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Abstract. Recently described species suffer lack of information that hampers setting up appropriate conservation strat-
egies. The situation is particularly complex with micro-endemic snakes, for which detection and monitoring are par-
ticularly challenging. The Walser viper Vipera walser is a recently described snake inhabiting a small area of the SW 
Italian alps. We combined information on species distribution with repeated monitoring to identify the areas most 
suitable for the species, and to obtain estimates of species abundance. Species distribution models were used to identi-
fy the topographical, climatic, and land-cover features related to the occurrence of vipers. Furthermore, repeated tran-
sects and N-mixture models were used to estimate abundance and to identify factors related to the variation of abun-
dance. The available data suggested that the species has a disjunct range, with a Northern range of ~45 km2, and a 
southern range of ~225 km2. Distribution models suggested that vipers are associated with areas with open vegetation, 
altitude between 1300 and 2300 m, high precipitation, low forest cover, low slope, and southern aspect. N-mixture 
models confirmed very low detection probability of these vipers, and suggested that the species has a low abundance, 
with the highest abundance in south-facing plots. We provide the first quantitative information on habitats and abun-
dance variation for Walser vipers. The broad confidence intervals of abundance estimates exemplify the complexity of 
providing range-wide measures of abundance for secretive species. Given the narrow range of these vipers, continuous 
monitoring is required to understand how they respond to ongoing environmental changes in mountainous areas.

Keywords. Alpha-hulls, detectability, endemism, habitat suitability models, land cover, Vipera walser.

INTRODUCTION

Italy is among the European countries with the high-
est endemism of amphibians and reptiles (Sillero et al., 

2014). In the last decades, the integration of new genetic 
and morphological data has greatly expanded our knowl-
edge of Italian biodiversity, with the identification of sev-
eral reproductively isolated lineages, that have been pro-
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posed as new candidate species (e.g., Cornetti et al., 2015; 
Dufresnes et al., 2018; Senczuk et al., 2019).

The Walser viper has been a striking addition to the 
Italian herpetofauna. In NE Piedmont, the occurrence 
of vipers morphologically assumed to be adders (Vipera 
berus) has long been recognized (Andreone and Sinda-
co, 1998; Sindaco et al., 2006). However, recent genetic 
data revealed strong genetic differences between these 
“adder-like” vipers and true adders; the closest relatives 
of these vipers belong to the cluster regrouping V. dinniki, 
V. kaznakovi and V. darevskii, in the Caucasus area. As a 
consequence, these adder-like vipers have been described 
as a new species, the Walser viper (Vipera walser, Ghiel-
mi et al., 2016), a species endemic of a small area from 
the mountains between Biella and the Ossola valley, with 
a possible range < 500 km2 (Fig. 1).

Recently described, micro-endemic species often 
suffer a tremendous lack of biological data. This is par-
ticularly problematic, because the small range inher-
ently exposes these species to a high risk of extinction. 
Therefore, sound biological and ecological information 
is required to set up appropriate monitoring and conser-
vation programs. Habitat suitability and spatial variation 
of abundance represent critical information to assess the 
conservation status of species. In the last years, advanc-
es in analytical tools have greatly improved our ability 
to provide sound biological information even in species 
for which only a limited amount of data is available (e.g., 
Raxworthy et al., 2003; Peterson et al., 2011; Mazerolle, 
2015).

In this paper, we combine modelling and field data 
to improve our knowledge of the ecology of the Walser 
viper. First, we used habitat suitability models to evalu-
ate the relationships between viper distribution, land 
cover, and topographical features at a fine spatial scale. 
Correlative species distribution models (SDM) allow to 
identify relationships between localities of presences and 
spatial variation of environmental variables, and can 
provide multiple key information (Peterson et al., 2011). 
SDM can reveal how the species respond to broad-scale 
variation of environmental features, thus providing first 
information on the habitats that are more suitable for 
the target species (Guisan and Thuiller, 2005; Peterson 
et al., 2011). These models often have a coarse spatial 
scale and sometimes lack accurate information on spe-
cies microhabitat or on habitat features that can only 
be measured in the field (Beck et al., 2012; Potter et al., 
2013; Ficetola et al., 2018b). Still, if reliable maps of habi-
tats or land cover are available, it is possible to obtain 
relatively detailed information on species responses to 
major land cover categories. Furthermore, SDM can pro-
duce spatially-explicit maps, that can refine information 

on species range. For instance, Raxworthy et al. (2003) 
developed SDM for chameleons in Madagascar, and then 
performed targeted surveys in areas suggested to be suit-
able by models. In several cases, these targeted surveys 
revealed new localities of occurrence, suggesting that 
SDM can greatly improve our knowledge on species liv-
ing in remote areas, or for which information on the dis-
tribution is limited.

Second, we performed repeated visits in a large num-
ber of patches within the species range, to assess spatial 
variation of abundance. Variation of abundance is a key 
parameter to assess the threat status of species, still, accu-
rate measurement of abundance can require extremely 
extensive workload (Pollock et al., 2002; Dodd, 2010). In 
the last years, approaches have been proposed to obtain 
estimates of abundance from repeated counts, without 
marking or capturing individuals (Royle and Nichols, 
2003; Royle, 2004). The number of individuals counted at 
fixed sites on multiple occasions can be used to estimate 
the detection probability, and the size of populations can 
be estimated on the basis of N-mixture models (Royle 
and Nichols, 2003; Royle, 2004; Kéry et al., 2009; Dail 
and Madsen, 2011). Despite several limitations (Barker 
et al., 2018; Link et al., 2018), such models can provide 
cost-effective estimates of abundance while account-
ing for imperfect detection (Ficetola et al., 2018a; Kéry, 
2018), as detection probability is typically low in snakes. 
In addition, N-mixture models can provide insights on 
the factors determining spatial variation of population 
abundance and, if monitoring is repeated through time, 
they can provide reliable estimates of population trends 
(Ficetola et al., 2018c). These data are particularly critical 
for recently described species, for which information on 
abundance is nearly absent.

METHODS

Species range and distribution models

In March 2019, we combined bibliographic data (Ghielmi 
et al., 2006; Ghielmi et al., 2016) with new field observations 
performed in 2016-2018 by the authors, and personal com-
munications by local naturalists, to gather an exhaustive data-
set of V. walser occurrences. We used the alpha-hull approach 
for an accurate definition of the species range. The alpha-hull 
approach is a procedure based on Delauney triangulation that 
uses presence points to estimate species ranges, and can allow 
for the exclusion of unoccupied areas within a species range 
(Burgman and Fox, 2003). Simulations showed that the alpha-
hulls provide better approximations of species ranges compared 
to minimum convex polygons, particularly when the ranges 
have discontinuities (Burgman and Fox, 2003). Alpha-hulls 
were built using the alphahull package in R (Pateiro-Lopez and 
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Rodrjguez-Casal, 2010), following the procedure detailed in 
Ficetola et al. (2014).

Land cover data were obtained from the geoportal of the 
Piedmont region (http://www.geoportale.piemonte.it/) at the 
resolution of 2 m. We considered four land cover categories: 
agricultural, pasture, natural open vegetation, and forest. As 
a measure of land cover, we calculated the percentage of each 
land cover category in 100 × 100 m cells. Furthermore, we con-
sidered three topography variables: altitude (m a.s.l.), aspect 
(northness), and slope. As a climatic parameter, we considered 
summed annual precipitation, obtained through the Chelsa-
clim dataset (Karger et al., 2017). This dataset is available at a 
coarser resolution than the other predictors (30 arc-seconds, 
approx. 650 × 900 m in the study area). We therefore used the 
B-spline interpolation to downscale it at the 100-m resolution 
(see Karger et al., 2017). Temperature variables were not includ-
ed because they were strongly collinear with altitude (r > 0.9). 
The pairwise correlation between the remaining environmental 
variables was always |r| < 0.65, suggesting limited collinearity 
issues (Dormann et al., 2013).

We used maximum entropy modelling (MaxEnt) (Phil-
lips et al., 2006; Elith et al., 2011) to build species distribution 
models relating the occurrence of vipers to land cover and top-
ographical data. MaxEnt is a presence-background approach 
that evaluates the suitability of a given cell on the basis of envi-
ronmental features (habitat, climate, topography…) in that cell. 
Comparative studies showed that MaxEnt is among the most 
efficient approaches to build SDM (Elith et al., 2006; Elith et 
al., 2011). MaxEnt is well suited to evaluate complex or non-
linear relationships between species and environmental features, 
and produces an output representing the suitability of a specific 
area. We run models with linear, quadratic, and hinge features. 
To identify the best regularization parameter (b), we build five 
models with increasing values of b: 1, 2, 5, and 10 (Warren and 
Seifert, 2011). The model with b = 2 showed the highest cross-
validation performance (see below), and was selected as model 
with highest generality (Warren and Seifert, 2011).

We used two approaches for the validation of species distri-
bution model. First, the model was tested using a 5-fold cross-
validation. Presence records were split into five sub-sets; the 
model was built using 80% of data (calibration data), and we 
tested predictive performance on the remaining 20% (test data). 
We repeated this procedure five times, each time using a differ-
ent test dataset (Nogués-Bravo, 2009). As a measure of model 
performance, we calculated the area under the curve of the 
receiver operator plot (AUC), averaged over the five runs. AUC 
is an imperfect measure of the performance of SDM (Lobo et 
al., 2008), thus we also used a binomial test to evaluate if our 
models predict presence records better than expected under 
randomness, comparing the observed frequencies of correct 
and incorrect predictions. In this test, we assumed that a cell is 
suitable for vipers if it has suitability larger than 10th percentile 
training test threshold (Pearson et al., 2007). Second, the model 
was developed in late winter 2019. Therefore, we used data col-
lected during the 2019 field activities to confirm the reliability 
of model predictions. Specifically, we used a likelihood ratio test 
to assess whether viper observations are more frequent in areas 
with high SDM suitability, compared to areas with low suit-

ability. Since we have a-priori expectation on the frequency of 
observations (i.e., we expect more observations in high-suitabil-
ity areas), we used a one-tailed test (Warren and Seifert, 2011).

Field activities

In the period 2016-2019, we established 71 fixed plots 
using visual encounter surveys (Crump and Scott, 1994). Each 
plot was visited during one year only (range: 5-26 plots per 
year); plots were visited multiple times (average: 5.7 surveys 
per plot; range: 3-12 surveys) from late May to early October, 
i.e., during the period of highest activity of vipers. The size 
of plots ranged between 600 and 23,000 m2 (mean: 7600 m2), 
because of logistic and accessibility constraints. Visits were 
performed from 7 am to 17 pm (solar time), but most of them 
(69%) were performed in late morning (between 8.30 and 12.00 
am). Plots were placed across the whole range of the species, 
mostly nearby areas with previous records of Walser vipers. In 
2019, the location of plots was selected after the development 
of species distribution models, in order to validate the SDM 
and identify eventual new locations of the viper. Out of the 17 
plots surveyed in 2019, three were in areas with low SDM suit-
ability (suitability below the 10th percentile training presence 
threshold; range: 0.06-0.22) but nearby areas with high suit-
ability. Ten were in areas with high SDM suitability (> 0.45) and 
nearby localities where the species is known to be present, and 
four were in areas with high suitability but out of the known 
species range (Mombarone; roughly 3 km SE of the southern 
limit of the species range, see Fig. 1b). During surveys, one to 
four observers carefully patrolled the plots, searching for active 
vipers. In other areas, the search under artificial shelters greatly 
improved the detection of reptiles (De Leo et al., 2006; Joppa et 
al., 2010; Sewell et al., 2012). Therefore, in 2019, visual encoun-
ters were integrated with the use of artificial cover objects (shel-
ters). In each plot, we placed three corrugated bitumen 70 × 90 
cm shelters that were checked during each survey.

Assessment of species abundance

We used N-mixture models to estimate the abundance of 
vipers on the basis of repeated counts at plots, and to iden-
tify environmental variables related to variation of abundance. 
N-mixture models allow the joint estimation of animal abun-
dance and detection probability on the basis of repeated sur-
veys at fixed sites, without the need of capturing and marking 
individuals for identification (Royle, 2004). Some analyses high-
lighted that jointly estimating detection probability and abun-
dance could be problematic, and these models are sensitive to 
violations of their assumptions (Barker et al., 2018; Duarte et 
al., 2018), still analyses of real-world data showed that N-mix-
ture models can provide reliable estimates of the abundance of 
wild vertebrates (Ficetola et al., 2018a; Kéry, 2018; Costa et al., 
2019). We assumed that each plot, sampled during one single 
season, represented a closed population. We thus used a static 
(i.e., non-dynamic) N-mixture model formulation. The average 
distance between each plot and the closest one was 170 m (SE 
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= 19.6), a distance much longer than the typical movements of 
related species (e.g., Zuffi et al., 1999; Nash and Griffiths, 2018). 
N-mixture models were fitted using a Poisson error distribu-
tion, as in preliminary analyses Poisson models showed a lower 
Akaike’s Information Criterion (AIC) (Burnham and Anderson, 
2002) than the corresponding zero-inflated Poisson models. 
In N-mixture models, we set the upper bound to approximate 
the infinite summation of the likelihood (K) at the maximum 
observed species abundance +100, since simulations suggested 
that this value provides stable and robust estimates (Ficetola et 
al., 2018c).

We considered four variables potentially influencing the 
detection of vipers: date (day of the year), hour, length of the 
survey (in minutes, log transformed), and the number of peo-
ple participating in the survey. For date and hour, we also test-
ed quadratic terms to take into account potential non-linear 
relationships. To identify the model best explaining variation 
of viper detection, we built models including all the potential 
combinations of independent variables, and ranked them on 
the basis of their AIC values. The model with lowest AIC value 
explains more variation with a limited number of parameters, 
and was selected as the minimum adequate model (Burnham 
and Anderson, 2002). First, we performed model selection on 
variables affecting detectability, then we performed model selec-
tion on variables affecting abundance.

We considered six variables potentially affecting the abun-
dance of vipers at plots: plot surface, aspect, altitude, slope, and 
suitability predicted by the species distribution model. SDM 
suitability was included because previous studies suggested that 
environmental suitability models also help to predict parame-
ters such as population density and fitness-related traits (Bram-
billa and Ficetola, 2012; Weber et al., 2017; Lunghi et al., 2018). 
Variables representing land cover were not included because 
85% of plots were in areas with open natural vegetation, which 
is the most important land cover variables determining viper 
distribution (see results). We built models with all the possible 
combination of variables potentially affecting abundance, and 
ranked them using AIC, while keeping constant the observa-
tional component of the model (i.e., including the variables best 
explaining variation in detection probability). The correlation 
coefficient between site covariates was weak (r < 0.4 for all the 
considered variables).

N-mixture models were run with the package Unmarked 
in R (Fiske and Chandler, 2011). Before analyses, independent 
variables were scaled at mean = 0 and SD = 1 to improve model 
convergence. A goodness-of-fit test showed limited overdisper-
sion and confirmed that the model was appropriate to the data 
(χ2 = 432.6, permutation P = 0.12, c-hat = 1.1).

RESULTS

Distribution data, species range, and distribution model

Overall, we gathered 117 distribution records (Fig. 
1a). Localities from the literature (Ghielmi et al., 2006; 
Ghielmi et al., 2016) accounted for 50% of records, while 

47% of records were obtained through recent surveys 
by the authors; we also obtained some personal com-
munications by local naturalists (3% of records). Spe-
cies records were clustered in two main areas: a northern 
group between the Strona and the upper Sesia Valley, and 
a southern group between the lower Sesia Valley and the 
Biella Alps. The lack of known records between these two 
areas suggests the possibility of a disjunct distribution, 
with a northern range of approx. 45 km2, and a southern 
range of approx. 225 km2.

The species distribution model suggested that vipers 
were associated to areas with open natural vegetation, 
altitude between 1300 and 2300 m, high annual precipi-
tation, low forest cover, low slope, and with a southern 
aspect (Fig. 2). The presence of agricultural land cover 
and pastures showed very limited importance (relative 
importance < 1%). The cross-validation procedure sug-
gested excellent performance, with average AUC on test 
data = 0.924 (SD = 0.038). Using the 10th percentile train-
ing presence threshold (suitability threshold = 0.36), the 
model correctly predicted occurrence at 86.3% of test 
data, a performance significantly better than expected by 
chance (binomial test: P << 0.001; success rate expected 
under randomness = 13.5%).

The model identified several patches of highly suit-
able habitats through the whole species range, in moun-
tainous areas at altitude of 1300-2200 m, with gentle, 
south-facing slopes and covered by open vegetation. 
Within the species range, the total suitable surface (i.e., 
with suitability higher than the 10th percentile thresh-
old) was 81.9 km2. Several areas with good suitability 
were detected outside the known range of the species, for 
instance, in the SW of the study area (e.g., the Mombar-
one area) (Fig. 1b). Potentially suitable areas were also 
detected between the northern and southern populations.

Model validation with the 2019 data

Four plots surveyed in 2019 were outside the known 
range of V. walser, but in areas showing high suitability 
according to the SDM (Mombarone area; Fig. 1b). Each 
of them received six surveys; we never detected vipers at 
these plots. Thirteen plots surveyed in 2019 were inside 
the known range of V. walser; four were in areas with 
low suitability (suitability ≤ 0.2) and nine in areas with 
high suitability (> 0.45). Vipers were never detected in 
the plots with low suitability, while they were detected 
in 56% of plots with high suitability. The possibility to 
obtain at least one detection was significantly higher 
in plots with high suitability (likelihood ratio test: χ2

1 = 
4.96, P = 0.013), confirming that the SDM can success-
fully predict viper occurrences. 
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a) b)

c)

Fig. 1. a) Distribution records used to build species distribution models, and species range estimated using alpha-hulls. b) Location of fixed 
plots where we performed repeated counts. The arrow indicates the plots located in possibly suitable sites outside the known range of the 
species (Mombarone). c) Suitability map, estimated using species distribution models. 0.37 is the 10th training presence threshold. To limit 
the risk of poaching, points plotted on the maps have a random spatial error of up to 2 km (Lunghi et al., 2019). d) An adult male of V. wal-
ser (photo by GFF).
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Repeated counts and abundance estimations

Overall, we obtained 39 viper detections from 24 
out of the 67 plots within the species range. Vipers were 
detected across the whole study period (from June to early 
October). The best-AIC model suggested that the number 
of detection was only affected by the length of surveys, 
longer surveys allowing a higher probability of detecting 
vipers (B ± SE = 0.73 ± 0.16, z = 4.45, P < 0.001). Con-
versely, the detection rate was unrelated to date or hour 
of the survey, nor to the number of observers (Table 1). 
The detection probability of vipers was approx. 0.036 in 
35-min. surveys (35 min. was the average length of sur-
veys), but the incertitude of these estimates was large 
(95% CI of detection probability after 35 min: 0.007-0.16).

The abundance of vipers was negatively related to the 
northness of plots, with higher abundances in south-fac-
ing plots (B = -0.70 ± 0.30, z = -2.35, P = 0.019). We did 
not detect any relationship between the remaining varia-
bles and the abundance of vipers (Table 1). The estimated 
abundance per plot ranged between zero and five indi-
viduals; the best estimate of total abundance across the 67 
plots was 175 vipers, but confidence intervals were wide 
(95% CI: 38-383 vipers). Therefore, at the surveyed plots, 
the average density was 3.4 individuals / ha. 

DISCUSSION

For recently described species, rapid biological and 
ecological studies are pivotal for a prompt assessment of 
the species status. By combining distribution records with 
ecological modelling and repeated surveys we provide 
key ecological data on the endemic, poorly known, Wal-
ser viper.

The application of alpha-hulls to species distribution 
data suggested that this viper has a disjunct range, with 
a northern range comprising the Strona and the upper 
Sesia Valley, and a southern range between the Biella 
Alps and the lower Sesia Valley. Alpha-hulls have an 
excellent capacity to reveal discontinuities in the specie 
range (Burgman and Fox, 2003), still they can be affected 
by the lack of biological records caused, for instance, by 
limited surveys. The available genetic data did not detect 
strong differences among Walser vipers (Ghielmi et al., 
2016), still additional genetic or genomic studies, using 
highly variable or fast-evolving markers, are needed to 
understand the fine-scale genetic variation among the 
different populations.

Habitat suitability

Species distribution models showed that viper dis-
tribution is related to the interplay between topographic, 
climatic, and habitat parameters. First, vipers are asso-
ciated with gentle, south-exposed slopes at altitudes 
between 1500 and 2300 m. This study was performed on 
a rather small geographical extent, and at this scale, the 
correlation between altitude and the available tempera-
ture data is almost perfect (r > 0.9), therefore altitude 
can be considered as a proxy of temperature. The narrow 
altitudinal range suggests a very narrow thermal niche, 
which is typical of many micro-endemic species (Quin-
tero and Wiens, 2013; Slatyer et al., 2013; Cunningham 
et al., 2016). This inherently exposes micro-endemic spe-
cies to a high risk of extinction, and is particularly alarm-
ing under scenarios of climate change (Botts et al., 2013; 
Slatyer et al., 2013; Böhm et al., 2016). Until recently, 
Walsers vipers were assumed to be adders Vipera berus 
(Andreone and Sindaco, 1998; Sindaco et al., 2006). 
However, it should be remarked that the altitudinal range 
of Walser’s vipers does not match the one observed for 
adders in the Southern Alps. Present-day adder popula-
tions living in Lombardy (approx. 80 km E of the study 
area) have a broad altitudinal range (550-2500 m) and 
26% of records are above 2000 m (Bernini et al., 2004). 
Conversely, all available Walser viper data are restrict-
ed at altitudes of 1300-2300 m, with just 4% of records 
above 2000 m. This suggests that Walser vipers have a 

Table 1. a) Relationships between detections of Vipera walser and 
variables potentially influencing detection. The table reports the 
outcome of univariable N-mixture models, in which only each of 
these variables was related to the viper detections. All the models 
with more than one variable showed higher AICc values than the 
one with length of survey only. b) Relationships between detections 
of Vipera walser, and variables potentially influencing abundance. 
The table reports the outcome of N-mixture models, in which viper 
detection probability was related to length of survey, and viper 
abundance was related to each of these variables. All the models 
with more than one variable showed higher AICc values than the 
model with aspect only (Appendix 1).

AICc z P

a) variables potentially influencing detection
Date* 262.9 -0.321 0.749
Hour* 261.6 -1.14 0.256
N observers 262.8 0.51 0.610
Length of survey 244.4 4.48 <0.001

b) variables potentially influencing abundance
Altitude* 246.7 0.13 0.895
Aspect 238.6 -2.35 0.019
Slope 245.2 1.24 0.217
Plot area 246.7 -0.22 0.830
Precipitation 245.7 1.03 0.302
SDM suitability 243.5 1.66 0.097

* Preliminary tests did not show any effect also for quadratic terms.
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narrower niche than adders, still, additional studies are 
required to compare the niches of the two species.

Second, vipers were associated to areas with relatively 
high precipitation levels and high cover of natural, open 
vegetation. The Walser viper range includes some of the 
valleys with the highest rainfall in the Alps (Mercalli et 
al., 2008). High precipitation levels can allow the exist-

ence of a relatively humid environment with open vegeta-
tion, which is the main habitat of this species (Ghielmi et 
al., 2016). Given the very small surface of suitable habi-
tats, ensuring the long-term persistence of these environ-
ments will be essential for the long-term survival of Wal-
ser vipers.
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Fig. 2. Relationship between environmental variables and suitabil-
ity, as estimated by species distribution models. The dark lines are 

the average response across the cross-validated runs; the confidence 
bands indicate ± one standard deviation.
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Variation in abundance

Repeated counts and N-mixture models can provide 
estimates of the absolute abundance of individuals, and 
are particularly useful when no data from other sources 
are available. Our models showed that, for individu-
als of Walser viper, detection probability is low (around 
4% in standard surveys), and the species generally has a 
limited abundance (average: 3.4 individuals / ha). A low 
detection probability has been often observed in snakes 
(Luiselli et al., 2011; Rodda, 2012), and density estimates 
are comparable to the values observed in other studies 
(reviewed in Santini et al., 2018a). For instance, Neu-
meyer (1987) used capture-mark-recapture to assess the 
abundance of Vipera berus in subalpine environments, 
and found a density of approx. 3 individuals / ha. Trans-
lating modelled abundance in density estimates is often 
complex. Nevertheless, the home range size of the study 
species is likely small compared to plot size, thus the 
derived density probably does not suffer by temporary 
emigration (Kery and Royle, 2016).

Our plots covered well the whole range of the spe-
cies (Fig. 1b), still performing extrapolations of abun-
dance across a species range is extremely complex 
(Santini et al., 2018b). If we assume that the relation-
ship between viper density and plot aspect is constant 
across the whole range, we can perform projections of 
the spatial variation of potential density (Fig. 3) that, in 
turn, could be used to obtain rough estimates of abun-
dance across the species range. Such a projection would 
lead to a best unbiased prediction of 26,000 vipers, but 
the associated confidence intervals are extremely wide 
(95% intervals: 5500-130,000 vipers). These figures can 
be useful to obtain a first approximation of abundance 
when no other data are available, but must be taken with 
extreme caution. First, model extrapolation outside the 
sampled areas is always challenging, because we cannot 
be sure that the relationship between habitat and abun-
dance is constant across the range. Importantly, species 
distribution models often overestimate species distribu-
tion (Guisan and Rahbek, 2011). This occurs because 
additional factors can influence species abundance, for 
instance, when a given patch is unsuitable because of the 
presence of a limiting factor not considered in this anal-
ysis. Second, the reliability of estimates obtained through 
N-mixture heavily depends on the verification of model 
assumptions (Barker et al., 2018; Link et al., 2018). For 
instance, unmodelled heterogeneity of detection proba-
bility can heavily bias total estimates of abundance (Link 
et al., 2018), and it is unlikely that our model took into 
account all the potential factors affecting viper detec-
tions. Third, the reliability of abundance estimates is sen-
sitive to variation of detection probability, and low val-
ues of detection probability always challenge models that 
rely on unmarked individuals (Ficetola et al., 2018c). 
Unfortunately, the detection probability of vipers was 
extremely low.

Many conservation agencies require quantitative 
measures of abundance (e.g., IUCN, 2001; Stoch and 
Genovesi, 2016), but obtaining reliable estimates, with 
high accuracy and limited uncertainty, can be challeng-
ing. Our study showed that uncertainty can be large even 
for micro-endemic species for which a very large number 
of surveys is performed. Given the low detectability, an 
alternative approach for the monitoring of Walser vipers 
could rely on occupancy modelling (MacKenzie et al., 
2017). Modelling co-occurrence in an occupancy frame-
work or in a joint SDM framework may help improv-
ing inference on species occupancy when data for other 
species are available (e.g., common lizard). In addition, 
distribution may be better inferred using spatially and 
temporally replicated data in an occupancy framework, 
instead of presence-only data alone in a SDM framework. 

Fig. 3. Spatial variation of the density of Vipera walser: best predic-
tions of the N-mixture model, assuming that abundance is affected 
by slope. The map indicates the averaged density (individuals / ha); 
95% confidence intervals of the estimates are available in the leg-
end. Projections have only been performed for the most suitable 
areas within the species range, according to the results of the spe-
cies distribution model.
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One solution would be integrating opportunistic infor-
mation (i.e., presence-only data, probably the most abun-
dant and widely distributed source of information for the 
species) with detection-non detection data from an occu-
pancy design (Dorazio, 2014).

Recommendation for monitoring and conservation

For data deficient species, a key goal for the near 
future is certainly improving knowledge on distribu-
tion, abundance, and threats. Walser vipers are rare and 
elusive, thus improving information on total abundance 
and population trends will be essential. Repeated counts 
at fixed sites are an excellent strategy for a consistent 
assessment of temporal variation in abundance, and have 
been recommended for the monitoring of many rep-
tiles (Stoch and Genovesi, 2016). However, a large num-
ber of sites and surveys are required for a correct esti-
mate of trends in elusive species. For instance, several 
tens of sites, each surveyed multiple times per year, are 
required if we want to obtain reliable estimates of spe-
cies trends with dynamic N-mixture models (Ficetola et 
al., 2018c). The plots surveyed in this study can provide 
the needed baseline for the development of a long-term 
monitoring program. Alternatively, approaches involv-
ing the capture of individuals can be used to collect indi-
vidual longitudinal data simultaneously to occupancy 
data. Capture-mark-recapture information would allow 
estimating population growth rate, the factors affecting it 
and its temporal variability. This can be done without the 
need to estimate population size and with the freedom 
to simultaneously test effects on drivers of demographic 
rates (e.g., survival, recruitment, and fecundity) (Tenan 
et al., 2014).

Despite the importance of future monitoring, con-
servation biologists must identify priorities and plan 
management actions even if information is incomplete 
(Soulé, 1985). Our data can already be useful for the con-
servation planning of Walser vipers. Distribution data 
and species distribution models suggest a very restricted 
distribution, with a total extent of occurrence < 300 km2, 
and an estimated area of occupancy = 86.5 km2. A lim-
ited geographic range is a key criterion for redlist assess-
ment. For instance, the IUCN (2001) classifies as Threat-
ened under the criterion B species that have small geo-
graphic range (extent of occurrence < 5000 km2 and / or 
area of occupancy < 500 km2), and also satisfy at least 
two of these three conditions: a) severely fragmented or 
restricted number of locations; b) continuing decline of 
the species or his habitat; c) extreme demographic fluc-
tuations. The Walser viper has a very small range and is 
known from a limited number of locations. Until now, no 

information is available on the decline of his habitat, and 
unrecorded habitat loss is possible. Remote sensing data 
are an efficient approach to assess habitat trends through 
time, when ground information is lacking (Tracewski et 
al., 2016). Data from Corine land cover suggest that the 
cover of suitable habitats within the species range has 
remained stable during the last decade, with approx. 
124.6 km2 of natural open vegetation in 2006, and 125.6 
km2 in 2018. However, during the last decades, the cover 
of open vegetation has decreased in several areas of the 
Alps because of the abandonment of traditional livestock 
farming (Falcucci et al., 2007), and this could cause habi-
tat loss for Walser vipers in the future. If future monitor-
ing will identify declines of abundance, occupancy, or of 
suitable habitat, Walser vipers can be classified as Endan-
gered according to the IUCN redlist criteria.

Climatic change and the loss of open natural vegeta-
tion are the strongest threats to the biodiversity of mon-
tane environments of Europe (Brambilla et al., 2010; 
Brambilla et al., 2017), and will likely also affect Walser 
vipers in the next future. Despite only recently described, 
these vipers already are one of the most iconic animals of 
the Alps, and could serve as a flagship species for the pri-
oritization of conservation management in these increas-
ingly threatened environments.
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APPENDIX

Appendix S1. N-mixture models relating the detections of Vipera walser to variables potentially influencing abundance. The table reports 
the regression coefficient of each variable included in each model; models are ranked on the basis of the corrected Akaike’s information cri-
terion. Only models with weight >0.001 are shown. k: N of parameters in the model.

Model Length of 
survey Aspect Altitude Plot area Precipitation Slope k AICc weight

1 0.69 -0.70 - - - - 4 238.6 0.312
2 0.69 -0.68 - - 0.06 - 5 240.8 0.103
3 0.70 -0.70 - -0.02 - - 5 240.9 0.098
4 0.69 -0.70 -0.01 - - - 5 240.9 0.097
5 0.69 -0.70 - - - 0.00 5 240.9 0.097
6 0.70 -0.71 - - 0.10 -0.07 6 243.2 0.032
7 0.70 -0.68 - -0.02 0.06 - 6 243.2 0.031
8 0.69 -0.68 -0.01 - 0.06 - 6 243.2 0.031
9 0.70 -0.70 -0.01 -0.02 - - 6 243.3 0.029
10 0.70 -0.70 - -0.02 - 0.00 6 243.3 0.029
11 0.69 -0.70 -0.01 - - 0.00 6 243.4 0.029
12 0.73 - - - - - 3 244.4 0.017
13 0.72 - - - - 0.21 4 245.2 0.012
14 0.71 -0.71 - -0.02 0.10 -0.07 7 245.7 0.009
15 0.74 - - - 0.17 - 4 245.7 0.009
16 0.70 -0.71 0.00 - 0.10 -0.07 7 245.7 0.009
17 0.70 -0.68 0.00 -0.02 0.06 - 7 245.7 0.009
18 0.70 -0.70 -0.01 -0.02 - 0.00 7 245.8 0.008
19 0.74 - - -0.04 - - 4 246.7 0.006
20 0.72 - 0.03 - - - 4 246.7 0.006
21 0.72 - - - 0.06 0.17 5 247.4 0.004
22 0.73 - - -0.04 - 0.21 5 247.5 0.004
23 0.72 - 0.00 - - 0.21 5 247.5 0.004
24 0.75 - - -0.03 0.16 - 5 248 0.003
25 0.74 - 0.02 - 0.17 - 5 248 0.003
26 0.71 -0.71 0.00 -0.02 0.10 -0.07 8 248.2 0.003
27 0.74 - 0.03 -0.04 - - 5 249 0.002
28 0.73 - - -0.03 0.06 0.17 6 249.8 0.001
29 0.72 - 0.01 - 0.06 0.17 6 249.8 0.001
30 0.73 - 0.00 -0.04 - 0.21 6 249.9 0.001
31 0.75 - 0.03 -0.03 0.17 - 6 250.4 0.001
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