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Abstract: 

Sustained release of drug delivery systems (DDS) has the capacity to increase cancer 

treatment efficiency in terms of drug dosage reduction and subsequent decrease of 

deleterious side effects. In this regard, many biomaterials are being investigated but none 

offers morphometric and functional plasticity and versatility comparable to protein-based 

nanoparticles (pNPs). Here we describe a new DDS by which pNPs fabricated as bacterial 

inclusion bodies (IB) can be easily isolated, subcutaneously injected and used as 

reservoirs for the sustained release of targeted pNPs. Our approach combines the high 

performance of pNP, regarding specific cell targeting and biodistribution with the IB 

supramolecular organization, stability and cost effectiveness. This renders a platform able 

to provide a sustained source of CXCR4-targeted pNPs that selectively accumulate in 

tumor cells in a CXCR4+ colorectal cancer xenograft model. In addition, the proposed 

system could be potentially adapted to any other protein construct offering a plethora of 

possible new therapeutic applications in nanomedicine.  

  



Introduction: 

Metastatic dissemination in cancer is a consequence of the highly invasive disease and 

cannot be solely treated by surgery and radiation. In this regard, co-adjuvant 

chemotherapy using genotoxic drugs is regularly administered to patients as main 

systemic therapy [1]. Genotoxic drugs are capable of efficiently inducing cancer cell death 

but they also affect other fast growing healthy cells such as gastrointestinal tract and bone 

marrow cells due to their lack of targeting. This renders important deleterious side effects 

and the subsequent dose limitations. In addition, chemotherapy has failed in the treatment 

of advanced stages of the disease and tumor resistance is often observed during relapses 

[2,3]. The appearance of nanotechnological approaches coupled with the increasing 

understanding of disease biology, have prompted an important push on the development 

of more efficient pharmacological strategies [4].Thus, the available knowledge concerning 

specific cancer cell receptors and signaling pathways intermediates that are involved in 

disease progression and spread, provides promising tools to attack the disease in new and 

more efficient ways [5]. 

Nanoparticles (NPs) have shown potential to reduce systemic toxicity, by the entrapment 

of the chemotherapeutic agent as well as by reducing needed drug dosage, due to their 

ability to accumulate into the tumor through the enhanced permeability and retention effect 

(EPR [6]). Moreover, the use of nano sized drug delivery systems (DDS) allows the 

incorporation of targeting ligands to direct these nanoparticles to specific tissues or cells 

that often increase uptake efficiency, reduce off-target effects and therefore improve their 

therapeutic benefit [7]. Among the milieu of ongoing biomaterials for DDS fabrication, 

protein based approaches result highly appealing. In particular, self-assembled protein 

nanoparticles (pNPs) can represent suitable nanosized carriers due to their high 

biocompatibility and functional plasticity. Their protein nature permits to incorporate, by 

regular genetic engineering, uncountable combinations of motifs and domains that 

respond to specific pharmacological needs. In this regard, recent studies have shown the 

generation of self-assembling protein NPs (pNPs) able to target CXCR4 [8], CD44 [9], 

LDLR [10] and EGFR [11] among others. In these cases the ligands T22 (CXCR4), R9 

(CXCR4), A5 (CD44) and Seq-1 (LDLR) were combined with a GFP scaffold for 

traceability while specific Anti-EGFR repebody fused to the cytolytic domain Apoptin was 

employed as a proof of concept for pNPs with therapeutic activity. Particularly interesting 

for our study are the T22 and R9 peptides. These ligands, with a high specificity for 



CXCR4 receptor [12,13,14], overexpressed in metastatic colorectal cancer [15,16], have 

been successfully employed to direct and increase pNP cell penetration in CXCR4 positive 

tumor cells. Also, T22 and R9 are efficient architectonic tags that upon incorporation in the 

amino terminal of the protein and in combination with a carboxy terminal poly-His tag, 

induce the self-assembling of GFP into regular sized nanoparticles [17]. In this context, 

T22-empowered protein nanoparticles (T22-GFP-H6) have shown selective biodistribution 

and accumulation into the primary tumor as well as in all the macro and micro metastatic 

foci upon intravenous (i.v.) administration in an orthotopic colorectal cancer mouse model 

in absence of any off-target accumulation and toxicity [18]. However, short term stability 

within the body and fast pNP clearance from bloodstream are pivotal barriers to surpass in 

order to achieve reliable therapeutic alternatives. These drawbacks imply periodical 

administration of the pNPs and the exposition of the patient to peaks of highly 

concentrated genotoxic drugs what increases stress associated to treatment. In this 

regard, immobilized drug delivery platforms capable of a sustained release pose an 

interesting alternative to intravenous administered drugs since they maintain a constant 

and long lasting drug concentration in the bloodstream. 

Bacterial Inclusion Bodies (IBs) are amyloid like protein particles that occur during 

recombinant biofabrication processes. These particles gather many features from pNPs, 

like their capability to be modified in the genetic source, following a bottom up approach, in 

order to obtain functionally diverse carriers [19,20]. Nevertheless, IBs are significantly 

bigger entities than pNPs, with diameters from 100 nm up to 1 µm, belonging to the 

insoluble fraction under physiological conditions, what makes them easier to isolate in a 

cost effective manner. IBs are structured in a sponge like conformation in which a network 

of amyloid fibrils holds quasi soluble protein species [21]. These structures have been 

shown to act as other functional amyloids like the secretory granules found in the 

endocrine system [22]. IBs contain functional protein that can be released along time 

under the appropriate conditions [23].These features have been previously described and 

exploited rendering promising results in terms of protein stability and biocompatibility in 

both, in vitro and in vivo approaches, when a given protein is administered packed as IBs 

[24,25,26].  Nevertheless, nanostructured protein release from IBs has never been 

described.  

In this work, we report for the first time the use of IBs as reservoirs of targeted pNPs. We 

describe direct release of self-assembled pNPs from IBs in a fully functional way in vitro 



and in vivo. In this regard, it is important to highlight that released pNPs are able to 

effectively target cells and tissues by specific receptor recognition. Our system exploits the 

combined nanoscale properties provided by pNPs with the mesoscale features of the IBs. 

In addition, we show the potential of implantable IBs to provide a long lasting source of 

targeted pNPs actively directed to distant sites from the primary implantation point.   

In detail, two modular self-assembling proteins targeting CXCR4 receptor, T22-GFP-H6 

and R9-GFP-H6, were produced as IBs. These IBs released pNPs specifically directed to 

CXCR4+ cells in both, in vitro and in vivo models. Importantly, T22-GFP-H6 IBs provided 

significant amounts of targeted pNPs as long as 10 days after subcutaneous implantation 

in a xenograft colorectal cancer mouse model that traveled through the bloodstream to 

efficiently accumulate in target CXCR4+ tumor cells.  

 



Materials and Methods: 

Protein overexpression and Inclusion body isolation. 

T22-GFP-H6, R9-GFP-H6 and VP1-GFP (Gene bank accession number: KM242650.1) 

modular proteins were coded by the expression vectors pET22b (Novagen), pET21a 

(Novagen) and pTrc99a respectively. T22 and R9 are cationic peptide ligands to the 

CXCR4 receptor while VP1 is a foot and mouth disease virus capsid protein employed as 

aggregation domain to favor IB deposition. These domains were fused to a green 

fluorescent protein (GFP). In the cases of R9-GFP-H6 and T22-GFP-H6 a polyhistidine tag 

was also incorporated to the c-terminus of the modular protein as an architectonic tag to 

induce the self-assembling of the resulting modular proteins in combination with the 

cationic n-terminal peptide. The constructs encoding T22-GFP-H6, R9-GFP-H6  and VP1-

GFP were transformed into the Escherichia coli (E. coli) strains Origami B, Rosetta (DE3) 

and  JGT4 [27] respectively. 

IB production was carried out in 400 mL of Luria Broth (LB) in 2 L shake flasks by 

conventional protein over expression. Briefly, induction of protein production was 

performed by 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) addition (final 

concentration) in bacterial cell cultures at early exponential growth phase, OD550 at 0.5. 

Bacterial cell cultures were further incubated for 3 h at 37 °C and 250 rpm. Samples were 

then harvested by centrifugation, 10.000 g for 15 min at 4 °C and a combination of 

mechanical and enzymatic procedures was applied for cell disruption. First, cell pellets 

were resuspended in lysis buffer (50 mM Tris- HCl, 10 mM NaCl, 1 mM EDTA) and 

protease inhibitors: phenylmethylsulfonyl (PMSF) 0.4 mM and Complete EDTA-Free 

(Roche) added. Then, enzymatic digestion was carried out by lysozyme added at 1µg/mL 

for 2h at 37 ºC and 250 rpm. After cell wall digestion, five rounds of French Press at 1200 

psi were carried out and lysates were frozen at -80 °C. Samples were thawed and mild 

detergent washing was performed by Triton X-100 addition (0.2 % v/v) for 1h at room 

temperature (RT) under vigorous agitation. IBs were collected by centrifugation at 15.000 

g for 15 min at 4 ºC and resuspended again in lysis buffer to wash out previous purification 

reagents. DNAse treatment, 0.6 µg/mL 1 h at 37 ºC, was performed and presence of 

remaining viable bacteria checked by plating 100 µL of IBs sample onto LB plates and 

culturing them overnight (ON) at 37 ºC. Freeze/Thaw cycles were applied until no colony 

was observed on the plates. Finally, IBs were washed in deionized sterile water, 

centrifuged at 15.000 g for 15 min at 4 ºC, and pellets stored at -80 °C until further use. IB 



quantification was carried out by western blot against GFP protein using GFP-H6 soluble 

protein at known concentration to generate the standard curve from which IBs 

quantification was inferred. This quantification was performed by ImageJ software (NIH). 

13.35 µg of T22-GFP-H6, 3.15 µg of R9-GFP-H6 and 3.55 µg of VP1-GFP IBs per mL of 

cell culture were obtained respectively. 

IB visualization in the producing bacteria strain 

After IB production, cells were centrifuged at 5000 g for 15 min and the pellet was 

resuspended and fixed using a 4 % paraformaldehyde solution for 30 min at room 

temperature (RT). Samples were then observed under a Leica TCS-SP5 confocal laser 

scanning microscope (Leica Microsystems CMS GmbH) in a Plan-Apochromatic 63x (NA 

1.4, oil) objective. GFP-based proteins were excited with an Argon laser (488 nm). Finally, 

an intensity colored palette was applied to the obtained images using ImageJ software in 

order to improve fluorescence distribution observation.  

Protein release in vitro 

Purified IBs were resuspended in phosphate buffered saline (PBS) at 1 mg/mL, and 

incubated at 37 °C. Samples were taken at 0 h, 0.5 h, 1 h, 3 h, and 24 h and centrifuged 

for 15 min at 15000 g and 4 °C. Soluble and insoluble fractions were further processed for 

western blot and FESEM imaging. In all the cases pellets corresponding to the insoluble 

fraction (IBs) were resuspended in PBS at the same final volume than their soluble 

counterpart (pNPs) for comparison.  

Field Emission Scanning Electron Microscopy (FESEM) 

Microdrops of 3 μL of triplicate samples were directly deposited onto silicon wafers (Ted 

Pella Inc.) for 2 min and sample excess removed by capillarity using filter Whatman paper 

(GE Healthcare). Samples were further air dried and immediately observed at nearly 

native state without coating with a high resolution in-lens secondary electron detector in a 

Zeiss Merlin FESEM operating at 2 kV. For the qualitative approach, representative 

images of either insoluble (IBs, 200,000x of magnification) and soluble fractions (pNPs, 

350,000x of magnification) coming from protein release in vitro assay were obtained. For 

the quantitative approach, representative images at 170,000x magnification of pNPs 

isolated at the optimal release incubation points observed by western blot (0.5 h and 3 h, 

respectively) were obtained. The diameter of randomly distributed 1795 particles from R9-



GFP-H6 supernatants and 3637 from T22-GFP-H6 supernatants was determined for the 

size distribution assessment using ImageJ software (NIH). 

Western blotting  

Regular western blotting procedures were employed to analyze soluble and insoluble 

fraction from IBs. Briefly, equal volumes of each fraction were diluted in laemmli 4x loading 

buffer. Insoluble and soluble fractions were boiled for 25 min and 5 min respectively at 98 

°C and then 20 µL loaded into a 15 % sodium dodecyl sulfate (SDS) polyacrylamide 

electrophoresis gel. Gel running was carried out at a constant voltage of 100 V and 

transferred to a nitrocellulose membrane. GFP domain from the three model proteins 

employed in the study was detected using a rabbit polyclonal anti-GFP antibody (Santa 

Cruz Biotechnology) followed by a goat anti-rabbit secondary antibody conjugated to a 

horseradish peroxidase (BioRad). Membrane was developed by the addition of 

chloronaphthol and hydrogen peroxide. Densitometric analysis of the protein bands 

allowed us to determine relative amounts of protein between soluble and insoluble fraction. 

All the blots were performed in triplicate from independent experiments. 

Cell culture and pNP uptake assays 

HeLa cells acquired at ATCC (CCL2) were routinely cultured in MEM alpha medium 

(Gibco) containing 10% of fetal bovine serum (Gibco) in a humidified incubator a 37 °C 

and 5 % CO2. Note that the material used in the uptake experiments correspond to pNPs 

released from IBs and come from the soluble fraction of IBs suspension isolated by high 

speed centrifugation (15.000 g, 15 min, 4°C). 

Flow cytometry 

Particle uptake assays were performed in 24 well plates at 70% of cell confluence. 2.5 µL 

samples from soluble fractions (pNPs), coming from 1 mg/mL IB suspension, were added 

per well and incubated for 1 h at cell culture conditions. Then, incubation plates were 

washed in DPBS (Gibco) and treated with trypsin at 1 mg/mL (Gibco) for 15 min at 37 °C. 

This “harsh” trypsin digestion allowed to completely remove protein externally adhered to 

cells [28].Competition assays were performed as described above following incubation 

with 1 µM of AMD3100 (Sigma) for 1 h at 37 °C and 5 % CO2. Note that AMD3100 

(octahydrochloride hydrate) has been described as a potent CXCR4 receptor antagonist. 

Cells were then processed in a FACS-Canto flow cytometer (Becton Dickinson) using a 15 



mW air-cooled argon ion laser at 488 nm for GFP fluorescence excitation and a D detector 

(530/30 nm bandpass filter) for detection of their fluorescence emission.  

Confocal Microscopy 

Nanoparticle uptake was also assessed by confocal microscopy. HeLa cells were cultured 

in MatTek culture dishes (MatTek Corp.) until reaching subconfluency. The soluble 

fractions, containing pNP released from 1 mg/mL IBs suspension, were added and further 

incubated during 1 h. Cell membranes were stained with CellMaskTM DeepRed 

(Molecular Probes) and nuclei with Hoescht 33342 (Molecular Probes) for 10 min before 

being washed in PBS. Cells were then recorded with a Leica TCS-SP5 confocal laser 

scanning microscope (Leica Microsystems CMS GmbH) using an Apo63x/1.4 (oil HC x PL 

APO lambda blue) objective. GFP-based pNPs were excited by an Argon laser (488 nm), 

Cell mask by a HeNe laser (633nm) and Hoescht by a blue diode (405 nm). 

In vivo biodistribution of bacterial IBs 

Five-week-old female Swiss nu/nu mice weighing between 18 and 20 g (Charles River) 

and maintained in SPF conditions, were used for in vivo studies. All the in vivo procedures 

were approved by the Hospital de Sant Pau Animal Ethics Committee and performed 

according to European Council directives. To generate the subcutaneous (SC) mouse 

model, 10 mg of SP5 CCR tumor tissue were obtained from donor animals, and 

subcutaneously implanted in the anterior flanks of experimental Swiss nu/nu mice. When 

tumors reached 500 mm3 approximately, mice were randomly allocated and 

subcutaneously administered in the mouse posterior flank, far away from the tumor, with 

T22-GFP-H6 or VP1-GFP bacterial IBs at 1 mg/mouse dose resuspended in a 150 µL 

saline solution. Control mice were administered with the same volume of saline solution.  

After IBs administration, whole- body mice were monitored at short (5 h) and long-times (1 

d, 2 d, 5 d and 10 d) to determine the retained GFP fluorescence in the subcutaneous IB 

implants located in the posterior mouse flank using the IVIS® Spectrum equipment 

(PerkinElmer Inc.). Following, 1 mL of blood was collected by intracardiac puncture and 

plasma was obtained by centrifuging at 600g, 10min, 4 ºC.  Fluorescence emitted by the 

obtained plasma was, then, recorded ex-vivo using the IVIS equipment at the selected 

times (5 h, 1 d, 2 d, 5 d and 10 d) post-administration of bacterial IBs. Mice were 

subsequently euthanized and tumor, brain, lung and heart, kidney, liver and bone marrow 



were collected and examined separately for ex-vivo GFP fluorescence in an IVIS® 

Spectrum equipment.  

 The fluorescent signal (FLI) was first digitalized, displayed as a pseudocolor overlay, and 

expressed as radiant efficiency. The FLI ratio was calculated dividing the FLI signal from 

the protein-treated mice by the FLI auto-fluorescent signal of control mice. In order to 

estimate the percent of the subcutaneously injected IBs dose that reached the tumor or 

normal organs, we calculated the Area Under the Curve (AUC (mg x day)). This was done 

after plotting the amount of protein (mg) versus time (days) for each localization, and 

applying the trapezoidal method, considering the following equivalencies at time 0 min 

after SC administration. 5.57 x 109 and 1.24 x 1010 fluorescent units were equivalent to 1 

mg of T22-GFP-H6 IBs protein or 1 mg of VP1-GFP IBs protein, respectively 

 Multiple immunofluorescence assay. 

The presence and localization of IBs and released pNPs around the injection point in the 

mouse posterior flank (as subcutaneous depositions), into blood vessels of the hypodermis 

and in tumor tissue of the anterior mouse flank were assessed by multiple 

immunofluorescence labeling of formalin-fixed paraffin-embedded (FFPE) samples using 

standard protocols. Samples were taken after 5 d upon IBs administration. Primary 

antibodies anti-GFP (1:250, Abcam) and anti-PECAM-1 (1:200; Santa Cruz Biotechnology, 

Inc.) were incubated ON at 4 ºC. Then, the secondary antibodies: donkey anti-goat IgG-

Cy3 (Jackson) for PECAM-1 and chicken IgG-Cy2 for GFP. Slides were then stained with 

DAPI (1:10000 in TBS) for 10 min RT, rinsed with water, mounted and analyzed under 

fluorescence microscope (405 nm, 488 Cy2 and 532/561 filters). Representative pictures 

were taken using confocal Leica TCS SPE at 400x magnification. 

Statistical analysis 

T- tests assuming unequal variances were performed to assess differences in in vitro 

assays with a minimum n=3. Past3 open access software was employed to carry out 

statistical analysis. The Mann–Whitney U-tests were used to compare tumor tissue 

fluorescence emission (FLI) between groups in in vivo experiment, using the SPSS vs11.0 

package (IBM). All quantitative values were expressed as mean ± standard error of the 

mean (SEM).. Differences between groups were considered significant at p < 0.05.  



Results: 

Bacterial IBs formed by the recombinant modular proteins VP1-GFP, R9-GFP-H6 and 

T22-GFP-H6, detailed in Figure 1, panel a, were successfully produced in E. coli cell 

factories. Protein overexpression rendered insoluble protein deposits in the range from 

100 nm to 800 nm in diameter. IB size characterization of the material used in the present 

work was performed in a previous study [20]. As it can be observed in Figure 1b, left 

panel, focused fluorescent signal showed IB deposition at the bacteria poles but we also 

detected fluorescence all over the cytoplasm indicating presence of their soluble 

counterpart. In addition, the co-existence of soluble and insoluble protein species within 

the bacteria exhibited distinct patterns depending on the IB fabrication setup, namely 

producing strain and IB forming protein. In this regard T22-GFP-H6 and R9-GFP-H6 

producing bacteria showed a higher extent of soluble protein than VP1-GFP samples.  

FESEM micrographs of purified IBs revealed pseudo-spherical particles with different 

grades of surface complexity. VP1-GFP IBs displayed mostly smooth surface while R9-

GFP-H6 and T22-GFP-H6 IBs showed increased surface roughness exhibiting a 

particulate coating. Interestingly, significantly smaller particles were also observed nearby 

R9-GFP-H6 and T22-GFP-H6 IBs suggesting a direct release of pNPs from IBs (Figure 

1b, right panel). In order to study in detail this event we further analyzed by FESEM the 

soluble fractions obtained after the centrifugation of purified IBs suspensions where we 

efficiently separate IBs form released soluble protein material. In these soluble samples, 

we observed rounded nanostructures confirming pNPs release from the main aggregate 

(IBs) (Figure 1c). Of note R9-GFP-H6 and T22-GFP-H6 have been previously described 

as proteins with self-assembling capacity able to effectively generate soluble pNP driven 

by the presence of positively charged peptides at the amino terminus such as T22 and R9 

in combination with a polyhistidine tag at the carboxy terminus (Figure 1, panel a) [17]. 

Qualitative evaluation of pNPs depicted in FESEM images revealed a rather polydisperse 

size distribution exposing particles with diameters sizing from 20 nm to 80 nm in both T22-

GFP-H6 and R9-GFP-H6 samples. Additionally, magnification of pNPs showed a brighter 

outer ring and darker inner region within nanoparticle architecture. This observation 

suggested a toroidal conformation of the pNPs in accordance with previous studies [29]. 

As expected, VP1-GFP samples did not show any nanostructured entity in its soluble 

fraction since the fusion protein lacks the oligomerization domains. 



  

Figure 1.  Architectonic features of T22-GFP-H6, R9-GFP-H6 and VP1GFP a) Schematic 

representation of the aggregation model protein VP1-GFP and the self-assembling modular 

proteins R9-GFP-H6 and T22-GFP-H6. Sizes of the boxes are only indicative b) Left panel, confocal 

images of bacteria producing IBs. Right panel, FESEM micrographs of isolated IBs. c) FESEM 

detail of pNPs (present in the soluble fraction) isolated from purified IBs (insoluble fraction). pNPs 

were obtained by isolating by centrifugation the soluble fraction of an IB suspension at 1 mg/ mL .   

Next we studied protein release from IBs (insoluble fraction) to the soluble fraction at 

different time points (Figure 2a). For this, IBs were resuspended in PBS at 1 mg/mL and 

incubated at 37 ºC.  Soluble and insoluble fractions were then isolated from these samples 

at different times and presence of protein immune detected by western blot. Protein 

amount released from IBs to the soluble fraction was higher for T22-GFP-H6 samples than 

for R9-GFP-H6 at longer incubation times. VP1-GFP did not show detectable amounts of 

protein in the soluble fraction at any tested time. Interestingly, T22-GFP-H6 exhibited 

increasing amounts of protein in the soluble fraction reaching its maximum at 3 h in which 

the soluble protein corresponded to the 14.6 % of the total protein, but rendering clearly 

detectable bands till 24 h after IBs resuspension (10 % of soluble protein). This profile was 

indicative of a progressive protein release from IBs. In the case of R9-GFP-H6 samples, 

the amount of protein obtained in the soluble fraction could be detected till 3 h after 

incubation with a maximum intensity at 30 min, 16 % of soluble protein. Interestingly, at 

longer incubations time points the amount of released protein exhibited a marked drop. 



R9-GFP-H6 IBs may contain an external layer of loosed pNPs easily resolubilized but with 

a poor stability in the assay conditions (Figure 2a and ai). In order to analyze in vitro if the 

released protein from IBs occurred in form of single polypeptides or arranged as self-

assembled pNPs, a morphometric analysis of ultrastructure was performed for the soluble 

fraction of IBs suspensions at distinct incubation times with FESEM (Figure 2b). Abundant 

pNPs were observed in accordance with previous results at distinct timepoints, 0 h, 1 h 

and 24 h for R9-GFP-H6 and T22-GFP-H6 samples. As expected, no pNPs were 

visualized in VP1-GFP samples. Self-assembled pNPs were detected immediately after IB 

resuspension in PBS, time 0 h, and at all the tested times. Thus, we confirmed that a 

significant part of the signal obtained in the western blot analysis was given by a 

nanostructured fraction of the protein. In addition, size distribution was determined for both 

R9-GFP-H6 and T22-GFP-H6 released pNPs. As it can be observed in Figure 2 bi, T22-

GFP-H6 exhibited particles with a peak between 10 and 20 nm in diameter, slightly smaller 

than the ones obtained for R9-GFP-H6. In this last case the peak was shifted between the 

20 and 30 nm. In both samples, bigger particles (untill 130 nm), could be observed but 

they represented a negligible number of the released material. Interestingly, these results 

are in accordance with size distribution obtained for T22-GFP-H6 pNPs when produced 

from the protein soluble form [30].  

 



Figure 2. In vitro protein release from T22-GFP-H6, R9-GFP-H6 and VP1-GFP IBs a) Protein 

amount determination by western blot of insoluble fraction (I) and soluble fraction (S) at different 

incubation time points ai) Relative protein quantification from the soluble and insoluble fraction of 

T22-GFP-H6 and R9-GFP-H6 samples at distinct incubation time points. b) FESEM morphometric 

analysis of pNP present in the soluble fraction and released from IBs at 0 h, 1 h and 24 h of IB 

suspension incubation. bi) Size distribution of pNPs for T22-GFP-H6 and R9-GFP-H6.   

To validate if R9-GFP-H6 and T22-GFP-H6 pNPs released from IBs maintained their 

bioactive properties, such as CXCR4 receptor avidity, in vitro internalization studies of 

released protein particles were carried out (Figure 3). pNPs from R9-GFP-H6 and T22-

GFP-H6 showed significant internalization after 1 h of incubation in CXCR4+ HeLa cells. In 

addition, when the CXCR4 inhibitor AMD 3100 was added, pNP uptake was completely 

blocked indicating that R9-GFP-H6 and T22-GFP-H6 get into the cells by CXCR4 

receptor-specific mediated endocytosis. As expected, no uptake was observed for VP1-

GFP samples. This data was confirmed by confocal microscopy (Figure 3c). 

 



Figure 3. Internalization of pNPs released and isolated from IB suspensions in CXCR4+ cells. 

a) Internalization  of soluble pNPs (isolated from IBs) monitored by flow cytometry 1h after exposure 

to HeLa cells .b) Inhibition of T22-GFP-H6 and R9-GFP-H6 pNPs (isolated from IBs) internalization 

by CXCR4 receptor specific antagonist AMD3100. c) Confocal images of HeLa cells exposed to 

isolated pNPs (released from IBs) for 1h. In blue: cell nuclei, in red: cell membrane, in green: 

internalized pNPs. *: p<0.05 

Finally, as a proof of concept for the developed biomaterial acting as reservoirs of pNPs, in 

vivo assays were also performed. Colorectal cancer xenograft models bearing 

subcutaneous tumors in the mouse anterior flank were subcutaneously injected in the 

mouse posterior flank with 1 mg of T22-GFP-H6 IBs per mouse, far away from the tumor 

location. SC Injection of 1 mg of VP1-GFP IBs were used as non-pNP releasing negative 

control. Screening of fluorescence by IVIS revealed a relatively low release of the material 

from the injection point for VP1-GFP IBs. The release of T22-GFP-H6 was significantly 

higher, with a marked drop in fluorescence during the first 2 days that was then stabilized 

maintaining the levels until day 10 after injection (Figure 4a). 

Looking at the fluorescence emitted by the protein in blood it can be drawn that detectable 

amounts of T22-GFP-H6 and VP1-GFP were released from the injection site, reached the 

blood vessels in the hypodermis and entered the blood stream (Figure 4b). The amount of 

T22-GFP-H6 material able to reach the blood stream was significantly higher than that of 

the VP1-GFP protein, probably due to their capability to release a higher extent of protein 

and to self-assemble in pNPs. The concentration of T22-GFP-H6 in blood showed a 

progressive increase until day 5 and was detectable until 10 days after IB subcutaneous 

injection. The concentration of VP1-GFP (pNP negative control) in blood did not 

experiment important changes along  time. These results are in accordance with the 

multiple immunolabeling at the injection site. As it can be observed in Figure 4c, T22-

GFP-H6 showed important level of disaggregation of the subcutaneously injected IBs 

leading to a high degree of dispersion of the forming material and penetration into the 

surrounding tissue. Noteworthy, GFP labeling was also detected inside blood vessels, 

delimited by the immunolabeling of the endothelial marker PECAM. This observation 

provided direct evidence of the high capability for the released T22-GFP-H6 protein to 

enter the vessels and subsequently the bloodstream enabling its further distribution to 

specific tissue in a distal point of the body. On the contrary, VP1-GFP showed a compact 

distribution of the deposited IBs within the subcutaneous tissue with little spreading, 

making it more difficult to reach and enter the blood vessels. 



 

Figure 4. Assessment of T22-GFP-H6 and its respective control VP1-GFP protein release in 

mice upon subcutaneous administration of 1 mg dose/mouse of each IB type. a) On the left 

panel, ex- vivo FLI representative images at the injection site after 0 d, 1 d, 2 d, 5 d and 10 d. On 

the right graphic representation of the FLI obtained at the injection site for all the animals. b) Protein 

detected in blood at 0 d, 1 d, 2 d, 5 d and 10 d upon IB subcutaneous injection. c) Multiple 

immunofluorescence image at the injection site after 5 d post IBs administration displaying in green 

GFP protein, in blue cell nuclei and in red the endothelial marker PECAM-1.*: p-value <0.05 

between groups; ɸ p-value <0.05 between the rest of T22-GFP-H6 treated groups.   

In order to track the protein released from these IBs, the emitted fluorescence was 

measured to assess their uptake in tumor tissue, as well as in brain, lung, heart, liver, 

kidney and bone marrow to assess unspecific accumulation in non-target organs. Protein 

was detected in tumors as it can be observed in Figure 5. Noteworthy, fluorescent signal 



increased along time showing stable accumulation of pNPs in the tumor for T22-GFP-H6 

sample. T22-GFP-H6 exhibited maximum accumulation at day 5 and slightly decreased till 

day 10 upon IB injection. VP1-GFP injected animals also exhibited fluorescence at all 

tested timepoints in tumors, denoting protein release from the material deposited at the 

injection site, but no accumulation during this period was observed. In fact, the retained 

amount of protein in the tumor and the subsequent fluorescence levels decreased along 

time and were markedly lower than the ones obtained for T22-GFP-H6 samples at long 

times, 5 and 10 days upon IB administration. Moreover, in the case of T22 empowered 

pNPs multiple immunofluorescence images displayed GFP signal clustered in the 

perinuclear region of tumor cells indicating the capability of released pNPs to be actively 

internalized by CXCR4+ malignant cells.  

 



Figure 5. Tumor ex- vivo accumulation of T22-GFP-H6 and its respective control VP1-GFP 

proteins in mice upon subcutaneous administration of 1mg dose/mouse of each IB type. a) 

On the left panel, ex- vivo FLI representative images of protein accumulation in tumor after 1 d, 2 d, 

5 d and 10 d IB injection. On the right graphic representation of the FLI obtained for all the animals.  

b) Multiple immunofluorescence after 5 d post IBs administration image in tumor displaying in green 

GFP protein, in blue cell nuclei and in red the endothelial marker PECAM-1. * p-value <0.05 

between groups. c) Plots describing the insoluble IBs remaining in the hypodermis, the amount of 

released soluble pNPs and the amount of soluble pNPs that reach the tumor and the kidney along 

time. The areas under the curve (AUCs) are used to estimate the percent of injected IBs and of 

released proteins that reach the tumor and renal tissues. Please, see Suppl. Table 1 for quantitative 

data. 

Ex-vivo analysis of non-targeted organs revealed fluorescent signal at short times in 

kidney for T22-GFP-H6. This signal faded after 1 day indicating that part of the material is 

either cleared through these organs, in the case of protein in its monomeric form, or 

retained in the renal glomerule to be further recirculated to the bloodstream, in the case of 

nanostructured protein. On the contrary, VP1-GFP showed a much more erratic 

distribution in accordance with their non-targeted nature and incapability to generate 

pNPs. Several organs, particularly the liver, contained detectable amounts of the VP1-GFP 

protein 1 day post-injection.  

Next, we estimated the percent of injected dose that reached the tumor or the kidney (the 

normal organ with highest accumulation) out of the total soluble protein released from the 

IBs in the hypodermis, after the subcutaneous administration of 1 mg IBs dose. (Figure 

5c, Suppl.Table 1). After administration of T22-GFP-H6 IBs, the protein was continuously 

released as soluble pNPs (83.6 %). Only a small percent of it remained in the hypodermis 

by day 10. Moreover, the released soluble protein accumulated mainly in tumor tissue 

(33.7%), whereas a minor fraction (2.7%) was uptaken by the kidney and negligible 

accumulation was detected in other normal organs. That implied 12.3 times more 

accumulation of T22-GFP-H6 pNPs in tumor than in kidney. The rest of the released 

soluble protein was likely degraded in blood or in tumor tissue after cell internalization. 

Noteworthy, excluding the pNP slow release, provided by the SC IBs administration, the 

distribution and degradation in the body of the released pNPs followed a similar pattern to 

the one we previously reported after direct intravenous administration of soluble T22-GFP-

H6 pNPs [18] .  



In contrast to T22-GFP-H6 IBs, a much lower amount of VP1-GFP IBs (14.2%) was 

released as soluble protein. Out of that, 5.7% of released protein was uptaken by the 

tumor whereas 3.3% accumulated in the kidney (suppl. Table 1, Figure 5c). This data 

indicates that T22 peptide is effectively conferring selectivity to the T22-GFP-H6 pNPs 

released from IBs to CXCR4+ tumors while our non targeted control VP1-GFP showed, as 

expected, a poor selectivity in our model.   

 

Figure 6. Organ biodistribution of T22-GFP-H6 and its respective control VP1-GFP in mice at 

5 h and 1 d, 2 d, 5 d  and 10 d upon subcutaneous administration of 1 mg dose/mouse of 

each IB type. Representative ex vivo images of targeted and untargeted IB uptake in mouse brain, 

lung, heart, liver, kidney and bone marrow tissue after subcutaneous injection measured by GFP-

emitted fluorescence.  

  



Discussion: 

Classical perception of bacterial IBs as non-functional protein aggregates has been 

overcome for a while. Many studies have shown the potential of these protein particles in 

several fields, reviewed elsewhere [31,32]. In biomedical research the protein nature of the 

material confers enormous structural and functional possibilities empowering the 

appearance of more complex and finest biomaterials. Other examples of the potential of 

protein based biomaterials are polymeric materials using as building blocks silk, elastin, 

collagen and resilin recombinant proteins or protein fragments. This kind of biomaterials 

has been shown able to render nanoparticles but also bigger, insoluble structures such 

hydrogels [33]. Nevertheless, the combination of both supramolecular conformations using 

the same recombinant construct has never been attempted. In our case, production of 

T22-GFP-H6 and R9-GFP-H6 modular proteins engineered to oligomerize into pNPs 

[17,34], in a first level of structural complexity at the nanoscale, can be combined with their 

production and isolation in bigger entities as insoluble IBs, what confers a second grade of 

structural complexity. These multifaceted protein delivery platforms exhibit appealing 

features such as biocompatibility, biodegradability, cell targeting capacity, long lasting 

effect and plasticity to modulate their physicochemical properties. Hence, we expect when 

formed by proteins with a therapeutic activity they will be able of increasing treatment 

efficiency and reducing non-desired side effects. This idea is reinforced by the recent 

results obtained when producing self assembled pNPs formed by toxins or pro-apoptotic 

peptides replacing the GFP backbone and using the same architectonic tags than in the 

present work. In this scenario, toxin and pro-apoptotic based pNPs revealed a strong 

therapeutic potential after intravenous injection in colorectal cancer mouse model [35,36]. 

Our data prove the feasibility of producing pNPs, formed by self-assembling of modular 

proteins immobilized as IBs. The resulting pNPs were successfully isolated from those 

insoluble supramolecular structures, avoiding complex purification and refolding processes 

and therefore reducing substantially downstream costs [31]. Interestingly, although pNPs 

self-assembly has been described in non-physiological conditions [34] no evidence of pNP 

formation in the bacterial cytoplasm has been provided so far. Nevertheless, the presence 

of pNPs in straightforward isolated IBs, together with the observation of distinct surface 

roughness, resembling a particulate coating and even rounded structures in the nano 

scale attached to the IB surface (see suppl. Figure 1) allows to speculate that pNPs self-

assembly could occur, at least partially, in the bacterial cytoplasm during protein over 



expression. In this situation part of the recombinant protein would skip the cell protein 

quality control machinery to be deposited in the insoluble amyloid-like aggregates. The co-

existence of soluble and insoluble protein species inside the bacteria cytoplasm would 

enable the possibility for soluble pNPs to be trapped in the insoluble amyloid network as 

previously described for non-nanostructured soluble protein [37,38].  

As it happens with the conformational quality of the protein embedded in the IBs [39,23] 

pNPs release from these protein deposits could also be tuned by the genetic modification 

of the forming protein. Distinct release patterns observed for proteins with the same GFP 

scaffold but different ligands, T22 and R9, exemplify how this material can be engineered 

from their genetic sequence to modulate their associated mechanical properties such as 

pNPs release profile. In our system, T22-GFP-H6 exhibited a sustained release along the 

tested times while R9-GFP-H6 showed a burst of pNPs after short incubation times.  

Besides, IBs per se are a highly malleable biomaterial which physico-chemical properties  

can be modulated by adjusting other process variables such as harvesting time or protein 

overexpression temperature [40]. The proper choice of the bacterial genetic background 

used as cell factory has shown significant impact in biological activity of the resulting 

protein deposit and its morphometric parameters [41]. Interestingly, the genetic profile of 

microbial cell factories also influences pNPs features [29]. It is important to note that 

protein conformational quality of the resulting pNPs was not compromised by their 

production as IBs. Internalization assays in CXCR4+ cells and further uptake competition of 

isolated pNPs (released from IBs) with AMD3100 indicated that receptor specificity, 

directly dependent on the proper T22 ligand folding [29], remained intact. Targeting is 

crucial in DDS design since it allows reducing drug effective concentration, focuses the 

therapeutic action at the desired organ or cell type and restrain undesired off target effects. 

In this regard, our model system proved to be a simple “all in one” approach from the 

biofabrication point of view rendering complex sub-micron particles that act as a novel 

platform for the sustained release of fully active targeted pNPs. 

Moving to the in vivo scenario, our injected IBs were able to release protein. This protein 

entered the blood stream, travelled through the mouse body and targeted distal CXCR4+ 

tumors where significantly accumulated, being detectable after 10 days upon 

subcutaneous injection (Figure 7).  



 

Figure 7. Scheme of the pathway followed by targeted T22-GFP-H6 IBs upon subcutaneous 

implantation.  Subcutaneously injected T22-GFP-H6 IBs release pNPs or monomeric T22-GFP-H6 

able to cross into the blood stream and accumulate in distant CXCR4+ tumors. Nanostructured 

protein would be easily internalized by CXCR4+ cells and avoid renal clearance.  

The material released from these insoluble reservoirs was able to penetrate the 

surrounding tissue at the injection site and implied a sustained concentration of the 

potentially therapeutic agent in blood. This provided a constant income with maintained 

levels and long lasting effect instead of the usual oscillatory levels with punctual high 

concentration peaks occurring when NPs or other soluble drug are administrated 

intravenously [42]. In this regard, T22-GFP-H6 pNPs have been previously described as a 

promising DDS for colorectal cancer treatment [18]. In addition, it has been shown that 

T22-GFP-H6 pNPs successfully accumulate in CXCR4+ tumors after 24 h upon 

intravenous administration but their presence was almost non-existent at 48 h [18,8]. 

These results contrast with our data showing a significantly longer half-life of pNPs within 

the body when implanted subcutaneously packed as IBs. In this last case, fluorescence in 

blood and accumulation in tumors were detected after 10 days post subcutaneous 

injection. Nevertheless, biodistribution and intracellular T22 driven targeting of pNPs 



released from IBs and previous studies using pNPs self-assembled from T22-GFP-H6 

soluble protein showed very similar patterns. In both cases notable accumulation in the 

targeted tumor and little off target detection of pNP have been observed indicating that 

pNPs released from IBs are fully functional in the in vivo context.  

The pharmacokinetic/ pharmacodynamic (PK/PD) behavior of each novel therapeutic 

protein SC injected as IBs may depend on the IBs release kinetics of soluble pNPs from 

the hypodermis to enter the bloodstream and also on the capacity of the released and 

targeted pNPs to penetrate tumor tissue and internalize in target cancer cells (in our case 

CXCR4+ cancer cells), through receptor-dependent endocytosis. This will require specific 

studies devoted to demonstrate the reproducibility of its kinetic behavior and the 

optimization in a trial-and-error approach to obtain the appropriate mechanical properties 

of the DDS that fulfill the prospected therapeutic application.  

In contrast, although the fluorescent signal in tumors was also detectable for VP1-GFP 

samples there was no accumulation along the time. This suggests punctual increased 

concentration of VP1-GFP at tumor site probably by EPR effect but a lack of internalization 

of the protein into tumor cells. These results are supported by the immunofluorescence 

images showing faint and diffuse signal for the VP1-GFP samples in tumor after 5 d upon 

IBs injection.  

Although pNPs release have been demonstrated in vitro, protein release in a monomeric 

form cannot be completely discarded. However, our results indicate that an important 

amount of the released material is in form of already assembled pNPs or self-assembled in 

the microenvironment at the implantation site. An elegant study performed by Cespedes 

and co-workers has recently described how to determine pNP architectural stability in vivo 

by the analysis of renal clearance [30]. This study showed how monomeric protein, smaller 

than 7 nm, is rapidly cleared through renal filtration while bigger entities such pNPs avoid 

renal filtration enhancing their blood circulation time and accumulation in the target tissues. 

Additional studies have shown also a strong influence of nanoparticle surface charge in 

renal filtration showing how negatively charged particles are better retained than the 

positively charged ones [43]. In this regard, T22-GFP-H6, when self-assembled in pNPs 

has been previously described as slightly negatively charged pNPs, z potential = -17.2 mV, 

(unpublished data). These facts indicate that fluorescent signal observed in tumors for 

T22-GFP-H6 samples comes from nanostructured particles. In accordance, we observed 

at short times upon T22-GFP-H6 subcutaneous injection, some fluorescence in kidney that 



faded away at longer time points, while a diffuse but more stable signal along time was 

detected for VP1-GFP IBs. Nevertheless, T22-GFP-H6 signal observed in kidney for these 

samples appeared focused and exhibited notable levels of fluorescence. Monomeric 

protein is likely to be fast cleared away unable to render such fluorescence intensity. Thus, 

this concentrated fluorescence observed in kidney could be partially due to temporary 

retention of the pNP in the renal glomerule that eventually would enter the bloodstream 

again. In the case of VP1-GFP the lower and slower material release from the IB would be, 

as expected, mainly in form of monomeric protein since no significant accumulation is 

detected in either targeted tumors or off target tissues. In summary T22-GFP-H6 IBs can 

release protein in both pNPs form and in a lesser extent, monomeric form but the self-

assembled fraction represents the predominant conformation of the released material at all 

the tested points. 

Other biomaterials have been developed to provide a sustained release of the effector 

molecule from a biodegradable matrix or to be functionalized by the addition of biological 

components such as peptides [44,45]. However, their fabrication implies the production 

and conjugation of several components while in our approach we obtain a complex 

biomaterial in a single step by simple protein overexpression and deposition as insoluble 

protein clusters. IB suprastructure would act as a deck from where pNPs are released, 

resembling star fighters being launched from their base. These pNPs in turn can reach the 

bloodstream to be further distributed through the body providing a long lasting effect and 

an increased safety margin. In our case pNPs were targeted to CXCR4+ colorectal cancer 

tumors by the addition of T22 ligand in the modular protein. Noteworthy, this new approach 

in which pNPs are released from bigger entities such bacterial IBs could be adapted to an 

uncountable number of distinct diseases treatments by replacing both, the ligand that 

provides target specificity as well as the GFP reporter protein by other polypeptides with 

therapeutic activity as well as by adjusting production variables in order to tune 

physicochemical properties of the IBs. However, this optimization process is protein 

construct dependent and will need to be addressed in a trial-and-error based process to 

obtain the drug delivery system with the desired properties.  Still, the use of biomaterials 

with bacterial origin can raise some concerns about the safety of the final product for 

implantable devices. In this regard, the development of new bacterial strains and protein 

production of IBs in GRAS organisms are addressing this issue [46,47] with promising 

results. 



Conclusion: 

In the present study we have generated novel smart biomaterials gathering most of the 

desirable features for implantable DDS, with cost effectiveness and simplicity in the 

biofabrication process. In this regard, single step fabricated IBs when injected 

subcutaneously rendered a long lasting release of  targeted pNPs, able to enter to the 

blood stream and specifically target the tumor for as long as 10 days. We have described 

for the first time an approach for the fabrication of protein DDS based on protein deposition 

as IBs and their sustained release in form of fully functional targeted pNPs. This 

technology provides and stable source of targeted protein nanoparticles during long 

periods within the body with the action at distal points from the implantation site and pave 

the way for the appearance of new more efficient and less invasive treatments for a broad 

number of pathologies. 
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