figure. We first describe the nutrition assump-
tion. Recall that the WFP studies covered only 55.6% of the populations of the covered
countries. If the deprivation in the measured areas (Table 9 of WFP report) are applied
proportionally to the rest of the population, then the number of newly food insecure rises
to 350 million — an increment of 220 million. However, the populations included in the
55 countries tend to be the poorer regions. If the number of nutritionally deprived in the
countries was incremented by only half as much (110 million), the newly food insecure
would number roughly 240 million. If nearly all of these struck households that were poor
or vulnerable but not previously deprived in nutrition, and if considerations 3-5 balance
out, then the upper bound scenario should how an increase of 50%.

B.2 School Attendance Scenario

Finally, we move to school attendance. In the 107 countries covered, roughly 530 million
people are poor/vulnerable and live in household where at least one child is not attending
school. Recall that there are a total of 2.18 billion people who are poor or vulnerable, out
of the 5.87 billion persons who are included in the global MPI 2020. So 1.65 billion persons
live in a households that is poor or vulnerable but not deprived in school attendance. The
increase in out of school children will definitely affect three types of households:

(1) Already deprived in school attendance: if additional children leave school

(2) Poor or vulnerable and have a school-aged child, but not formerly deprived in school
attendance
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(3) Non-poor, Non-vulnerable, have a school-aged child but not previously deprived in
school attendance.

UNESCO data suggest that school closures peaked in April 2020, with over 91 percent of
the world’s learners out of school (UNESCO, 2020). Subsequently, however, this propor-
tion fell gradually to just over 60 percent in July 2020. These learners include pre-primary
school, secondary and secondary school, whereas the global MPI only considers children
in classes 1-8. Furthermore, UNESCO (which numbers 1.3 billion affected learners) covers
all countries whereas the global MPI only covers 107 countries.

There are roughly 609 million primary school students enrolled in the 107 covered coun-
tries, according to the UNESCO website, but not all countries have entries and years
vary. We know that in some countries with utter lockdown, 100% of children are out
of school. So one option would be to assess that 100% of children were not attending
school. However recognising that this is probably a transitory situation, and that in some
households, home schooling occurs, we create an intermediate scenario. In particular,
we presume that 50% of all primary school aged children (by national definitions) who
were attending school, cease to attend schooling of any form. It might be that they have
repeated lockdowns; it might be that they never return to school after the lock down.
Making even this level of child deprivations visible is already devastating, and hopefully
will inform actions to prevent its occurrence.

93



	Introduction
	Data
	Projection Approaches for Development Indicators
	Modelling Multidimensional Poverty Dynamics
	Analytical Framework and Notation
	Multidimensional Poverty
	Trajectories
	Canonical Dynamic Models

	Cross-Country Evidence on Poverty Dynamics
	Assessment of the Dynamic Models
	Calibration of Projection Model Parameters
	Logistic Projection Models
	Linear and Exponential Projection Models


	Projection Results
	The Impact of COVID-19 on Multidimensional Poverty
	Microsimulations of COVID-19 Impact
	Modelling COVID-19 Impact in the Context of Changing Poverty
	Impact on Global Poverty Projections
	Data Complexities


	Concluding Remarks
	References
	Datasets and Additional Results
	Simulation scenarios: Background
	Nutrition Scenarios
	School Attendance Scenario


